
Workgroup: HTTP

Internet-Draft:

draft-ietf-httpbis-digest-headers-06

Obsoletes: 3230 (if approved)

Published: 27 September 2021

Intended Status: Standards Track

Expires: 31 March 2022

Authors: R. Polli

Team Digitale, Italian Government

L. Pardue

Cloudflare

Digest Fields

Abstract

This document defines HTTP fields that support integrity checksums.

The Digest field can be used for the integrity of HTTP

representations. The Content-Digest field can be used for the

integrity of HTTP message content. Want-Digest and Want-Content-

Digest can be used to indicate a sender's desire to receive

integrity fields respectively.

This document obsoletes RFC 3230.

Note to Readers

RFC EDITOR: please remove this section before publication

Discussion of this draft takes place on the HTTP working group

mailing list (ietf-http-wg@w3.org), which is archived at https://

lists.w3.org/Archives/Public/ietf-http-wg/.

The source code and issues list for this draft can be found at

https://github.com/httpwg/http-extensions.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 31 March 2022.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc3230
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://github.com/httpwg/http-extensions
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Document Structure

1.2. Concept Overview

1.3. Replacing RFC 3230

1.4. Notational Conventions

2. Representation Digest

3. The Digest Field

4. The Content-Digest Field

5. Want-Digest and Want-Content-Digest Fields

6. Digest Algorithm Values

7. Using Digest in State-Changing Requests

7.1. Digest and Content-Location in Responses

8. Security Considerations

8.1. Digest Does Not Protect the Full HTTP Message

8.2. Digest for End-to-End Integrity

8.3. Usage in Signatures

8.4. Usage in Trailer Fields

8.5. Usage with Encryption

8.6. Algorithm Agility

8.7. Duplicate digest-algorithm in field value

8.8. Resource exhaustion

9. IANA Considerations

9.1. Establish the HTTP Digest Algorithm Values Registry

9.2. Obsolete "contentMD5" token in Digest Algorithm

9.3. Changes Compared to RFC3230

9.4. Changes Compared to RFC5843

9.5. Want-Digest Field Registration

9.6. Digest Field Registration

9.7. Want-Content-Digest Field Registration

9.8. Content-Digest Field Registration

10. References

10.1. Normative References

¶

¶

https://trustee.ietf.org/license-info

10.2. Informative References

Appendix A. Resource Representation and Representation-Data

Appendix B. Examples of Unsolicited Digest

B.1. Server Returns Full Representation Data

B.2. Server Returns No Representation Data

B.3. Server Returns Partial Representation Data

B.4. Client and Server Provide Full Representation Data

B.5. Client Provides Full Representation Data, Server Provides No

Representation Data

B.6. Client and Server Provide Full Representation Data, Client

Uses id-sha-256.

B.7. POST Response does not Reference the Request URI

B.8. POST Response Describes the Request Status

B.9. Digest with PATCH

B.10. Error responses

B.11. Use with Trailer Fields and Transfer Coding

Appendix C. Examples of Want-Digest Solicited Digest

C.1. Server Selects Client's Least Preferred Algorithm

C.2. Server Selects Algorithm Unsupported by Client

C.3. Server Does Not Support Client Algorithm and Returns an

Error

Appendix D. Changes from RFC3230

D.1. Deprecate Negotiation of Content-MD5

D.2. Obsolete Digest Field Parameters

Acknowledgements

FAQ

Code Samples

Changes

Since draft-ietf-httpbis-digest-headers-05

Since draft-ietf-httpbis-digest-headers-04

Since draft-ietf-httpbis-digest-headers-03

Since draft-ietf-httpbis-digest-headers-02

Since draft-ietf-httpbis-digest-headers-01

Since draft-ietf-httpbis-digest-headers-00

Authors' Addresses

1. Introduction

HTTP does not define a means to protect the integrity of

representations. When HTTP messages are transferred between

endpoints, the protocol might choose to make use of features of the

lower layer in order to provide some integrity protection; for

instance, TCP checksums or TLS records [RFC2818].

This document defines two digest integrity mechanisms for HTTP.

First, representation data integrity, which acts on representation

data (Section 3.2 of [SEMANTICS]). Second, content digest integrity,

which acts on conveyed content (Section 6.4 of [SEMANTICS]). Both

mechanisms operate independent of transport integrity, offering the

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-3.2
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-6.4

potential to detect programming errors and corruption of data in

flight or at rest. They can be used across multiple hops in order to

provide end-to-end integrity guarantees, which can aid fault

diagnosis when resources are transferred across hops and system

boundaries. Finally, they can be used to validate integrity when

reconstructing a resource fetched using different HTTP connections.

This document obsoletes [RFC3230].

1.1. Document Structure

This document is structured as follows:

Section 2 describes concepts related to representation digests,

Section 3 defines the Digest request and response header and

trailer field,

Section 4 defines the Content-Digest request and response header

and trailer field,

Section 5 defines the Want-Digest and Want-Content-Digest request

and response header and trailer field,

Section 6 and Appendix D.1 describe algorithms and their relation

to Digest,

Section 7 details computing representation digests,

Appendix D.2 obsoletes Digest field parameters, and

Appendix B and Appendix C provide examples of using Digest and

Want-Digest.

1.2. Concept Overview

This document defines the Digest request and response header and

trailer field; see Section 3. At a high level, the value contains a

checksum, computed over selected representation data (Section 3.2 of

[SEMANTICS]), that the recipient can use to validate integrity.

Basing Digest on the selected representation makes it

straightforward to apply it to use-cases where the transferred data

requires some sort of manipulation to be considered a representation

or conveys a partial representation of a resource, such as Range

Requests (see Section 14.2 of [SEMANTICS]).

To support use-cases where a simple checksum of the content bytes is

required, this document introduces the Content-Digest request and

response header and trailer field; see Section 4.

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

*

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-3.2
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-14.2

Digest and Content-Digest support algorithm agility. The Want-Digest

and Want-Content-Digest fields allows endpoints to express interest

in Digest and Content-Digest respectively, and preference of

algorithms in either.

Digest field calculations are tied to the Content-Encoding and

Content-Type header fields. Therefore, a given resource may have

multiple different checksum values when transferred with HTTP. To

allow both parties to exchange a simple checksum with no content

codings (see Section 8.4.1 of [SEMANTICS]), two more digest-

algorithms are added ("id-sha-256" and "id-sha-512").

Digest fields do not provide integrity for HTTP messages or fields.

However, they can be combined with other mechanisms that protect

metadata, such as digital signatures, in order to protect the phases

of an HTTP exchange in whole or in part.

This specification does not define means for authentication,

authorization or privacy.

1.3. Replacing RFC 3230

Historically, the Content-MD5 header field provided an HTTP

integrity mechanism but HTTP/1.1 ([RFC7231], Appendix B) obsoleted

it due to inconsistent handling of partial responses. [RFC3230]

defined the concept of "instance" digests and a more flexible

integrity scheme to help address issues with Content-MD5. It first

introduced the Digest and Want-Digest fields. HTTP terminology has

evolved since [RFC3230] was published. The concept of "instance" has

been superseded by selected representation.

This document replaces [RFC3230]. The Digest and Want-Digest field

definitions are updated to align with the terms and notational

conventions in [SEMANTICS]. Changes are intended to be semantically

compatible with existing implementations but note that negotiation

of Content-MD5 is deprecated Appendix D.1 and has been replaced by

Content-Digest negotiation via Want-Content-Digest. Digest field

parameters are obsoleted Appendix D.2 and the algorithm table has

been updated to reflect the current state of the art.

1.4. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the Augmented BNF defined in [RFC5234] and

updated by [RFC7405] along with the "#rule" extension defined in

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-8.4.1

Section 5.6.1 of [SEMANTICS] and the "qvalue" rule defined in

Section 12.4.2 of [SEMANTICS].

The definitions "representation", "selected representation",

"representation data", "representation metadata", and "content" in

this document are to be interpreted as described in [SEMANTICS].

Algorithm names respect the casing used in their definition document

(e.g. SHA-1, CRC32c) whereas digest-algorithm tokens are quoted

(e.g. "sha", "crc32c").

2. Representation Digest

The representation digest is an integrity mechanism for HTTP

resources which uses a checksum that is calculated independently of

the content (see Section 6.4 of [SEMANTICS]). It uses the

representation data (see Section 8.1 of [SEMANTICS]), that can be

fully or partially contained in the content, or not contained at

all.

This takes into account the effect of the HTTP semantics on the

messages; for example, the content can be affected by Range Requests

or methods such as HEAD, while the way the content is transferred

"on the wire" is dependent on other transformations (e.g. transfer

codings for HTTP/1.1 - see Section 6.1 of [HTTP11]). To help

illustrate how such things affect Digest, several examples are

provided in Appendix A.

A representation digest consists of the value of a checksum computed

on the entire selected representation data (see Section 8.1 of

[SEMANTICS]) of a resource identified according to Section 6.4.2 of

[SEMANTICS] together with an indication of the algorithm used:

 representation-data-digest = digest-algorithm "="

 <encoded digest output>

When a message has no representation data it is still possible to

assert that no representation data was sent computing the

representation digest on an empty string (see Section 8.3).

The checksum is computed using one of the digest-algorithms listed

in the HTTP Digest Algorithm Values Registry (see Section 6) and

then encoded in the associated format.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-5.6.1
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-12.4.2
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-6.4
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-8.1
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-19#section-6.1
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-8.1
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-6.4.2

3. The Digest Field

The Digest field contains a comma-separated list of one or more

representation digest values as defined in Section 2. It can be used

in both requests and responses.

 Digest = 1#representation-data-digest

For example:

Digest: id-sha-512=WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+TaPm

 AbwAgBWnrIiYllu7BNNyealdVLvRwE\nmTHWXvJwew==

A Digest field MAY contain multiple representation-data-digest

values. For example, a server may provide representation-data-digest

values using different algorithms, allowing it to support a

population of clients with different evolving capabilities; this is

particularly useful in support of transitioning away from weaker

algorithms should the need arise (see Section 8.6).

Digest: sha-256=4REjxQ4yrqUVicfSKYNO/cF9zNj5ANbzgDZt3/h3Qxo=,

 id-sha-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

A recipient MAY ignore any or all of the representation-data-digests

in a Digest field. This allows the recipient to choose which digest-

algorithm(s) to use for validation instead of verifying every

received representation-data-digest.

A sender MAY send a representation-data-digest using a digest-

algorithm without knowing whether the recipient supports the digest-

algorithm, or even knowing that the recipient will ignore it.

Digest can be sent in a trailer section. In this case, Digest MAY be

merged into the header section; see Section 6.5.1 of [SEMANTICS].

When an incremental digest-algorithm is used, the sender and the

receiver can dynamically compute the digest value while streaming

the content.

A non-comprehensive set of examples showing the impacts of

representation metadata, payload transformations and HTTP methods on

Digest is provided in Appendix B and Appendix C.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-6.5.1

4. The Content-Digest Field

The Content-Digest field contains a comma-separated list of one or

more content digest values. A content digest value is computed by

applying a digest-algorithm to the actual message content (see

Section 6.4 of [SEMANTICS]). It can be used in both requests and

responses.

 Content-Digest = 1#content-digest

 content-digest = digest-algorithm "="

 <encoded digest output>

For example:

Content-Digest: id-sha-512=WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+TaPm

 AbwAgBWnrIiYllu7BNNyealdVLvRwE\nmTHWXvJwew==

A Content-Digest field MAY contain multiple content-digest values,

similarly to Digest (see Section 3)

Content-Digest: sha-256=4REjxQ4yrqUVicfSKYNO/cF9zNj5ANbzgDZt3/h3Qxo=,

 id-sha-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

A recipient MAY ignore any or all of the content-digests in a

Content-Digest field. This allows the recipient to choose which

digest-algorithm(s) to use for validation instead of verifying every

received content-digest.

A sender MAY send a content-digest using a digest-algorithm without

knowing whether the recipient supports the digest-algorithm, or even

knowing that the recipient will ignore it.

Content-Digest can be sent in a trailer section. In this case,

Content-Digest MAY be merged into the header section; see

Section 6.5.1 of [SEMANTICS].

When an incremental digest-algorithm is used, the sender and the

receiver can dynamically compute the digest value while streaming

the content.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-6.4
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-6.5.1

5. Want-Digest and Want-Content-Digest Fields

Senders can indicate their integrity checksum preferences using the

Want-Digest or Want-Content-Digest fields. These can be used in both

requests and responses.

Want-Digest indicates the sender's desire to receive a

representation digest on messages associated with the request URI

and representation metadata, using the Digest field.

Want-Content-Digest indicates the sender's desire to receive a

content digest on messages associated with the request URI and

representation metadata, using the Content-Digest field.

qvalue indicates the sender's digest-algorithm preferences.

Section 12.4.2 of [SEMANTICS]) describes qvalue usage and semantics.

Senders can provide multiple digest-algorithm items with the same

qvalue.

Examples:

Want-Digest: sha-256

Want-Digest: sha-512;q=0.3, sha-256;q=1, unixsum;q=0

Want-Content-Digest: sha-256

Want-Content-Digest: sha-512;q=0.3, sha-256;q=1, unixsum;q=0

6. Digest Algorithm Values

Digest-algorithm values are used to indicate a specific digest

computation.

All digest-algorithm token values are case-insensitive but lower

case is preferred; digest-algorithm token values MUST be compared in

a case-insensitive fashion.

Every digest-algorithm defines its computation procedure and

encoding output. Unless specified otherwise, comparison of encoded

output is case-sensitive.

¶

¶

¶

 Want-Digest = 1#want-digest-value

 Want-Content-Digest = 1#want-digest-value

 want-digest-value = digest-algorithm [";" "q" "=" qvalue]

¶

¶

¶

¶

¶

¶

 digest-algorithm = token¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-12.4.2

sha-512

sha-256

The "HTTP Digest Algorithm Values Registry", maintained by IANA at

https://www.iana.org/assignments/http-dig-alg/ registers digest-

algorithm values. Registrations MUST include the following fields:

Digest algorithm: the token value. The registry can be used to

reserve token values

Status: the status of the algorithm. Use "standard" for

standardized algorithms without known problems; "experimental" or

some other appropriate value

e.g. according to the type and status of the primary document

in which the algorithm is defined; "deprecated" when the

algorithm is insecure or otherwise undesirable; "reserved"

when Digest algorithm references a reserved token value

Description: the description of the digest-algorithm and its

encoding

Reference: a set of pointers to the primary documents defining

the digest-algorithm

The associated encoding for new digest-algorithms MUST either be

represented as a quoted string or MUST NOT include ";" or "," in the

character sets used for the encoding.

Deprecated digest algorithms MUST NOT be used.

The registry is initialized with the tokens listed below.

Digest Algorithm: sha-512

Description: The SHA-512 algorithm [RFC6234]. The output of

this algorithm is encoded using the base64 encoding

[RFC4648].

Reference: [RFC6234], [RFC4648], this document.

Status: standard

Digest Algorithm: sha-256

Description: The SHA-256 algorithm [RFC6234]. The output of

this algorithm is encoded using the base64 encoding

[RFC4648].

Reference: [RFC6234], [RFC4648], this document.

¶

*

¶

*

¶

-

¶

*

¶

*

¶

¶

¶

¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

https://www.iana.org/assignments/http-dig-alg/

md5

sha

unixsum

unixcksum

Status: standard

Digest Algorithm: md5

Description: The MD5 algorithm, as specified in [RFC1321].

The output of this algorithm is encoded using the base64

encoding [RFC4648]. This digest-algorithm is now vulnerable

to collision attacks. See [NO-MD5] and [CMU-836068].

Reference: [RFC1321], [RFC4648], this document.

Status: deprecated

Digest Algorithm: sha

Description: The SHA-1 algorithm [RFC3174]. The output of

this algorithm is encoded using the base64 encoding

[RFC4648]. This digest-algorithm is now vulnerable to

collision attacks. See [NO-SHA1] and [IACR-2020-014].

Reference: [RFC3174], [RFC6234], [RFC4648], this document.

Status: deprecated

Digest Algorithm: unixsum

Description: The algorithm computed by the UNIX "sum"

command, as defined by the Single UNIX Specification,

Version 2 [UNIX]. The output of this algorithm is an ASCII

decimal-digit string representing the 16-bit checksum,

which is the first word of the output of the UNIX "sum"

command.

Reference: [UNIX], this document.

Status: deprecated

Digest Algorithm: unixcksum

Description: The algorithm computed by the UNIX "cksum"

command, as defined by the Single UNIX Specification,

Version 2 [UNIX]. The output of this algorithm is an ASCII

digit string representing the 32-bit CRC, which is the

first word of the output of the UNIX "cksum" command.

Reference: [UNIX], this document.

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

adler32

crc32c

id-sha-512

id-sha-256

Status: deprecated

Digest Algorithm: adler32

Description: The ADLER32 algorithm is a checksum specified

in [RFC1950] "ZLIB Compressed Data Format". The 32-bit

output is encoded in hexadecimal (using between 1 and 8

ASCII characters from 0-9, A-F, and a-f; leading 0's are

allowed). For example, adler32=03da0195 and adler32=3DA0195

are both valid checksums for the 4-byte message "Wiki".

This algorithm is obsoleted and SHOULD NOT be used.

Reference: [RFC1950], this document.

Status: deprecated

Digest Algorithm: crc32c

Description: The CRC32c algorithm is a 32-bit cyclic

redundancy check. It achieves a better hamming distance

(for better error-detection performance) than many other

32-bit CRC functions. Other places it is used include iSCSI

and SCTP. The 32-bit output is encoded in hexadecimal

(using between 1 and 8 ASCII characters from 0-9, A-F, and

a-f; leading 0's are allowed). For example, crc32c=0a72a4df

and crc32c=A72A4DF are both valid checksums for the 3-byte

message "dog".

Reference: [RFC4960] appendix B, this document.

Status: deprecated.

To allow sender and recipient to provide a checksum which is

independent from Content-Encoding, the following additional digest-

algorithms are defined:

Description: The sha-512 digest of the representation data

of the resource when no content coding is applied

Reference: [RFC6234], [RFC4648], this document.

Status: standard

Description: The sha-256 digest of the representation data

of the resource when no content coding is applied

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

¶

*

¶

* ¶

* ¶

*

¶

Reference: [RFC6234], [RFC4648], this document.

Status: standard

7. Using Digest in State-Changing Requests

When the representation enclosed in a state-changing request does

not describe the target resource, the representation digest MUST be

computed on the representation-data. This is the only possible

choice because representation digest requires complete

representation metadata (see Section 2).

In responses,

if the representation describes the status of the request, Digest

MUST be computed on the enclosed representation (see Appendix B.

8);

if there is a referenced resource Digest MUST be computed on the

selected representation of the referenced resource even if that

is different from the target resource. That might or might not

result in computing Digest on the enclosed representation.

The latter case is done according to the HTTP semantics of the given

method, for example using the Content-Location header field (see

Section 8.7 of [SEMANTICS]). In contrast, the Location header field

does not affect Digest because it is not representation metadata.

For example, in PATCH requests, the representation digest will be

computed on the patch document because the representation metadata

refers to the patch document and not to the target resource (see

Section 2 of [PATCH]). In responses, instead, the representation

digest will be computed on the selected representation of the

patched resource.

7.1. Digest and Content-Location in Responses

When a state-changing method returns the Content-Location header

field, the enclosed representation refers to the resource identified

by its value and Digest is computed accordingly. An example is given

in Appendix B.7.

8. Security Considerations

8.1. Digest Does Not Protect the Full HTTP Message

This document specifies a data integrity mechanism that protects

HTTP representation data or content, but not HTTP header and trailer

fields, from certain kinds of accidental corruption.

* ¶

* ¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-8.7
https://rfc-editor.org/rfc/rfc5789#section-2

Digest fields are not intended to be a general protection against

malicious tampering with HTTP messages. This can be achieved by

combining it with other approaches such as transport-layer security

or digital signatures.

8.2. Digest for End-to-End Integrity

Digest fields can help detect representation data or content

modification due to implementation errors, undesired "transforming

proxies" (see Section 7.7 of [SEMANTICS]) or other actions as the

data passes across multiple hops or system boundaries. Even a simple

mechanism for end-to-end representation data integrity is valuable

because user-agent can validate that resource retrieval succeeded

before handing off to a HTML parser, video player etc. for parsing.

Identity digest-algorithms (e.g. "id-sha-256" and "id-sha-512") are

particularly useful for end-to-end integrity because they allow

piecing together a resource from different sources with different

HTTP messaging characteristics. For example, different servers that

apply different content codings.

Note that using digest fields alone does not provide end-to-end

integrity of HTTP messages over multiple hops, since metadata could

be manipulated at any stage. Methods to protect metadata are

discussed in Section 8.3.

8.3. Usage in Signatures

Digital signatures are widely used together with checksums to

provide the certain identification of the origin of a message

[NIST800-32]. Such signatures can protect one or more HTTP fields

and there are additional considerations when Digest is included in

this set.

Since digest fields are hashes of resource representations, they

explicitly depend on the representation metadata (e.g. the values of

Content-Type, Content-Encoding etc). A signature that protects

Digest but not other representation metadata can expose the

communication to tampering. For example, an actor could manipulate

the Content-Type field-value and cause a digest validation failure

at the recipient, preventing the application from accessing the

representation. Such an attack consumes the resources of both

endpoints. See also Section 7.1.

Digest fields SHOULD always be used over a connection that provides

integrity at the transport layer that protects HTTP fields.

A Digest field using NOT RECOMMENDED digest-algorithms SHOULD NOT be

used in signatures.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-7.7

Using signatures to protect the checksum of an empty representation

allows receiving endpoints to detect if an eventual payload has been

stripped or added.

Any mangling of digest fields, including de-duplication of

representation-data-digest values or combining different field

values (see Section 5.2 of [SEMANTICS]) might affect signature

validation.

8.4. Usage in Trailer Fields

Before sending digest fields in a trailer section, the sender should

consider that intermediaries are explicitly allowed to drop any

trailer (see Section 6.5.2 of [SEMANTICS]).

When digest fields are used in a trailer section, the field-values

are received after the content. Eager processing of content before

the trailer section prevents digest validation, possibly leading to

processing of invalid data.

Not every digest-algorithm is suitable for use in the trailer

section, some may require to pre-process the whole payload before

sending a message (e.g. see [I-D.thomson-http-mice]).

8.5. Usage with Encryption

Digest fields may expose details of encrypted payload when the

checksum is computed on the unencrypted data. For example, the use

of the "id-sha-256" digest-algorithm in conjunction with the

encrypted content-coding [RFC8188].

The checksum of an encrypted payload can change between different

messages depending on the encryption algorithm used; in those cases

its value could not be used to provide a proof of integrity "at

rest" unless the whole (e.g. encoded) content is persisted.

8.6. Algorithm Agility

The security properties of digest-algorithms are not fixed.

Algorithm Agility (see [RFC7696]) is achieved by providing

implementations with flexibility choose digest-algorithms from the

IANA Digest Algorithm Values registry in Section 9.1.

To help endpoints distinguish weaker algorithms from stronger ones,

this document adds to the IANA Digest Algorithm Values registry a

new "Status" field containing the most recent appraisal of the

digest-algorithm.

An endpoint might have a preference for algorithms, such as

preferring "standard" algorithms over "deprecated" ones. Transition

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-5.2
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-6.5.2

from weak algorithms is supported by negotiation of digest-algorithm

using Want-Digest or Want-Content-Digest (see Section 5) or by

sending multiple representation-data-digest values from which the

receiver chooses. Endpoints are advised that sending multiple values

consumes resources, which may be wasted if the receiver ignores them

(see Section 3).

8.7. Duplicate digest-algorithm in field value

An endpoint might receive multiple representation-data-digest values

(see Section 3) that use the same digest-algorithm with different or

identical digest-values. For example:

Digest: sha-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=,

 sha-256=47DEQpj8HBSa+/TImW+5JCeuQeRkm5NMpJWZG3hSuFU=

A receiver is permitted to ignore any representation-data-digest

value, so validation of duplicates is left as an implementation

decision. Endpoints might select all, some, or none of the values

for checksum comparison and, based on the intersection of those

results, conditionally pass or fail digest validation.

8.8. Resource exhaustion

Digest fields validation consumes computational resources. In order

to avoid resource exhaustion, implementations can restrict

validation of the algorithm types, number of validations, or the

size of content.

9. IANA Considerations

9.1. Establish the HTTP Digest Algorithm Values Registry

This memo sets this specification to be the establishing document

for the HTTP Digest Algorithm Values registry.

IANA is asked to update the "Reference" for this registry to refer

this document and to inizialize the registry with the tokens defined

in Section 6.

This registry uses the Specification Required policy (Section 4.6 of

[RFC8126]).

¶

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/http-dig-alg/
https://rfc-editor.org/rfc/rfc8126#section-4.6

9.2. Obsolete "contentMD5" token in Digest Algorithm

This memo adds the "contentMD5" token in the HTTP Digest Algorithm

Values registry:

Digest Algorithm: contentMD5

Description: Section 5 of [RFC3230] defined the "contentMD5"

token to be used only in Want-Digest. This token is obsoleted and

MUST NOT be used.

Reference: Section 9.2 of this document, Section 5 of [RFC3230].

Status: obsoleted

9.3. Changes Compared to RFC3230

The contentMD5 digest-algorithm token defined in Section 5 of

[RFC3230] has been added to the HTTP Digest Algorithm Values

Registry with the "obsoleted" status.

All digest-algorithms defined in [RFC3230] are now "deprecated".

9.4. Changes Compared to RFC5843

The digest-algorithm tokens for "MD5", "SHA", "SHA-256", "SHA-512"

have been updated to lowercase.

The status of "MD5" and "SHA" has been updated to "deprecated", and

their description has been modified accordingly.

The "id-sha-256" and "id-sha-512" algorithms have been added to the

registry.

9.5. Want-Digest Field Registration

This section registers the Want-Digest field in the "Hypertext

Transfer Protocol (HTTP) Field Name Registry" [SEMANTICS].

Field name: Want-Digest

Status: permanent

Specification document(s): Section 5 of this document

9.6. Digest Field Registration

This section registers the Digest field in the "Hypertext Transfer

Protocol (HTTP) Field Name Registry" [SEMANTICS].

Field name: Digest

¶

* ¶

*

¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/http-dig-alg/
https://www.iana.org/assignments/http-dig-alg/
https://rfc-editor.org/rfc/rfc3230#section-5
https://rfc-editor.org/rfc/rfc3230#section-5
https://rfc-editor.org/rfc/rfc3230#section-5

[CMU-836068]

[IACR-2020-014]

[NIST800-32]

[RFC1321]

[RFC1950]

Status: permanent

Specification document(s): Section 3 of this document

9.7. Want-Content-Digest Field Registration

This section registers the Want-Content-Digest field in the

"Hypertext Transfer Protocol (HTTP) Field Name Registry"

[SEMANTICS].

Field name: Want-Content-Digest

Status: permanent

Specification document(s): Section 5 of this document

9.8. Content-Digest Field Registration

This section registers the Content-Digest field in the "Hypertext

Transfer Protocol (HTTP) Field Name Registry" [SEMANTICS].

Field name: Content-Digest

Status: permanent

Specification document(s): Section 4 of this document

10. References

10.1. Normative References

Carnagie Mellon University, Software Engineering

Institute, "MD5 Vulnerable to collision attacks", 31

December 2008, <https://www.kb.cert.org/vuls/id/836068/>.

Leurent, G. and T. Peyrin, "SHA-1 is a Shambles", 5

January 2020, <https://eprint.iacr.org/2020/014.pdf>.

National Institute of Standards and Technology, U.S.

Department of Commerce, "Introduction to Public Key

Technology and the Federal PKI Infrastructure", February

2001, <https://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-32.pdf>.

Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,

DOI 10.17487/RFC1321, April 1992, <https://www.rfc-

editor.org/rfc/rfc1321>.

Deutsch, P. and J-L. Gailly, "ZLIB Compressed Data Format

Specification version 3.3", RFC 1950, DOI 10.17487/

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.kb.cert.org/vuls/id/836068/
https://eprint.iacr.org/2020/014.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-32.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-32.pdf
https://www.rfc-editor.org/rfc/rfc1321
https://www.rfc-editor.org/rfc/rfc1321

[RFC2119]

[RFC3174]

[RFC3230]

[RFC4648]

[RFC4960]

[RFC5234]

[RFC5843]

[RFC6234]

[RFC7405]

[RFC8126]

[RFC8174]

RFC1950, May 1996, <https://www.rfc-editor.org/rfc/

rfc1950>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm

1 (SHA1)", RFC 3174, DOI 10.17487/RFC3174, September

2001, <https://www.rfc-editor.org/rfc/rfc3174>.

Mogul, J. and A. Van Hoff, "Instance Digests in HTTP",

RFC 3230, DOI 10.17487/RFC3230, January 2002, <https://

www.rfc-editor.org/rfc/rfc3230>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/rfc/rfc4648>.

Stewart, R., Ed., "Stream Control Transmission Protocol",

RFC 4960, DOI 10.17487/RFC4960, September 2007, <https://

www.rfc-editor.org/rfc/rfc4960>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/rfc/rfc5234>.

Bryan, A., "Additional Hash Algorithms for HTTP Instance

Digests", RFC 5843, DOI 10.17487/RFC5843, April 2010,

<https://www.rfc-editor.org/rfc/rfc5843>.

Eastlake 3rd, D. and T. Hansen, "US Secure Hash

Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234,

DOI 10.17487/RFC6234, May 2011, <https://www.rfc-

editor.org/rfc/rfc6234>.

Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC

7405, DOI 10.17487/RFC7405, December 2014, <https://

www.rfc-editor.org/rfc/rfc7405>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

https://www.rfc-editor.org/rfc/rfc1950
https://www.rfc-editor.org/rfc/rfc1950
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3174
https://www.rfc-editor.org/rfc/rfc3230
https://www.rfc-editor.org/rfc/rfc3230
https://www.rfc-editor.org/rfc/rfc4648
https://www.rfc-editor.org/rfc/rfc4960
https://www.rfc-editor.org/rfc/rfc4960
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5843
https://www.rfc-editor.org/rfc/rfc6234
https://www.rfc-editor.org/rfc/rfc6234
https://www.rfc-editor.org/rfc/rfc7405
https://www.rfc-editor.org/rfc/rfc7405
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8174

[SEMANTICS]

[UNIX]

[HTTP11]

[I-D.ietf-httpbis-header-structure]

[I-D.thomson-http-mice]

[NO-MD5]

[NO-SHA1]

[PATCH]

[RFC2818]

[RFC7231]

Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP

Semantics", Work in Progress, Internet-Draft, draft-ietf-

httpbis-semantics-19, 12 September 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

semantics-19>.

The Open Group, "The Single UNIX Specification, Version 2

- 6 Vol Set for UNIX 98", February 1997.

10.2. Informative References

Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP/

1.1", Work in Progress, Internet-Draft, draft-ietf-

httpbis-messaging-19, 12 September 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

messaging-19>.

Nottingham, M. and P. Kamp,

"Structured Field Values for HTTP", Work in Progress,

Internet-Draft, draft-ietf-httpbis-header-structure-19, 3

June 2020, <https://datatracker.ietf.org/doc/html/draft-

ietf-httpbis-header-structure-19>.

Thomson, M. and J. Yasskin, "Merkle

Integrity Content Encoding", Work in Progress, Internet-

Draft, draft-thomson-http-mice-03, 13 August 2018,

<https://datatracker.ietf.org/doc/html/draft-thomson-

http-mice-03>.

Turner, S. and L. Chen, "Updated Security Considerations

for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, DOI 10.17487/RFC6151, March 2011, <https://

www.rfc-editor.org/rfc/rfc6151>.

Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security

Considerations for the SHA-0 and SHA-1 Message-Digest

Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,

<https://www.rfc-editor.org/rfc/rfc6194>.

Dusseault, L. and J. Snell, "PATCH Method for HTTP", RFC

5789, DOI 10.17487/RFC5789, March 2010, <https://www.rfc-

editor.org/rfc/rfc5789>.

Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/

RFC2818, May 2000, <https://www.rfc-editor.org/rfc/

rfc2818>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-19
https://datatracker.ietf.org/doc/html/draft-thomson-http-mice-03
https://datatracker.ietf.org/doc/html/draft-thomson-http-mice-03
https://www.rfc-editor.org/rfc/rfc6151
https://www.rfc-editor.org/rfc/rfc6151
https://www.rfc-editor.org/rfc/rfc6194
https://www.rfc-editor.org/rfc/rfc5789
https://www.rfc-editor.org/rfc/rfc5789
https://www.rfc-editor.org/rfc/rfc2818
https://www.rfc-editor.org/rfc/rfc2818

[RFC7396]

[RFC7696]

[RFC7807]

[RFC8188]

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/rfc/rfc7231>.

Hoffman, P. and J. Snell, "JSON Merge Patch", RFC 7396,

DOI 10.17487/RFC7396, October 2014, <https://www.rfc-

editor.org/rfc/rfc7396>.

Housley, R., "Guidelines for Cryptographic Algorithm

Agility and Selecting Mandatory-to-Implement Algorithms",

BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,

<https://www.rfc-editor.org/rfc/rfc7696>.

Nottingham, M. and E. Wilde, "Problem Details for HTTP

APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,

<https://www.rfc-editor.org/rfc/rfc7807>.

Thomson, M., "Encrypted Content-Encoding for HTTP", RFC

8188, DOI 10.17487/RFC8188, June 2017, <https://www.rfc-

editor.org/rfc/rfc8188>.

Appendix A. Resource Representation and Representation-Data

The following examples show how representation metadata, payload

transformations and method impacts on the message and content. When

the content contains non-printable characters (e.g. when it is

compressed) it is shown as a Base64-encoded string.

PUT /entries/1234 HTTP/1.1

Host: foo.example

Content-Type: application/json

{"hello": "world"}

Figure 1: Request containing a JSON object without any content coding

PUT /entries/1234 HTTP/1.1

Host: foo.example

Content-Type: application/json

Content-Encoding: gzip

H4sIAItWyFwC/6tWSlSyUlAypANQqgUAREcqfG0AAAA=

Figure 2: Request containing a gzip-encoded JSON object

Now the same content conveys a malformed JSON object, because the

request does not indicate a content coding.

¶

¶

https://www.rfc-editor.org/rfc/rfc7231
https://www.rfc-editor.org/rfc/rfc7231
https://www.rfc-editor.org/rfc/rfc7396
https://www.rfc-editor.org/rfc/rfc7396
https://www.rfc-editor.org/rfc/rfc7696
https://www.rfc-editor.org/rfc/rfc7807
https://www.rfc-editor.org/rfc/rfc8188
https://www.rfc-editor.org/rfc/rfc8188

PUT /entries/1234 HTTP/1.1

Host: foo.example

Content-Type: application/json

H4sIAItWyFwC/6tWSlSyUlAypANQqgUAREcqfG0AAAA=

Figure 3: Request containing malformed JSON

A Range-Request alters the content, conveying a partial

representation.

GET /entries/1234 HTTP/1.1

Host: foo.example

Range: bytes=1-7

Figure 4: Request for partial content

HTTP/1.1 206 Partial Content

Content-Encoding: gzip

Content-Type: application/json

Content-Range: bytes 1-7/18

iwgAla3RXA==

Figure 5: Partial response from a gzip-encoded representation

The method can also alter the content. For example, the response to

a HEAD request does not carry content.

HEAD /entries/1234 HTTP/1.1

Host: foo.example

Accept: application/json

Accept-Encoding: gzip

Figure 6: HEAD request

HTTP/1.1 200 OK

Content-Type: application/json

Content-Encoding: gzip

Figure 7: Response to HEAD request (empty content)

Finally, the semantics of an HTTP response might decouple the

effective request URI from the enclosed representation. In the

example response below, the Content-Location header field indicates

¶

¶

that the enclosed representation refers to the resource available at

/authors/123, even though the request is directed to /authors/.

POST /authors/ HTTP/1.1

Host: foo.example

Accept: application/json

Content-Type: application/json

{"author": "Camilleri"}

Figure 8: POST request

HTTP/1.1 201 Created

Content-Type: application/json

Content-Location: /authors/123

Location: /authors/123

{"id": "123", "author": "Camilleri"}

Figure 9: Response with Content-Location header

Appendix B. Examples of Unsolicited Digest

The following examples demonstrate interactions where a server

responds with a Digest or Content-Digest fields even though the

client did not solicit one using Want-Digest or Want-Content-Digest.

Some examples include JSON objects in the content. For presentation

purposes, objects that fit completely within the line-length limits

are presented on a single line using compact notation with no

leading space. Objects that would exceed line-length limits are

presented across multiple lines (one line per key-value pair) with 2

spaced of leading indentation.

Checksum mechanisms defined in this document are media-type agnostic

and do not provide canonicalization algorithms for specific formats.

Examples are calculated inclusive of any space. While examples can

include both fields, Digest and Content-Digest can be returned

independently.

B.1. Server Returns Full Representation Data

In this example, the message content conveys complete representation

data, so Digest and Content-Digest have the same value.

GET /items/123 HTTP/1.1

Host: foo.example

¶

¶

¶

¶

¶

Figure 10: GET request for an item

HTTP/1.1 200 OK

Content-Type: application/json

Digest: sha-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

Content-Digest: sha-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

{"hello": "world"}

Figure 11: Response with Content-Digest

B.2. Server Returns No Representation Data

In this example, a HEAD request is used to retrieve the checksum of

a resource.

The response Digest field-value is calculated over the JSON object

{"hello": "world"}, which is not shown because there is no payload

data. Content-Digest is computed on empty content.

HEAD /items/123 HTTP/1.1

Host: foo.example

Figure 12: HEAD request for an item

HTTP/1.1 200 OK

Content-Type: application/json

Digest: sha-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

Content-Digest: sha-256=47DEQpj8HBSa+/TImW+5JCeuQeRkm5NMpJWZG3hSuFU=

Figure 13: Response with both Content-Digest and Digest; empty content

B.3. Server Returns Partial Representation Data

In this example, the client makes a range request and the server

responds with partial content. The Digest field-value represents the

entire JSON object {"hello": "world"}, while the Content-Digest

field-value is computed on the message content "hello".

GET /items/123 HTTP/1.1

Host: foo.example

Range: bytes=1-7

Figure 14: Request for partial content

¶

¶

¶

HTTP/1.1 206 Partial Content

Content-Type: application/json

Content-Range: bytes 1-7/18

Digest: sha-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

Content-Digest: sha-256=Wqdirjg/u3J688ejbUlApbjECpiUUtIwT8lY/z81Tno=

"hello"

Figure 15: Partial response with both Content-Digest and Digest

B.4. Client and Server Provide Full Representation Data

The request contains a Digest field-value calculated on the enclosed

representation. It also includes an Accept-Encoding: br header field

that advertises the client supports Brotli encoding.

The response includes a Content-Encoding: br that indicates the

selected representation is Brotli-encoded. The Digest field-value is

therefore different compared to the request.

For presentation purposes, the response body is displayed as a

Base64-encoded string because it contains non-printable characters.

PUT /items/123 HTTP/1.1

Host: foo.example

Content-Type: application/json

Accept-Encoding: br

Digest: sha-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

{"hello": "world"}

Figure 16: PUT Request with Digest

HTTP/1.1 200 OK

Content-Type: application/json

Content-Location: /items/123

Content-Encoding: br

Content-Length: 22

Digest: sha-256=4REjxQ4yrqUVicfSKYNO/cF9zNj5ANbzgDZt3/h3Qxo=

iwiAeyJoZWxsbyI6ICJ3b3JsZCJ9Aw==

Figure 17: Response with Digest of encoded response

B.5. Client Provides Full Representation Data, Server Provides No

Representation Data

The request Digest field-value is calculated on the enclosed

payload.

¶

¶

¶

¶

The response Digest field-value depends on the representation

metadata header fields, including Content-Encoding: br even when the

response does not contain content.

PUT /items/123 HTTP/1.1

Host: foo.example

Content-Type: application/json

Content-Length: 18

Accept-Encoding: br

Digest: sha-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

{"hello": "world"}

HTTP/1.1 204 No Content

Content-Type: application/json

Content-Encoding: br

Digest: sha-256=4REjxQ4yrqUVicfSKYNO/cF9zNj5ANbzgDZt3/h3Qxo=

Figure 18: Empty response with Digest

B.6. Client and Server Provide Full Representation Data, Client Uses

id-sha-256.

The response contains two digest values:

one with no content coding applied, which in this case

accidentally matches the unencoded digest-value sent in the

request;

one taking into account the Content-Encoding.

As the response body contains non-printable characters, it is

displayed as a base64-encoded string.

PUT /items/123 HTTP/1.1

Host: foo.example

Content-Type: application/json

Accept-Encoding: br

Digest: sha-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

{"hello": "world"}

Figure 19: PUT Request with Digest

¶

¶

¶

*

¶

* ¶

¶

HTTP/1.1 200 OK

Content-Type: application/json

Content-Encoding: br

Content-Location: /items/123

Digest: sha-256=4REjxQ4yrqUVicfSKYNO/cF9zNj5ANbzgDZt3/h3Qxo=,

 id-sha-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

iwiAeyJoZWxsbyI6ICJ3b3JsZCJ9Aw==

Figure 20: Response with Digest of Encoded Content

B.7. POST Response does not Reference the Request URI

The request Digest field-value is computed on the enclosed

representation (see Section 7).

The representation enclosed in the response refers to the resource

identified by Content-Location (see Section 6.4.2 of [SEMANTICS]).

Digest is thus computed on the enclosed representation.

POST /books HTTP/1.1

Host: foo.example

Content-Type: application/json

Accept: application/json

Accept-Encoding: identity

Digest: sha-256=bWopGGNiZtbVgHsG+I4knzfEJpmmmQHf7RHDXA3o1hQ=

{"title": "New Title"}

Figure 21: POST Request with Digest

HTTP/1.1 201 Created

Content-Type: application/json

Content-Location: /books/123

Location: /books/123

Digest: id-sha-256=yxOAqEeoj+reqygSIsLpT0LhumrNkIds5uLKtmdLyYE=

{

 "id": "123",

 "title": "New Title"

}

Figure 22: Response with Digest of Resource

Note that a 204 No Content response without content but with the

same Digest field-value would have been legitimate too. In that

case, Content-Digest would have been computed on an empty content.

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-6.4.2

B.8. POST Response Describes the Request Status

The request Digest field-value is computed on the enclosed

representation (see Section 7).

The representation enclosed in the response describes the status of

the request, so Digest is computed on that enclosed representation.

Response Digest has no explicit relation with the resource

referenced by Location.

POST /books HTTP/1.1

Host: foo.example

Content-Type: application/json

Accept: application/json

Accept-Encoding: identity

Digest: sha-256=bWopGGNiZtbVgHsG+I4knzfEJpmmmQHf7RHDXA3o1hQ=

{"title": "New Title"}

Figure 23: POST Request with Digest

HTTP/1.1 201 Created

Content-Type: application/json

Digest: id-sha-256=2LBp5RKZGpsSNf8BPXlXrX4Td4Tf5R5bZ9z7kdi5VvY=

Location: /books/123

{

 "status": "created",

 "id": "123",

 "ts": 1569327729,

 "instance": "/books/123"

}

Figure 24: Response with Digest of Representation

B.9. Digest with PATCH

This case is analogous to a POST request where the target resource

reflects the effective request URI.

The PATCH request uses the application/merge-patch+json media type

defined in [RFC7396].

Digest is calculated on the enclosed payload, which corresponds to

the patch document.

The response Digest field-value is computed on the complete

representation of the patched resource.

¶

¶

¶

¶

¶

¶

¶

PATCH /books/123 HTTP/1.1

Host: foo.example

Content-Type: application/merge-patch+json

Accept: application/json

Accept-Encoding: identity

Digest: sha-256=bWopGGNiZtbVgHsG+I4knzfEJpmmmQHf7RHDXA3o1hQ=

{"title": "New Title"}

Figure 25: PATCH Request with Digest

HTTP/1.1 200 OK

Content-Type: application/json

Digest: id-sha-256=yxOAqEeoj+reqygSIsLpT0LhumrNkIds5uLKtmdLyYE=

{

 "id": "123",

 "title": "New Title"

}

Figure 26: Response with Digest of Representation

Note that a 204 No Content response without content but with the

same Digest field-value would have been legitimate too.

B.10. Error responses

In error responses, the representation-data does not necessarily

refer to the target resource. Instead, it refers to the

representation of the error.

In the following example, a client sends the same request from

Figure 25 to patch the resource located at /books/123. However, the

resource does not exist and the server generates a 404 response with

a body that describes the error in accordance with [RFC7807].

The response Digest field-value is computed on this enclosed

representation.

HTTP/1.1 404 Not Found

Content-Type: application/problem+json

Digest: sha-256=KPqhVXAT25LLitV1w0O167unHmVQusu+fpxm65zAsvk=

{

 "title": "Not Found",

 "detail": "Cannot PATCH a non-existent resource",

 "status": 404

}

¶

¶

¶

¶

Figure 27: Response with Digest of Error Representation

B.11. Use with Trailer Fields and Transfer Coding

An origin server sends Digest as trailer field, so it can calculate

digest-value while streaming content and thus mitigate resource

consumption. The Digest field-value is the same as in Appendix B.1

because Digest is designed to be independent from the use of one or

more transfer codings (see Section 2).

GET /items/123 HTTP/1.1

Host: foo.example

Figure 28: GET Request

HTTP/1.1 200 OK

Content-Type: application/json

Transfer-Encoding: chunked

Trailer: Digest

8\r\n

{"hello"\r\n

8

: "world\r\n

2\r\n

"}\r\n

0\r\n

Digest: sha-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

Figure 29: Chunked Response with Digest

Appendix C. Examples of Want-Digest Solicited Digest

The following examples demonstrate interactions where a client

solicits a Digest using Want-Digest. The behavior of Content-Digest

and Want-Content-Digest is identical.

Some examples include JSON objects in the content. For presentation

purposes, objects that fit completely within the line-length limits

are presented on a single line using compact notation with no

leading space. Objects that would exceed line-length limits are

presented across multiple lines (one line per key-value pair) with 2

spaced of leading indentation.

Checksum mechanisms described in this document are media-type

agnostic and do not provide canonicalization algorithms for specific

formats. Examples are calculated inclusive of any space.

¶

¶

¶

¶

C.1. Server Selects Client's Least Preferred Algorithm

The client requests a digest, preferring "sha". The server is free

to reply with "sha-256" anyway.

GET /items/123 HTTP/1.1

Host: foo.example

Want-Digest: sha-256;q=0.3, sha;q=1

Figure 30: GET Request with Want-Digest

HTTP/1.1 200 OK

Content-Type: application/json

Digest: sha-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

{"hello": "world"}

Figure 31: Response with Different Algorithm

C.2. Server Selects Algorithm Unsupported by Client

The client requests a "sha" digest only. The server is currently

free to reply with a Digest containing an unsupported algorithm.

GET /items/123 HTTP/1.1

Host: foo.example

Want-Digest: sha;q=1

Figure 32: GET Request with Want-Digest

HTTP/1.1 200 OK

Content-Type: application/json

Digest: id-sha-512=WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+TaPm

 +AbwAgBWnrIiYllu7BNNyealdVLvRwE\nmTHWXvJwew==

{"hello": "world"}

Figure 33: Response with Unsupported Algorithm

C.3. Server Does Not Support Client Algorithm and Returns an Error

The client requests a "sha" Digest, the server advises "sha-256" and

"sha-512".

¶

¶

¶

GET /items/123 HTTP/1.1

Host: foo.example

Want-Digest: sha;q=1

Figure 34: GET Request with Want-Digest

HTTP/1.1 400 Bad Request

Want-Digest: sha-256, sha-512

Figure 35: Response with Want-Digest

Appendix D. Changes from RFC3230

D.1. Deprecate Negotiation of Content-MD5

This RFC deprecates the negotiation of Content-MD5 as it has been

obsoleted by [RFC7231].

See Section 4 for a new checksum negotiation mechanism for HTTP

message content.

D.2. Obsolete Digest Field Parameters

Sections 4.1.1 and 4.2 of [RFC3230] defined field parameters. This

document obsoletes the usage of parameters with Digest because this

feature has not been widely deployed and complicates field-value

processing.

[RFC3230] intended field parameters to provide a common way to

attach additional information to a representation-data-digest.

However, if parameters are used as an input to validate the

checksum, an attacker could alter them to steer the validation

behavior.

A digest-algorithm can still be parameterized by defining its own

way to encode parameters into the representation-data-digest, in

such a way as to mitigate security risks related to its computation.

Acknowledgements

The vast majority of this document is inherited from [RFC3230], so

thanks to J. Mogul and A. Van Hoff for their great work. The

original idea of refreshing this document arose from an interesting

discussion with M. Nottingham, J. Yasskin and M. Thomson when

reviewing the MICE content coding.

Thanks to Julian Reschke for his valuable contributions to this

document, and to the following contributors that have helped improve

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3230#section-4.1.1
https://rfc-editor.org/rfc/rfc3230#section-4.2

this specification by reporting bugs, asking smart questions,

drafting or reviewing text, and evaluating open issues: Mike Bishop,

Brian Campbell, Matthew Kerwin, James Manger, Tommy Pauly, Sean

Turner, and Erik Wilde.

FAQ

RFC Editor: Please remove this section before publication.

Why remove all references to content-md5?

Those were unnecessary to understanding and using this

specification.

Why remove references to instance manipulation?

Those were unnecessary for correctly using and applying the

specification. An example with Range Request is more than

enough. This document uses the term "partial representation"

which should group all those cases.

How to use Digest with PATCH method?

See Section 7.

Why remove references to delta-encoding?

Unnecessary for a correct implementation of this specification.

The revised specification can be nicely adapted to "delta

encoding", but all the references here to delta encoding don't

add anything to this RFC. Another job would be to refresh delta

encoding.

Why remove references to Digest Authentication?

This specification seems to me completely unrelated to Digest

Authentication but for the word "Digest".

What changes in Want-Digest?

The contentMD5 token defined in Section 5 of [RFC3230] is

deprecated by Appendix D.1.

To clarify that Digest and Want-Digest can be used in both

requests and responses - [RFC3230] carefully uses sender and

receiver in their definition - we added examples on using Want-

Digest in responses to advertise the supported digest-

algorithms and the inability to accept requests with

unsupported digest-algorithms.

¶

¶

1. ¶

¶

2. ¶

¶

3. ¶

¶

4. ¶

¶

5. ¶

¶

6. ¶

¶

¶

https://rfc-editor.org/rfc/rfc3230#section-5

Does this specification change supported algorithms?

Yes. This RFC updates [RFC5843] which is still delegated for

all algorithms updates, and adds two more algorithms: "id-

sha-256" and "id-sha-512" which allows to send a checksum of a

resource representation with no content codings applied. To

simplify a future transition to Structured Fields [I-D.ietf-

httpbis-header-structure] we suggest to use lowercase for

digest-algorithms.

What about mid-stream trailer fields?

While mid-stream trailer fields are interesting, since this

specification is a rewrite of [RFC3230] we do not think we

should face that. As a first thought, nothing in this document

precludes future work that would find a use for mid-stream

trailers, for example an incremental digest-algorithm. A

document defining such a digest-algorithm is best positioned to

describe how it is used.

Code Samples

RFC Editor: Please remove this section before publication.

How can I generate and validate the Digest values shown in the

examples throughout this document?

The following python3 code can be used to generate digests for JSON

objects using SHA algorithms for a range of encodings. Note that

these are formatted as base64. This function could be adapted to

other algorithms and should take into account their specific

formatting rules.

7. ¶

¶

8. ¶

¶

¶

¶

¶

https://github.com/httpwg/http-core/issues/313#issuecomment-584389706

Changes

RFC Editor: Please remove this section before publication.

Since draft-ietf-httpbis-digest-headers-05

Reboot digest-algorithm values registry #1567

Add Content-Digest #1542

Remove SRI section #1478

import base64, json, hashlib, brotli, logging

log = logging.getLogger()

def encode_item(item, encoding=lambda x: x):

 indent = 2 if isinstance(item, dict) and len(item) > 1 else None

 json_bytes = json.dumps(item, indent=indent).encode()

 return encoding(json_bytes)

def digest_bytes(bytes_, algorithm=hashlib.sha256):

 checksum_bytes = algorithm(bytes_).digest()

 log.warning("Log bytes: \n[%r]", bytes_)

 return base64.encodebytes(checksum_bytes).strip()

def digest(item, encoding=lambda x: x, algorithm=hashlib.sha256):

 content_encoded = encode_item(item, encoding)

 return digest_bytes(content_encoded, algorithm)

item = {"hello": "world"}

print("Encoding | digest-algorithm | digest-value")

print("Identity | sha256 |", digest(item))

Encoding | digest-algorithm | digest-value

Identity | sha256 | X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

print("Encoding | digest-algorithm | digest-value")

print("Brotli | sha256 |", digest(item, encoding=brotli.compress))

Encoding | digest-algorithm | digest-value

Brotli | sha256 | 4REjxQ4yrqUVicfSKYNO/cF9zNj5ANbzgDZt3/h3Qxo=

print("Encoding | digest-algorithm | digest-value")

print("Identity | sha512 |", digest(item, algorithm=hashlib.sha512))

Encoding | digest-algorithm | digest-value

Identity | sha512 | b'WZDPaVn/7XgHaAy8pmojAkGWoRx2UFChF41A2svX+TaPm'

'+AbwAgBWnrIiYllu7BNNyealdVLvRwE\nmTHWXvJwew=='

¶

¶

* ¶

* ¶

* ¶

Since draft-ietf-httpbis-digest-headers-04

Improve SRI section #1354

About duplicate digest-algorithms #1221

Improve security considerations #852

md5 and sha deprecation references #1392

Obsolete 3230 #1395

Editorial #1362

Since draft-ietf-httpbis-digest-headers-03

Reference semantics-12

Detail encryption quirks

Details on Algorithm agility #1250

Obsolete parameters #850

Since draft-ietf-httpbis-digest-headers-02

Deprecate SHA-1 #1154

Avoid id-* with encrypted content

Digest is independent from MESSAGING and HTTP/1.1 is not

normative #1215

Identity is not a valid field value for content-encoding #1223

Mention trailers #1157

Reference httpbis-semantics #1156

Add contentMD5 as an obsoleted digest-algorithm #1249

Use lowercase digest-algorithms names in the doc and in the

digest-algorithm IANA table.

Since draft-ietf-httpbis-digest-headers-01

Digest of error responses is computed on the error

representation-data #1004

Effect of HTTP semantics on payload and message body moved to

appendix #1122

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

Editorial refactoring, moving headers sections up. #1109-#1112,

#1116, #1117, #1122-#1124

Since draft-ietf-httpbis-digest-headers-00

Align title with document name

Add id-sha-* algorithm examples #880

Reference [RFC6234] and [RFC3174] instead of FIPS-1

Deprecate MD5

Obsolete ADLER-32 but don't forbid it #828

Update CRC32C value in IANA table #828

Use when acting on resources (POST, PATCH) #853

Added Relationship with SRI, draft Use Cases #868, #971

Warn about the implications of Content-Location

Authors' Addresses

Roberto Polli

Team Digitale, Italian Government

Italy

Email: robipolli@gmail.com

Lucas Pardue

Cloudflare

Email: lucaspardue.24.7@gmail.com

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

mailto:robipolli@gmail.com
mailto:lucaspardue.24.7@gmail.com

	Digest Fields
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Document Structure
	1.2. Concept Overview
	1.3. Replacing RFC 3230
	1.4. Notational Conventions

	2. Representation Digest
	3. The Digest Field
	4. The Content-Digest Field
	5. Want-Digest and Want-Content-Digest Fields
	6. Digest Algorithm Values
	7. Using Digest in State-Changing Requests
	7.1. Digest and Content-Location in Responses

	8. Security Considerations
	8.1. Digest Does Not Protect the Full HTTP Message
	8.2. Digest for End-to-End Integrity
	8.3. Usage in Signatures
	8.4. Usage in Trailer Fields
	8.5. Usage with Encryption
	8.6. Algorithm Agility
	8.7. Duplicate digest-algorithm in field value
	8.8. Resource exhaustion

	9. IANA Considerations
	9.1. Establish the HTTP Digest Algorithm Values Registry
	9.2. Obsolete "contentMD5" token in Digest Algorithm
	9.3. Changes Compared to RFC3230
	9.4. Changes Compared to RFC5843
	9.5. Want-Digest Field Registration
	9.6. Digest Field Registration
	9.7. Want-Content-Digest Field Registration
	9.8. Content-Digest Field Registration

	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Resource Representation and Representation-Data
	Appendix B. Examples of Unsolicited Digest
	B.1. Server Returns Full Representation Data
	B.2. Server Returns No Representation Data
	B.3. Server Returns Partial Representation Data
	B.4. Client and Server Provide Full Representation Data
	B.5. Client Provides Full Representation Data, Server Provides No Representation Data
	B.6. Client and Server Provide Full Representation Data, Client Uses id-sha-256.
	B.7. POST Response does not Reference the Request URI
	B.8. POST Response Describes the Request Status
	B.9. Digest with PATCH
	B.10. Error responses
	B.11. Use with Trailer Fields and Transfer Coding

	Appendix C. Examples of Want-Digest Solicited Digest
	C.1. Server Selects Client's Least Preferred Algorithm
	C.2. Server Selects Algorithm Unsupported by Client
	C.3. Server Does Not Support Client Algorithm and Returns an Error

	Appendix D. Changes from RFC3230
	D.1. Deprecate Negotiation of Content-MD5
	D.2. Obsolete Digest Field Parameters

	Acknowledgements
	FAQ
	Code Samples
	Changes
	Since draft-ietf-httpbis-digest-headers-05
	Since draft-ietf-httpbis-digest-headers-04
	Since draft-ietf-httpbis-digest-headers-03
	Since draft-ietf-httpbis-digest-headers-02
	Since draft-ietf-httpbis-digest-headers-01
	Since draft-ietf-httpbis-digest-headers-00

	Authors' Addresses

