
Workgroup: HTTP

Internet-Draft:

draft-ietf-httpbis-cache-header-10

Published: 17 August 2021

Intended Status: Standards Track

Expires: 18 February 2022

Authors: M. Nottingham

Fastly

The Cache-Status HTTP Response Header Field

Abstract

To aid debugging, HTTP caches often append header fields to a

response explaining how they handled the request in an ad hoc

manner. This specification defines a standard mechanism to do so

that is aligned with HTTP's caching model.

Note to Readers

RFC EDITOR: please remove this section before publication

Discussion of this draft takes place on the HTTP working group

mailing list (ietf-http-wg@w3.org), which is archived at https://

lists.w3.org/Archives/Public/ietf-http-wg/.

Working Group information can be found at https://httpwg.org/;

source code and issues list for this draft can be found at https://

github.com/httpwg/http-extensions/labels/cache-header.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 18 February 2022.

¶

¶

¶

¶

¶

¶

¶

¶

https://lists.w3.org/Archives/Public/ietf-http-wg/
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.org/
https://github.com/httpwg/http-extensions/labels/cache-header
https://github.com/httpwg/http-extensions/labels/cache-header
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Notational Conventions

2. The Cache-Status HTTP Response Header Field

2.1. The hit parameter

2.2. The fwd parameter

2.3. The fwd-status parameter

2.4. The ttl parameter

2.5. The stored parameter

2.6. The collapsed parameter

2.7. The key parameter

2.8. The detail parameter

3. Examples

4. Defining New Cache-Status Parameters

5. IANA Considerations

6. Security Considerations

7. References

7.1. Normative References

7.2. Informative References

Author's Address

1. Introduction

To aid debugging (both by humans and automated tools), HTTP caches

often append header fields to a response explaining how they handled

the request. Unfortunately, the semantics of these headers are often

unclear, and both the semantics and syntax used vary between

implementations.

This specification defines a new HTTP response header field, "Cache-

Status" for this purpose, with standardized syntax and semantics.

¶

¶

¶

¶

https://trustee.ietf.org/license-info

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses ABNF as defined in [RFC5234], with rules prefixed

with "sf-" and the "key" rule as defined in [STRUCTURED-FIELDS]. It

uses terminology from [HTTP] and [HTTP-CACHING].

2. The Cache-Status HTTP Response Header Field

The Cache-Status HTTP response header field indicates how caches

have handled that response and its corresponding request. The syntax

of this header field conforms to [STRUCTURED-FIELDS].

Its value is a List ([STRUCTURED-FIELDS], Section 3.1):

Cache-Status = sf-list

Each member of the list represents a cache that has handled the

request. The first member of the list represents the cache closest

to the origin server, and the last member of the list represents the

cache closest to the user (possibly including the user agent's cache

itself, if it appends a value).

Caches determine when it is appropriate to add the Cache-Status

header field to a response. Some might add it to all responses,

whereas others might only do so when specifically configured to, or

when the request contains a header field that activates a debugging

mode. See Section 6 for related security considerations.

An intermediary SHOULD NOT append a Cache-Status member to responses

that it generates locally, even if that intermediary contains a

cache, unless the generated response is based upon a stored response

(e.g., 304 Not Modified and 206 Partial Content are both based upon

a stored response). For example, a proxy generating a 400 response

due to a malformed request will not add a Cache-Status value,

because that response was generated by the proxy, not the origin

server.

When adding a value to the Cache-Status header field, caches SHOULD

preserve the existing field value, to allow debugging of the entire

chain of caches handling the request.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8941#section-3.1

Each list member identifies the cache that inserted it and this

identifier MUST be a String or Token. Depending on the deployment,

this might be a product or service name (e.g., ExampleCache or

"Example CDN"), a hostname ("cache-3.example.com"), an IP address,

or a generated string.

Each member of the list can have parameters that describe that

cache's handling of the request. While these parameters are

OPTIONAL, caches are encouraged to provide as much information as

possible.

This specification defines the following parameters:

hit = sf-boolean

fwd = sf-token

fwd-status = sf-integer

ttl = sf-integer

stored = sf-boolean

collapsed = sf-boolean

key = sf-string

detail = sf-token / sf-string

2.1. The hit parameter

"hit", when true, indicates that the request was satisfied by the

cache; i.e., it was not forwarded, and the response was obtained

from the cache.

A response that was originally produced by the origin but was

modified by the cache (for example, a 304 or 206 status code) is

still considered a hit, as long as it did not go forward (e.g., for

validation).

A response that was in cache but not able to be used without going

forward (e.g., because it was stale, or partial) is not considered a

hit. Note that a stale response that is used without going forward

(e.g., because the origin server is not available) can be considered

a hit.

"hit" and "fwd" are exclusive; only one of them should appear on

each list member.

2.2. The fwd parameter

"fwd" indicates that the request went forward towards the origin,

and why.

¶

¶

¶

¶

¶

¶

¶

¶

¶

The following parameter values are defined to explain why the

request went forward, from most specific to least:

bypass - The cache was configured to not handle this request

method - The request method's semantics require the request to be

forwarded

uri-miss - The cache did not contain any responses that matched

the request URI

vary-miss - The cache contained a response that matched the

request URI, but could not select a response based upon this

request's headers and stored Vary headers.

miss - The cache did not contain any responses that could be used

to satisfy this request (to be used when an implementation cannot

distinguish between uri-miss and vary-miss)

request - The cache was able to select a fresh response for the

request, but the request's semantics (e.g., Cache-Control request

directives) did not allow its use

stale - The cache was able to select a response for the request,

but it was stale

partial - The cache was able to select a partial response for the

request, but it did not contain all of the requested ranges (or

the request was for the complete response)

The most specific reason that the cache is aware of SHOULD be used,

to the extent that it is possible to implement. See also [HTTP-

CACHING], Section 4.

2.3. The fwd-status parameter

"fwd-status" indicates what status code (see [HTTP], Section 15) the

next hop server returned in response to the forwarded request. Only

meaningful when "fwd" is present; if "fwd-status" is not present but

"fwd" is, it defaults to the status code sent in the response.

This parameter is useful to distinguish cases when the next hop

server sends a 304 Not Modified response to a conditional request,

or a 206 Partial Response because of a range request.

2.4. The ttl parameter

"ttl" indicates the response's remaining freshness lifetime (see

[HTTP-CACHING], Section 4.2.1) as calculated by the cache, as an

integer number of seconds, measured as closely as possible to when

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-17#section-4
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-17#section-15
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-17#section-4.2.1

the response header section is sent by the cache. This includes

freshness assigned by the cache; e.g., through heuristics (see

[HTTP-CACHING], Section 4.2.2), local configuration, or other

factors. May be negative, to indicate staleness.

2.5. The stored parameter

"stored" indicates whether the cache stored the response (see [HTTP-

CACHING], Section 3); a true value indicates that it did. Only

meaningful when fwd is present.

2.6. The collapsed parameter

"collapsed" indicates whether this request was collapsed together

with one or more other forward requests (see [HTTP-CACHING],

Section 4); if true, the response was successfully reused; if not, a

new request had to be made. If not present, the request was not

collapsed with others. Only meaningful when fwd is present.

2.7. The key parameter

"key" conveys a representation of the cache key (see [HTTP-CACHING],

Section 2) used for the response. Note that this may be

implementation-specific.

2.8. The detail parameter

"detail" allows implementations to convey additional information not

captured in other parameters; for example, implementation-specific

states, or other caching-related metrics.

For example:

Cache-Status: ExampleCache; hit; detail=MEMORY

The semantics of a detail parameter are always specific to the cache

that sent it; even if a member of details from another cache shares

the same name, it might not mean the same thing.

This parameter is intentionally limited. If an implementation's

developer or operator needs to convey additional information in an

interoperable fashion, they are encouraged to register extension

parameters (see Section 4) or define another header field.

3. Examples

The most minimal cache hit:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-17#section-4.2.2
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-17#section-3
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-17#section-4
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-17#section-2

Cache-Status: ExampleCache; hit

... but a polite cache will give some more information, e.g.:

Cache-Status: ExampleCache; hit; ttl=376

A stale hit just has negative freshness:

Cache-Status: ExampleCache; hit; ttl=-412

Whereas a complete miss is:

Cache-Status: ExampleCache; fwd=uri-miss

A miss that successfully validated on the back-end server:

Cache-Status: ExampleCache; fwd=stale; fwd-status=304

A miss that was collapsed with another request:

Cache-Status: ExampleCache; fwd=uri-miss; collapsed

A miss that the cache attempted to collapse, but couldn't:

Cache-Status: ExampleCache; fwd=uri-miss; collapsed=?0

Going through two separate layers of caching, where the cache

closest to the origin responded to an earlier request with a stored

response, and a second cache stored that response and later reused

it to satisfy the current request:

Cache-Status: OriginCache; hit; ttl=1100,

 "CDN Company Here"; hit; ttl=545

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Going through a three-layer caching system, where the closest to the

origin is a reverse proxy (where the response was served from

cache), the next is a forward proxy interposed by the network (where

the request was forwarded because there wasn't any response cached

with its URI, the request was collapsed with others, and the

resulting response was stored), and the closest to the user is a

browser cache (where there wasn't any response cached with the

request's URI):

Cache-Status: ReverseProxyCache; hit

Cache-Status: ForwardProxyCache; fwd=uri-miss; collapsed; stored

Cache-Status: BrowserCache; fwd=uri-miss

4. Defining New Cache-Status Parameters

New Cache-Status Parameters can be defined by registering them in

the HTTP Cache-Status Parameters registry.

Registration requests are reviewed and approved by a Designated

Expert, as per [RFC8126], Section 4.5. A specification document is

appreciated, but not required.

The Expert(s) should consider the following factors when evaluating

requests:

Community feedback

If the value is sufficiently well-defined

Generic parameters are preferred over vendor-specific,

application-specific, or deployment-specific values. If a generic

value cannot be agreed upon in the community, the parameter's

name should be correspondingly specific (e.g., with a prefix that

identifies the vendor, application or deployment).

Registration requests should use the following template:

Name: [a name for the Cache-Status Parameter that matches the

'key' ABNF rule]

Description: [a description of the parameter semantics and value]

Reference: [to a specification defining this parameter, if

available]

See the registry at https://iana.org/assignments/http-cache-status

for details on where to send registration requests.

¶

¶

¶

¶

¶

* ¶

* ¶

*

¶

¶

*

¶

* ¶

*

¶

¶

https://rfc-editor.org/rfc/rfc8126#section-4.5
https://iana.org/assignments/http-cache-status

[RFC2119]

5. IANA Considerations

Upon publication, please create the HTTP Cache-Status Parameters

registry at https://iana.org/assignments/http-cache-status and

populate it with the types defined in Section 2; see Section 4 for

its associated procedures.

Also, please create the following entry in the Hypertext Transfer

Protocol (HTTP) Field Name Registry defined in [HTTP], Section 18.4:

Field name: Cache-Status

Status: permanent

Specification document: [this document]

Comments:

6. Security Considerations

Attackers can use the information in Cache-Status to probe the

behaviour of the cache (and other components), and infer the

activity of those using the cache. The Cache-Status header field may

not create these risks on its own, but can assist attackers in

exploiting them.

For example, knowing if a cache has stored a response can help an

attacker execute a timing attack on sensitive data.

Additionally, exposing the cache key can help an attacker understand

modifications to the cache key, which may assist cache poisoning

attacks. See [ENTANGLE] for details.

The underlying risks can be mitigated with a variety of techniques

(e.g., use of encryption and authentication; avoiding the inclusion

of attacker-controlled data in the cache key), depending on their

exact nature. Note that merely obfuscating the key does not mitigate

this risk.

To avoid assisting such attacks, the Cache-Status header field can

be omitted, only sent when the client is authorized to receive it,

or only send sensitive information (e.g., the key parameter) when

the client is authorized.

7. References

7.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

https://iana.org/assignments/http-cache-status
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-17#section-18.4

[RFC8126]

[STRUCTURED-FIELDS]

[HTTP]

[HTTP-CACHING]

[RFC8174]

[RFC5234]

[ENTANGLE]

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Nottingham, M. and P-H. Kamp, "Structured Field

Values for HTTP", RFC 8941, DOI 10.17487/RFC8941,

February 2021, <https://www.rfc-editor.org/rfc/rfc8941>.

Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP

Semantics", Work in Progress, Internet-Draft, draft-ietf-

httpbis-semantics-17, 25 July 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

semantics-17>.

Fielding, R. T., Nottingham, M., and J. Reschke,

"HTTP Caching", Work in Progress, Internet-Draft, draft-

ietf-httpbis-cache-17, 25 July 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

cache-17>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/rfc/rfc5234>.

7.2. Informative References

Kettle, J., "Web Cache Entanglement: Novel Pathways to

Poisoning", 2020, <https://i.blackhat.com/USA-20/

Wednesday/us-20-Kettle-Web-Cache-Entanglement-Novel-

Pathways-To-Poisoning-wp.pdf>.

Author's Address

Mark Nottingham

Fastly

Prahran VIC

Australia

Email: mnot@mnot.net

URI: https://www.mnot.net/

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8941
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-17
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-17
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-17
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-17
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-17
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-cache-17
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5234
https://i.blackhat.com/USA-20/Wednesday/us-20-Kettle-Web-Cache-Entanglement-Novel-Pathways-To-Poisoning-wp.pdf
https://i.blackhat.com/USA-20/Wednesday/us-20-Kettle-Web-Cache-Entanglement-Novel-Pathways-To-Poisoning-wp.pdf
https://i.blackhat.com/USA-20/Wednesday/us-20-Kettle-Web-Cache-Entanglement-Novel-Pathways-To-Poisoning-wp.pdf
mailto:mnot@mnot.net
https://www.mnot.net/

	The Cache-Status HTTP Response Header Field
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions

	2. The Cache-Status HTTP Response Header Field
	2.1. The hit parameter
	2.2. The fwd parameter
	2.3. The fwd-status parameter
	2.4. The ttl parameter
	2.5. The stored parameter
	2.6. The collapsed parameter
	2.7. The key parameter
	2.8. The detail parameter

	3. Examples
	4. Defining New Cache-Status Parameters
	5. IANA Considerations
	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Author's Address

