
HTTPbis Working Group R. Peon
Internet-Draft Google, Inc
Intended status: Standards Track H. Ruellan
Expires: December 19, 2014 Canon CRF
 June 17, 2014

HPACK - Header Compression for HTTP/2
draft-ietf-httpbis-header-compression-08

Abstract

 This specification defines HPACK, a compression format for
 efficiently representing HTTP header fields in the context of HTTP/2.

Editorial Note (To be removed by RFC Editor)

 Discussion of this draft takes place on the HTTPBIS working group
 mailing list (ietf-http-wg@w3.org), which is archived at <https://

lists.w3.org/Archives/Public/ietf-http-wg/>.

 Working Group information can be found at <http://tools.ietf.org/wg/
httpbis/>; that specific to HTTP/2 are at <http://http2.github.io/>.

 The changes in this draft are summarized in Appendix A.1.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 19, 2014.

Peon & Ruellan Expires December 19, 2014 [Page 1]

https://lists.w3.org/Archives/Public/ietf-http-wg/
https://lists.w3.org/Archives/Public/ietf-http-wg/
http://tools.ietf.org/wg/httpbis/
http://tools.ietf.org/wg/httpbis/
http://http2.github.io/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft HPACK June 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. HPACK Overview . 4
2.1. Outline . 4
2.2. Conventions . 5
2.3. Terminology . 5

3. Decoding Process Overview 6
3.1. Encoding and Decoding Contexts 6
3.2. Header Table . 6
3.3. Reference Set . 7
3.4. Header Field Representation 7
3.5. Header Field Emission 9

4. Header Block Decoding . 9
4.1. Header Field Representation Processing 9
4.2. Reference Set Emission 10

5. Header Table Management 10
5.1. Maximum Table Size 10
5.2. Entry Eviction When Header Table Size Changes 11
5.3. Entry Eviction when Adding New Entries 12

6. Primitive Type Representations 12
6.1. Integer representation 12
6.2. String Literal Representation 13

7. Binary Format . 14
7.1. Indexed Header Field Representation 14
7.2. Literal Header Field Representation 15
7.2.1. Literal Header Field with Incremental Indexing . . . 15
7.2.2. Literal Header Field without Indexing 16
7.2.3. Literal Header Field Never Indexed 17

7.3. Encoding Context Update 18
8. Security Considerations 19
8.1. Probing Header Table State 20
8.1.1. Applicability to HPACK and HTTP 20

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Peon & Ruellan Expires December 19, 2014 [Page 2]

Internet-Draft HPACK June 2014

8.1.2. Mitigation . 21
8.1.3. Never Indexed Literals 22

8.2. Static Huffman Encoding 22
8.3. Memory Consumption 22
8.4. Implementation Limits 23

9. Acknowledgements . 23
10. References . 23
10.1. Normative References 23
10.2. Informative References 24

Appendix A. Change Log (to be removed by RFC Editor before
 publication . 24

A.1. Since draft-ietf-httpbis-header-compression-07 25
A.2. Since draft-ietf-httpbis-header-compression-06 25
A.3. Since draft-ietf-httpbis-header-compression-05 25
A.4. Since draft-ietf-httpbis-header-compression-04 26
A.5. Since draft-ietf-httpbis-header-compression-03 26
A.6. Since draft-ietf-httpbis-header-compression-02 26
A.7. Since draft-ietf-httpbis-header-compression-01 26
A.8. Since draft-ietf-httpbis-header-compression-00 27

Appendix B. Static Table . 27
Appendix C. Huffman Code . 29
Appendix D. Examples . 35
D.1. Integer Representation Examples 35
D.1.1. Example 1: Encoding 10 Using a 5-bit Prefix 35
D.1.2. Example 2: Encoding 1337 Using a 5-bit Prefix 36

 D.1.3. Example 3: Encoding 42 Starting at an Octet Boundary 37
D.2. Header Field Representation Examples 37
D.2.1. Literal Header Field with Indexing 37
D.2.2. Literal Header Field without Indexing 38
D.2.3. Literal Header Field never Indexed 38
D.2.4. Indexed Header Field 39
D.2.5. Indexed Header Field from Static Table 40

D.3. Request Examples without Huffman Coding 41
D.3.1. First Request . 41
D.3.2. Second Request 42
D.3.3. Third Request . 44

D.4. Request Examples with Huffman Coding 46
D.4.1. First Request . 46
D.4.2. Second Request 47
D.4.3. Third Request . 48

D.5. Response Examples without Huffman Coding 50
D.5.1. First Response 50
D.5.2. Second Response 52
D.5.3. Third Response 53

D.6. Response Examples with Huffman Coding 55
D.6.1. First Response 55
D.6.2. Second Response 58
D.6.3. Third Response 59

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-07
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-00

Peon & Ruellan Expires December 19, 2014 [Page 3]

Internet-Draft HPACK June 2014

1. Introduction

 This specification defines HPACK, a compression format for
 efficiently representing HTTP header fields in the context of HTTP/2
 (see [HTTP2]).

2. HPACK Overview

 In HTTP/1.1 (see [RFC7230]), header fields are encoded without any
 form of compression. As web pages have grown to include dozens to
 hundreds of requests, the redundant header fields in these requests
 now measurably increase latency and unnecessarily consume bandwidth
 (see [SPDY-DESC-1] and [SPDY-DESC-2]).

 SPDY [SPDY] initially addressed this redundancy by compressing header
 fields using the DEFLATE format [DEFLATE], which proved very
 effective at efficiently representing the redundant header fields.
 However, that approach exposed a security risk as demonstrated by the
 CRIME attack (see [CRIME]).

 This document describes HPACK, a new compressor for header fields
 which eliminates redundant header fields, limits vulnerability to
 known security attacks, and which has a bounded memory requirement
 for use in constrained environments.

2.1. Outline

 The HTTP header field encoding defined in this document is based on a
 header table that maps name-value pairs to index values. The header
 table is incrementally updated as new values are encoded or decoded.

 A set of header fields is treated as an unordered collection of name-
 value pairs that can include duplicates. Names and values are
 considered to be opaque sequences of octets. The order of header
 fields is not guaranteed to be preserved after being compressed and
 decompressed.

 In the encoded form, a header field is represented either literally
 or as a reference to a name-value pair in a header table. A set of
 header fields can therefore be encoded using a mixture of references
 and literal values.

 As two consecutive sets of header fields often have header fields in
 common, each set is coded as a difference from the previous set. The
 goal is to only encode the changes between the two sets of header
 fields (that is, header fields that are present in only one of the
 sets) and eliminate redundancy (header fields present in both sets).

https://datatracker.ietf.org/doc/html/rfc7230

Peon & Ruellan Expires December 19, 2014 [Page 4]

Internet-Draft HPACK June 2014

 A subset of the header fields that are encoded as references to the
 header table are maintained in a reference set that is used as the
 initial set of header fields for the next encoding.

 The encoder is responsible for deciding which header fields to insert
 as new entries in the header table. The decoder executes the
 modifications to the header table and reference set prescribed by the
 encoder, reconstructing the set of header fields in the process.
 This enables decoders to remain simple and understand a wide variety
 of encoders.

 Examples illustrating the use of these different mechanisms to
 represent header fields are available in Appendix D.

2.2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 All numeric values are in network byte order. Values are unsigned
 unless otherwise indicated. Literal values are provided in decimal
 or hexadecimal as appropriate. Hexadecimal literals are prefixed
 with "0x" to distinguish them from decimal literals.

2.3. Terminology

 This document uses the following terms:

 Header Field: A name-value pair. Both the name and value are
 treated as opaque sequences of octets.

 Header Table: The header table (see Section 3.2) is a component used
 to associate stored header fields to index values.

 Static Table: The static table (see Appendix B) is a component used
 to associate static header fields to index values. This data is
 ordered, read-only, always accessible, and may be shared amongst
 all encoding contexts.

 Header Set: A header set is an unordered group of header fields that
 are encoded jointly. It can contain duplicate header fields. A
 complete set of key-value pairs contained in a HTTP request or
 response is a header set.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Peon & Ruellan Expires December 19, 2014 [Page 5]

Internet-Draft HPACK June 2014

 Reference Set: The reference set (see Section 3.3) is a component
 containing an unordered set of references to entries in the header
 table. It doesn't contain duplicate references. The reference
 set is used for the differential encoding of a new header set.

 Header Field Representation: A header field can be represented in
 encoded form either as a literal or as an index (see Section 3.4).

 Header Block: The entire set of encoded header field representations
 which, when decoded, yield a complete header set.

 Header Field Emission: When decoding a set of header field
 representations, some operations emit a header field (see

Section 3.5). Emitted header fields are added to the output
 header set and cannot be removed.

3. Decoding Process Overview

 This specification does not describe a specific algorithm for an
 encoder. Instead, it defines precisely how a decoder is expected to
 operate, allowing encoders to produce any encoding that this
 definition permits.

3.1. Encoding and Decoding Contexts

 HPACK requires that a decoder maintains both a header table and a
 reference set. No other state information is needed to decode
 messages. An encoder that wishes to reference entries in the header
 table, reference set, or static table needs to maintain a copy of the
 information a decoder holds.

 When used for bidirectional communication, such as in HTTP, the
 encoding and decoding contexts maintained by an endpoint are
 completely independent. Header fields are encoded without any
 reference to the local decoding state; and header fields are decoded
 without reference to the encoding state.

 Each endpoint maintains a header table and a reference set in order
 to decode header blocks, and optionally a copy of the information
 maintained by their peer.

3.2. Header Table

 A header table consists of a list of header fields maintained in
 first-in, first-out order. The first and newest entry in a header
 table is always at index 1, and the oldest entry of a header table is
 at the index corresponding to the number of entries in the header
 table.

Peon & Ruellan Expires December 19, 2014 [Page 6]

Internet-Draft HPACK June 2014

 The header table is initially empty.

 The header table can contain duplicate entries. Therefore, duplicate
 entries MUST NOT be treated as an error by a decoder.

 The encoder decides how to update the header table and as such can
 control how much memory is used by the header table. To limit the
 memory requirements of the decoder, the header table size is strictly
 bounded (see Section 5.1).

 The header table is updated during the processing of a set of header
 field representations (see Section 4.1).

3.3. Reference Set

 A reference set is an unordered set of references to entries of the
 header table. It never contains duplicate references.

 The reference set is initially empty.

 The reference set is updated during the processing of a set of header
 field representations (see Section 4.1).

 The reference set enables differential encoding, where only
 differences between the previous header set and the current header
 set need to be encoded. The use of differential encoding is optional
 for any header set.

 When an entry is evicted from the header table, if it was referenced
 from the reference set, its reference is removed from the reference
 set.

 To limit the memory requirements on the decoder side for handling the
 reference set, only entries within the header table can be contained
 in the reference set. To still allow entries from the static table
 to take advantage of the differential encoding, when a header field
 is represented as a reference to an entry of the static table, this
 entry is inserted into the header table (see Section 4.1).

3.4. Header Field Representation

 An encoded header field can be represented either as a literal or as
 an index.

 A literal representation defines a new header field. The header
 field name can be represented literally or as a reference to an entry
 of the header table. The header field value is represented
 literally.

Peon & Ruellan Expires December 19, 2014 [Page 7]

Internet-Draft HPACK June 2014

 Three different literal representations are provided:

 o A literal representation that does not add the header field to the
 header table (see Section 7.2.2).

 o A literal representation that does not add the header field to the
 header table, with the additional stipulation that this header
 field always use a literal representation, in particular when re-
 encoded by an intermediary (see Section 7.2.3).

 o A literal representation that adds the header field as a new entry
 at the beginning of the header table (see Section 7.2.1).

 An indexed representation defines a header field as a reference to an
 entry in either the header table or the static table (see

Section 7.1).

 Indices between 1 and the length of the header table (inclusive)
 refer to elements in the header table, with index 1 referring to the
 beginning of the table.

 Indices between one higher than the length of the header table
 represent indexes into the static table. The length of the header
 table is subtracted to find the index into the static table.

 Indices that are greater than the sum of the lengths of both tables
 MUST be treated as a decoding error.

 An indexed representation using an entry of the static table induces
 a copy of this entry into the header table (see Section 4.1) for
 bounding memory requirements on the decoder side (see Section 5.1).
 For this reason, the header table is accessed more frequently than
 the static table and has the lower indices.

 For a header table size of k and a static table size of s, the
 following diagram shows the entire valid index address space.

 <---------- Index Address Space ---------->
 <-- Header Table --> <-- Static Table -->
 +---+-----------+---+ +---+-----------+---+
 | 1 | ... | k | |k+1| ... |k+s|
 +---+-----------+---+ +---+-----------+---+
 ^ |
 | V
 Insertion Point Dropping Point

 Index Address Space

Peon & Ruellan Expires December 19, 2014 [Page 8]

Internet-Draft HPACK June 2014

3.5. Header Field Emission

 A decoder processes an encoded header block sequentially. As
 different instructions are processed, some might specify that a
 header field is emitted.

 The emission of a header field is the process of marking a header
 field as belonging to the output header set. Once a header has been
 emitted, it cannot be removed or retracted from the decoder output.

 An emitted header field can be safely passed to the upper processing
 layer as part of the current header set. The decoder can pass
 emitted header fields to the upper processing layer in any order.

 By emitting header fields instead of emitting header sets, a decoder
 can be implemented with minimal memory commitment in addition to the
 header table and the reference set. The management of memory for
 handling very large sets of header fields can therefore be deferred
 to the upper processing layers.

4. Header Block Decoding

 The processing of a header block to obtain a header set is defined in
 this section. To ensure that the decoding will successfully produce
 a header set, a decoder MUST obey the following rules.

4.1. Header Field Representation Processing

 All the header field representations contained in a header block are
 processed in the order in which they appear, as specified below.
 Details on the formatting of the various header field
 representations, and some additional processing instructions are
 found in Section 7.

 An _indexed representation_ corresponding to an entry _present_ in
 the reference set entails the following actions:

 o The entry is removed from the reference set.

 An _indexed representation_ corresponding to an entry _not present_
 in the reference set entails the following actions:

 o If referencing an element of the static table:

 * The header field corresponding to the referenced entry is
 emitted.

Peon & Ruellan Expires December 19, 2014 [Page 9]

Internet-Draft HPACK June 2014

 * The referenced static entry is inserted at the beginning of the
 header table.

 * A reference to this new header table entry is added to the
 reference set, unless this new entry didn't fit in the header
 table.

 o If referencing an element of the header table:

 * The header field corresponding to the referenced entry is
 emitted.

 * The referenced header table entry is added to the reference
 set.

 A _literal representation_ that is _not added_ to the header table
 entails the following action:

 o The header field is emitted.

 A _literal representation_ that is _added_ to the header table
 entails the following actions:

 o The header field is emitted.

 o The header field is inserted at the beginning of the header table.

 o A reference to the new entry is added to the reference set, unless
 this new entry didn't fit in the header table.

4.2. Reference Set Emission

 Once all the representations contained in a header block have been
 processed, any header fields included in the reference set that have
 not previously been emitted during the processing of this header
 block are emitted.

 After the emission of these remaining header fields, the header set
 is complete.

5. Header Table Management

5.1. Maximum Table Size

 To limit the memory requirements on the decoder side, the mutable
 structures used in an encoding context are constrained in size.
 These mutable structures are the header table and the reference set.

Peon & Ruellan Expires December 19, 2014 [Page 10]

Internet-Draft HPACK June 2014

 The size of the header table is bounded by a maximum size defined by
 the decoder. The size of the header table MUST always be lower than
 or equal to this maximum size.

 The reference set can only contain references to entries of the
 header table, and can't contain references to entries of the static
 table. In addition, it can't contain duplicate references.
 Therefore, its maximum size is bounded by the size of the header
 table.

 By default, the maximum size of the header table is equal to the
 value of the HTTP/2 setting SETTINGS_HEADER_TABLE_SIZE defined by the
 decoder (see Section 6.5.2 of [HTTP2]). The encoder can change this
 maximum size (see Section 7.3), but it MUST stay lower than or equal
 to the value of SETTINGS_HEADER_TABLE_SIZE.

 After applying an updated value of the HTTP/2 setting
 SETTINGS_HEADER_TABLE_SIZE that changes the maximum size of the
 header table used by the encoder, the encoder MUST signal this change
 via an encoding context update (see Section 7.3). This encoding
 context update MUST occur at the beginning of the first header block
 following the SETTINGS frame sent to acknowledge the application of
 the updated settings.

 The size of the header table is the sum of the size of its entries.

 The size of an entry is the sum of its name's length in octets (as
 defined in Section 6.2), its value's length in octets (Section 6.2),
 plus 32.

 The size of an entry is calculated using the length of the name and
 value without any Huffman encoding applied.

 The additional 32 octets account for overhead associated with an
 entry. For example, an entry structure using two 64-bit pointers to
 reference the name and the value of the entry, and two 64-bit
 integers for counting the number of references to the name and value
 would have 32 octets of overhead.

5.2. Entry Eviction When Header Table Size Changes

 Whenever the maximum size for the header table is reduced, entries
 are evicted from the end of the header table until the size of the
 header table is less than or equal to the maximum size.

 Whenever an entry is evicted from the header table, any reference to
 that entry from the reference set is removed.

Peon & Ruellan Expires December 19, 2014 [Page 11]

Internet-Draft HPACK June 2014

 The eviction of an entry from the header table causes the index of
 the entries in the static table to be reduced by one.

5.3. Entry Eviction when Adding New Entries

 Whenever a new entry is to be added to the header table entries are
 evicted from the end of the header table until the size of the header
 table is less than or equal to (maximum size - new entry size), or
 until the table is empty.

 If the representation of the added entry references the name of an
 entry in the header table, the referenced name is cached prior to
 performing eviction to avoid having the name inadvertently evicted.

 If the size of the new entry is less than or equal to the maximum
 size, that entry is added to the table. It is not an error to
 attempt to add an entry that is larger than the maximum size; an
 attempt to add an entry larger than the entire table causes the table
 to be emptied of all existing entries.

6. Primitive Type Representations

 HPACK encoding uses two primitive types: unsigned variable length
 integers, and strings of octets.

6.1. Integer representation

 Integers are used to represent name indexes, pair indexes or string
 lengths. To allow for optimized processing, an integer
 representation always finishes at the end of an octet.

 An integer is represented in two parts: a prefix that fills the
 current octet and an optional list of octets that are used if the
 integer value does not fit within the prefix. The number of bits of
 the prefix (called N) is a parameter of the integer representation.

 The N-bit prefix allows filling the current octet. If the value is
 small enough (strictly less than 2^N-1), it is encoded within the
 N-bit prefix. Otherwise all the bits of the prefix are set to 1 and
 the value is encoded using an unsigned variable length integer
 representation (see <http://en.wikipedia.org/wiki/Variable-

length_quantity>). N is always between 1 and 8 bits. An integer
 starting at an octet-boundary will have an 8-bit prefix.

 The algorithm to represent an integer I is as follows:

http://en.wikipedia.org/wiki/Variable-length_quantity
http://en.wikipedia.org/wiki/Variable-length_quantity

Peon & Ruellan Expires December 19, 2014 [Page 12]

Internet-Draft HPACK June 2014

 if I < 2^N - 1, encode I on N bits
 else
 encode (2^N - 1) on N bits
 I = I - (2^N - 1)
 while I >= 128
 encode (I % 128 + 128) on 8 bits
 I = I / 128
 encode I on 8 bits

 For informational purpose, the algorithm to decode an integer I is as
 follows:

 decode I from the next N bits
 if I < 2^N - 1, return I
 else
 M = 0
 repeat
 B = next octet
 I = I + (B & 127) * 2^M
 M = M + 7
 while B & 128 == 128
 return I

 Examples illustrating the encoding of integers are available in
Appendix D.1.

 This integer representation allows for values of indefinite size. It
 is also possible for an encoder to send a large number of zero
 values, which can waste octets and could be used to overflow integer
 values. Excessively large integer encodings - in value or octet
 length - MUST be treated as a decoding error. Different limits can
 be set for each of the different uses of integers, based on
 implementation constraints.

6.2. String Literal Representation

 Header field names and header field values can be represented as
 literal string. A literal string is encoded as a sequence of octets,
 either by directly encoding the literal string's octets, or by using
 a Huffman code [HUFFMAN].

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | H | String Length (7+) |
 +---+---------------------------+
 | String Data (Length octets) |

Peon & Ruellan Expires December 19, 2014 [Page 13]

Internet-Draft HPACK June 2014

 +-------------------------------+

 String Literal Representation

 A literal string representation contains the following fields:

 H: A one bit flag, H, indicating whether or not the octets of the
 string are Huffman encoded.

 String Length: The number of octets used to encode the string
 literal, encoded as an integer with 7-bit prefix (see

Section 6.1).

 String Data: The encoded data of the string literal. If H is '0',
 then the encoded data is the raw octets of the string literal. If
 H is '1', then the encoded data is the Huffman encoding of the
 string literal.

 String literals which use Huffman encoding are encoded with the
 Huffman code defined in Appendix C (see examples in Request Examples
 with Huffman Coding (Appendix D.4) and in Response Examples with
 Huffman Coding (Appendix D.6)). The encoded data is the bitwise
 concatenation of the codes corresponding to each octet of the string
 literal.

 As the Huffman encoded data doesn't always end at an octet boundary,
 some padding is inserted after it up to the next octet boundary. To
 prevent this padding to be misinterpreted as part of the string
 literal, the most significant bits of code corresponding to the EOS
 (end-of-string) symbol are used.

 Upon decoding, an incomplete code at the end of the encoded data is
 to be considered as padding and discarded. A padding strictly longer
 than 7 bits MUST be treated as a decoding error. A padding not
 corresponding to the most significant bits of the code for the EOS
 symbol MUST be treated as a decoding error. A Huffman encoded string
 literal containing the EOS symbol MUST be treated as a decoding
 error.

7. Binary Format

 This section describes the detailed format of each of the different
 header field representations, plus the encoding context update
 instruction.

7.1. Indexed Header Field Representation

Peon & Ruellan Expires December 19, 2014 [Page 14]

Internet-Draft HPACK June 2014

 An indexed header field representation identifies an entry in either
 the header table or the static table.

 An indexed header field representation can either causes a header
 field to be emitted or to be removed from the reference set, as
 described in Section 4.1.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 1 | Index (7+) |
 +---+---------------------------+

 Indexed Header Field

 An indexed header field starts with the '1' 1-bit pattern, followed
 by the index of the matching pair, represented as an integer with a
 7-bit prefix.

 The index value of 0 is not used. It MUST be treated as a decoding
 error if found in an indexed header field representation.

7.2. Literal Header Field Representation

 A literal header field representation contains a literal header field
 value. Header field names are either provided as a literal or by
 reference to an existing table entry, either from the header table or
 the static table.

 A literal representation always result in the emission of a header
 field when decoded.

7.2.1. Literal Header Field with Incremental Indexing

 A literal header field with incremental indexing representation
 causes the emission of a header field, adding it as a new entry to
 the header table.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | Index (6+) |
 +---+---+-----------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field with Incremental Indexing - Indexed Name

Peon & Ruellan Expires December 19, 2014 [Page 15]

Internet-Draft HPACK June 2014

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 1 | 0 |
 +---+---+-----------------------+
 | H | Name Length (7+) |
 +---+---------------------------+
 | Name String (Length octets) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field with Incremental Indexing - New Name

 A literal header field with incremental indexing representation
 starts with the '01' 2-bit pattern.

 If the header field name matches the header field name of an entry
 stored in the header table or the static table, the header field name
 can be represented using the index of that entry. In this case, the
 index of the entry is represented as an integer with a 6-bit prefix
 (see Section 6.1). This value is always non-zero.

 Otherwise, the header field name is represented as a literal. A
 value 0 is used in place of the 6-bit index, followed by the header
 field name (see Section 6.2).

 Either form of header field name representation is followed by the
 header field value represented as a literal string as described in

Section 6.2.

7.2.2. Literal Header Field without Indexing

 A literal header field without indexing representation causes the
 emission of a header field without altering the header table.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 0 | Index (4+) |
 +---+---+-----------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field without Indexing - Indexed Name

Peon & Ruellan Expires December 19, 2014 [Page 16]

Internet-Draft HPACK June 2014

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 0 | 0 |
 +---+---+-----------------------+
 | H | Name Length (7+) |
 +---+---------------------------+
 | Name String (Length octets) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field without Indexing - New Name

 A literal header field without indexing representation starts with
 the '0000' 4-bit pattern.

 If the header field name matches the header field name of an entry
 stored in the header table or the static table, the header field name
 can be represented using the index of that entry. In this case, the
 index of the entry is represented as an integer with a 4-bit prefix
 (see Section 6.1). This value is always non-zero.

 Otherwise, the header field name is represented as a literal. A
 value 0 is used in place of the 4-bit index, followed by the header
 field name (see Section 6.2).

 Either form of header field name representation is followed by the
 header field value represented as a literal string as described in

Section 6.2.

7.2.3. Literal Header Field Never Indexed

 A literal header field never indexed representation causes the
 emission of a header field without altering the header table.
 Intermediaries MUST use the same representation for encoding this
 header field.

Peon & Ruellan Expires December 19, 2014 [Page 17]

Internet-Draft HPACK June 2014

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 1 | Index (4+) |
 +---+---+-----------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field Never Indexed - Indexed Name

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 0 | 1 | 0 |
 +---+---+-----------------------+
 | H | Name Length (7+) |
 +---+---------------------------+
 | Name String (Length octets) |
 +---+---------------------------+
 | H | Value Length (7+) |
 +---+---------------------------+
 | Value String (Length octets) |
 +-------------------------------+

 Literal Header Field Never Indexed - New Name

 A literal header field never indexed representation starts with the
 '0001' 4-bit pattern.

 When a header field is represented as a literal header field never
 indexed, it MUST always be encoded with this specific literal
 representation. In particular, when a peer sends a header field that
 it received represented as a literal header field never indexed, it
 MUST use the same representation to forward this header field.

 This representation is intended for protecting header field values
 that are not to be put at risk by compressing them (see Section 8.1
 for more details).

 The encoding of the representation is identical to the literal header
 field without indexing (see Section 7.2.2).

7.3. Encoding Context Update

 An encoding context update causes the immediate application of a
 change to the encoding context.

Peon & Ruellan Expires December 19, 2014 [Page 18]

Internet-Draft HPACK June 2014

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 1 | F | ... |
 +---+---------------------------+

 Context Update

 An encoding context update starts with the '001' 3-bit pattern.

 It is followed by a flag specifying the type of the change, and by
 any data necessary to describe the change itself.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 1 | 1 | 0 |
 +---+---------------------------+

 Reference Set Emptying

 The flag bit being set to '1' signals that the reference set is
 emptied. The remaining bits MUST be set to '0', non-zero values MUST
 be treated as a decoding error.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 1 | 0 | Max size (4+) |
 +---+---------------------------+

 Maximum Header Table Size Change

 The flag bit being set to '0' signals that a change to the maximum
 size of the header table. This new maximum size MUST be lower than
 or equal to the maximum set by the decoder. That is, the value of
 the HTTP/2 setting SETTINGS_HEADER_TABLE_SIZE, defined in
 Section 6.5.2 of [HTTP2].

 The new maximum size is encoded as an integer with a 4-bit prefix
 (see Section 6.1).

 Reducing the maximum size of the header table causes entries to be
 evicted (see Section 5.2).

8. Security Considerations

 This section describes potential areas of security concern with
 HPACK:

Peon & Ruellan Expires December 19, 2014 [Page 19]

Internet-Draft HPACK June 2014

 o Use of compression as a length-based oracle for verifying guesses
 about secrets that are compressed into a shared compression
 context.

 o Denial of service resulting from exhausting processing or memory
 capacity at a decoder.

8.1. Probing Header Table State

 HPACK reduces the length of header field encodings by exploiting the
 redundancy inherent in protocols like HTTP. The ultimate goal of
 this is to reduce the amount of data that is required to send HTTP
 requests or responses.

 The compression context used to encode header fields can be probed by
 an attacker that has the following capabilities: to define header
 fields to be encoded and transmitted; and to observe the length of
 those fields once they are encoded. This allows an attacker to
 adaptively modify requests in order to confirm guesses about the
 header table state. If a guess is compressed into a shorter length,
 the attacker can observe the encoded length and infer that the guess
 was correct.

 This is possible because while TLS provides confidentiality
 protection for content, it only provides a limited amount of
 protection for the length of that content.

 Note: Padding schemes only provide limited protection against an
 attacker with these capabilities, potentially only forcing an
 increased number of guesses to learn the length associated with a
 given guess. Padding schemes also work directly against
 compression by increasing the number of bits that are transmitted.

 Attacks like [CRIME] demonstrated the existence of these general
 attacker capabilities. The specific attack exploited the fact that
 [DEFLATE] removes redundancy based on prefix matching. This
 permitted the attacker to confirm guesses a character at a time,
 reducing an exponential-time attack into a constant time attack.

8.1.1. Applicability to HPACK and HTTP

 HPACK mitigates but does not completely prevent attacks modelled on
 [CRIME] by forcing a guess to match an entire header field value,
 rather than individual characters. An attacker can only learn
 whether a guess is correct or not, so is reduced to a brute force
 guess for the header field values.

Peon & Ruellan Expires December 19, 2014 [Page 20]

Internet-Draft HPACK June 2014

 The viability of recovering specific header field values therefore
 depends on the entropy of values. As a result, values with high
 entropy are unlikely to be recovered successfully. However, values
 with low entropy remain vulnerable.

 Attacks of this nature are possible any time that two mutually
 distrustful entities control requests or responses that are placed
 onto a single HTTP/2 connection. If the shared HPACK compressor
 permits one entity to add entries to the header table, and the other
 to access those entries, then the state of the table can be learned.

 Having requests or responses from mutually distrustful entities
 occurs when an intermediary either:

 o sends requests from multiple clients on a single connection toward
 an origin server, or

 o takes responses from multiple origin servers and places them on a
 shared connection toward a client.

 Web browsers also need to assume that requests made on the same
 connection by different web origins [ORIGIN] are made by mutually
 distrustful entities.

8.1.2. Mitigation

 Users of HTTP that require confidentiality for header fields can use
 values with entropy sufficient to make guessing infeasible. However,
 this is impractical as a general solution because it forces all users
 of HTTP to take steps to mitigate attacks. It would impose new
 constraints on how HTTP is used.

 Rather than impose constraints on users of HTTP, an implementation of
 HPACK can instead constrain how compression is applied in order to
 limit the potential for header table probing.

 An ideal solution segregates access to the header table based on the
 entity that is constructing header fields. Header field values that
 are added to the table are attributed to an entity, and only the
 entity that created an particular value can extract that value.

 To improve compression performance of this option, certain entries
 might be tagged as being public. For example, a web browser might
 make the values of the Accept-Encoding header field available in all
 requests.

 An encoder without good knowledge of the provenance of header fields
 might instead introduce a penalty for bad guesses, such that attempts

Peon & Ruellan Expires December 19, 2014 [Page 21]

Internet-Draft HPACK June 2014

 to guess a header field value results in all values being removed
 from consideration in all future requests, effectively preventing
 further guesses.

 Note: Simply removing values from the header table can be
 ineffectual if the attacker has a reliable way of causing values
 to be reinstalled. For example, a request to load an image in a
 web browser typically includes the Cookie header field (a
 potentially highly valued target for this sort of attack), and web
 sites can easily force an image to be loaded, thereby refreshing
 the entry in the header table.

 This response might be made inversely proportional to the length of
 the header field. Marking as inaccessible might occur for shorter
 values more quickly or with higher probability than for longer
 values.

 Implementations might also choose to protect certain header fields
 that are known to be highly valued, such as the Authorization or
 Cookie header fields, by disabling or further limiting compression.

8.1.3. Never Indexed Literals

 Refusing to generate an indexed representation for a header field is
 only effective if compression is avoided on all hops. The never
 indexed literal (Section 7.2.3) can be used to signal to
 intermediaries that a particular value was intentionally sent as a
 literal. An intermediary MUST NOT re-encode a value that uses the
 never indexed literal as an indexed representation.

8.2. Static Huffman Encoding

 There is currently no known threat taking advantage of the use of a
 fixed Huffman encoding. A study has shown that using a fixed Huffman
 encoding table created an information leakage, however this same
 study concluded that an attacker could not take advantage of this
 information leakage to recover any meaningful amount of information
 (see [PETAL]).

8.3. Memory Consumption

 An attacker can try to cause an endpoint to exhaust its memory.
 HPACK is designed to limit both the peak and state amounts of memory
 allocated by an endpoint.

 The amount of memory used by the compressor state is limited by the
 decoder using the value of the HTTP/2 setting
 SETTINGS_HEADER_TABLE_SIZE (see Section 6.5.2 of [HTTP2]). This

Peon & Ruellan Expires December 19, 2014 [Page 22]

Internet-Draft HPACK June 2014

 limit takes into account both the size of the data stored in the
 header table, plus a small allowance for overhead.

 A decoder can limit the amount of state memory used by setting an
 appropriate value for the setting SETTINGS_HEADER_TABLE_SIZE. An
 encoder can limit the amount of state memory it uses by signaling
 lower header table size than the decoder allows (see Section 7.3).

 The amount of temporary memory consumed by an encoder or decoder can
 be limited by processing header fields sequentially. An
 implementation does not need to retain a complete set of header
 fields. Note however that it might be necessary for an application
 to retain a complete header set for other reasons; even though HPACK
 does not force this to occur, application constraints might make this
 necessary.

8.4. Implementation Limits

 An implementation of HPACK needs to ensure that large values for
 integers, long encoding for integers, or long string literals do not
 create security weaknesses.

 An implementation has to set a limit for the values it accepts for
 integers, as well as for the encoded length (see Section 6.1). In
 the same way, it has to set a limit to the length it accepts for
 string literals (see Section 6.2).

9. Acknowledgements

 This document includes substantial input from the following
 individuals:

 o Mike Bishop, Jeff Pinner, Julian Reschke, Martin Thomson
 (substantial editorial contributions).

 o Johnny Graettinger (Huffman code statistics).

10. References

10.1. Normative References

 [HTTP2] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol version 2", draft-ietf-httpbis-http2-13
 (work in progress), June 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels ", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-13
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Peon & Ruellan Expires December 19, 2014 [Page 23]

Internet-Draft HPACK June 2014

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing ", RFC

7230, June 2014.

10.2. Informative References

 [CANONICAL]
 Schwartz, E. and B. Kallick, "Generating a canonical
 prefix encoding", Communications of the ACM Volume 7 Issue
 3, pp. 166-169, March 1964, <https://dl.acm.org/

citation.cfm?id=363991>.

 [CRIME] Rizzo, J. and T. Duong, "The CRIME Attack", September
 2012, <https://docs.google.com/a/twist.com/presentation/d/

11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/
edit#slide=id.g1eb6c1b5_3_6>.

 [DEFLATE] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, May 1996.

 [HUFFMAN] Huffman, D., "A Method for the Construction of Minimum
 Redundancy Codes", Proceedings of the Institute of Radio
 Engineers Volume 40, Number 9, pp. 1098-1101, September
 1952, <https://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=4051119>.

 [ORIGIN] Barth, A., "The Web Origin Concept", RFC 6454, December
 2011.

 [PETAL] Tan, J. and J. Nahata, "PETAL: Preset Encoding Table
 Information Leakage", April 2013, <http://www.pdl.cmu.edu/

PDL-FTP/associated/CMU-PDL-13-106.pdf>.

 [SPDY-DESC-1]
 Belshe, M., "IETF83: SPDY and What to Consider for HTTP/
 2.0 ", March 2012, <https://www.ietf.org/proceedings/83/

slides/slides-83-httpbis-3>.

 [SPDY-DESC-2]
 McManus, P., "SPDY: What I Like About You", September
 2011, <https://bitsup.blogspot.com/2011/09/spdy-what-i

-like-about-you.html>.

 [SPDY] Belshe, M. and R. Peon, "SPDY Protocol", draft-mbelshe-
httpbis-spdy-00 (work in progress), February 2012.

Appendix A. Change Log (to be removed by RFC Editor before publication

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230
https://dl.acm.org/citation.cfm?id=363991
https://dl.acm.org/citation.cfm?id=363991
https://docs.google.com/a/twist.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit#slide=id.g1eb6c1b5_3_6
https://docs.google.com/a/twist.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit#slide=id.g1eb6c1b5_3_6
https://docs.google.com/a/twist.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit#slide=id.g1eb6c1b5_3_6
https://datatracker.ietf.org/doc/html/rfc1951
https://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4051119
https://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4051119
https://datatracker.ietf.org/doc/html/rfc6454
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-13-106.pdf
http://www.pdl.cmu.edu/PDL-FTP/associated/CMU-PDL-13-106.pdf
https://www.ietf.org/proceedings/83/slides/slides-83-httpbis-3
https://www.ietf.org/proceedings/83/slides/slides-83-httpbis-3
https://bitsup.blogspot.com/2011/09/spdy-what-i-like-about-you.html
https://bitsup.blogspot.com/2011/09/spdy-what-i-like-about-you.html
https://datatracker.ietf.org/doc/html/draft-mbelshe-httpbis-spdy-00
https://datatracker.ietf.org/doc/html/draft-mbelshe-httpbis-spdy-00

Peon & Ruellan Expires December 19, 2014 [Page 24]

Internet-Draft HPACK June 2014

A.1. Since draft-ietf-httpbis-header-compression-07

 o Removed old text on index value of 0.

 o Added clarification for signalling of maximum table size after a
 SETTINGS_HEADER_TABLE_SIZE update.

 o Rewrote security considerations.

 o Many editorial clarifications or improvements.

 o Added convention section.

 o Reworked document's outline.

 o Updated static table. Entry 16 has now "gzip, deflate" for value.

 o Updated Huffman table, using data set provided by Google.

A.2. Since draft-ietf-httpbis-header-compression-06

 o Updated format to include literal headers that must never be
 compressed.

 o Updated security considerations.

 o Moved integer encoding examples to the appendix.

 o Updated Huffman table.

 o Updated static header table (adding and removing status values).

 o Updated examples.

A.3. Since draft-ietf-httpbis-header-compression-05

 o Regenerated examples.

 o Only one Huffman table for requests and responses.

 o Added maximum size for header table, independent of
 SETTINGS_HEADER_TABLE_SIZE.

 o Added pseudo-code for integer decoding.

 o Improved examples (removing unnecessary removals).

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-07
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-05

Peon & Ruellan Expires December 19, 2014 [Page 25]

Internet-Draft HPACK June 2014

A.4. Since draft-ietf-httpbis-header-compression-04

 o Updated examples: take into account changes in the spec, and show
 more features.

 o Use 'octet' everywhere instead of having both 'byte' and 'octet'.

 o Added reference set emptying.

 o Editorial changes and clarifications.

 o Added "host" header to the static table.

 o Ordering for list of values (either NULL- or comma-separated).

A.5. Since draft-ietf-httpbis-header-compression-03

 o A large number of editorial changes; changed the description of
 evicting/adding new entries.

 o Removed substitution indexing

 o Changed 'initial headers' to 'static headers', as per issue #258

 o Merged 'request' and 'response' static headers, as per issue #259

 o Changed text to indicate that new headers are added at index 0 and
 expire from the largest index, as per issue #233

A.6. Since draft-ietf-httpbis-header-compression-02

 o Corrected error in integer encoding pseudocode.

A.7. Since draft-ietf-httpbis-header-compression-01

 o Refactored of Header Encoding Section: split definitions and
 processing rule.

 o Backward incompatible change: Updated reference set management as
 per issue #214. This changes how the interaction between the
 reference set and eviction works. This also changes the working
 of the reference set in some specific cases.

 o Backward incompatible change: modified initial header list, as per
 issue #188.

 o Added example of 32 octets entry structure (issue #191).

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-01

Peon & Ruellan Expires December 19, 2014 [Page 26]

Internet-Draft HPACK June 2014

 o Added Header Set Completion section. Reflowed some text.
 Clarified some writing which was akward. Added text about
 duplicate header entry encoding. Clarified some language w.r.t
 Header Set. Changed x-my-header to mynewheader. Added text in
 the HeaderEmission section indicating that the application may
 also be able to free up memory more quickly. Added information in
 Security Considerations section.

A.8. Since draft-ietf-httpbis-header-compression-00

 Fixed bug/omission in integer representation algorithm.

 Changed the document title.

 Header matching text rewritten.

 Changed the definition of header emission.

 Changed the name of the setting which dictates how much memory the
 compression context should use.

 Removed "specific use cases" section

 Corrected erroneous statement about what index can be contained in
 one octet

 Added descriptions of opcodes

 Removed security claims from introduction.

Appendix B. Static Table

 The static table consists of an unchangeable ordered list of (name,
 value) pairs. The first entry in the table is always represented by
 the index len(header table) + 1, and the last entry in the table is
 represented by the index len(header table) + len(static table).

 The static table was created by listing the most common header fields
 that are valid for messages exchanged inside a HTTP/2 connection.
 For header fields with a few frequent values, an entry was added for
 each of these frequent values. For other header fields, an entry was
 added with an empty value.

 The following table lists the pre-defined header fields that make-up
 the static table.

 +-------+-----------------------------+---------------+
 | Index | Header Name | Header Value |

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-00

Peon & Ruellan Expires December 19, 2014 [Page 27]

Internet-Draft HPACK June 2014

 +-------+-----------------------------+---------------+
 | 1 | :authority | |
 | 2 | :method | GET |
 | 3 | :method | POST |
 | 4 | :path | / |
 | 5 | :path | /index.html |
 | 6 | :scheme | http |
 | 7 | :scheme | https |
 | 8 | :status | 200 |
 | 9 | :status | 204 |
 | 10 | :status | 206 |
 | 11 | :status | 304 |
 | 12 | :status | 400 |
 | 13 | :status | 404 |
 | 14 | :status | 500 |
 | 15 | accept-charset | |
 | 16 | accept-encoding | gzip, deflate |
 | 17 | accept-language | |
 | 18 | accept-ranges | |
 | 19 | accept | |
 | 20 | access-control-allow-origin | |
 | 21 | age | |
 | 22 | allow | |
 | 23 | authorization | |
 | 24 | cache-control | |
 | 25 | content-disposition | |
 | 26 | content-encoding | |
 | 27 | content-language | |
 | 28 | content-length | |
 | 29 | content-location | |
 | 30 | content-range | |
 | 31 | content-type | |
 | 32 | cookie | |
 | 33 | date | |
 | 34 | etag | |
 | 35 | expect | |
 | 36 | expires | |
 | 37 | from | |
 | 38 | host | |
 | 39 | if-match | |
 | 40 | if-modified-since | |
 | 41 | if-none-match | |
 | 42 | if-range | |
 | 43 | if-unmodified-since | |
 | 44 | last-modified | |
 | 45 | link | |
 | 46 | location | |
 | 47 | max-forwards | |

Peon & Ruellan Expires December 19, 2014 [Page 28]

Internet-Draft HPACK June 2014

 | 48 | proxy-authenticate | |
 | 49 | proxy-authorization | |
 | 50 | range | |
 | 51 | referer | |
 | 52 | refresh | |
 | 53 | retry-after | |
 | 54 | server | |
 | 55 | set-cookie | |
 | 56 | strict-transport-security | |
 | 57 | transfer-encoding | |
 | 58 | user-agent | |
 | 59 | vary | |
 | 60 | via | |
 | 61 | www-authenticate | |
 +-------+-----------------------------+---------------+

 Table 1: Static Table Entries

 Table 1 gives the index of each entry in the static table. The full
 index of each entry, to be used for encoding a reference to this
 entry, is computed by adding the number of entries in the header
 table to this index.

Appendix C. Huffman Code

 The following Huffman code is used when encoding string literals with
 a Huffman coding (see Section 6.2).

 This Huffman code was generated from statistics obtained on a large
 sample of HTTP headers. It is a canonical Huffman code [CANONICAL]
 with some tweaking to ensure that no symbol has a unique code length.

 Each row in the table defines the code used to represent a symbol:

 sym: The symbol to be represented. It is the decimal value of an
 octet, possibly prepended with its ASCII representation. A
 specific symbol, "EOS", is used to indicate the end of a string
 literal.

 code as bits: The Huffman code for the symbol represented as a
 base-2 integer, aligned on the most significant bit (MSB).

 code as hex: The Huffman code for the symbol, represented as a
 hexadecimal integer, aligned on the least significant bit (LSB).

 len: The number of bits for the code representing the symbol.

Peon & Ruellan Expires December 19, 2014 [Page 29]

Internet-Draft HPACK June 2014

 As an example, the code for the symbol 47 (corresponding to the ASCII
 character "/") consists in the 6 bits "0", "1", "1", "0", "0", "0".
 This corresponds to the value 0x18 (in hexadecimal) encoded on 6
 bits.

 code
 code as bits as hex len
 sym aligned to MSB aligned in
 to LSB bits
 (0) |11111111|11000 1ff8 [13]
 (1) |11111111|11111111|1011000 7fffd8 [23]
 (2) |11111111|11111111|11111110|0010 fffffe2 [28]
 (3) |11111111|11111111|11111110|0011 fffffe3 [28]
 (4) |11111111|11111111|11111110|0100 fffffe4 [28]
 (5) |11111111|11111111|11111110|0101 fffffe5 [28]
 (6) |11111111|11111111|11111110|0110 fffffe6 [28]
 (7) |11111111|11111111|11111110|0111 fffffe7 [28]
 (8) |11111111|11111111|11111110|1000 fffffe8 [28]
 (9) |11111111|11111111|11101010 ffffea [24]
 (10) |11111111|11111111|11111111|111100 3ffffffc [30]
 (11) |11111111|11111111|11111110|1001 fffffe9 [28]
 (12) |11111111|11111111|11111110|1010 fffffea [28]
 (13) |11111111|11111111|11111111|111101 3ffffffd [30]
 (14) |11111111|11111111|11111110|1011 fffffeb [28]
 (15) |11111111|11111111|11111110|1100 fffffec [28]
 (16) |11111111|11111111|11111110|1101 fffffed [28]
 (17) |11111111|11111111|11111110|1110 fffffee [28]
 (18) |11111111|11111111|11111110|1111 fffffef [28]
 (19) |11111111|11111111|11111111|0000 ffffff0 [28]
 (20) |11111111|11111111|11111111|0001 ffffff1 [28]
 (21) |11111111|11111111|11111111|0010 ffffff2 [28]
 (22) |11111111|11111111|11111111|111110 3ffffffe [30]
 (23) |11111111|11111111|11111111|0011 ffffff3 [28]
 (24) |11111111|11111111|11111111|0100 ffffff4 [28]
 (25) |11111111|11111111|11111111|0101 ffffff5 [28]
 (26) |11111111|11111111|11111111|0110 ffffff6 [28]
 (27) |11111111|11111111|11111111|0111 ffffff7 [28]
 (28) |11111111|11111111|11111111|1000 ffffff8 [28]
 (29) |11111111|11111111|11111111|1001 ffffff9 [28]
 (30) |11111111|11111111|11111111|1010 ffffffa [28]
 (31) |11111111|11111111|11111111|1011 ffffffb [28]
 ' ' (32) |010100 14 [6]
 '!' (33) |11111110|00 3f8 [10]
 '"' (34) |11111110|01 3f9 [10]
 '#' (35) |11111111|1010 ffa [12]
 '$' (36) |11111111|11001 1ff9 [13]
 '%' (37) |010101 15 [6]
 '&' (38) |11111000 f8 [8]

Peon & Ruellan Expires December 19, 2014 [Page 30]

Internet-Draft HPACK June 2014

 ''' (39) |11111111|010 7fa [11]
 '(' (40) |11111110|10 3fa [10]
 ')' (41) |11111110|11 3fb [10]
 '*' (42) |11111001 f9 [8]
 '+' (43) |11111111|011 7fb [11]
 ',' (44) |11111010 fa [8]
 '-' (45) |010110 16 [6]
 '.' (46) |010111 17 [6]
 '/' (47) |011000 18 [6]
 '0' (48) |00000 0 [5]
 '1' (49) |00001 1 [5]
 '2' (50) |00010 2 [5]
 '3' (51) |011001 19 [6]
 '4' (52) |011010 1a [6]
 '5' (53) |011011 1b [6]
 '6' (54) |011100 1c [6]
 '7' (55) |011101 1d [6]
 '8' (56) |011110 1e [6]
 '9' (57) |011111 1f [6]
 ':' (58) |1011100 5c [7]
 ';' (59) |11111011 fb [8]
 '<' (60) |11111111|1111100 7ffc [15]
 '=' (61) |100000 20 [6]
 '>' (62) |11111111|1011 ffb [12]
 '?' (63) |11111111|00 3fc [10]
 '@' (64) |11111111|11010 1ffa [13]
 'A' (65) |100001 21 [6]
 'B' (66) |1011101 5d [7]
 'C' (67) |1011110 5e [7]
 'D' (68) |1011111 5f [7]
 'E' (69) |1100000 60 [7]
 'F' (70) |1100001 61 [7]
 'G' (71) |1100010 62 [7]
 'H' (72) |1100011 63 [7]
 'I' (73) |1100100 64 [7]
 'J' (74) |1100101 65 [7]
 'K' (75) |1100110 66 [7]
 'L' (76) |1100111 67 [7]
 'M' (77) |1101000 68 [7]
 'N' (78) |1101001 69 [7]
 'O' (79) |1101010 6a [7]
 'P' (80) |1101011 6b [7]
 'Q' (81) |1101100 6c [7]
 'R' (82) |1101101 6d [7]
 'S' (83) |1101110 6e [7]
 'T' (84) |1101111 6f [7]
 'U' (85) |1110000 70 [7]
 'V' (86) |1110001 71 [7]

Peon & Ruellan Expires December 19, 2014 [Page 31]

Internet-Draft HPACK June 2014

 'W' (87) |1110010 72 [7]
 'X' (88) |11111100 fc [8]
 'Y' (89) |1110011 73 [7]
 'Z' (90) |11111101 fd [8]
 '[' (91) |11111111|11011 1ffb [13]
 '\' (92) |11111111|11111110|000 7fff0 [19]
 ']' (93) |11111111|11100 1ffc [13]
 '^' (94) |11111111|111100 3ffc [14]
 '_' (95) |100010 22 [6]
 '`' (96) |11111111|1111101 7ffd [15]
 'a' (97) |00011 3 [5]
 'b' (98) |100011 23 [6]
 'c' (99) |00100 4 [5]
 'd' (100) |100100 24 [6]
 'e' (101) |00101 5 [5]
 'f' (102) |100101 25 [6]
 'g' (103) |100110 26 [6]
 'h' (104) |100111 27 [6]
 'i' (105) |00110 6 [5]
 'j' (106) |1110100 74 [7]
 'k' (107) |1110101 75 [7]
 'l' (108) |101000 28 [6]
 'm' (109) |101001 29 [6]
 'n' (110) |101010 2a [6]
 'o' (111) |00111 7 [5]
 'p' (112) |101011 2b [6]
 'q' (113) |1110110 76 [7]
 'r' (114) |101100 2c [6]
 's' (115) |01000 8 [5]
 't' (116) |01001 9 [5]
 'u' (117) |101101 2d [6]
 'v' (118) |1110111 77 [7]
 'w' (119) |1111000 78 [7]
 'x' (120) |1111001 79 [7]
 'y' (121) |1111010 7a [7]
 'z' (122) |1111011 7b [7]
 '{' (123) |11111111|1111110 7ffe [15]
 '|' (124) |11111111|100 7fc [11]
 '}' (125) |11111111|111101 3ffd [14]
 '~' (126) |11111111|11101 1ffd [13]
 (127) |11111111|11111111|11111111|1100 ffffffc [28]
 (128) |11111111|11111110|0110 fffe6 [20]
 (129) |11111111|11111111|010010 3fffd2 [22]
 (130) |11111111|11111110|0111 fffe7 [20]
 (131) |11111111|11111110|1000 fffe8 [20]
 (132) |11111111|11111111|010011 3fffd3 [22]
 (133) |11111111|11111111|010100 3fffd4 [22]
 (134) |11111111|11111111|010101 3fffd5 [22]

Peon & Ruellan Expires December 19, 2014 [Page 32]

Internet-Draft HPACK June 2014

 (135) |11111111|11111111|1011001 7fffd9 [23]
 (136) |11111111|11111111|010110 3fffd6 [22]
 (137) |11111111|11111111|1011010 7fffda [23]
 (138) |11111111|11111111|1011011 7fffdb [23]
 (139) |11111111|11111111|1011100 7fffdc [23]
 (140) |11111111|11111111|1011101 7fffdd [23]
 (141) |11111111|11111111|1011110 7fffde [23]
 (142) |11111111|11111111|11101011 ffffeb [24]
 (143) |11111111|11111111|1011111 7fffdf [23]
 (144) |11111111|11111111|11101100 ffffec [24]
 (145) |11111111|11111111|11101101 ffffed [24]
 (146) |11111111|11111111|010111 3fffd7 [22]
 (147) |11111111|11111111|1100000 7fffe0 [23]
 (148) |11111111|11111111|11101110 ffffee [24]
 (149) |11111111|11111111|1100001 7fffe1 [23]
 (150) |11111111|11111111|1100010 7fffe2 [23]
 (151) |11111111|11111111|1100011 7fffe3 [23]
 (152) |11111111|11111111|1100100 7fffe4 [23]
 (153) |11111111|11111110|11100 1fffdc [21]
 (154) |11111111|11111111|011000 3fffd8 [22]
 (155) |11111111|11111111|1100101 7fffe5 [23]
 (156) |11111111|11111111|011001 3fffd9 [22]
 (157) |11111111|11111111|1100110 7fffe6 [23]
 (158) |11111111|11111111|1100111 7fffe7 [23]
 (159) |11111111|11111111|11101111 ffffef [24]
 (160) |11111111|11111111|011010 3fffda [22]
 (161) |11111111|11111110|11101 1fffdd [21]
 (162) |11111111|11111110|1001 fffe9 [20]
 (163) |11111111|11111111|011011 3fffdb [22]
 (164) |11111111|11111111|011100 3fffdc [22]
 (165) |11111111|11111111|1101000 7fffe8 [23]
 (166) |11111111|11111111|1101001 7fffe9 [23]
 (167) |11111111|11111110|11110 1fffde [21]
 (168) |11111111|11111111|1101010 7fffea [23]
 (169) |11111111|11111111|011101 3fffdd [22]
 (170) |11111111|11111111|011110 3fffde [22]
 (171) |11111111|11111111|11110000 fffff0 [24]
 (172) |11111111|11111110|11111 1fffdf [21]
 (173) |11111111|11111111|011111 3fffdf [22]
 (174) |11111111|11111111|1101011 7fffeb [23]
 (175) |11111111|11111111|1101100 7fffec [23]
 (176) |11111111|11111111|00000 1fffe0 [21]
 (177) |11111111|11111111|00001 1fffe1 [21]
 (178) |11111111|11111111|100000 3fffe0 [22]
 (179) |11111111|11111111|00010 1fffe2 [21]
 (180) |11111111|11111111|1101101 7fffed [23]
 (181) |11111111|11111111|100001 3fffe1 [22]
 (182) |11111111|11111111|1101110 7fffee [23]

Peon & Ruellan Expires December 19, 2014 [Page 33]

Internet-Draft HPACK June 2014

 (183) |11111111|11111111|1101111 7fffef [23]
 (184) |11111111|11111110|1010 fffea [20]
 (185) |11111111|11111111|100010 3fffe2 [22]
 (186) |11111111|11111111|100011 3fffe3 [22]
 (187) |11111111|11111111|100100 3fffe4 [22]
 (188) |11111111|11111111|1110000 7ffff0 [23]
 (189) |11111111|11111111|100101 3fffe5 [22]
 (190) |11111111|11111111|100110 3fffe6 [22]
 (191) |11111111|11111111|1110001 7ffff1 [23]
 (192) |11111111|11111111|11111000|00 3ffffe0 [26]
 (193) |11111111|11111111|11111000|01 3ffffe1 [26]
 (194) |11111111|11111110|1011 fffeb [20]
 (195) |11111111|11111110|001 7fff1 [19]
 (196) |11111111|11111111|100111 3fffe7 [22]
 (197) |11111111|11111111|1110010 7ffff2 [23]
 (198) |11111111|11111111|101000 3fffe8 [22]
 (199) |11111111|11111111|11110110|0 1ffffec [25]
 (200) |11111111|11111111|11111000|10 3ffffe2 [26]
 (201) |11111111|11111111|11111000|11 3ffffe3 [26]
 (202) |11111111|11111111|11111001|00 3ffffe4 [26]
 (203) |11111111|11111111|11111011|110 7ffffde [27]
 (204) |11111111|11111111|11111011|111 7ffffdf [27]
 (205) |11111111|11111111|11111001|01 3ffffe5 [26]
 (206) |11111111|11111111|11110001 fffff1 [24]
 (207) |11111111|11111111|11110110|1 1ffffed [25]
 (208) |11111111|11111110|010 7fff2 [19]
 (209) |11111111|11111111|00011 1fffe3 [21]
 (210) |11111111|11111111|11111001|10 3ffffe6 [26]
 (211) |11111111|11111111|11111100|000 7ffffe0 [27]
 (212) |11111111|11111111|11111100|001 7ffffe1 [27]
 (213) |11111111|11111111|11111001|11 3ffffe7 [26]
 (214) |11111111|11111111|11111100|010 7ffffe2 [27]
 (215) |11111111|11111111|11110010 fffff2 [24]
 (216) |11111111|11111111|00100 1fffe4 [21]
 (217) |11111111|11111111|00101 1fffe5 [21]
 (218) |11111111|11111111|11111010|00 3ffffe8 [26]
 (219) |11111111|11111111|11111010|01 3ffffe9 [26]
 (220) |11111111|11111111|11111111|1101 ffffffd [28]
 (221) |11111111|11111111|11111100|011 7ffffe3 [27]
 (222) |11111111|11111111|11111100|100 7ffffe4 [27]
 (223) |11111111|11111111|11111100|101 7ffffe5 [27]
 (224) |11111111|11111110|1100 fffec [20]
 (225) |11111111|11111111|11110011 fffff3 [24]
 (226) |11111111|11111110|1101 fffed [20]
 (227) |11111111|11111111|00110 1fffe6 [21]
 (228) |11111111|11111111|101001 3fffe9 [22]
 (229) |11111111|11111111|00111 1fffe7 [21]
 (230) |11111111|11111111|01000 1fffe8 [21]

Peon & Ruellan Expires December 19, 2014 [Page 34]

Internet-Draft HPACK June 2014

 (231) |11111111|11111111|1110011 7ffff3 [23]
 (232) |11111111|11111111|101010 3fffea [22]
 (233) |11111111|11111111|101011 3fffeb [22]
 (234) |11111111|11111111|11110111|0 1ffffee [25]
 (235) |11111111|11111111|11110111|1 1ffffef [25]
 (236) |11111111|11111111|11110100 fffff4 [24]
 (237) |11111111|11111111|11110101 fffff5 [24]
 (238) |11111111|11111111|11111010|10 3ffffea [26]
 (239) |11111111|11111111|1110100 7ffff4 [23]
 (240) |11111111|11111111|11111010|11 3ffffeb [26]
 (241) |11111111|11111111|11111100|110 7ffffe6 [27]
 (242) |11111111|11111111|11111011|00 3ffffec [26]
 (243) |11111111|11111111|11111011|01 3ffffed [26]
 (244) |11111111|11111111|11111100|111 7ffffe7 [27]
 (245) |11111111|11111111|11111101|000 7ffffe8 [27]
 (246) |11111111|11111111|11111101|001 7ffffe9 [27]
 (247) |11111111|11111111|11111101|010 7ffffea [27]
 (248) |11111111|11111111|11111101|011 7ffffeb [27]
 (249) |11111111|11111111|11111111|1110 ffffffe [28]
 (250) |11111111|11111111|11111101|100 7ffffec [27]
 (251) |11111111|11111111|11111101|101 7ffffed [27]
 (252) |11111111|11111111|11111101|110 7ffffee [27]
 (253) |11111111|11111111|11111101|111 7ffffef [27]
 (254) |11111111|11111111|11111110|000 7fffff0 [27]
 (255) |11111111|11111111|11111011|10 3ffffee [26]
 EOS (256) |11111111|11111111|11111111|111111 3fffffff [30]

Appendix D. Examples

 A number of examples are worked through here, covering integer
 encoding, header field representation, and the encoding of whole sets
 of header fields, for both requests and responses, and with and
 without Huffman coding.

D.1. Integer Representation Examples

 This section shows the representation of integer values in details
 (see Section 6.1).

D.1.1. Example 1: Encoding 10 Using a 5-bit Prefix

 The value 10 is to be encoded with a 5-bit prefix.

 o 10 is less than 31 (2^5 - 1) and is represented using the 5-bit
 prefix.

Peon & Ruellan Expires December 19, 2014 [Page 35]

Internet-Draft HPACK June 2014

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | X | X | X | 0 | 1 | 0 | 1 | 0 | 10 stored on 5 bits
 +---+---+---+---+---+---+---+---+

D.1.2. Example 2: Encoding 1337 Using a 5-bit Prefix

 The value I=1337 is to be encoded with a 5-bit prefix.

 1337 is greater than 31 (2^5 - 1).

 The 5-bit prefix is filled with its max value (31).

 I = 1337 - (2^5 - 1) = 1306.

 I (1306) is greater than or equal to 128, the while loop body
 executes:

 I % 128 == 26

 26 + 128 == 154

 154 is encoded in 8 bits as: 10011010

 I is set to 10 (1306 / 128 == 10)

 I is no longer greater than or equal to 128, the while loop
 terminates.

 I, now 10, is encoded on 8 bits as: 00001010.

 The process ends.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | X | X | X | 1 | 1 | 1 | 1 | 1 | Prefix = 31, I = 1306
 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1306>=128, encode(154), I=1306/128
 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 10<128, encode(10), done
 +---+---+---+---+---+---+---+---+

Peon & Ruellan Expires December 19, 2014 [Page 36]

Internet-Draft HPACK June 2014

D.1.3. Example 3: Encoding 42 Starting at an Octet Boundary

 The value 42 is to be encoded starting at an octet-boundary. This
 implies that a 8-bit prefix is used.

 o 42 is less than 255 (2^8 - 1) and is represented using the 8-bit
 prefix.

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 42 stored on 8 bits
 +---+---+---+---+---+---+---+---+

D.2. Header Field Representation Examples

 This section shows several independent representation examples.

D.2.1. Literal Header Field with Indexing

 The header field representation uses a literal name and a literal
 value. The header field is added to the header table.

 Header set to encode:

 custom-key: custom-header

 Reference set: empty.

 Hex dump of encoded data:

 400a 6375 7374 6f6d 2d6b 6579 0d63 7573 | @.custom-key.cus
 746f 6d2d 6865 6164 6572 | tom-header

 Decoding process:

 40 | == Literal indexed ==
 0a | Literal name (len = 10)
 6375 7374 6f6d 2d6b 6579 | custom-key
 0d | Literal value (len = 13)
 6375 7374 6f6d 2d68 6561 6465 72 | custom-header
 | -> custom-key: custom-head\
 | er

Peon & Ruellan Expires December 19, 2014 [Page 37]

Internet-Draft HPACK June 2014

 Header Table (after decoding):

 [1] (s = 55) custom-key: custom-header
 Table size: 55

 Decoded header set:

 custom-key: custom-header

D.2.2. Literal Header Field without Indexing

 The header field representation uses an indexed name and a literal
 value. The header field is not added to the header table.

 Header set to encode:

 :path: /sample/path

 Reference set: empty.

 Hex dump of encoded data:

 040c 2f73 616d 706c 652f 7061 7468 | ../sample/path

 Decoding process:

 04 | == Literal not indexed ==
 | Indexed name (idx = 4)
 | :path
 0c | Literal value (len = 12)
 2f73 616d 706c 652f 7061 7468 | /sample/path
 | -> :path: /sample/path

 Header table (after decoding): empty.

 Decoded header set:

 :path: /sample/path

D.2.3. Literal Header Field never Indexed

Peon & Ruellan Expires December 19, 2014 [Page 38]

Internet-Draft HPACK June 2014

 The header field representation uses a literal name and a literal
 value. The header field is not added to the header table, and must
 use the same representation if re-encoded by an intermediary.

 Header set to encode:

 password: secret

 Reference set: empty.

 Hex dump of encoded data:

 1008 7061 7373 776f 7264 0673 6563 7265 | ..password.secre
 74 | t

 Decoding process:

 10 | == Literal never indexed ==
 08 | Literal name (len = 8)
 7061 7373 776f 7264 | password
 06 | Literal value (len = 6)
 7365 6372 6574 | secret
 | -> password: secret

 Header table (after decoding): empty.

 Decoded header set:

 password: secret

D.2.4. Indexed Header Field

 The header field representation uses an indexed header field, from
 the static table. Upon using it, the static table entry is copied
 into the header table.

 Header set to encode:

 :method: GET

 Reference set: empty.

Peon & Ruellan Expires December 19, 2014 [Page 39]

Internet-Draft HPACK June 2014

 Hex dump of encoded data:

 82 | .

 Decoding process:

 82 | == Indexed - Add ==
 | idx = 2
 | -> :method: GET

 Header Table (after decoding):

 [1] (s = 42) :method: GET
 Table size: 42

 Decoded header set:

 :method: GET

D.2.5. Indexed Header Field from Static Table

 The header field representation uses an indexed header field, from
 the static table. In this example, the HTTP/2 setting
 SETTINGS_HEADER_TABLE_SIZE is set to 0, therefore, the entry is not
 copied into the header table.

 Header set to encode:

 :method: GET

 Reference set: empty.

 Hex dump of encoded data:

 82 | .

 Decoding process:

 82 | == Indexed - Add ==
 | idx = 2
 | -> :method: GET

Peon & Ruellan Expires December 19, 2014 [Page 40]

Internet-Draft HPACK June 2014

 Header table (after decoding): empty.

 Decoded header set:

 :method: GET

D.3. Request Examples without Huffman Coding

 This section shows several consecutive header sets, corresponding to
 HTTP requests, on the same connection.

D.3.1. First Request

 Header set to encode:

 :method: GET
 :scheme: http
 :path: /
 :authority: www.example.com

 Reference set: empty.

 Hex dump of encoded data:

 8287 8644 0f77 7777 2e65 7861 6d70 6c65 | ...D.www.example
 2e63 6f6d | .com

Peon & Ruellan Expires December 19, 2014 [Page 41]

Internet-Draft HPACK June 2014

 Decoding process:

 82 | == Indexed - Add ==
 | idx = 2
 | -> :method: GET
 87 | == Indexed - Add ==
 | idx = 7
 | -> :scheme: http
 86 | == Indexed - Add ==
 | idx = 6
 | -> :path: /
 44 | == Literal indexed ==
 | Indexed name (idx = 4)
 | :authority
 0f | Literal value (len = 15)
 7777 772e 6578 616d 706c 652e 636f 6d | www.example.com
 | -> :authority: www.example\
 | .com

 Header Table (after decoding):

 [1] (s = 57) :authority: www.example.com
 [2] (s = 38) :path: /
 [3] (s = 43) :scheme: http
 [4] (s = 42) :method: GET
 Table size: 180

 Decoded header set:

 :method: GET
 :scheme: http
 :path: /
 :authority: www.example.com

D.3.2. Second Request

 This request takes advantage of the differential encoding of header
 sets.

 Header set to encode:

Peon & Ruellan Expires December 19, 2014 [Page 42]

Internet-Draft HPACK June 2014

 :method: GET
 :scheme: http
 :path: /
 :authority: www.example.com
 cache-control: no-cache

 Reference set:

 [1] :authority: www.example.com
 [2] :path: /
 [3] :scheme: http
 [4] :method: GET

 Hex dump of encoded data:

 5c08 6e6f 2d63 6163 6865 | \.no-cache

 Decoding process:

 5c | == Literal indexed ==
 | Indexed name (idx = 28)
 | cache-control
 08 | Literal value (len = 8)
 6e6f 2d63 6163 6865 | no-cache
 | -> cache-control: no-cache

 Header Table (after decoding):

 [1] (s = 53) cache-control: no-cache
 [2] (s = 57) :authority: www.example.com
 [3] (s = 38) :path: /
 [4] (s = 43) :scheme: http
 [5] (s = 42) :method: GET
 Table size: 233

 Decoded header set:

 cache-control: no-cache
 :authority: www.example.com
 :path: /
 :scheme: http
 :method: GET

Peon & Ruellan Expires December 19, 2014 [Page 43]

Internet-Draft HPACK June 2014

D.3.3. Third Request

 This request has not enough headers in common with the previous
 request to take advantage of the differential encoding. Therefore,
 the reference set is emptied before encoding the header fields.

 Header set to encode:

 :method: GET
 :scheme: https
 :path: /index.html
 :authority: www.example.com
 custom-key: custom-value

 Reference set:

 [1] cache-control: no-cache
 [2] :authority: www.example.com
 [3] :path: /
 [4] :scheme: http
 [5] :method: GET

 Hex dump of encoded data:

 3085 8c8b 8440 0a63 7573 746f 6d2d 6b65 | 0....@.custom-ke
 790c 6375 7374 6f6d 2d76 616c 7565 | y.custom-value

 Decoding process:

Peon & Ruellan Expires December 19, 2014 [Page 44]

Internet-Draft HPACK June 2014

 30 | == Empty reference set ==
 | idx = 0
 | flag = 1
 85 | == Indexed - Add ==
 | idx = 5
 | -> :method: GET
 8c | == Indexed - Add ==
 | idx = 12
 | -> :scheme: https
 8b | == Indexed - Add ==
 | idx = 11
 | -> :path: /index.html
 84 | == Indexed - Add ==
 | idx = 4
 | -> :authority: www.example\
 | .com
 40 | == Literal indexed ==
 0a | Literal name (len = 10)
 6375 7374 6f6d 2d6b 6579 | custom-key
 0c | Literal value (len = 12)
 6375 7374 6f6d 2d76 616c 7565 | custom-value
 | -> custom-key: custom-valu\
 | e

 Header Table (after decoding):

 [1] (s = 54) custom-key: custom-value
 [2] (s = 48) :path: /index.html
 [3] (s = 44) :scheme: https
 [4] (s = 53) cache-control: no-cache
 [5] (s = 57) :authority: www.example.com
 [6] (s = 38) :path: /
 [7] (s = 43) :scheme: http
 [8] (s = 42) :method: GET
 Table size: 379

 Decoded header set:

 :method: GET
 :scheme: https
 :path: /index.html
 :authority: www.example.com
 custom-key: custom-value

Peon & Ruellan Expires December 19, 2014 [Page 45]

Internet-Draft HPACK June 2014

D.4. Request Examples with Huffman Coding

 This section shows the same examples as the previous section, but
 using Huffman encoding for the literal values.

D.4.1. First Request

 Header set to encode:

 :method: GET
 :scheme: http
 :path: /
 :authority: www.example.com

 Reference set: empty.

 Hex dump of encoded data:

 8287 8644 8cf1 e3c2 e5f2 3a6b a0ab 90f4 | ...D......:k....
 ff | .

 Decoding process:

 82 | == Indexed - Add ==
 | idx = 2
 | -> :method: GET
 87 | == Indexed - Add ==
 | idx = 7
 | -> :scheme: http
 86 | == Indexed - Add ==
 | idx = 6
 | -> :path: /
 44 | == Literal indexed ==
 | Indexed name (idx = 4)
 | :authority
 8c | Literal value (len = 15)
 | Huffman encoded:
 f1e3 c2e5 f23a 6ba0 ab90 f4ff |:k.....
 | Decoded:
 | www.example.com
 | -> :authority: www.example\
 | .com

 Header Table (after decoding):

Peon & Ruellan Expires December 19, 2014 [Page 46]

Internet-Draft HPACK June 2014

 [1] (s = 57) :authority: www.example.com
 [2] (s = 38) :path: /
 [3] (s = 43) :scheme: http
 [4] (s = 42) :method: GET
 Table size: 180

 Decoded header set:

 :method: GET
 :scheme: http
 :path: /
 :authority: www.example.com

D.4.2. Second Request

 This request takes advantage of the differential encoding of header
 sets.

 Header set to encode:

 :method: GET
 :scheme: http
 :path: /
 :authority: www.example.com
 cache-control: no-cache

 Reference set:

 [1] :authority: www.example.com
 [2] :path: /
 [3] :scheme: http
 [4] :method: GET

 Hex dump of encoded data:

 5c86 a8eb 1064 9cbf | \....d..

 Decoding process:

Peon & Ruellan Expires December 19, 2014 [Page 47]

Internet-Draft HPACK June 2014

 5c | == Literal indexed ==
 | Indexed name (idx = 28)
 | cache-control
 86 | Literal value (len = 8)
 | Huffman encoded:
 a8eb 1064 9cbf | ...d..
 | Decoded:
 | no-cache
 | -> cache-control: no-cache

 Header Table (after decoding):

 [1] (s = 53) cache-control: no-cache
 [2] (s = 57) :authority: www.example.com
 [3] (s = 38) :path: /
 [4] (s = 43) :scheme: http
 [5] (s = 42) :method: GET
 Table size: 233

 Decoded header set:

 cache-control: no-cache
 :authority: www.example.com
 :path: /
 :scheme: http
 :method: GET

D.4.3. Third Request

 This request has not enough headers in common with the previous
 request to take advantage of the differential encoding. Therefore,
 the reference set is emptied before encoding the header fields.

 Header set to encode:

 :method: GET
 :scheme: https
 :path: /index.html
 :authority: www.example.com
 custom-key: custom-value

 Reference set:

Peon & Ruellan Expires December 19, 2014 [Page 48]

Internet-Draft HPACK June 2014

 [1] cache-control: no-cache
 [2] :authority: www.example.com
 [3] :path: /
 [4] :scheme: http
 [5] :method: GET

 Hex dump of encoded data:

 3085 8c8b 8440 8825 a849 e95b a97d 7f89 | 0....@.%.I.[.}..
 25a8 49e9 5bb8 e8b4 bf | %.I.[....

 Decoding process:

 30 | == Empty reference set ==
 | idx = 0
 | flag = 1
 85 | == Indexed - Add ==
 | idx = 5
 | -> :method: GET
 8c | == Indexed - Add ==
 | idx = 12
 | -> :scheme: https
 8b | == Indexed - Add ==
 | idx = 11
 | -> :path: /index.html
 84 | == Indexed - Add ==
 | idx = 4
 | -> :authority: www.example\
 | .com
 40 | == Literal indexed ==
 88 | Literal name (len = 10)
 | Huffman encoded:
 25a8 49e9 5ba9 7d7f | %.I.[.}.
 | Decoded:
 | custom-key
 89 | Literal value (len = 12)
 | Huffman encoded:
 25a8 49e9 5bb8 e8b4 bf | %.I.[....
 | Decoded:
 | custom-value
 | -> custom-key: custom-valu\
 | e

 Header Table (after decoding):

Peon & Ruellan Expires December 19, 2014 [Page 49]

Internet-Draft HPACK June 2014

 [1] (s = 54) custom-key: custom-value
 [2] (s = 48) :path: /index.html
 [3] (s = 44) :scheme: https
 [4] (s = 53) cache-control: no-cache
 [5] (s = 57) :authority: www.example.com
 [6] (s = 38) :path: /
 [7] (s = 43) :scheme: http
 [8] (s = 42) :method: GET
 Table size: 379

 Decoded header set:

 :method: GET
 :scheme: https
 :path: /index.html
 :authority: www.example.com
 custom-key: custom-value

D.5. Response Examples without Huffman Coding

 This section shows several consecutive header sets, corresponding to
 HTTP responses, on the same connection. The HTTP/2 setting
 SETTINGS_HEADER_TABLE_SIZE is set to the value of 256 octets, causing
 some evictions to occur.

D.5.1. First Response

 Header set to encode:

 :status: 302
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:21 GMT
 location: https://www.example.com

 Reference set: empty.

 Hex dump of encoded data:

 4803 3330 3259 0770 7269 7661 7465 631d | H.302Y.privatec.
 4d6f 6e2c 2032 3120 4f63 7420 3230 3133 | Mon, 21 Oct 2013
 2032 303a 3133 3a32 3120 474d 5471 1768 | 20:13:21 GMTq.h
 7474 7073 3a2f 2f77 7777 2e65 7861 6d70 | ttps://www.examp
 6c65 2e63 6f6d | le.com

Peon & Ruellan Expires December 19, 2014 [Page 50]

Internet-Draft HPACK June 2014

 Decoding process:

 48 | == Literal indexed ==
 | Indexed name (idx = 8)
 | :status
 03 | Literal value (len = 3)
 3330 32 | 302
 | -> :status: 302
 59 | == Literal indexed ==
 | Indexed name (idx = 25)
 | cache-control
 07 | Literal value (len = 7)
 7072 6976 6174 65 | private
 | -> cache-control: private
 63 | == Literal indexed ==
 | Indexed name (idx = 35)
 | date
 1d | Literal value (len = 29)
 4d6f 6e2c 2032 3120 4f63 7420 3230 3133 | Mon, 21 Oct 2013
 2032 303a 3133 3a32 3120 474d 54 | 20:13:21 GMT
 | -> date: Mon, 21 Oct 2013 \
 | 20:13:21 GMT
 71 | == Literal indexed ==
 | Indexed name (idx = 49)
 | location
 17 | Literal value (len = 23)
 6874 7470 733a 2f2f 7777 772e 6578 616d | https://www.exam
 706c 652e 636f 6d | ple.com
 | -> location: https://www.e\
 | xample.com

 Header Table (after decoding):

 [1] (s = 63) location: https://www.example.com
 [2] (s = 65) date: Mon, 21 Oct 2013 20:13:21 GMT
 [3] (s = 52) cache-control: private
 [4] (s = 42) :status: 302
 Table size: 222

 Decoded header set:

 :status: 302
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:21 GMT
 location: https://www.example.com

https://www.exam
https://www

Peon & Ruellan Expires December 19, 2014 [Page 51]

Internet-Draft HPACK June 2014

D.5.2. Second Response

 The (":status", "302") header field is evicted from the header table
 to free space to allow adding the (":status", "200") header field,
 copied from the static table into the header table. The (":status",
 "302") header field doesn't need to be removed from the reference set
 as it is evicted from the header table.

 Header set to encode:

 :status: 200
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:21 GMT
 location: https://www.example.com

 Reference set:

 [1] location: https://www.example.com
 [2] date: Mon, 21 Oct 2013 20:13:21 GMT
 [3] cache-control: private
 [4] :status: 302

 Hex dump of encoded data:

 8c | .

 Decoding process:

 8c | == Indexed - Add ==
 | idx = 12
 | - evict: :status: 302
 | -> :status: 200

 Header Table (after decoding):

 [1] (s = 42) :status: 200
 [2] (s = 63) location: https://www.example.com
 [3] (s = 65) date: Mon, 21 Oct 2013 20:13:21 GMT
 [4] (s = 52) cache-control: private
 Table size: 222

 Decoded header set:

Peon & Ruellan Expires December 19, 2014 [Page 52]

Internet-Draft HPACK June 2014

 :status: 200
 location: https://www.example.com
 date: Mon, 21 Oct 2013 20:13:21 GMT
 cache-control: private

D.5.3. Third Response

 Several header fields are evicted from the header table during the
 processing of this header set. Before evicting a header belonging to
 the reference set, it is emitted, by coding it twice as an Indexed
 Representation. The first representation removes the header field
 from the reference set, the second one adds it again to the reference
 set, also emitting it.

 Header set to encode:

 :status: 200
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:22 GMT
 location: https://www.example.com
 content-encoding: gzip
 set-cookie: foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1

 Reference set:

 [1] :status: 200
 [2] location: https://www.example.com
 [3] date: Mon, 21 Oct 2013 20:13:21 GMT
 [4] cache-control: private

 Hex dump of encoded data:

 8484 431d 4d6f 6e2c 2032 3120 4f63 7420 | ..C.Mon, 21 Oct
 3230 3133 2032 303a 3133 3a32 3220 474d | 2013 20:13:22 GM
 545e 0467 7a69 7084 8483 837b 3866 6f6f | T^.gzip....{8foo
 3d41 5344 4a4b 4851 4b42 5a58 4f51 5745 | =ASDJKHQKBZXOQWE
 4f50 4955 4158 5157 454f 4955 3b20 6d61 | OPIUAXQWEOIU; ma
 782d 6167 653d 3336 3030 3b20 7665 7273 | x-age=3600; vers
 696f 6e3d 31 | ion=1

 Decoding process:

 84 | == Indexed - Remove ==
 | idx = 4

Peon & Ruellan Expires December 19, 2014 [Page 53]

Internet-Draft HPACK June 2014

 | -> cache-control: private
 84 | == Indexed - Add ==
 | idx = 4
 | -> cache-control: private
 43 | == Literal indexed ==
 | Indexed name (idx = 3)
 | date
 1d | Literal value (len = 29)
 4d6f 6e2c 2032 3120 4f63 7420 3230 3133 | Mon, 21 Oct 2013
 2032 303a 3133 3a32 3220 474d 54 | 20:13:22 GMT
 | - evict: cache-control: pr\
 | ivate
 | -> date: Mon, 21 Oct 2013 \
 | 20:13:22 GMT
 5e | == Literal indexed ==
 | Indexed name (idx = 30)
 | content-encoding
 04 | Literal value (len = 4)
 677a 6970 | gzip
 | - evict: date: Mon, 21 Oct\
 | 2013 20:13:21 GMT
 | -> content-encoding: gzip
 84 | == Indexed - Remove ==
 | idx = 4
 | -> location: https://www.e\
 | xample.com
 84 | == Indexed - Add ==
 | idx = 4
 | -> location: https://www.e\
 | xample.com
 83 | == Indexed - Remove ==
 | idx = 3
 | -> :status: 200
 83 | == Indexed - Add ==
 | idx = 3
 | -> :status: 200
 7b | == Literal indexed ==
 | Indexed name (idx = 59)
 | set-cookie
 38 | Literal value (len = 56)
 666f 6f3d 4153 444a 4b48 514b 425a 584f | foo=ASDJKHQKBZXO
 5157 454f 5049 5541 5851 5745 4f49 553b | QWEOPIUAXQWEOIU;
 206d 6178 2d61 6765 3d33 3630 303b 2076 | max-age=3600; v
 6572 7369 6f6e 3d31 | ersion=1
 | - evict: location: https:/\
 | /www.example.com
 | - evict: :status: 200
 | -> set-cookie: foo=ASDJKHQ\

https://www
https://www

Peon & Ruellan Expires December 19, 2014 [Page 54]

Internet-Draft HPACK June 2014

 | KBZXOQWEOPIUAXQWEOIU; ma\
 | x-age=3600; version=1

 Header Table (after decoding):

 [1] (s = 98) set-cookie: foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age\
 =3600; version=1
 [2] (s = 52) content-encoding: gzip
 [3] (s = 65) date: Mon, 21 Oct 2013 20:13:22 GMT
 Table size: 215

 Decoded header set:

 cache-control: private
 date: Mon, 21 Oct 2013 20:13:22 GMT
 content-encoding: gzip
 location: https://www.example.com
 :status: 200
 set-cookie: foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1

D.6. Response Examples with Huffman Coding

 This section shows the same examples as the previous section, but
 using Huffman encoding for the literal values. The HTTP/2 setting
 SETTINGS_HEADER_TABLE_SIZE is set to the value of 256 octets, causing
 some evictions to occur. The eviction mechanism uses the length of
 the decoded literal values, so the same evictions occurs as in the
 previous section.

D.6.1. First Response

 Header set to encode:

 :status: 302
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:21 GMT
 location: https://www.example.com

 Reference set: empty.

 Hex dump of encoded data:

Peon & Ruellan Expires December 19, 2014 [Page 55]

Internet-Draft HPACK June 2014

 4882 6402 5985 aec3 771a 4b63 96d0 7abe | H.d.Y...w.Kc..z.
 9410 54d4 44a8 2005 9504 0b81 66e0 82a6 | ..T.D.f...
 2d1b ff71 919d 29ad 1718 63c7 8f0b 97c8 | -..q..)...c.....
 e9ae 82ae 43d3 |C.

 Decoding process:

Peon & Ruellan Expires December 19, 2014 [Page 56]

Internet-Draft HPACK June 2014

 48 | == Literal indexed ==
 | Indexed name (idx = 8)
 | :status
 82 | Literal value (len = 3)
 | Huffman encoded:
 6402 | d.
 | Decoded:
 | 302
 | -> :status: 302
 59 | == Literal indexed ==
 | Indexed name (idx = 25)
 | cache-control
 85 | Literal value (len = 7)
 | Huffman encoded:
 aec3 771a 4b | ..w.K
 | Decoded:
 | private
 | -> cache-control: private
 63 | == Literal indexed ==
 | Indexed name (idx = 35)
 | date
 96 | Literal value (len = 29)
 | Huffman encoded:
 d07a be94 1054 d444 a820 0595 040b 8166 | .z...T.D.f
 e082 a62d 1bff | ...-..
 | Decoded:
 | Mon, 21 Oct 2013 20:13:21 \
 | GMT
 | -> date: Mon, 21 Oct 2013 \
 | 20:13:21 GMT
 71 | == Literal indexed ==
 | Indexed name (idx = 49)
 | location
 91 | Literal value (len = 23)
 | Huffman encoded:
 9d29 ad17 1863 c78f 0b97 c8e9 ae82 ae43 | .)...c.........C
 d3 | .
 | Decoded:
 | https://www.example.com
 | -> location: https://www.e\
 | xample.com

 Header Table (after decoding):

https://www

Peon & Ruellan Expires December 19, 2014 [Page 57]

Internet-Draft HPACK June 2014

 [1] (s = 63) location: https://www.example.com
 [2] (s = 65) date: Mon, 21 Oct 2013 20:13:21 GMT
 [3] (s = 52) cache-control: private
 [4] (s = 42) :status: 302
 Table size: 222

 Decoded header set:

 :status: 302
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:21 GMT
 location: https://www.example.com

D.6.2. Second Response

 The (":status", "302") header field is evicted from the header table
 to free space to allow adding the (":status", "200") header field,
 copied from the static table into the header table. The (":status",
 "302") header field doesn't need to be removed from the reference set
 as it is evicted from the header table.

 Header set to encode:

 :status: 200
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:21 GMT
 location: https://www.example.com

 Reference set:

 [1] location: https://www.example.com
 [2] date: Mon, 21 Oct 2013 20:13:21 GMT
 [3] cache-control: private
 [4] :status: 302

 Hex dump of encoded data:

 8c | .

 Decoding process:

Peon & Ruellan Expires December 19, 2014 [Page 58]

Internet-Draft HPACK June 2014

 8c | == Indexed - Add ==
 | idx = 12
 | - evict: :status: 302
 | -> :status: 200

 Header Table (after decoding):

 [1] (s = 42) :status: 200
 [2] (s = 63) location: https://www.example.com
 [3] (s = 65) date: Mon, 21 Oct 2013 20:13:21 GMT
 [4] (s = 52) cache-control: private
 Table size: 222

 Decoded header set:

 :status: 200
 location: https://www.example.com
 date: Mon, 21 Oct 2013 20:13:21 GMT
 cache-control: private

D.6.3. Third Response

 Several header fields are evicted from the header table during the
 processing of this header set. Before evicting a header belonging to
 the reference set, it is emitted, by coding it twice as an Indexed
 Representation. The first representation removes the header field
 from the reference set, the second one adds it again to the reference
 set, also emitting it.

 Header set to encode:

 :status: 200
 cache-control: private
 date: Mon, 21 Oct 2013 20:13:22 GMT
 location: https://www.example.com
 content-encoding: gzip
 set-cookie: foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1

Peon & Ruellan Expires December 19, 2014 [Page 59]

Internet-Draft HPACK June 2014

 Reference set:

 [1] :status: 200
 [2] location: https://www.example.com
 [3] date: Mon, 21 Oct 2013 20:13:21 GMT
 [4] cache-control: private

 Hex dump of encoded data:

 8484 4396 d07a be94 1054 d444 a820 0595 | ..C..z...T.D. ..
 040b 8166 e084 a62d 1bff 5e83 9bd9 ab84 | ...f...-..^.....
 8483 837b ad94 e782 1dd7 f2e6 c7b3 35df | ...{..........5.
 dfcd 5b39 60d5 af27 087f 3672 c1ab 270f | ..[9`..'..6r..'.
 b529 1f95 8731 6065 c003 ed4e e5b1 063d | .)...1`e...N...=
 5007 | P.

 Decoding process:

 84 | == Indexed - Remove ==
 | idx = 4
 | -> cache-control: private
 84 | == Indexed - Add ==
 | idx = 4
 | -> cache-control: private
 43 | == Literal indexed ==
 | Indexed name (idx = 3)
 | date
 96 | Literal value (len = 29)
 | Huffman encoded:
 d07a be94 1054 d444 a820 0595 040b 8166 | .z...T.D.f
 e084 a62d 1bff | ...-..
 | Decoded:
 | Mon, 21 Oct 2013 20:13:22 \
 | GMT
 | - evict: cache-control: pr\
 | ivate
 | -> date: Mon, 21 Oct 2013 \
 | 20:13:22 GMT
 5e | == Literal indexed ==
 | Indexed name (idx = 30)
 | content-encoding
 83 | Literal value (len = 4)
 | Huffman encoded:
 9bd9 ab | ...
 | Decoded:
 | gzip

Peon & Ruellan Expires December 19, 2014 [Page 60]

Internet-Draft HPACK June 2014

 | - evict: date: Mon, 21 Oct\
 | 2013 20:13:21 GMT
 | -> content-encoding: gzip
 84 | == Indexed - Remove ==
 | idx = 4
 | -> location: https://www.e\
 | xample.com
 84 | == Indexed - Add ==
 | idx = 4
 | -> location: https://www.e\
 | xample.com
 83 | == Indexed - Remove ==
 | idx = 3
 | -> :status: 200
 83 | == Indexed - Add ==
 | idx = 3
 | -> :status: 200
 7b | == Literal indexed ==
 | Indexed name (idx = 59)
 | set-cookie
 ad | Literal value (len = 56)
 | Huffman encoded:
 94e7 821d d7f2 e6c7 b335 dfdf cd5b 3960 |5...[9`
 d5af 2708 7f36 72c1 ab27 0fb5 291f 9587 | ..'..6r..'..)...
 3160 65c0 03ed 4ee5 b106 3d50 07 | 1`e...N...=P.
 | Decoded:
 | foo=ASDJKHQKBZXOQWEOPIUAXQ\
 | WEOIU; max-age=3600; versi\
 | on=1
 | - evict: location: https:/\
 | /www.example.com
 | - evict: :status: 200
 | -> set-cookie: foo=ASDJKHQ\
 | KBZXOQWEOPIUAXQWEOIU; ma\
 | x-age=3600; version=1

 Header Table (after decoding):

 [1] (s = 98) set-cookie: foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age\
 =3600; version=1
 [2] (s = 52) content-encoding: gzip
 [3] (s = 65) date: Mon, 21 Oct 2013 20:13:22 GMT
 Table size: 215

 Decoded header set:

https://www
https://www

Peon & Ruellan Expires December 19, 2014 [Page 61]

Internet-Draft HPACK June 2014

 cache-control: private
 date: Mon, 21 Oct 2013 20:13:22 GMT
 content-encoding: gzip
 location: https://www.example.com
 :status: 200
 set-cookie: foo=ASDJKHQKBZXOQWEOPIUAXQWEOIU; max-age=3600; version=1

Authors' Addresses

 Roberto Peon
 Google, Inc

 EMail: fenix@google.com

 Herve Ruellan
 Canon CRF

 EMail: herve.ruellan@crf.canon.fr

Peon & Ruellan Expires December 19, 2014 [Page 62]

