
Network Working Group M. Thomson
Internet-Draft Mozilla
Intended status: Standards Track December 22, 2015
Expires: June 24, 2016

Encrypted Content-Encoding for HTTP
draft-ietf-httpbis-encryption-encoding-00

Abstract

 This memo introduces a content-coding for HTTP that allows message
 payloads to be encrypted.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 24, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Thomson Expires June 24, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HTTP encryption coding December 2015

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3

2. The "aesgcm128" HTTP Content Encoding 3
3. The Encryption HTTP Header Field 5
3.1. Encryption Header Field Parameters 6
3.2. Content Encryption Key Derivation 6
3.3. Nonce Derivation . 7

4. Crypto-Key Header Field 8
4.1. Explicit Key . 8
4.2. Diffie-Hellman . 9
4.3. Pre-shared Authentication Secrets 10

5. Examples . 11
5.1. Successful GET Response 11
5.2. Encryption and Compression 11
5.3. Encryption with More Than One Key 11
5.4. Encryption with Explicit Key 12
5.5. Diffie-Hellman Encryption 12

6. Security Considerations 13
6.1. Key and Nonce Reuse 13
6.2. Content Integrity . 13
6.3. Leaking Information in Headers 14
6.4. Poisoning Storage . 14
6.5. Sizing and Timing Attacks 15

7. IANA Considerations . 15
7.1. The "aesgcm128" HTTP Content Encoding 15
7.2. Encryption Header Fields 15
7.3. The HTTP Encryption Parameter Registry 16
7.3.1. keyid . 16
7.3.2. salt . 16
7.3.3. rs . 17

7.4. The HTTP Crypto-Key Parameter Registry 17
7.4.1. keyid . 17
7.4.2. aesgcm128 . 17
7.4.3. dh . 18

8. References . 18
8.1. Normative References 18
8.2. Informative References 19

Appendix A. JWE Mapping . 20
Appendix B. Acknowledgements 21

 Author's Address . 21

1. Introduction

 It is sometimes desirable to encrypt the contents of a HTTP message
 (request or response) so that when the payload is stored (e.g., with
 a HTTP PUT), only someone with the appropriate key can read it.

Thomson Expires June 24, 2016 [Page 2]

Internet-Draft HTTP encryption coding December 2015

 For example, it might be necessary to store a file on a server
 without exposing its contents to that server. Furthermore, that same
 file could be replicated to other servers (to make it more resistant
 to server or network failure), downloaded by clients (to make it
 available offline), etc. without exposing its contents.

 These uses are not met by the use of TLS [RFC5246], since it only
 encrypts the channel between the client and server.

 This document specifies a content-coding (Section 3.1.2 of [RFC7231])
 for HTTP to serve these and other use cases.

 This content-coding is not a direct adaptation of message-based
 encryption formats - such as those that are described by [RFC4880],
 [RFC5652], [RFC7516], and [XMLENC] - which are not suited to stream
 processing, which is necessary for HTTP. The format described here
 cleaves more closely to the lower level constructs described in
 [RFC5116].

 To the extent that message-based encryption formats use the same
 primitives, the format can be considered as sequence of encrypted
 messages with a particular profile. For instance, Appendix A
 explains how the format is congruent with a sequence of JSON Web
 Encryption [RFC7516] values with a fixed header.

 This mechanism is likely only a small part of a larger design that
 uses content encryption. How clients and servers acquire and
 identify keys will depend on the use case. Though a complete key
 management system is not described, this document defines an Crypto-
 Key header field that can be used to convey keying material.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. The "aesgcm128" HTTP Content Encoding

 The "aesgcm128" HTTP content-coding indicates that a payload has been
 encrypted using Advanced Encryption Standard (AES) in Galois/Counter
 Mode (GCM) as identified as AEAD_AES_128_GCM in [RFC5116],
 Section 5.1. The AEAD_AES_128_GCM algorithm uses a 128 bit content
 encryption key.

 When this content-coding is in use, the Encryption header field
 (Section 3) describes how encryption has been applied. The Crypto-

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.2
https://datatracker.ietf.org/doc/html/rfc4880
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5116#section-5.1
https://datatracker.ietf.org/doc/html/rfc5116#section-5.1

Thomson Expires June 24, 2016 [Page 3]

Internet-Draft HTTP encryption coding December 2015

 Key header field (Section 4) can be included to describe how the
 content encryption key is derived or retrieved.

 The "aesgcm128" content-coding uses a single fixed set of encryption
 primitives. Cipher suite agility is achieved by defining a new
 content-coding scheme. This ensures that only the HTTP Accept-
 Encoding header field is necessary to negotiate the use of
 encryption.

 The "aesgcm128" content-coding uses a fixed record size. The
 resulting encoding is a series of fixed-size records, with a final
 record that is one or more octets shorter than a fixed sized record.

 +------+ input of between rs-256
 | data | and rs-1 octets
 +------+ (one fewer for the last record)
 |
 v
 +-----+-----------+
 | pad | data | add padding to form plaintext
 +-----+-----------+
 |
 v
 +--------------------+
 | ciphertext | encrypt with AEAD_AES_128_GCM
 +--------------------+ expands by 16 octets

 The record size determines the length of each portion of plaintext
 that is enciphered, with the exception of the final record, which is
 necessarily smaller. The record size defaults to 4096 octets, but
 can be changed using the "rs" parameter on the Encryption header
 field.

 AEAD_AES_128_GCM expands ciphertext to be 16 octets longer than its
 input plaintext. Therefore, the length of each enciphered record
 other than the last is equal to the value of the "rs" parameter plus
 16 octets. A receiver MUST fail to decrypt if the final record
 ciphertext is 16 octets or less in size. Valid records always
 contain at least one byte of padding and a 16 octet authentication
 tag.

 Each record contains between 1 and 256 octets of padding, inserted
 into a record before the enciphered content. Padding consists of a
 length byte, followed that number of zero-valued octets. A receiver
 MUST fail to decrypt if any padding octet other than the first is
 non-zero, or a record has more padding than the record size can
 accommodate.

Thomson Expires June 24, 2016 [Page 4]

Internet-Draft HTTP encryption coding December 2015

 The nonce for each record is a 96-bit value constructed from the
 record sequence number and the input keying material. Nonce
 derivation is covered in Section 3.3.

 The additional data passed to each invocation of AEAD_AES_128_GCM is
 a zero-length octet sequence.

 A sequence of full-sized records can be truncated to produce a
 shorter sequence of records with valid authentication tags. To
 prevent an attacker from truncating a stream, an encoder MUST append
 a record that contains only padding and is smaller than the full
 record size if the final record ends on a record boundary. A
 receiver MUST treat the stream as failed due to truncation if the
 final record is the full record size.

 A consequence of this record structure is that range requests
 [RFC7233] and random access to encrypted payload bodies are possible
 at the granularity of the record size. However, without data from
 adjacent ranges, partial records cannot be used. Thus, it is best if
 records start and end on multiples of the record size, plus the 16
 octet authentication tag size.

3. The Encryption HTTP Header Field

 The "Encryption" HTTP header field describes the encrypted content
 encoding(s) that have been applied to a payload body, and therefore
 how those content encoding(s) can be removed.

 The "Encryption" header field uses the extended ABNF syntax defined
 in Section 1.2 of [RFC7230] and the "parameter" rule from [RFC7231]

 Encryption = #encryption_params
 encryption_params = [parameter *(";" parameter)]

 If the payload is encrypted more than once (as reflected by having
 multiple content-codings that imply encryption), each application of
 the content encoding is reflected in the Encryption header field, in
 the order in which they were applied.

 Encryption header field values with multiple instances of the same
 parameter name are invalid.

 The Encryption header MAY be omitted if the sender does not intend
 for the immediate recipient to be able to decrypt the payload body.
 Alternatively, the Encryption header field MAY be omitted if the
 sender intends for the recipient to acquire the header field by other
 means.

https://datatracker.ietf.org/doc/html/rfc7233
https://datatracker.ietf.org/doc/html/rfc7230#section-1.2
https://datatracker.ietf.org/doc/html/rfc7231

Thomson Expires June 24, 2016 [Page 5]

Internet-Draft HTTP encryption coding December 2015

 Servers processing PUT requests MUST persist the value of the
 Encryption header field, unless they remove the content-coding by
 decrypting the payload.

3.1. Encryption Header Field Parameters

 The following parameters are used in determining the content
 encryption key that is used for encryption:

 keyid: The "keyid" parameter contains a string that identifies the
 keying material that is used. The "keyid" parameter SHOULD be
 included, unless key identification is guaranteed by other means.
 The "keyid" parameter MUST be used if keying material included in
 an Crypto-Key header field is needed to derive the content
 encryption key.

 salt: The "salt" parameter contains a base64 URL-encoded octets that
 is used as salt in deriving a unique content encryption key (see

Section 3.2). The "salt" parameter MUST be present, and MUST be
 exactly 16 octets long when decoded. The "salt" parameter MUST
 NOT be reused for two different payload bodies that have the same
 input keying material; generating a random salt for every
 application of the content encoding ensures that content
 encryption key reuse is highly unlikely.

 rs: The "rs" parameter contains a positive decimal integer that
 describes the record size in octets. This value MUST be greater
 than 1. If the "rs" parameter is absent, the record size defaults
 to 4096 octets.

3.2. Content Encryption Key Derivation

 In order to allow the reuse of keying material for multiple different
 HTTP messages, a content encryption key is derived for each message.
 The content encryption key is derived from the decoded value of the
 "salt" parameter using the HMAC-based key derivation function (HKDF)
 described in [RFC5869] using the SHA-256 hash algorithm [FIPS180-4].

 The decoded value of the "salt" parameter is the salt input to HKDF
 function. The keying material identified by the "keyid" parameter is
 the input keying material (IKM) to HKDF. Input keying material can
 either be prearranged, or can be described using the Crypto-Key
 header field (Section 4). The first step of HKDF is therefore:

 PRK = HMAC-SHA-256(salt, IKM)

https://datatracker.ietf.org/doc/html/rfc5869

Thomson Expires June 24, 2016 [Page 6]

Internet-Draft HTTP encryption coding December 2015

 The info parameter to HKDF is set to the ASCII-encoded string
 "Content-Encoding: aesgcm128", a single zero octet and an optional
 context string:

 cek_info = "Content-Encoding: aesgcm128" || 0x00 || context

 Unless otherwise specified, the context is a zero length octet
 sequence. Specifications that use this content encoding MAY specify
 the use of an expanded context to cover additional inputs in the key
 derivation.

 AEAD_AES_128_GCM requires a 16 octet (128 bit) content encryption
 key, so the length (L) parameter to HKDF is 16. The second step of
 HKDF can therefore be simplified to the first 16 octets of a single
 HMAC:

 CEK = HMAC-SHA-256(PRK, cek_info || 0x01)

3.3. Nonce Derivation

 The nonce input to AEAD_AES_128_GCM is constructed for each record.
 The nonce for each record is a 12 octet (96 bit) value is produced
 from the record sequence number and a value derived from the input
 keying material.

 The input keying material and salt values are input to HKDF with
 different info and length parameters.

 The length (L) parameter is 12 octets. The info parameter for the
 nonce is the ASCII-encoded string "Content-Encoding: nonce", a single
 zero octet and an context:

 nonce_info = "Content-Encoding: nonce" || 0x00 || context

 The context for nonce derivation SHOULD be the same as is used for
 content encryption key derivation.

 The result is combined with the record sequence number - using
 exclusive or - to produce the nonce. The record sequence number
 (SEQ) is a 96-bit unsigned integer in network byte order that starts
 at zero.

 Thus, the final nonce for each record is a 12 octet value:

Thomson Expires June 24, 2016 [Page 7]

Internet-Draft HTTP encryption coding December 2015

 NONCE = HMAC-SHA-256(PRK, nonce_info || 0x01) XOR SEQ

4. Crypto-Key Header Field

 An Crypto-Key header field can be used to describe the input keying
 material used in the Encryption header field.

 The Crypto-Key header field uses the extended ABNF syntax defined in
Section 1.2 of [RFC7230] and the "parameter" rule from [RFC7231].

 Crypto-Key = #crypto_key_params
 crypto_key_params = [parameter *(";" parameter)]

 keyid: The "keyid" parameter corresponds to the "keyid" parameter in
 the Encryption header field.

 aesgcm128: The "aesgcm128" parameter contains the URL-safe base64
 [RFC4648] octets of the input keying material.

 dh: The "dh" parameter contains an ephemeral Diffie-Hellman share.
 This form of the header field can be used to encrypt content for a
 specific recipient.

 Crypto-Key header field values with multiple instances of the same
 parameter name are invalid.

 The input keying material used by the key derivation (see
Section 3.2) can be determined based on the information in the

 Crypto-Key header field. The method for key derivation depends on
 the parameters that are present in the header field.

 The value or values provided in the Crypto-Key header field is valid
 only for the current HTTP message unless additional information
 indicates a greater scope.

 Note that different methods for determining input keying material
 will produce different amounts of data. The HKDF process ensures
 that the final content encryption key is the necessary size.

 Alternative methods for determining input keying material MAY be
 defined by specifications that use this content-encoding.

4.1. Explicit Key

 The "aesgcm128" parameter is decoded and used as the input keying
 material for the "aesgcm128" content encoding. The "aesgcm128"

https://datatracker.ietf.org/doc/html/rfc7230#section-1.2
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc4648

Thomson Expires June 24, 2016 [Page 8]

Internet-Draft HTTP encryption coding December 2015

 parameter MUST decode to at least 16 octets in order to be used as
 input keying material for "aesgcm128" content encoding.

 Other key determination parameters can be ignored if the "aesgcm128"
 parameter is present.

4.2. Diffie-Hellman

 The "dh" parameter is included to describe a Diffie-Hellman share,
 either modp (or finite field) Diffie-Hellman [DH] or elliptic curve
 Diffie-Hellman (ECDH) [RFC4492].

 This share is combined with other information at the recipient to
 determine the HKDF input keying material. In order for the exchange
 to be successful, the following information MUST be established out
 of band:

 o Which Diffie-Hellman form is used.

 o The modp group or elliptic curve that will be used.

 o A label that uniquely identifies the group. This label will be
 expressed as a sequence of octets and MUST NOT include a zero-
 valued octet.

 o The format of the ephemeral public share that is included in the
 "dh" parameter. This encoding MUST result in a single, canonical
 sequence of octets. For instance, using ECDH both parties need to
 agree whether this is an uncompressed or compressed point.

 In addition to identifying which content-encoding this input keying
 material is used for, the "keyid" parameter is used to identify this
 additional information at the receiver.

 The intended recipient recovers their private key and are then able
 to generate a shared secret using the designated Diffie-Hellman
 process.

 The context for content encryption key and nonce derivation (see
Section 3.2) is set to include the means by which the keys were

 derived. The context is formed from the concatenation of group
 label, a single zero octet, the length of the public key of the
 recipient, the public key of the recipient, the length of the public
 key of the sender, and the public key of the sender. The public keys
 are encoded into octets as defined for the group when determining the
 context string.

https://datatracker.ietf.org/doc/html/rfc4492

Thomson Expires June 24, 2016 [Page 9]

Internet-Draft HTTP encryption coding December 2015

 context = label || 0x00 ||
 length(recipient_public) || recipient_public ||
 length(sender_public) || sender_public

 The two length fields are encoded as a two octet unsigned integer in
 network byte order.

 Specifications that rely on an Diffie-Hellman exchange for
 determining input keying material MUST either specify the parameters
 for Diffie-Hellman (group parameters, or curves and point format)
 that are used, or describe how those parameters are negotiated
 between sender and receiver.

4.3. Pre-shared Authentication Secrets

 Key derivation MAY be extended to include an additional
 authentication secret. Such a secret is shared between the sender
 and receiver of a message using other means.

 A pre-shared authentication secret is not explicitly signaled in
 either the Encryption or Crypto-Key header fields. Use of this
 additional step depends on prior agreement.

 When a shared authentication secret is used, the keying material
 produced by the key agreement method (e.g., Diffie-Hellman, explicit
 key, or otherwise) is combined with the authentication secret using
 HKDF. The output of HKDF is the input keying material used to derive
 the content encryption key and nonce Section 3.2.

 The authentication secret is used as the "salt" parameter to HKDF,
 the raw keying material (e.g., Diffie-Hellman output) is used as the
 "IKM" parameter, the ASCII-encoded string "Content-Encoding: auth"
 with a terminal zero octet is used as the "info" parameter, and the
 length of the output is 32 octets (i.e., the entire output of the
 underlying SHA-256 HMAC function):

 auth_info = "Content-Encoding: auth" || 0x00
 IKM = HKDF(authentication, raw_key, auth_info, 32)

 This invocation of HKDF does not take the same context that is
 provided to the final key derivation stages. Alternatively, this
 phase can be viewed as always having a zero-length context.

 Note that in the absence of an authentication secret, the input
 keying material is simply the raw keying material:

Thomson Expires June 24, 2016 [Page 10]

Internet-Draft HTTP encryption coding December 2015

 IKM = raw_key

5. Examples

5.1. Successful GET Response

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream
 Content-Encoding: aesgcm128
 Connection: close
 Encryption: keyid="http://example.org/bob/keys/123";
 salt="XZwpw6o37R-6qoZjw6KwAw"

 [encrypted payload]

 Here, a successful HTTP GET response has been encrypted using input
 keying material that is identified by a URI.

 Note that the media type has been changed to "application/octet-
 stream" to avoid exposing information about the content.

5.2. Encryption and Compression

 HTTP/1.1 200 OK
 Content-Type: text/html
 Content-Encoding: aesgcm128, gzip
 Transfer-Encoding: chunked
 Encryption: keyid="mailto:me@example.com";
 salt="m2hJ_NttRtFyUiMRPwfpHA"

 [encrypted payload]

5.3. Encryption with More Than One Key

 PUT /thing HTTP/1.1
 Host: storage.example.com
 Content-Type: application/http
 Content-Encoding: aesgcm128, aesgcm128
 Content-Length: 1234
 Encryption: keyid="mailto:me@example.com";
 salt="NfzOeuV5USPRA-n_9s1Lag",
 keyid="http://example.org/bob/keys/123";
 salt="bDMSGoc2uobK_IhavSHsHA"; rs=1200

 [encrypted payload]

Thomson Expires June 24, 2016 [Page 11]

Internet-Draft HTTP encryption coding December 2015

 Here, a PUT request has been encrypted twice with different input
 keying material; decrypting twice is necessary to read the content.
 The outer layer of encryption uses a 1200 octet record size.

5.4. Encryption with Explicit Key

 HTTP/1.1 200 OK
 Content-Length: 32
 Content-Encoding: aesgcm128
 Encryption: keyid="a1"; salt="vr0o6Uq3w_KDWeatc27mUg"
 Crypto-Key: keyid="a1"; aesgcm128="csPJEXBYA5U-Tal9EdJi-w"

 fuag8ThIRIazSHKUqJ5OduR75UgEUuM76J8UFwadEvg

 This example shows the string "I am the walrus" encrypted using an
 directly provided value for the input keying material. The content
 body contains a single record only and is shown here encoded in URL-
 safe base64 for presentation reasons only.

5.5. Diffie-Hellman Encryption

 HTTP/1.1 200 OK
 Content-Length: 32
 Content-Encoding: aesgcm128
 Encryption: keyid="dhkey"; salt="Qg61ZJRva_XBE9IEUelU3A"
 Crypto-Key: keyid="dhkey";
 dh="BDgpRKok2GZZDmS4r63vbJSUtcQx4Fq1V58-6-3NbZzS
 TlZsQiCEDTQy3CZ0ZMsqeqsEb7qW2blQHA4S48fynTk"

 G6j_sfKg0qebO62yXpTCayN2KV24QitNiTvLgcFiEj0

 This example shows the same string, "I am the walrus", encrypted
 using ECDH over the P-256 curve [FIPS186], which is identified with
 the label "P-256" encoded in ASCII. The content body is shown here
 encoded in URL-safe base64 for presentation reasons only.

 The receiver (in this case, the HTTP client) uses a key pair that is
 identified by the string "dhkey" and the sender (the server) uses a
 key pair for which the public share is included in the "dh" parameter
 above. The keys shown below use uncompressed points [X9.62] encoded
 using URL-safe base64. Line wrapping is added for presentation
 purposes only.

Thomson Expires June 24, 2016 [Page 12]

Internet-Draft HTTP encryption coding December 2015

 Receiver:
 private key: 9FWl15_QUQAWDaD3k3l50ZBZQJ4au27F1V4F0uLSD_M
 public key: BCEkBjzL8Z3C-oi2Q7oE5t2Np-p7osjGLg93qUP0wvqR
 T21EEWyf0cQDQcakQMqz4hQKYOQ3il2nNZct4HgAUQU
 Sender:
 private key: vG7TmzUX9NfVR4XUGBkLAFu8iDyQe-q_165JkkN0Vlw
 public key: <the value of the "dh" parameter>

6. Security Considerations

 This mechanism assumes the presence of a key management framework
 that is used to manage the distribution of keys between valid senders
 and receivers. Defining key management is part of composing this
 mechanism into a larger application, protocol, or framework.

 Implementation of cryptography - and key management in particular -
 can be difficult. For instance, implementations need to account for
 the potential for exposing keying material on side channels, such as
 might be exposed by the time it takes to perform a given operation.
 The requirements for a good implementation of cryptographic
 algorithms can change over time.

6.1. Key and Nonce Reuse

 Encrypting different plaintext with the same content encryption key
 and nonce in AES-GCM is not safe [RFC5116]. The scheme defined here
 uses a fixed progression of nonce values. Thus, a new content
 encryption key is needed for every application of the content
 encoding. Since input keying material can be reused, a unique "salt"
 parameter is needed to ensure a content encryption key is not reused.

 If a content encryption key is reused - that is, if input keying
 material and salt are reused - this could expose the plaintext and
 the authentication key, nullifying the protection offered by
 encryption. Thus, if the same input keying material is reused, then
 the salt parameter MUST be unique each time. This ensures that the
 content encryption key is not reused. An implementation SHOULD
 generate a random salt parameter for every message; a counter could
 achieve the same result.

6.2. Content Integrity

 This mechanism only provides content origin authentication. The
 authentication tag only ensures that an entity with access to the
 content encryption key produced the encrypted data.

https://datatracker.ietf.org/doc/html/rfc5116

Thomson Expires June 24, 2016 [Page 13]

Internet-Draft HTTP encryption coding December 2015

 Any entity with the content encryption key can therefore produce
 content that will be accepted as valid. This includes all recipients
 of the same HTTP message.

 Furthermore, any entity that is able to modify both the Encryption
 header field and the HTTP message body can replace the contents.
 Without the content encryption key or the input keying material,
 modifications to or replacement of parts of a payload body are not
 possible.

6.3. Leaking Information in Headers

 Because only the payload body is encrypted, information exposed in
 header fields is visible to anyone who can read the HTTP message.
 This could expose side-channel information.

 For example, the Content-Type header field can leak information about
 the payload body.

 There are a number of strategies available to mitigate this threat,
 depending upon the application's threat model and the users'
 tolerance for leaked information:

 1. Determine that it is not an issue. For example, if it is
 expected that all content stored will be "application/json", or
 another very common media type, exposing the Content-Type header
 field could be an acceptable risk.

 2. If it is considered sensitive information and it is possible to
 determine it through other means (e.g., out of band, using hints
 in other representations, etc.), omit the relevant headers, and/
 or normalize them. In the case of Content-Type, this could be
 accomplished by always sending Content-Type: application/octet-
 stream (the most generic media type), or no Content-Type at all.

 3. If it is considered sensitive information and it is not possible
 to convey it elsewhere, encapsulate the HTTP message using the
 application/http media type (Section 8.3.2 of [RFC7230]),
 encrypting that as the payload of the "outer" message.

6.4. Poisoning Storage

 This mechanism only offers encryption of content; it does not perform
 authentication or authorization, which still needs to be performed
 (e.g., by HTTP authentication [RFC7235]).

https://datatracker.ietf.org/doc/html/rfc7230#section-8.3.2
https://datatracker.ietf.org/doc/html/rfc7235

Thomson Expires June 24, 2016 [Page 14]

Internet-Draft HTTP encryption coding December 2015

 This is especially relevant when a HTTP PUT request is accepted by a
 server; if the request is unauthenticated, it becomes possible for a
 third party to deny service and/or poison the store.

6.5. Sizing and Timing Attacks

 Applications using this mechanism need to be aware that the size of
 encrypted messages, as well as their timing, HTTP methods, URIs and
 so on, may leak sensitive information.

 This risk can be mitigated through the use of the padding that this
 mechanism provides. Alternatively, splitting up content into
 segments and storing the separately might reduce exposure. HTTP/2
 [RFC7540] combined with TLS [RFC5246] might be used to hide the size
 of individual messages.

7. IANA Considerations

7.1. The "aesgcm128" HTTP Content Encoding

 This memo registers the "encrypted" HTTP content-coding in the HTTP
 Content Codings Registry, as detailed in Section 2.

 o Name: aesgcm128

 o Description: AES-GCM encryption with a 128-bit content encryption
 key

 o Reference: this specification

7.2. Encryption Header Fields

 This memo registers the "Encryption" HTTP header field in the
 Permanent Message Header Registry, as detailed in Section 3.

 o Field name: Encryption

 o Protocol: HTTP

 o Status: Standard

 o Reference: this specification

 o Notes:

 This memo registers the "Crypto-Key" HTTP header field in the
 Permanent Message Header Registry, as detailed in Section 4.

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc5246

Thomson Expires June 24, 2016 [Page 15]

Internet-Draft HTTP encryption coding December 2015

 o Field name: Crypto-Key

 o Protocol: HTTP

 o Status: Standard

 o Reference: this specification

 o Notes:

7.3. The HTTP Encryption Parameter Registry

 This memo establishes a registry for parameters used by the
 "Encryption" header field under the "Hypertext Transfer Protocol
 (HTTP) Parameters" grouping. The "Hypertext Transfer Protocol (HTTP)
 Encryption Parameters" registry operates under an "Specification
 Required" policy [RFC5226].

 Entries in this registry are expected to include the following
 information:

 o Parameter Name: The name of the parameter.

 o Purpose: A brief description of the purpose of the parameter.

 o Reference: A reference to a specification that defines the
 semantics of the parameter.

 The initial contents of this registry are:

7.3.1. keyid

 o Parameter Name: keyid

 o Purpose: Identify the key that is in use.

 o Reference: this document

7.3.2. salt

 o Parameter Name: salt

 o Purpose: Provide a source of entropy for derivation of a content
 encryption key. This value is mandatory.

 o Reference: this document

https://datatracker.ietf.org/doc/html/rfc5226

Thomson Expires June 24, 2016 [Page 16]

Internet-Draft HTTP encryption coding December 2015

7.3.3. rs

 o Parameter Name: rs

 o Purpose: The size of the encrypted records.

 o Reference: this document

7.4. The HTTP Crypto-Key Parameter Registry

 This memo establishes a registry for parameters used by the "Crypto-
 Key" header field under the "Hypertext Transfer Protocol (HTTP)
 Parameters" grouping. The "Hypertext Transfer Protocol (HTTP)
 Encryption Parameters" operates under an "Specification Required"
 policy [RFC5226].

 Entries in this registry are expected to include the following
 information:

 o Parameter Name: The name of the parameter.

 o Purpose: A brief description of the purpose of the parameter.

 o Reference: A reference to a specification that defines the
 semantics of the parameter.

 The initial contents of this registry are:

7.4.1. keyid

 o Parameter Name: keyid

 o Purpose: Identify the key that is in use.

 o Reference: this document

7.4.2. aesgcm128

 o Parameter Name: aesgcm128

 o Purpose: Provide an explicit input keying material value for the
 aesgcm128 content encoding.

 o Reference: this document

https://datatracker.ietf.org/doc/html/rfc5226

Thomson Expires June 24, 2016 [Page 17]

Internet-Draft HTTP encryption coding December 2015

7.4.3. dh

 o Parameter Name: dh

 o Purpose: Carry a modp or elliptic curve Diffie-Hellman share used
 to derive input keying material.

 o Reference: this document

8. References

8.1. Normative References

 [DH] Diffie, W. and M. Hellman, "New Directions in
 Cryptography", IEEE Transactions on Information Theory,
 V.IT-22 n.6 , June 1977.

 [FIPS180-4]
 Department of Commerce, National., "NIST FIPS 180-4,
 Secure Hash Standard", March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/

fips-180-4.pdf>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492,
 DOI 10.17487/RFC4492, May 2006,
 <http://www.rfc-editor.org/info/rfc4492>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <http://www.rfc-editor.org/info/rfc5116>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <http://www.rfc-editor.org/info/rfc5869>.

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4492
http://www.rfc-editor.org/info/rfc4492
https://datatracker.ietf.org/doc/html/rfc4648
http://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5116
http://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/rfc5869
http://www.rfc-editor.org/info/rfc5869

Thomson Expires June 24, 2016 [Page 18]

Internet-Draft HTTP encryption coding December 2015

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

8.2. Informative References

 [FIPS186] National Institute of Standards and Technology (NIST),
 "Digital Signature Standard (DSS)", NIST PUB 186-4 , July
 2013.

 [RFC4880] Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.
 Thayer, "OpenPGP Message Format", RFC 4880,
 DOI 10.17487/RFC4880, November 2007,
 <http://www.rfc-editor.org/info/rfc4880>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, DOI 10.17487/RFC5652, September 2009,

 <http://www.rfc-editor.org/info/rfc5652>.

 [RFC7233] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",

RFC 7233, DOI 10.17487/RFC7233, June 2014,
 <http://www.rfc-editor.org/info/rfc7233>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <http://www.rfc-editor.org/info/rfc7235>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, DOI 10.17487/RFC7516, May 2015,

 <http://www.rfc-editor.org/info/rfc7516>.

https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc4880
http://www.rfc-editor.org/info/rfc4880
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5652
http://www.rfc-editor.org/info/rfc5652
https://datatracker.ietf.org/doc/html/rfc7233
http://www.rfc-editor.org/info/rfc7233
https://datatracker.ietf.org/doc/html/rfc7235
http://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc7516
http://www.rfc-editor.org/info/rfc7516

Thomson Expires June 24, 2016 [Page 19]

Internet-Draft HTTP encryption coding December 2015

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [X9.62] ANSI, "Public Key Cryptography For The Financial Services
 Industry: The Elliptic Curve Digital Signature Algorithm
 (ECDSA)", ANSI X9.62 , 1998.

 [XMLENC] Eastlake, D., Reagle, J., Imamura, T., Dillaway, B., and
 E. Simon, "XML Encryption Syntax and Processing", W3C
 REC , December 2002, <http://www.w3.org/TR/xmlenc-core/>.

Appendix A. JWE Mapping

 The "aesgcm128" content encoding can be considered as a sequence of
 JSON Web Encryption (JWE) objects [RFC7516], each corresponding to a
 single fixed size record. The following transformations are applied
 to a JWE object that might be expressed using the JWE Compact
 Serialization:

 o The JWE Protected Header is fixed to a value { "alg": "dir",
 "enc": "A128GCM" }, describing direct encryption using AES-GCM
 with a 128-bit content encryption key. This header is not
 transmitted, it is instead implied by the value of the Content-
 Encoding header field.

 o The JWE Encrypted Key is empty, as stipulated by the direct
 encryption algorithm.

 o The JWE Initialization Vector ("iv") for each record is set to the
 exclusive or of the 96-bit record sequence number, starting at
 zero, and a value derived from the input keying material (see

Section 3.3). This value is also not transmitted.

 o The final value is the concatenated JWE Ciphertext and the JWE
 Authentication Tag, both expressed without URL-safe Base 64
 encoding. The "." separator is omitted, since the length of these
 fields is known.

 Thus, the example in Section 5.4 can be rendered using the JWE
 Compact Serialization as:

 eyAiYWxnIjogImRpciIsICJlbmMiOiAiQTEyOEdDTSIgfQ..AAAAAAAAAAAAAAAA.
 LwTC-fwdKh8de0smD2jfzA.eh1vURhu65M2lxhctbbntA

https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540
http://www.w3.org/TR/xmlenc-core/
https://datatracker.ietf.org/doc/html/rfc7516

Thomson Expires June 24, 2016 [Page 20]

Internet-Draft HTTP encryption coding December 2015

 Where the first line represents the fixed JWE Protected Header, JWE
 Encrypted Key, and JWE Initialization Vector, all of which are
 determined algorithmically. The second line contains the encoded
 body, split into JWE Ciphertext and JWE Authentication Tag.

Appendix B. Acknowledgements

 Mark Nottingham was an original author of this document.

 The following people provided valuable input: Richard Barnes, David
 Benjamin, Peter Beverloo, Mike Jones, Stephen Farrell, Adam Langley,
 John Mattsson, Eric Rescorla, and Jim Schaad.

Author's Address

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

Thomson Expires June 24, 2016 [Page 21]

