
HTTP M. Nottingham
Internet-Draft Fastly
Intended status: Standards Track P-H. Kamp
Expires: June 4, 2019 The Varnish Cache Project
 December 1, 2018

Structured Headers for HTTP
draft-ietf-httpbis-header-structure-09

Abstract

 This document describes a set of data types and algorithms associated
 with them that are intended to make it easier and safer to define and
 handle HTTP header fields. It is intended for use by new
 specifications of HTTP header fields as well as revisions of existing
 header field specifications when doing so does not cause
 interoperability issues.

Note to Readers

 RFC EDITOR: please remove this section before publication

 Discussion of this draft takes place on the HTTP working group
 mailing list (ietf-http-wg@w3.org), which is archived at

https://lists.w3.org/Archives/Public/ietf-http-wg/ [1].

 Working Group information can be found at https://httpwg.github.io/
 [2]; source code and issues list for this draft can be found at

https://github.com/httpwg/http-extensions/labels/header-structure
 [3].

 Tests for implementations are collected at https://github.com/httpwg/
structured-header-tests [4].

 Implementations are tracked at https://github.com/httpwg/wiki/wiki/
Structured-Headers [5].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Nottingham & Kamp Expires June 4, 2019 [Page 1]

https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.github.io/
https://github.com/httpwg/http-extensions/labels/header-structure
https://github.com/httpwg/structured-header-tests
https://github.com/httpwg/structured-header-tests
https://github.com/httpwg/wiki/wiki/Structured-Headers
https://github.com/httpwg/wiki/wiki/Structured-Headers
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Structured Headers for HTTP December 2018

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 4, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Intentionally Strict Processing 4
1.2. Notational Conventions 4

2. Defining New Structured Headers 5
3. Structured Header Data Types 7
3.1. Dictionaries . 7
3.2. Lists . 7
3.3. Lists of Lists . 8
3.4. Parameterised Lists 8
3.5. Items . 9
3.6. Integers . 9
3.7. Floats . 9
3.8. Strings . 10
3.9. Tokens . 11
3.10. Byte Sequences . 11
3.11. Booleans . 11

4. Structured Headers in HTTP/1 12
4.1. Serialising Structured Headers into HTTP/1 12
4.2. Parsing HTTP/1 Header Fields into Structured Headers . . 18

5. IANA Considerations . 27
6. Security Considerations 27
7. References . 28
7.1. Normative References 28
7.2. Informative References 28

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Nottingham & Kamp Expires June 4, 2019 [Page 2]

Internet-Draft Structured Headers for HTTP December 2018

7.3. URIs . 29
Appendix A. Acknowledgements 29
Appendix B. Frequently Asked Questions 29
B.1. Why not JSON? . 30
B.2. Structured Headers don't "fit" my data. 30

 B.3. What should generic Structured Headers implementations
 expose? . 31

Appendix C. Changes . 31
C.1. Since draft-ietf-httpbis-header-structure-08 31
C.2. Since draft-ietf-httpbis-header-structure-07 32
C.3. Since draft-ietf-httpbis-header-structure-06 32
C.4. Since draft-ietf-httpbis-header-structure-05 32
C.5. Since draft-ietf-httpbis-header-structure-04 33
C.6. Since draft-ietf-httpbis-header-structure-03 33
C.7. Since draft-ietf-httpbis-header-structure-02 33
C.8. Since draft-ietf-httpbis-header-structure-01 33
C.9. Since draft-ietf-httpbis-header-structure-00 33

 Authors' Addresses . 34

1. Introduction

 Specifying the syntax of new HTTP header fields is an onerous task;
 even with the guidance in [RFC7231], Section 8.3.1, there are many
 decisions - and pitfalls - for a prospective HTTP header field
 author.

 Once a header field is defined, bespoke parsers and serialisers often
 need to be written, because each header has slightly different
 handling of what looks like common syntax.

 This document introduces a set of common data structures for use in
 HTTP header field values to address these problems. In particular,
 it defines a generic, abstract model for header field values, along
 with a concrete serialisation for expressing that model in HTTP/1
 [RFC7230] header fields.

 HTTP headers that are defined as "Structured Headers" use the types
 defined in this specification to define their syntax and basic
 handling rules, thereby simplifying both their definition by
 specification writers and handling by implementations.

 Additionally, future versions of HTTP can define alternative
 serialisations of the abstract model of these structures, allowing
 headers that use it to be transmitted more efficiently without being
 redefined.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-08
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-07
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-00
https://datatracker.ietf.org/doc/html/rfc7231#section-8.3.1
https://datatracker.ietf.org/doc/html/rfc7230

Nottingham & Kamp Expires June 4, 2019 [Page 3]

Internet-Draft Structured Headers for HTTP December 2018

 Note that it is not a goal of this document to redefine the syntax of
 existing HTTP headers; the mechanisms described herein are only
 intended to be used with headers that explicitly opt into them.

 To specify a header field that is a Structured Header, see Section 2.

Section 3 defines a number of abstract data types that can be used in
 Structured Headers.

 Those abstract types can be serialised into and parsed from textual
 headers - such as those used in HTTP/1 - using the algorithms
 described in Section 4.

1.1. Intentionally Strict Processing

 This specification intentionally defines strict parsing and
 serialisation behaviours using step-by-step algorithms; the only
 error handling defined is to fail the operation altogether.

 This is designed to encourage faithful implementation and therefore
 good interoperability. Therefore, implementations that try to be
 "helpful" by being more tolerant of input are doing a disservice to
 the overall community, since it will encourage other implementations
 to implement similar (but likely subtly different) workarounds.

 In other words, strict processing is an intentional feature of this
 specification; it allows non-conformant input to be discovered and
 corrected early, and avoids both interoperability and security issues
 that might otherwise result.

 Note that as a result of this strictness, if a header field is
 appended to by multiple parties (e.g., intermediaries, or different
 components in the sender), it could be that an error in one party's
 value causes the entire header field to fail parsing.

1.2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses the Augmented Backus-Naur Form (ABNF) notation of
 [RFC5234], including the VCHAR, SP, DIGIT, ALPHA and DQUOTE rules
 from that document. It also includes the OWS rule from [RFC7230].

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230

Nottingham & Kamp Expires June 4, 2019 [Page 4]

Internet-Draft Structured Headers for HTTP December 2018

 This document uses algorithms to specify parsing and serialisation
 behaviours, and ABNF to illustrate expected syntax in HTTP/1-style
 header fields.

 For parsing from HTTP/1 header fields, implementations MUST follow
 the algorithms, but MAY vary in implementation so as the behaviours
 are indistinguishable from specified behaviour. If there is
 disagreement between the parsing algorithms and ABNF, the specified
 algorithms take precedence. In some places, the algorithms are
 "greedy" with whitespace, but this should not affect conformance.

 For serialisation to HTTP/1 header fields, the ABNF illustrates the
 range of acceptable wire representations with as much fidelity as
 possible, and the algorithms define the recommended way to produce
 them. Implementations MAY vary from the specified behaviour so long
 as the output still matches the ABNF.

2. Defining New Structured Headers

 To define a HTTP header as a structured header, its specification
 needs to:

 o Reference this specification. Recipients and generators of the
 header need to know that the requirements of this document are in
 effect.

 o Specify the header field's allowed syntax for values, in terms of
 the types described in Section 3, along with their associated
 semantics. Syntax definitions are encouraged to use the ABNF
 rules beginning with "sh-" defined in this specification.

 o Specify any additional constraints upon the syntax of the
 structured used, as well as the consequences when those
 constraints are violated. When Structured Headers parsing fails,
 the header is discarded (see Section 4.2); in most situations,
 header-specific constraints should do likewise.

 Note that a header field definition cannot relax the requirements of
 a structure or its processing because doing so would preclude
 handling by generic software; they can only add additional
 constraints. Likewise, header field definitions should use
 Structured Headers for the entire header field value, not a portion
 thereof.

 For example:

Nottingham & Kamp Expires June 4, 2019 [Page 5]

Internet-Draft Structured Headers for HTTP December 2018

 # Foo-Example Header

 The Foo-Example HTTP header field conveys information about how
 much Foo the message has.

 Foo-Example is a Structured Header [RFCxxxx]. Its value MUST be a
 dictionary ([RFCxxxx], Section Y.Y). Its ABNF is:

 Foo-Example = sh-dictionary

 The dictionary MUST contain:

 * Exactly one member whose key is "foo", and whose value is an
 integer ([RFCxxxx], Section Y.Y), indicating the number of foos
 in the message.
 * Exactly one member whose key is "barUrls", and whose value is a
 string ([RFCxxxx], Section Y.Y), conveying the Bar URLs for the
 message. See below for processing requirements.

 If the parsed header field does not contain both, it MUST be
 ignored.

 "foo" MUST be between 0 and 10, inclusive; other values MUST cause
 the header to be ignored.

 "barUrls" contains a space-separated list of URI-references
 ([RFC3986], Section 4.1):

 barURLs = URI-reference *(1*SP URI-reference)

 If a member of barURLs is not a valid URI-reference, it MUST cause
 that value to be ignored.

 If a member of barURLs is a relative reference ([RFC3986],
 Section 4.2), it MUST be resolved ([RFC3986], Section 5) before
 being used.

 This specification defines minimums for the length or number of
 various structures supported by Structured Headers implementations.
 It does not specify maximum sizes in most cases, but header authors
 should be aware that HTTP implementations do impose various limits on
 the size of individual header fields, the total number of fields,
 and/or the size of the entire header block.

https://datatracker.ietf.org/doc/html/rfc3986#section-4.1
https://datatracker.ietf.org/doc/html/rfc3986#section-4.2
https://datatracker.ietf.org/doc/html/rfc3986#section-4.2
https://datatracker.ietf.org/doc/html/rfc3986#section-5

Nottingham & Kamp Expires June 4, 2019 [Page 6]

Internet-Draft Structured Headers for HTTP December 2018

3. Structured Header Data Types

 This section defines the abstract value types that can be composed
 into Structured Headers. The ABNF provided represents the on-wire
 format in HTTP/1.

3.1. Dictionaries

 Dictionaries are ordered maps of key-value pairs, where the keys are
 short, textual strings and the values are items (Section 3.5). There
 can be one or more members, and keys are required to be unique.

 Implementations MUST provide access to dictionaries both by index and
 by key. Specifications MAY use either means of accessing the
 members.

 The ABNF for dictionaries in HTTP/1 headers is:

 sh-dictionary = dict-member *(OWS "," OWS dict-member)
 dict-member = member-name "=" member-value
 member-name = key
 member-value = sh-item
 key = lcalpha *(lcalpha / DIGIT / "_" / "-")
 lcalpha = %x61-7A ; a-z

 In HTTP/1, keys and values are separated by "=" (without whitespace),
 and key/value pairs are separated by a comma with optional
 whitespace. For example:

 Example-DictHeader: en="Applepie", da=*w4ZibGV0w6ZydGU=*

 Typically, a header field specification will define the semantics of
 individual keys, as well as whether their presence is required or
 optional. Recipients MUST ignore keys that are undefined or unknown,
 unless the header field's specification specifically disallows them.

 Parsers MUST support dictionaries containing at least 1024 key/value
 pairs, and dictionary keys with at least 64 characters.

3.2. Lists

 Lists are arrays of items (Section 3.5) with one or more members.

 The ABNF for lists in HTTP/1 headers is:

 sh-list = list-member *(OWS "," OWS list-member)
 list-member = sh-item

Nottingham & Kamp Expires June 4, 2019 [Page 7]

Internet-Draft Structured Headers for HTTP December 2018

 In HTTP/1, each member is separated by a comma and optional
 whitespace. For example, a header field whose value is defined as a
 list of strings could look like:

 Example-StrListHeader: "foo", "bar", "It was the best of times."

 Header specifications can constrain the types of individual values if
 necessary.

 Parsers MUST support lists containing at least 1024 members.

3.3. Lists of Lists

 Lists of Lists are arrays of arrays containing items (Section 3.5).

 The ABNF for lists of lists in HTTP/1 headers is:

 sh-listlist = inner-list *(OWS "," OWS inner-list)
 inner-list = list-member *(OWS ";" OWS list-member)

 In HTTP/1, each inner-list is separated by a comma and optional
 whitespace, and members of the inner-list are separated by semicolons
 and optional whitespace. For example, a header field whose value is
 defined as a list of lists of strings could look like:

 Example-StrListListHeader: "foo";"bar", "baz", "bat"; "one"

 Header specifications can constrain the types of individual inner-
 list values if necessary.

 Parsers MUST support lists of lists containing at least 1024 members,
 and inner-lists containing at least 256 members.

3.4. Parameterised Lists

 Parameterised Lists are arrays of parameterised identifier with one
 or more members.

 A parameterised identifier is a token (Section 3.9}) with an optional
 set of parameters, each parameter having a textual name and an
 optional value that is an item (Section 3.5). Ordering between
 parameters is not significant, and duplicate parameters MUST cause
 parsing to fail.

 The ABNF for parameterised lists in HTTP/1 headers is:

Nottingham & Kamp Expires June 4, 2019 [Page 8]

Internet-Draft Structured Headers for HTTP December 2018

 sh-param-list = param-item *(OWS "," OWS param-item)
 param-item = primary-id *parameter
 primary-id = sh-token
 parameter = OWS ";" OWS param-name ["=" param-value]
 param-name = key
 param-value = sh-item

 In HTTP/1, each param-id is separated by a comma and optional
 whitespace (as in Lists), and the parameters are separated by
 semicolons. For example:

 Example-ParamListHeader: abc_123;a=1;b=2; cdef_456, ghi;q="9";r="w"

 Parsers MUST support parameterised lists containing at least 1024
 members, support members with at least 256 parameters, and support
 parameter keys with at least 64 characters.

3.5. Items

 An item is can be a integer (Section 3.6), float (Section 3.7),
 string (Section 3.8), token (Section 3.9}), byte sequence
 (Section 3.10), or Boolean (Section 3.11).

 The ABNF for items in HTTP/1 headers is:

 sh-item = sh-integer / sh-float / sh-string / sh-token / sh-binary
 / sh-boolean

3.6. Integers

 Integers have a range of -9,223,372,036,854,775,808 to
 9,223,372,036,854,775,807 inclusive (i.e., a 64-bit signed integer).

 The ABNF for integers in HTTP/1 headers is:

 sh-integer = ["-"] 1*19DIGIT

 For example:

 Example-IntegerHeader: 42

3.7. Floats

 Floats are integers with a fractional part, that can be stored as
 IEEE 754 double precision numbers (binary64) ([IEEE754]).

 The ABNF for floats in HTTP/1 headers is:

Nottingham & Kamp Expires June 4, 2019 [Page 9]

Internet-Draft Structured Headers for HTTP December 2018

 sh-float = ["-"] (
 DIGIT "." 1*14DIGIT /
 2DIGIT "." 1*13DIGIT /
 3DIGIT "." 1*12DIGIT /
 4DIGIT "." 1*11DIGIT /
 5DIGIT "." 1*10DIGIT /
 6DIGIT "." 1*9DIGIT /
 7DIGIT "." 1*8DIGIT /
 8DIGIT "." 1*7DIGIT /
 9DIGIT "." 1*6DIGIT /
 10DIGIT "." 1*5DIGIT /
 11DIGIT "." 1*4DIGIT /
 12DIGIT "." 1*3DIGIT /
 13DIGIT "." 1*2DIGIT /
 14DIGIT "." 1DIGIT)

 For example, a header whose value is defined as a float could look
 like:

 Example-FloatHeader: 4.5

3.8. Strings

 Strings are zero or more printable ASCII [RFC0020] characters (i.e.,
 the range 0x20 to 0x7E). Note that this excludes tabs, newlines,
 carriage returns, etc.

 The ABNF for strings in HTTP/1 headers is:

 sh-string = DQUOTE *(chr) DQUOTE
 chr = unescaped / escaped
 unescaped = %x20-21 / %x23-5B / %x5D-7E
 escaped = "\" (DQUOTE / "\")

 In HTTP/1 headers, strings are delimited with double quotes, using a
 backslash ("\") to escape double quotes and backslashes. For
 example:

 Example-StringHeader: "hello world"

 Note that strings only use DQUOTE as a delimiter; single quotes do
 not delimit strings. Furthermore, only DQUOTE and "\" can be
 escaped; other sequences MUST cause parsing to fail.

 Unicode is not directly supported in this document, because it causes
 a number of interoperability issues, and - with few exceptions -
 header values do not require it.

https://datatracker.ietf.org/doc/html/rfc0020

Nottingham & Kamp Expires June 4, 2019 [Page 10]

Internet-Draft Structured Headers for HTTP December 2018

 When it is necessary for a field value to convey non-ASCII string
 content, a byte sequence (Section 3.10) SHOULD be specified, along
 with a character encoding (preferably UTF-8).

 Parsers MUST support strings with at least 1024 characters.

3.9. Tokens

 Tokens are short textual words; their abstract model is identical to
 their expression in the textual HTTP serialisation.

 The ABNF for tokens in HTTP/1 headers is:

sh-token = ALPHA *(ALPHA / DIGIT / "_" / "-" / "." / ":" / "%" / "*" / "/")

 Parsers MUST support tokens with at least 512 characters.

3.10. Byte Sequences

 Byte sequences can be conveyed in Structured Headers.

 The ABNF for a byte sequence in HTTP/1 headers is:

 sh-binary = "*" *(base64) "*"
 base64 = ALPHA / DIGIT / "+" / "/" / "="

 In HTTP/1 headers, a byte sequence is delimited with asterisks and
 encoded using base64 ([RFC4648], Section 4). For example:

 Example-BinaryHdr: *cHJldGVuZCB0aGlzIGlzIGJpbmFyeSBjb250ZW50Lg==*

 Parsers MUST support byte sequences with at least 16384 octets after
 decoding.

3.11. Booleans

 Boolean values can be conveyed in Structured Headers.

 The ABNF for a Boolean in HTTP/1 headers is:

 sh-boolean = "?" boolean
 boolean = %54 / %46 ; capital "T" or "F"

 In HTTP/1 headers, a byte sequence is indicated with a leading "?"
 character. For example:

 Example-BoolHdr: ?T

https://datatracker.ietf.org/doc/html/rfc4648#section-4

Nottingham & Kamp Expires June 4, 2019 [Page 11]

Internet-Draft Structured Headers for HTTP December 2018

4. Structured Headers in HTTP/1

 This section defines how to serialise and parse Structured Headers in
 HTTP/1 textual header fields, and protocols compatible with them
 (e.g., in HTTP/2 [RFC7540] before HPACK [RFC7541] is applied).

4.1. Serialising Structured Headers into HTTP/1

 Given a structured defined in this specification:

 1. If the structure is a dictionary, return the result of
 Serialising a Dictionary (Section 4.1.1).

 2. If the structure is a parameterised list, return the result of
 Serialising a Parameterised List (Section 4.1.4).

 3. If the structure is a list of lists, return the result of
 Serialising a List of Lists ({ser-listlist}).

 4. If the structure is a list, return the result of Serialising a
 List Section 4.1.2.

 5. If the structure is an item, return the result of Serialising an
 Item (Section 4.1.5).

 6. Otherwise, fail serialisation.

4.1.1. Serialising a Dictionary

 Given a dictionary as input_dictionary:

 1. Let output be an empty string.

 2. For each member mem of input_dictionary:

 1. Let name be the result of applying Serialising an Key
 (Section 4.1.1.1) to mem's member-name.

 2. Append name to output.

 3. Append "=" to output.

 4. Let value be the result of applying Serialising an Item
 (Section 4.1.5) to mem's member-value.

 5. Append value to output.

 6. If more members remain in input_dictionary:

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541

Nottingham & Kamp Expires June 4, 2019 [Page 12]

Internet-Draft Structured Headers for HTTP December 2018

 1. Append a COMMA to output.

 2. Append a single WS to output.

 3. Return output.

4.1.1.1. Serialising a Key

 Given a key as input_key:

 1. If input_key is not a sequence of characters, or contains
 characters not allowed in the ABNF for key, fail serialisation.

 2. Let output be an empty string.

 3. Append input_key to output, using ASCII encoding [RFC0020].

 4. Return output.

4.1.2. Serialising a List

 Given a list as input_list:

 1. Let output be an empty string.

 2. For each member mem of input_list:

 1. Let value be the result of applying Serialising an Item
 (Section 4.1.5) to mem.

 2. Append value to output.

 3. If more members remain in input_list:

 1. Append a COMMA to output.

 2. Append a single WS to output.

 3. Return output.

4.1.3. Serialising a List of Lists

 Given a list of lists of items as input_list:

 1. Let output be an empty string.

 2. For each member inner_list of input_list:

https://datatracker.ietf.org/doc/html/rfc0020

Nottingham & Kamp Expires June 4, 2019 [Page 13]

Internet-Draft Structured Headers for HTTP December 2018

 1. If inner_list is not a list, fail serialisation.

 2. If inner_list is empty, fail serialisation.

 3. For each inner_mem of inner_list:

 1. Let value be the result of applying Serialising an Item
 (Section 4.1.5) to inner_mem.

 2. Append value to output.

 3. If more members remain in inner_list:

 1. Append a ";" to output.

 2. Append a single WS to output.

 4. If more members remain in input_list:

 1. Append a COMMA to output.

 2. Append a single WS to output.

 3. Return output.

4.1.4. Serialising a Parameterised List

 Given a parameterised list as input_plist:

 1. Let output be an empty string.

 2. For each member mem of input_plist:

 1. Let id be the result of applying Serialising a Token
 (Section 4.1.9) to mem's token.

 2. Append id to output.

 3. For each parameter in mem's parameters:

 1. Append ";" to output.

 2. Let name be the result of applying Serialising a Key
 (Section 4.1.1.1) to parameter's param-name.

 3. Append name to output.

 4. If parameter has a param-value:

Nottingham & Kamp Expires June 4, 2019 [Page 14]

Internet-Draft Structured Headers for HTTP December 2018

 1. Let value be the result of applying Serialising an
 Item (Section 4.1.5) to parameter's param-value.

 2. Append "=" to output.

 3. Append value to output.

 4. If more members remain in input_plist:

 1. Append a COMMA to output.

 2. Append a single WS to output.

 3. Return output.

4.1.5. Serialising an Item

 Given an item as input_item:

 1. If input_item is an integer, return the result of applying
 Serialising an Integer (Section 4.1.6) to input_item.

 2. If input_item is a float, return the result of applying
 Serialising a Float (Section 4.1.7) to input_item.

 3. If input_item is a string, return the result of applying
 Serialising a String (Section 4.1.8) to input_item.

 4. If input_item is a token, return the result of Serialising a
 Token (Section 4.1.9) to input_item.

 5. If input_item is a Boolean, return the result of applying
 Serialising a Boolean (Section 4.1.11) to input_item.

 6. If input_item is a byte sequence, return the result of applying
 Serialising a Byte Sequence (Section 4.1.10) to input_item.

 7. Otherwise, fail serialisation.

4.1.6. Serialising an Integer

 Given an integer as input_integer:

 1. If input_integer is not an integer in the range of
 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
 inclusive, fail serialisation.

 2. Let output be an empty string.

Nottingham & Kamp Expires June 4, 2019 [Page 15]

Internet-Draft Structured Headers for HTTP December 2018

 3. If input_integer is less than (but not equal to) 0, append "-" to
 output.

 4. Append input_integer's numeric value represented in base 10 using
 only decimal digits to output.

 5. Return output.

4.1.7. Serialising a Float

 Given a float as input_float:

 1. If input_float is not a IEEE 754 double precision number, fail
 serialisation.

 2. Let output be an empty string.

 3. If input_float is less than (but not equal to) 0, append "-" to
 output.

 4. Append input_float's integer component represented in base 10
 using only decimal digits to output; if it is zero, append "0".

 5. Append "." to output.

 6. Append input_float's decimal component represented in base 10
 using only decimal digits to output; if it is zero, append "0".

 7. Return output.

4.1.8. Serialising a String

 Given a string as input_string:

 1. If input_string is not a sequence of characters, or contains
 characters outside the range allowed by VCHAR or SP, fail
 serialisation.

 2. Let output be an empty string.

 3. Append DQUOTE to output.

 4. For each character char in input_string:

 1. If char is "\" or DQUOTE:

 1. Append "\" to output.

Nottingham & Kamp Expires June 4, 2019 [Page 16]

Internet-Draft Structured Headers for HTTP December 2018

 2. Append char to output, using ASCII encoding [RFC0020].

 5. Append DQUOTE to output.

 6. Return output.

4.1.9. Serialising a Token

 Given a token as input_token:

 1. If input_token is not a sequence of characters, or contains
 characters not allowed in Section 3.9}, fail serialisation.

 2. Let output be an empty string.

 3. Append input_token to output, using ASCII encoding [RFC0020].

 4. Return output.

4.1.10. Serialising a Byte Sequence

 Given a byte sequence as input_bytes:

 1. If input_bytes is not a sequence of bytes, fail serialisation.

 2. Let output be an empty string.

 3. Append "*" to output.

 4. Append the result of base64-encoding input_bytes as per
[RFC4648], Section 4, taking account of the requirements below.

 5. Append "*" to output.

 6. Return output.

 The encoded data is required to be padded with "=", as per [RFC4648],
 Section 3.2.

 Likewise, encoded data SHOULD have pad bits set to zero, as per
[RFC4648], Section 3.5, unless it is not possible to do so due to

 implementation constraints.

4.1.11. Serialising a Boolean

 Given a Boolean as input_boolean:

 1. If input_boolean is not a boolean, fail serialisation.

https://datatracker.ietf.org/doc/html/rfc0020
https://datatracker.ietf.org/doc/html/rfc0020
https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc4648#section-3.2
https://datatracker.ietf.org/doc/html/rfc4648#section-3.2
https://datatracker.ietf.org/doc/html/rfc4648#section-3.5

Nottingham & Kamp Expires June 4, 2019 [Page 17]

Internet-Draft Structured Headers for HTTP December 2018

 2. Let output be an empty string.

 3. Append "?" to output.

 4. If input_boolean is true, append "T" to output.

 5. If input_boolean is false, append "F" to output.

 6. Return output.

4.2. Parsing HTTP/1 Header Fields into Structured Headers

 When a receiving implementation parses textual HTTP header fields
 (e.g., in HTTP/1 or HTTP/2) that are known to be Structured Headers,
 it is important that care be taken, as there are a number of edge
 cases that can cause interoperability or even security problems.
 This section specifies the algorithm for doing so.

 Given an ASCII string input_string that represents the chosen
 header's field-value, and header_type, one of "dictionary", "list",
 "list-list", "param-list", or "item", return the parsed header value.

 1. Discard any leading OWS from input_string.

 2. If header_type is "dictionary", let output be the result of
 Parsing a Dictionary from Text (Section 4.2.1).

 3. If header_type is "list", let output be the result of Parsing a
 List from Text (Section 4.2.3).

 4. If header_type is "list-list", let output be the result of
 Parsing a List of Lists from Text (Section 4.2.4).

 5. If header_type is "param-list", let output be the result of
 Parsing a Parameterised List from Text (Section 4.2.5).

 6. If header_type is "item", let output be the result of Parsing an
 Item from Text (Section 4.2.7).

 7. Discard any leading OWS from input_string.

 8. If input_string is not empty, fail parsing.

 9. Otherwise, return output.

 When generating input_string, parsers MUST combine all instances of
 the target header field into one comma-separated field-value, as per

Nottingham & Kamp Expires June 4, 2019 [Page 18]

Internet-Draft Structured Headers for HTTP December 2018

[RFC7230], Section 3.2.2; this assures that the header is processed
 correctly.

 For Lists, Lists of Lists, Parameterised Lists and Dictionaries, this
 has the effect of correctly concatenating all instances of the header
 field, as long as individual individual members of the top-level data
 structure are not split across multiple header instances.

 Strings split across multiple header instances will have
 unpredictable results, because comma(s) and whitespace inserted upon
 combination will become part of the string output by the parser.
 Since concatenation might be done by an upstream intermediary, the
 results are not under the control of the serialiser or the parser.

 Integers, Floats and Byte Sequences cannot be split across multiple
 headers because the inserted commas will cause parsing to fail.

 If parsing fails - including when calling another algorithm - the
 entire header field's value MUST be discarded. This is intentionally
 strict, to improve interoperability and safety, and specifications
 referencing this document cannot loosen this requirement.

 Note that this has the effect of discarding any header field with
 non-ASCII characters in input_string.

4.2.1. Parsing a Dictionary from Text

 Given an ASCII string input_string, return an ordered map of (key,
 item). input_string is modified to remove the parsed value.

 1. Let dictionary be an empty, ordered map.

 2. While input_string is not empty:

 1. Let this_key be the result of running Parse a Key from Text
 (Section 4.2.2) with input_string.

 2. If dictionary already contains this_key, fail parsing.

 3. Consume the first character of input_string; if it is not
 "=", fail parsing.

 4. Let this_value be the result of running Parse Item from Text
 (Section 4.2.7) with input_string.

 5. Add key this_key with value this_value to dictionary.

 6. Discard any leading OWS from input_string.

https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.2

Nottingham & Kamp Expires June 4, 2019 [Page 19]

Internet-Draft Structured Headers for HTTP December 2018

 7. If input_string is empty, return dictionary.

 8. Consume the first character of input_string; if it is not
 COMMA, fail parsing.

 9. Discard any leading OWS from input_string.

 10. If input_string is empty, fail parsing.

 3. No structured data has been found; fail parsing.

4.2.2. Parsing a Key from Text

 Given an ASCII string input_string, return a key. input_string is
 modified to remove the parsed value.

 1. If the first character of input_string is not lcalpha, fail
 parsing.

 2. Let output_string be an empty string.

 3. While input_string is not empty:

 1. Let char be the result of removing the first character of
 input_string.

 2. If char is not one of lcalpha, DIGIT, "_", or "-":

 1. Prepend char to input_string.

 2. Return output_string.

 3. Append char to output_string.

 4. Return output_string.

4.2.3. Parsing a List from Text

 Given an ASCII string input_string, return a list of items.
 input_string is modified to remove the parsed value.

 1. Let items be an empty array.

 2. While input_string is not empty:

 1. Let item be the result of running Parse Item from Text
 (Section 4.2.7) with input_string.

Nottingham & Kamp Expires June 4, 2019 [Page 20]

Internet-Draft Structured Headers for HTTP December 2018

 2. Append item to items.

 3. Discard any leading OWS from input_string.

 4. If input_string is empty, return items.

 5. Consume the first character of input_string; if it is not
 COMMA, fail parsing.

 6. Discard any leading OWS from input_string.

 7. If input_string is empty, fail parsing.

 3. No structured data has been found; fail parsing.

4.2.4. Parsing a List of Lists from Text

 Given an ASCII string input_string, return a list of lists of items.
 input_string is modified to remove the parsed value.

 1. let top_list be an empty array.

 2. Let inner_list be an empty array.

 3. While input_string is not empty:

 1. Let item be the result of running Parse Item from Text
 (Section 4.2.7) with input_string.

 2. Append item to inner_list.

 3. Discard any leading OWS from input_string.

 4. If input_string is empty, append inner_list to top_list and
 return top_list.

 5. Let char be the result of consuming the first character of
 input_string.

 6. If char is COMMA:

 1. Append inner_list to top_list.

 2. Let inner_list be an empty array.

 7. Else if char is not ";", fail parsing.

 8. Discard any leading OWS from input_string.

Nottingham & Kamp Expires June 4, 2019 [Page 21]

Internet-Draft Structured Headers for HTTP December 2018

 9. If input_string is empty, fail parsing.

 4. No structured data has been found; fail parsing.

4.2.5. Parsing a Parameterised List from Text

 Given an ASCII string input_string, return a list of parameterised
 identifiers. input_string is modified to remove the parsed value.

 1. Let items be an empty array.

 2. While input_string is not empty:

 1. Let item be the result of running Parse Parameterised
 Identifier from Text (Section 4.2.6) with input_string.

 2. Append item to items.

 3. Discard any leading OWS from input_string.

 4. If input_string is empty, return items.

 5. Consume the first character of input_string; if it is not
 COMMA, fail parsing.

 6. Discard any leading OWS from input_string.

 7. If input_string is empty, fail parsing.

 3. No structured data has been found; fail parsing.

4.2.6. Parsing a Parameterised Identifier from Text

 Given an ASCII string input_string, return an token with an unordered
 map of parameters. input_string is modified to remove the parsed
 value.

 1. Let primary_identifier be the result of Parsing a Token from Text
 (Section 4.2.10) from input_string.

 2. Let parameters be an empty, unordered map.

 3. In a loop:

 1. Discard any leading OWS from input_string.

 2. If the first character of input_string is not ";", exit the
 loop.

Nottingham & Kamp Expires June 4, 2019 [Page 22]

Internet-Draft Structured Headers for HTTP December 2018

 3. Consume a ";" character from the beginning of input_string.

 4. Discard any leading OWS from input_string.

 5. let param_name be the result of Parsing a key from Text
 (Section 4.2.2) from input_string.

 6. If param_name is already present in parameters, fail parsing.

 7. Let param_value be a null value.

 8. If the first character of input_string is "=":

 1. Consume the "=" character at the beginning of
 input_string.

 2. Let param_value be the result of Parsing an Item from
 Text (Section 4.2.7) from input_string.

 9. Add key param_name with value param_value to parameters.

 4. Return the tuple (primary_identifier, parameters).

4.2.7. Parsing an Item from Text

 Given an ASCII string input_string, return an item. input_string is
 modified to remove the parsed value.

 1. If the first character of input_string is a "-" or a DIGIT,
 process input_string as a number (Section 4.2.8) and return the
 result.

 2. If the first character of input_string is a DQUOTE, process
 input_string as a string (Section 4.2.9) and return the result.

 3. If the first character of input_string is "*", process
 input_string as a byte sequence (Section 4.2.11) and return the
 result.

 4. If the first character of input_string is "?", process
 input_string as a Boolean (Section 4.2.12) and return the result.

 5. If the first character of input_string is an ALPHA, process
 input_string as a token (Section 4.2.10) and return the result.

 6. Otherwise, fail parsing.

Nottingham & Kamp Expires June 4, 2019 [Page 23]

Internet-Draft Structured Headers for HTTP December 2018

4.2.8. Parsing a Number from Text

 Given an ASCII string input_string, return a number. input_string is
 modified to remove the parsed value.

 NOTE: This algorithm parses both Integers Section 3.6 and Floats
Section 3.7, and returns the corresponding structure.

 1. Let type be "integer".

 2. Let sign be 1.

 3. Let input_number be an empty string.

 4. If the first character of input_string is "-", remove it from
 input_string and set sign to -1.

 5. If input_string is empty, fail parsing.

 6. If the first character of input_string is not a DIGIT, fail
 parsing.

 7. While input_string is not empty:

 1. Let char be the result of removing the first character of
 input_string.

 2. If char is a DIGIT, append it to input_number.

 3. Else, if type is "integer" and char is ".", append char to
 input_number and set type to "float".

 4. Otherwise, prepend char to input_string, and exit the loop.

 5. If type is "integer" and input_number contains more than 19
 characters, fail parsing.

 6. If type is "float" and input_number contains more than 16
 characters, fail parsing.

 8. If type is "integer":

 1. Parse input_number as an integer and let output_number be
 the product of the result and sign.

 2. If output_number is outside the range defined in
Section 3.6, fail parsing.

Nottingham & Kamp Expires June 4, 2019 [Page 24]

Internet-Draft Structured Headers for HTTP December 2018

 9. Otherwise:

 1. If the final character of input_number is ".", fail parsing.

 2. Parse input_number as a float and let output_number be the
 product of the result and sign.

 10. Return output_number.

4.2.9. Parsing a String from Text

 Given an ASCII string input_string, return an unquoted string.
 input_string is modified to remove the parsed value.

 1. Let output_string be an empty string.

 2. If the first character of input_string is not DQUOTE, fail
 parsing.

 3. Discard the first character of input_string.

 4. While input_string is not empty:

 1. Let char be the result of removing the first character of
 input_string.

 2. If char is a backslash ("\"):

 1. If input_string is now empty, fail parsing.

 2. Else:

 1. Let next_char be the result of removing the first
 character of input_string.

 2. If next_char is not DQUOTE or "\", fail parsing.

 3. Append next_char to output_string.

 3. Else, if char is DQUOTE, return output_string.

 4. Else, if char is in the range %x00-1f or %x7f (i.e., is not
 in VCHAR or SP), fail parsing.

 5. Else, append char to output_string.

 5. Reached the end of input_string without finding a closing DQUOTE;
 fail parsing.

Nottingham & Kamp Expires June 4, 2019 [Page 25]

Internet-Draft Structured Headers for HTTP December 2018

4.2.10. Parsing a Token from Text

 Given an ASCII string input_string, return a token. input_string is
 modified to remove the parsed value.

 1. If the first character of input_string is not ALPHA, fail
 parsing.

 2. Let output_string be an empty string.

 3. While input_string is not empty:

 1. Let char be the result of removing the first character of
 input_string.

 2. If char is not one of ALPHA, DIGIT, "_", "-", ".", ":", "%",
 "*" or "/":

 1. Prepend char to input_string.

 2. Return output_string.

 3. Append char to output_string.

 4. Return output_string.

4.2.11. Parsing a Byte Sequence from Text

 Given an ASCII string input_string, return a byte sequence.
 input_string is modified to remove the parsed value.

 1. If the first character of input_string is not "*", fail parsing.

 2. Discard the first character of input_string.

 3. If there is not a "*" character before the end of input_string,
 fail parsing.

 4. Let b64_content be the result of removing content of input_string
 up to but not including the first instance of the character "*".

 5. Consume the "*" character at the beginning of input_string.

 6. If b64_content contains a character not included in ALPHA, DIGIT,
 "+", "/" and "=", fail parsing.

Nottingham & Kamp Expires June 4, 2019 [Page 26]

Internet-Draft Structured Headers for HTTP December 2018

 7. Let binary_content be the result of Base 64 Decoding [RFC4648]
 b64_content, synthesising padding if necessary (note the
 requirements about recipient behaviour below).

 8. Return binary_content.

 Because some implementations of base64 do not allow reject of encoded
 data that is not properly "=" padded (see [RFC4648], Section 3.2),
 parsers SHOULD NOT fail when it is not present, unless they cannot be
 configured to do so.

 Because some implementations of base64 do not allow rejection of
 encoded data that has non-zero pad bits (see [RFC4648], Section 3.5),
 parsers SHOULD NOT fail when it is present, unless they cannot be
 configured to do so.

 This specification does not relax the requirements in [RFC4648],
 Section 3.1 and 3.3; therefore, parsers MUST fail on characters
 outside the base64 alphabet, and on line feeds in encoded data.

4.2.12. Parsing a Boolean from Text

 Given an ASCII string input_string, return a Boolean. input_string is
 modified to remove the parsed value.

 1. If the first character of input_string is not "?", fail parsing.

 2. Discard the first character of input_string.

 3. If the first character of input_string case-sensitively matches
 "T", discard the first character, and return true.

 4. If the first character of input_string case-sensitively matches
 "F", discard the first character, and return false.

 5. No value has matched; fail parsing.

5. IANA Considerations

 This draft has no actions for IANA.

6. Security Considerations

 The size of most types defined by Structured Headers is not limited;
 as a result, extremely large header fields could be an attack vector
 (e.g., for resource consumption). Most HTTP implementations limit
 the sizes of size of individual header fields as well as the overall
 header block size to mitigate such attacks.

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648#section-3.2
https://datatracker.ietf.org/doc/html/rfc4648#section-3.5
https://datatracker.ietf.org/doc/html/rfc4648#section-3.1
https://datatracker.ietf.org/doc/html/rfc4648#section-3.1

Nottingham & Kamp Expires June 4, 2019 [Page 27]

Internet-Draft Structured Headers for HTTP December 2018

 It is possible for parties with the ability to inject new HTTP header
 fields to change the meaning of a Structured Header. In some
 circumstances, this will cause parsing to fail, but it is not
 possible to reliably fail in all such circumstances.

7. References

7.1. Normative References

 [RFC0020] Cerf, V., "ASCII format for network interchange", STD 80,
RFC 20, DOI 10.17487/RFC0020, October 1969,

 <https://www.rfc-editor.org/info/rfc20>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic",
 IEEE 754-2008, DOI 10.1109/IEEESTD.2008.4610935,
 ISBN 978-0-7381-5752-8, August 2008,
 <http://ieeexplore.ieee.org/document/4610935/>.

 See also http://grouper.ieee.org/groups/754/ [6].

https://datatracker.ietf.org/doc/html/rfc20
https://www.rfc-editor.org/info/rfc20
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
http://ieeexplore.ieee.org/document/4610935/
http://grouper.ieee.org/groups/754/

Nottingham & Kamp Expires June 4, 2019 [Page 28]

Internet-Draft Structured Headers for HTTP December 2018

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <https://www.rfc-editor.org/info/rfc7541>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

7.3. URIs

 [1] https://lists.w3.org/Archives/Public/ietf-http-wg/

 [2] https://httpwg.github.io/

 [3] https://github.com/httpwg/http-extensions/labels/header-structure

 [4] https://github.com/httpwg/structured-header-tests

 [5] https://github.com/httpwg/wiki/wiki/Structured-Headers

 [6] https://github.com/httpwg/structured-header-tests

Appendix A. Acknowledgements

 Many thanks to Matthew Kerwin for his detailed feedback and careful
 consideration during the development of this specification.

Appendix B. Frequently Asked Questions

https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7493
https://www.rfc-editor.org/info/rfc7493
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541
https://www.rfc-editor.org/info/rfc7541
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.github.io/
https://github.com/httpwg/http-extensions/labels/header-structure
https://github.com/httpwg/structured-header-tests
https://github.com/httpwg/wiki/wiki/Structured-Headers
https://github.com/httpwg/structured-header-tests

Nottingham & Kamp Expires June 4, 2019 [Page 29]

Internet-Draft Structured Headers for HTTP December 2018

B.1. Why not JSON?

 Earlier proposals for structured headers were based upon JSON
 [RFC8259]. However, constraining its use to make it suitable for
 HTTP header fields required senders and recipients to implement
 specific additional handling.

 For example, JSON has specification issues around large numbers and
 objects with duplicate members. Although advice for avoiding these
 issues is available (e.g., [RFC7493]), it cannot be relied upon.

 Likewise, JSON strings are by default Unicode strings, which have a
 number of potential interoperability issues (e.g., in comparison).
 Although implementers can be advised to avoid non-ASCII content where
 unnecessary, this is difficult to enforce.

 Another example is JSON's ability to nest content to arbitrary
 depths. Since the resulting memory commitment might be unsuitable
 (e.g., in embedded and other limited server deployments), it's
 necessary to limit it in some fashion; however, existing JSON
 implementations have no such limits, and even if a limit is
 specified, it's likely that some header field definition will find a
 need to violate it.

 Because of JSON's broad adoption and implementation, it is difficult
 to impose such additional constraints across all implementations;
 some deployments would fail to enforce them, thereby harming
 interoperability.

 Since a major goal for Structured Headers is to improve
 interoperability and simplify implementation, these concerns led to a
 format that requires a dedicated parser and serialiser.

 Additionally, there were widely shared feelings that JSON doesn't
 "look right" in HTTP headers.

B.2. Structured Headers don't "fit" my data.

 Structured headers intentionally limits the complexity of data
 structures, to assure that it can be processed in a performant manner
 with little overhead. This means that work is necessary to fit some
 data types into them.

 Sometimes, this can be achieved by creating limited substructures in
 values, and/or using more than one header. For example, consider:

https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc7493

Nottingham & Kamp Expires June 4, 2019 [Page 30]

Internet-Draft Structured Headers for HTTP December 2018

 Example-Thing: name="Widget", cost=89.2, descriptions="foo bar"
 Example-Description: foo; url="https://example.net"; context=123,
 bar; url="https://example.org"; context=456

 Since the description contains a list of key/value pairs, we use a
 Parameterised List to represent them, with the token for each item in
 the list used to identify it in the "descriptions" member of the
 Example-Thing header.

 When specifying more than one header, it's important to remember to
 describe what a processor's behaviour should be when one of the
 headers is missing.

 If you need to fit arbitrarily complex data into a header, Structured
 Headers is probably a poor fit for your use case.

B.3. What should generic Structured Headers implementations expose?

 A generic implementation should expose the top-level parse
 (Section 4.2) and serialise (Section 4.1) functions. They need not
 be functions; for example, it could be implemented as an object, with
 methods for each of the different top-level types.

 For interoperability, it's important that generic implementations be
 complete and follow the algorithms closely; see Section 1.1. To aid
 this, a common test suite is being maintained by the community; see

https://github.com/httpwg/structured-header-tests [7].

Appendix C. Changes

 RFC Editor: Please remove this section before publication.

C.1. Since draft-ietf-httpbis-header-structure-08

 o Disallow whitespace before items properly (#703).

 o Created "key" for use in dictionaries and parameters, rather than
 relying on identifier (#702). Identifiers have a separate minimum
 supported size.

 o Expanded the range of special characters allowed in identifier to
 include all of ALPHA, ".", ":", and "%" (#702).

 o Use "?" instead of "!" to indicate a Boolean (#719).

 o Added "Intentionally Strict Processing" (#684).

https://github.com/httpwg/structured-header-tests
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-08

Nottingham & Kamp Expires June 4, 2019 [Page 31]

Internet-Draft Structured Headers for HTTP December 2018

 o Gave better names for referring specs to use in Parameterised
 Lists (#720).

 o Added Lists of Lists (#721).

 o Rename Identifier to Token (#725).

 o Add implementation guidance (#727).

C.2. Since draft-ietf-httpbis-header-structure-07

 o Make Dictionaries ordered mappings (#659).

 o Changed "binary content" to "byte sequence" to align with Infra
 specification (#671).

 o Changed "mapping" to "map" for #671.

 o Don't fail if byte sequences aren't "=" padded (#658).

 o Add Booleans (#683).

 o Allow identifiers in items again (#629).

 o Disallowed whitespace before items (#703).

 o Explain the consequences of splitting a string across multiple
 headers (#686).

C.3. Since draft-ietf-httpbis-header-structure-06

 o Add a FAQ.

 o Allow non-zero pad bits.

 o Explicitly check for integers that violate constraints.

C.4. Since draft-ietf-httpbis-header-structure-05

 o Reorganise specification to separate parsing out.

 o Allow referencing specs to use ABNF.

 o Define serialisation algorithms.

 o Refine relationship between ABNF, parsing and serialisation
 algorithms.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-07
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-05

Nottingham & Kamp Expires June 4, 2019 [Page 32]

Internet-Draft Structured Headers for HTTP December 2018

C.5. Since draft-ietf-httpbis-header-structure-04

 o Remove identifiers from item.

 o Remove most limits on sizes.

 o Refine number parsing.

C.6. Since draft-ietf-httpbis-header-structure-03

 o Strengthen language around failure handling.

C.7. Since draft-ietf-httpbis-header-structure-02

 o Split Numbers into Integers and Floats.

 o Define number parsing.

 o Tighten up binary parsing and give it an explicit end delimiter.

 o Clarify that mappings are unordered.

 o Allow zero-length strings.

 o Improve string parsing algorithm.

 o Improve limits in algorithms.

 o Require parsers to combine header fields before processing.

 o Throw an error on trailing garbage.

C.8. Since draft-ietf-httpbis-header-structure-01

 o Replaced with draft-nottingham-structured-headers.

C.9. Since draft-ietf-httpbis-header-structure-00

 o Added signed 64bit integer type.

 o Drop UTF8, and settle on BCP137 ::EmbeddedUnicodeChar for h1-
 unicode-string.

 o Change h1_blob delimiter to ":" since "'" is valid t_char

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-01
https://datatracker.ietf.org/doc/html/draft-nottingham-structured-headers
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-00
https://datatracker.ietf.org/doc/html/bcp137

Nottingham & Kamp Expires June 4, 2019 [Page 33]

Internet-Draft Structured Headers for HTTP December 2018

Authors' Addresses

 Mark Nottingham
 Fastly

 Email: mnot@mnot.net
 URI: https://www.mnot.net/

 Poul-Henning Kamp
 The Varnish Cache Project

 Email: phk@varnish-cache.org

Nottingham & Kamp Expires June 4, 2019 [Page 34]

https://www.mnot.net/

