
HTTP Working Group M. Thomson
Internet-Draft Mozilla
Intended status: Standards Track October 31, 2016
Expires: May 4, 2017

Encrypted Content-Encoding for HTTP
draft-ietf-httpbis-encryption-encoding-04

Abstract

 This memo introduces a content coding for HTTP that allows message
 payloads to be encrypted.

Note to Readers

 Discussion of this draft takes place on the HTTP working group
 mailing list (ietf-http-wg@w3.org), which is archived at

https://lists.w3.org/Archives/Public/ietf-http-wg/ .

 Working Group information can be found at http://httpwg.github.io/ ;
 source code and issues list for this draft can be found at

https://github.com/httpwg/http-extensions/labels/encryption .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 4, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Thomson Expires May 4, 2017 [Page 1]

https://lists.w3.org/Archives/Public/ietf-http-wg/
http://httpwg.github.io/
https://github.com/httpwg/http-extensions/labels/encryption
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft HTTP encryption coding October 2016

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3

2. The "aes128gcm" HTTP Content Coding 3
2.1. Encryption Content Coding Header 5
2.2. Content Encryption Key Derivation 6
2.3. Nonce Derivation . 7

3. Crypto-Key Header Field 7
4. Examples . 8
4.1. Encryption of a Response 8
4.2. Encryption with Multiple Records 9

5. Security Considerations 9
5.1. Key and Nonce Reuse 10
5.2. Data Encryption Limits 10
5.3. Content Integrity . 10
5.4. Leaking Information in Headers 11
5.5. Poisoning Storage . 11
5.6. Sizing and Timing Attacks 12

6. IANA Considerations . 12
6.1. The "aes128gcm" HTTP Content Coding 12
6.2. Crypto-Key Header Field 12
6.3. The HTTP Crypto-Key Parameter Registry 12
6.3.1. keyid . 13
6.3.2. aes128gcm . 13

7. References . 13
7.1. Normative References 13
7.2. Informative References 14

Appendix A. JWE Mapping . 15
Appendix B. Acknowledgements 16

 Author's Address . 16

1. Introduction

 It is sometimes desirable to encrypt the contents of a HTTP message
 (request or response) so that when the payload is stored (e.g., with
 a HTTP PUT), only someone with the appropriate key can read it.

 For example, it might be necessary to store a file on a server
 without exposing its contents to that server. Furthermore, that same

http://trustee.ietf.org/license-info

Thomson Expires May 4, 2017 [Page 2]

Internet-Draft HTTP encryption coding October 2016

 file could be replicated to other servers (to make it more resistant
 to server or network failure), downloaded by clients (to make it
 available offline), etc. without exposing its contents.

 These uses are not met by the use of TLS [RFC5246], since it only
 encrypts the channel between the client and server.

 This document specifies a content coding (Section 3.1.2 of [RFC7231])
 for HTTP to serve these and other use cases.

 This content coding is not a direct adaptation of message-based
 encryption formats - such as those that are described by [RFC4880],
 [RFC5652], [RFC7516], and [XMLENC] - which are not suited to stream
 processing, which is necessary for HTTP. The format described here
 cleaves more closely to the lower level constructs described in
 [RFC5116].

 To the extent that message-based encryption formats use the same
 primitives, the format can be considered as sequence of encrypted
 messages with a particular profile. For instance, Appendix A
 explains how the format is congruent with a sequence of JSON Web
 Encryption [RFC7516] values with a fixed header.

 This mechanism is likely only a small part of a larger design that
 uses content encryption. How clients and servers acquire and
 identify keys will depend on the use case. Though a complete key
 management system is not described, this document defines an Crypto-
 Key header field that can be used to convey keying material.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Base64url encoding is defined in Section 2 of [RFC7515].

2. The "aes128gcm" HTTP Content Coding

 The "aes128gcm" HTTP content coding indicates that a payload has been
 encrypted using Advanced Encryption Standard (AES) in Galois/Counter
 Mode (GCM) as identified as AEAD_AES_128_GCM in [RFC5116],
 Section 5.1. The AEAD_AES_128_GCM algorithm uses a 128 bit content
 encryption key.

 Using this content coding requires knowledge of a key. The Crypto-
 Key header field (Section 3) can be included to describe how the
 content encryption key is derived or retrieved. Keys might be

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.2
https://datatracker.ietf.org/doc/html/rfc4880
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc7516
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7515#section-2
https://datatracker.ietf.org/doc/html/rfc5116#section-5.1
https://datatracker.ietf.org/doc/html/rfc5116#section-5.1

Thomson Expires May 4, 2017 [Page 3]

Internet-Draft HTTP encryption coding October 2016

 provided in messages that are separate from those with encrypted
 content using Crypto-Key, or provided through external mechanisms.

 The "aes128gcm" content coding uses a single fixed set of encryption
 primitives. Cipher suite agility is achieved by defining a new
 content coding scheme. This ensures that only the HTTP Accept-
 Encoding header field is necessary to negotiate the use of
 encryption.

 The "aes128gcm" content coding uses a fixed record size. The final
 encoding consists of a header (see Section 2.1), zero or more fixed
 size encrypted records, and a partial record. The partial record
 MUST be shorter than the fixed record size.

 +-----------+ content is rs octets minus padding
 | data | of between 2 and 65537 octets;
 +-----------+ the last record is smaller
 |
 v
 +-----+-----------+ add padding to get rs octets;
 | pad | data | the last record contains
 +-----+-----------+ up to rs minus 1 octets
 |
 v
 +--------------------+ encrypt with AEAD_AES_128_GCM;
 | ciphertext | final size is rs plus 16 octets
 +--------------------+ the last record is smaller

 The record size determines the length of each portion of plaintext
 that is enciphered, with the exception of the final record, which is
 necessarily smaller. The record size ("rs") is included in the
 content coding header (see Section 2.1).

 AEAD_AES_128_GCM produces ciphertext 16 octets longer than its input
 plaintext. Therefore, the length of each enciphered record other
 than the last is equal to the value of the "rs" parameter plus 16
 octets. To prevent an attacker from truncating a stream, an encoder
 MUST append a record that contains only padding and is smaller than
 the full record size if the final record ends on a record boundary.
 A receiver MUST fail to decrypt if the final record ciphertext is
 less than 18 octets in size or equal to the record size plus 16 (that
 is, the size of a full encrypted record). Valid records always
 contain at least two octets of padding and a 16 octet authentication
 tag.

 Each record contains between 2 and 65537 octets of padding, inserted
 into a record before the enciphered content. Padding consists of a

Thomson Expires May 4, 2017 [Page 4]

Internet-Draft HTTP encryption coding October 2016

 two octet unsigned integer in network byte order, followed that
 number of zero-valued octets. A receiver MUST fail to decrypt if any
 padding octet other than the first two are non-zero, or a record has
 more padding than the record size can accommodate.

 The nonce for each record is a 96-bit value constructed from the
 record sequence number and the input keying material. Nonce
 derivation is covered in Section 2.3.

 The additional data passed to each invocation of AEAD_AES_128_GCM is
 a zero-length octet sequence.

 A consequence of this record structure is that range requests
 [RFC7233] and random access to encrypted payload bodies are possible
 at the granularity of the record size. Partial records at the ends
 of a range cannot be decrypted. Thus, it is best if range requests
 start and end on record boundaries.

 Selecting the record size most appropriate for a given situation
 requires a trade-off. A smaller record size allows decrypted octets
 to be released more rapidly, which can be appropriate for
 applications that depend on responsiveness. Smaller records also
 reduce the additional data required if random access into the
 ciphertext is needed. Applications that depend on being able to pad
 by arbitrary amounts cannot increase the record size beyond 65537
 octets.

 Applications that don't depending on streaming, random access, or
 arbitrary padding can use larger records, or even a single record. A
 larger record size reduces the processing and data overheads.

2.1. Encryption Content Coding Header

 The content coding uses a header block that includes all parameters
 needed to decrypt the content (other than the key). The header block
 is placed in the body of a message ahead of the sequence of records.

 +-----------+--------+-----------+---------------+
 | salt (16) | rs (4) | idlen (1) | keyid (idlen) |
 +-----------+--------+-----------+---------------+

 salt: The "salt" parameter comprises the first 16 octets of the
 "aes128gcm" content coding header. The same "salt" parameter
 value MUST NOT be reused for two different payload bodies that
 have the same input keying material; generating a random salt for
 every application of the content coding ensures that content
 encryption key reuse is highly unlikely.

https://datatracker.ietf.org/doc/html/rfc7233

Thomson Expires May 4, 2017 [Page 5]

Internet-Draft HTTP encryption coding October 2016

 rs: The "rs" or record size parameter contains an unsigned 32-bit
 integer in network byte order that describes the record size in
 octets. Note that it is therefore impossible to exceed the
 2^36-31 limit on plaintext input to AEAD_AES_128_GCM. Values
 smaller than 3 are invalid.

 keyid: The "keyid" parameter can be used to identify the keying
 material that is used. When the Crypto-Key header field is used,
 the "keyid" identifies a matching value in that field. The
 "keyid" parameter MUST be used if keying material included in an
 Crypto-Key header field is needed to derive the content encryption
 key. The "keyid" parameter can also be used to identify keys in
 an application-specific fashion.

2.2. Content Encryption Key Derivation

 In order to allow the reuse of keying material for multiple different
 HTTP messages, a content encryption key is derived for each message.
 The content encryption key is derived from the decoded value of the
 "salt" parameter using the HMAC-based key derivation function (HKDF)
 described in [RFC5869] using the SHA-256 hash algorithm [FIPS180-4].

 The value of the "salt" parameter is the salt input to HKDF function.
 The keying material identified by the "keyid" parameter is the input
 keying material (IKM) to HKDF. Input keying material can either be
 prearranged, or can be described using the Crypto-Key header field
 (Section 3). The extract phase of HKDF therefore produces a
 pseudorandom key (PRK) as follows:

 PRK = HMAC-SHA-256(salt, IKM)

 The info parameter to HKDF is set to the ASCII-encoded string
 "Content-Encoding: aes128gcm" and a single zero octet:

 cek_info = "Content-Encoding: aes128gcm" || 0x00

 Note: Concatenation of octet sequences is represented by the "||"
 operator.

 AEAD_AES_128_GCM requires a 16 octet (128 bit) content encryption key
 (CEK), so the length (L) parameter to HKDF is 16. The second step of
 HKDF can therefore be simplified to the first 16 octets of a single
 HMAC:

 CEK = HMAC-SHA-256(PRK, cek_info || 0x01)

https://datatracker.ietf.org/doc/html/rfc5869

Thomson Expires May 4, 2017 [Page 6]

Internet-Draft HTTP encryption coding October 2016

2.3. Nonce Derivation

 The nonce input to AEAD_AES_128_GCM is constructed for each record.
 The nonce for each record is a 12 octet (96 bit) value that is
 produced from the record sequence number and a value derived from the
 input keying material.

 The input keying material and salt values are input to HKDF with
 different info and length parameters.

 The length (L) parameter is 12 octets. The info parameter for the
 nonce is the ASCII-encoded string "Content-Encoding: nonce",
 terminated by a a single zero octet:

 nonce_info = "Content-Encoding: nonce" || 0x00

 The result is combined with the record sequence number - using
 exclusive or - to produce the nonce. The record sequence number
 (SEQ) is a 96-bit unsigned integer in network byte order that starts
 at zero.

 Thus, the final nonce for each record is a 12 octet value:

 NONCE = HMAC-SHA-256(PRK, nonce_info || 0x01) XOR SEQ

 This nonce construction prevents removal or reordering of records.
 However, it permits truncation of the tail of the sequence (see

Section 2 for how this is avoided).

3. Crypto-Key Header Field

 A Crypto-Key header field can be used to describe the input keying
 material used by the "aes128gcm" content coding.

 Ordinarily, this header field will not appear in the same message as
 the encrypted content. Including the encryption key with the
 encrypted payload reduces the value of using encryption to a somewhat
 complicated checksum. However, the Crypto-Key header field could be
 used in one message to provision keys for other messages.

 The Crypto-Key header field uses the extended ABNF syntax defined in
Section 1.2 of [RFC7230] and the "parameter" and "OWS" rules from

 [RFC7231].

https://datatracker.ietf.org/doc/html/rfc7230#section-1.2
https://datatracker.ietf.org/doc/html/rfc7231

Thomson Expires May 4, 2017 [Page 7]

Internet-Draft HTTP encryption coding October 2016

 Crypto-Key = #crypto-key-params
 crypto-key-params = [parameter *(OWS ";" OWS parameter)]

 keyid: The "keyid" parameter corresponds to the "keyid" parameter in
 the content coding.

 aes128gcm: The "aes128gcm" parameter contains the base64url-encoded
 octets [RFC7515] of the input keying material for the "aes128gcm"
 content coding.

 Crypto-Key header field values with multiple instances of the same
 parameter name in a single crypto-key-params production are invalid.

 The input keying material used by the key derivation (see
Section 2.2) can be determined based on the information in the

 Crypto-Key header field.

 The value or values provided in the Crypto-Key header field is valid
 only for the current HTTP message unless additional information
 indicates a greater scope.

 Alternative methods for determining input keying material MAY be
 defined by specifications that use this content coding. This
 document only defines the use of the "aes128gcm" parameter which
 describes an explicit key.

 The "aes128gcm" parameter MUST decode to at least 16 octets in order
 to be used as input keying material for "aes128gcm" content coding.

4. Examples

 This section shows a few examples of the encrypted content coding.

 Note: All binary values in the examples in this section use base64url
 encoding [RFC7515]. This includes the bodies of requests.
 Whitespace and line wrapping is added to fit formatting constraints.

4.1. Encryption of a Response

 Here, a successful HTTP GET response has been encrypted using input
 keying material that is identified by the string "a1".

 The encrypted data in this example is the UTF-8 encoded string "I am
 the walrus". The input keying material is included in the Crypto-Key
 header field. The content body contains a single record only and is
 shown here using base64url encoding for presentation reasons.

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7515

Thomson Expires May 4, 2017 [Page 8]

Internet-Draft HTTP encryption coding October 2016

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream
 Content-Length: 33
 Content-Encoding: aes128gcm
 Crypto-Key: aes128gcm=B33e_VeFrOyIHwFTIfmesA

 9Y1iaZMzICC05DO3y8dWiAAAopoAzpM9l8LHdpDaO9C-UvT4kttTI_edSsHv1o5b
 lWZ5mBYL

 Note that the media type has been changed to "application/octet-
 stream" to avoid exposing information about the content.
 Alternatively (and equivalently), the Content-Type header field can
 be omitted.

4.2. Encryption with Multiple Records

 This example shows the same encrypted message, but split into records
 of 10 octets each. The first record includes a single additional
 octet of padding, which causes the end of the content to align with a
 record boundary, forcing the creation of a third record that contains
 only padding.

 HTTP/1.1 200 OK
 Content-Length: 70
 Content-Encoding: aes128gcm
 Crypto-Key: keyid="a1"; aes128gcm="BO3ZVPxUlnLORbVGMpbT1Q"

 _lgOPHdbKmIaLnZC7_8huQAAAAoCYTGkQWUSYylMKzMduBHDCFDwL2oODx8nkh0n
 uOTNrh48DaWSm02DiQPzQAOGe6xRAeBj588hH6jQRTh_szFRS2Nwx9Aeuiic

5. Security Considerations

 This mechanism assumes the presence of a key management framework
 that is used to manage the distribution of keys between valid senders
 and receivers. Defining key management is part of composing this
 mechanism into a larger application, protocol, or framework.

 Implementation of cryptography - and key management in particular -
 can be difficult. For instance, implementations need to account for
 the potential for exposing keying material on side channels, such as
 might be exposed by the time it takes to perform a given operation.
 The requirements for a good implementation of cryptographic
 algorithms can change over time.

Thomson Expires May 4, 2017 [Page 9]

Internet-Draft HTTP encryption coding October 2016

5.1. Key and Nonce Reuse

 Encrypting different plaintext with the same content encryption key
 and nonce in AES-GCM is not safe [RFC5116]. The scheme defined here
 uses a fixed progression of nonce values. Thus, a new content
 encryption key is needed for every application of the content coding.
 Since input keying material can be reused, a unique "salt" parameter
 is needed to ensure a content encryption key is not reused.

 If a content encryption key is reused - that is, if input keying
 material and salt are reused - this could expose the plaintext and
 the authentication key, nullifying the protection offered by
 encryption. Thus, if the same input keying material is reused, then
 the salt parameter MUST be unique each time. This ensures that the
 content encryption key is not reused. An implementation SHOULD
 generate a random salt parameter for every message; a counter could
 achieve the same result.

5.2. Data Encryption Limits

 There are limits to the data that AEAD_AES_128_GCM can encipher. The
 maximum value for the record size is limited by the size of the "rs"
 field in the header (see Section 2.1), which ensures that the 2^36-31
 limit for a single application of AEAD_AES_128_GCM is not reached
 [RFC5116]. In order to preserve a 2^-40 probability of
 indistinguishability under chosen plaintext attack (IND-CPA), the
 total amount of plaintext that can be enciphered MUST be less than
 2^44.5 blocks of 16 octets [AEBounds].

 If rs is a multiple of 16 octets, this means 398 terabytes can be
 encrypted safely, including padding. However, if the record size is
 not a multiple of 16 octets, the total amount of data that can be
 safely encrypted is reduced proportionally. The worst case is a
 record size of 3 octets, for which at most 74 terabytes of plaintext
 can be encrypted, of which at least two-thirds is padding.

5.3. Content Integrity

 This mechanism only provides content origin authentication. The
 authentication tag only ensures that an entity with access to the
 content encryption key produced the encrypted data.

 Any entity with the content encryption key can therefore produce
 content that will be accepted as valid. This includes all recipients
 of the same HTTP message.

 Furthermore, any entity that is able to modify both the Encryption
 header field and the HTTP message body can replace the contents.

https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5116

Thomson Expires May 4, 2017 [Page 10]

Internet-Draft HTTP encryption coding October 2016

 Without the content encryption key or the input keying material,
 modifications to or replacement of parts of a payload body are not
 possible.

5.4. Leaking Information in Headers

 Because only the payload body is encrypted, information exposed in
 header fields is visible to anyone who can read the HTTP message.
 This could expose side-channel information.

 For example, the Content-Type header field can leak information about
 the payload body.

 There are a number of strategies available to mitigate this threat,
 depending upon the application's threat model and the users'
 tolerance for leaked information:

 1. Determine that it is not an issue. For example, if it is
 expected that all content stored will be "application/json", or
 another very common media type, exposing the Content-Type header
 field could be an acceptable risk.

 2. If it is considered sensitive information and it is possible to
 determine it through other means (e.g., out of band, using hints
 in other representations, etc.), omit the relevant headers, and/
 or normalize them. In the case of Content-Type, this could be
 accomplished by always sending Content-Type: application/octet-
 stream (the most generic media type), or no Content-Type at all.

 3. If it is considered sensitive information and it is not possible
 to convey it elsewhere, encapsulate the HTTP message using the
 application/http media type (Section 8.3.2 of [RFC7230]),
 encrypting that as the payload of the "outer" message.

5.5. Poisoning Storage

 This mechanism only offers encryption of content; it does not perform
 authentication or authorization, which still needs to be performed
 (e.g., by HTTP authentication [RFC7235]).

 This is especially relevant when a HTTP PUT request is accepted by a
 server; if the request is unauthenticated, it becomes possible for a
 third party to deny service and/or poison the store.

https://datatracker.ietf.org/doc/html/rfc7230#section-8.3.2
https://datatracker.ietf.org/doc/html/rfc7235

Thomson Expires May 4, 2017 [Page 11]

Internet-Draft HTTP encryption coding October 2016

5.6. Sizing and Timing Attacks

 Applications using this mechanism need to be aware that the size of
 encrypted messages, as well as their timing, HTTP methods, URIs and
 so on, may leak sensitive information.

 This risk can be mitigated through the use of the padding that this
 mechanism provides. Alternatively, splitting up content into
 segments and storing the separately might reduce exposure. HTTP/2
 [RFC7540] combined with TLS [RFC5246] might be used to hide the size
 of individual messages.

6. IANA Considerations

6.1. The "aes128gcm" HTTP Content Coding

 This memo registers the "aes128gcm" HTTP content coding in the HTTP
 Content Codings Registry, as detailed in Section 2.

 o Name: aes128gcm

 o Description: AES-GCM encryption with a 128-bit content encryption
 key

 o Reference: this specification

6.2. Crypto-Key Header Field

 This memo registers the "Crypto-Key" HTTP header field in the
 Permanent Message Header Registry, as detailed in Section 3.

 o Field name: Crypto-Key

 o Protocol: HTTP

 o Status: Standard

 o Reference: this specification

 o Notes:

6.3. The HTTP Crypto-Key Parameter Registry

 This memo establishes a registry for parameters used by the "Crypto-
 Key" header field under the "Hypertext Transfer Protocol (HTTP)
 Parameters" grouping. The "Hypertext Transfer Protocol (HTTP)
 Crypto-Key Parameters" operates under an "Specification Required"
 policy [RFC5226].

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5226

Thomson Expires May 4, 2017 [Page 12]

Internet-Draft HTTP encryption coding October 2016

 Entries in this registry are expected to include the following
 information:

 o Parameter Name: The name of the parameter.

 o Purpose: A brief description of the purpose of the parameter.

 o Reference: A reference to a specification that defines the
 semantics of the parameter.

 The initial contents of this registry are:

6.3.1. keyid

 o Parameter Name: keyid

 o Purpose: Identify the key that is in use.

 o Reference: this document

6.3.2. aes128gcm

 o Parameter Name: aes128gcm

 o Purpose: Provide an explicit input keying material value for the
 aes128gcm content coding.

 o Reference: this document

7. References

7.1. Normative References

 [FIPS180-4]
 Department of Commerce, National., "NIST FIPS 180-4,
 Secure Hash Standard", March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/

fips-180-4.pdf>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <http://www.rfc-editor.org/info/rfc5116>.

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5116
http://www.rfc-editor.org/info/rfc5116

Thomson Expires May 4, 2017 [Page 13]

Internet-Draft HTTP encryption coding October 2016

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <http://www.rfc-editor.org/info/rfc5869>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

7.2. Informative References

 [AEBounds]
 Luykx, A. and K. Paterson, "Limits on Authenticated
 Encryption Use in TLS", March 2016,
 <http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf>.

 [RFC4880] Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.
 Thayer, "OpenPGP Message Format", RFC 4880,
 DOI 10.17487/RFC4880, November 2007,
 <http://www.rfc-editor.org/info/rfc4880>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, DOI 10.17487/RFC5652, September 2009,

 <http://www.rfc-editor.org/info/rfc5652>.

https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc5869
http://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7515
http://www.rfc-editor.org/info/rfc7515
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
https://datatracker.ietf.org/doc/html/rfc4880
http://www.rfc-editor.org/info/rfc4880
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5652
http://www.rfc-editor.org/info/rfc5652

Thomson Expires May 4, 2017 [Page 14]

Internet-Draft HTTP encryption coding October 2016

 [RFC7233] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",

RFC 7233, DOI 10.17487/RFC7233, June 2014,
 <http://www.rfc-editor.org/info/rfc7233>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <http://www.rfc-editor.org/info/rfc7235>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, DOI 10.17487/RFC7516, May 2015,

 <http://www.rfc-editor.org/info/rfc7516>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [XMLENC] Eastlake, D., Reagle, J., Hirsch, F., Roessler, T.,
 Imamura, T., Dillaway, B., Simon, E., Yiu, K., and M.
 Nystroem, "XML Encryption Syntax and Processing", W3C
 Recommendation REC-xmlenc-core1-20130411 , January 2013,
 <https://www.w3.org/TR/2013/REC-xmlenc-core1-20130411>.

Appendix A. JWE Mapping

 The "aes128gcm" content coding can be considered as a sequence of
 JSON Web Encryption (JWE) objects [RFC7516], each corresponding to a
 single fixed size record that includes leading padding. The
 following transformations are applied to a JWE object that might be
 expressed using the JWE Compact Serialization:

 o The JWE Protected Header is fixed to the value { "alg": "dir",
 "enc": "A128GCM" }, describing direct encryption using AES-GCM
 with a 128-bit content encryption key. This header is not
 transmitted, it is instead implied by the value of the Content-
 Encoding header field.

 o The JWE Encrypted Key is empty, as stipulated by the direct
 encryption algorithm.

 o The JWE Initialization Vector ("iv") for each record is set to the
 exclusive or of the 96-bit record sequence number, starting at
 zero, and a value derived from the input keying material (see

Section 2.3). This value is also not transmitted.

https://datatracker.ietf.org/doc/html/rfc7233
http://www.rfc-editor.org/info/rfc7233
https://datatracker.ietf.org/doc/html/rfc7235
http://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc7516
http://www.rfc-editor.org/info/rfc7516
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540
https://www.w3.org/TR/2013/REC-xmlenc-core1-20130411
https://datatracker.ietf.org/doc/html/rfc7516

Thomson Expires May 4, 2017 [Page 15]

Internet-Draft HTTP encryption coding October 2016

 o The final value is the concatenated header, JWE Ciphertext, and
 JWE Authentication Tag, all expressed without base64url encoding.
 The "." separator is omitted, since the length of these fields is
 known.

 Thus, the example in Section 4.1 can be rendered using the JWE
 Compact Serialization as:

 eyAiYWxnIjogImRpciIsICJlbmMiOiAiQTEyOEdDTSIgfQ..31iQYc1v4a36EgyJ.
 AM6TPZfCx3aQ2jvQvlL0-JLb.21Mj951Kwe_WjluVZnmYFgs

 Where the first line represents the fixed JWE Protected Header, an
 empty JWE Encrypted Key, and the algorithmically-determined JWE
 Initialization Vector. The second line contains the encoded body,
 split into JWE Ciphertext and JWE Authentication Tag.

Appendix B. Acknowledgements

 Mark Nottingham was an original author of this document.

 The following people provided valuable input: Richard Barnes, David
 Benjamin, Peter Beverloo, JR Conlin, Mike Jones, Stephen Farrell,
 Adam Langley, John Mattsson, Julian Reschke, Eric Rescorla, Jim
 Schaad, and Magnus Westerlund.

Author's Address

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

Thomson Expires May 4, 2017 [Page 16]

