
HTTP M. Nottingham
Internet-Draft Fastly
Intended status: Standards Track P-H. Kamp
Expires: July 31, 2020 The Varnish Cache Project
 January 28, 2020

Structured Headers for HTTP
draft-ietf-httpbis-header-structure-15

Abstract

 This document describes a set of data types and associated algorithms
 that are intended to make it easier and safer to define and handle
 HTTP header fields. It is intended for use by specifications of new
 HTTP header fields that wish to use a common syntax that is more
 restrictive than traditional HTTP field values.

Note to Readers

 RFC EDITOR: please remove this section before publication

 Discussion of this draft takes place on the HTTP working group
 mailing list (ietf-http-wg@w3.org), which is archived at

https://lists.w3.org/Archives/Public/ietf-http-wg/ [1].

 Working Group information can be found at https://httpwg.github.io/
 [2]; source code and issues list for this draft can be found at

https://github.com/httpwg/http-extensions/labels/header-structure
 [3].

 Tests for implementations are collected at https://github.com/httpwg/
structured-header-tests [4].

 Implementations are tracked at https://github.com/httpwg/wiki/wiki/
Structured-Headers [5].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Nottingham & Kamp Expires July 31, 2020 [Page 1]

https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.github.io/
https://github.com/httpwg/http-extensions/labels/header-structure
https://github.com/httpwg/structured-header-tests
https://github.com/httpwg/structured-header-tests
https://github.com/httpwg/wiki/wiki/Structured-Headers
https://github.com/httpwg/wiki/wiki/Structured-Headers
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Structured Headers for HTTP January 2020

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 31, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Intentionally Strict Processing 4
1.2. Notational Conventions 5

2. Defining New Structured Headers 5
3. Structured Data Types . 7
3.1. Lists . 8
3.1.1. Inner Lists . 8
3.1.2. Parameters . 9

3.2. Dictionaries . 10
3.3. Items . 11
3.3.1. Integers . 12
3.3.2. Decimals . 12
3.3.3. Strings . 12
3.3.4. Tokens . 13
3.3.5. Byte Sequences 13
3.3.6. Booleans . 14

4. Working With Structured Headers in HTTP Headers 14
4.1. Serializing Structured Headers 14
4.1.1. Serializing a List 15
4.1.2. Serializing a Dictionary 17
4.1.3. Serializing an Item 17
4.1.4. Serializing an Integer 18
4.1.5. Serializing a Decimal 19
4.1.6. Serializing a String 19

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Nottingham & Kamp Expires July 31, 2020 [Page 2]

Internet-Draft Structured Headers for HTTP January 2020

4.1.7. Serializing a Token 20
4.1.8. Serializing a Byte Sequence 20
4.1.9. Serializing a Boolean 21

4.2. Parsing Header Fields into Structured Headers 21
4.2.1. Parsing a List 22
4.2.2. Parsing a Dictionary 24
4.2.3. Parsing an Item 25
4.2.4. Parsing a Number 27
4.2.5. Parsing a String 28
4.2.6. Parsing a Token 29
4.2.7. Parsing a Byte Sequence 29
4.2.8. Parsing a Boolean 30

5. IANA Considerations . 31
6. Security Considerations 31
7. References . 31
7.1. Normative References 31
7.2. Informative References 32
7.3. URIs . 32

Appendix A. Acknowledgements 33
Appendix B. Frequently Asked Questions 33
B.1. Why not JSON? . 33
B.2. Structured Headers don't "fit" my data. 34

Appendix C. Implementation Notes 34
Appendix D. Changes . 35
D.1. Since draft-ietf-httpbis-header-structure-14 35
D.2. Since draft-ietf-httpbis-header-structure-13 35
D.3. Since draft-ietf-httpbis-header-structure-12 36
D.4. Since draft-ietf-httpbis-header-structure-11 36
D.5. Since draft-ietf-httpbis-header-structure-10 36
D.6. Since draft-ietf-httpbis-header-structure-09 36
D.7. Since draft-ietf-httpbis-header-structure-08 37
D.8. Since draft-ietf-httpbis-header-structure-07 37
D.9. Since draft-ietf-httpbis-header-structure-06 38
D.10. Since draft-ietf-httpbis-header-structure-05 38
D.11. Since draft-ietf-httpbis-header-structure-04 38
D.12. Since draft-ietf-httpbis-header-structure-03 38
D.13. Since draft-ietf-httpbis-header-structure-02 38
D.14. Since draft-ietf-httpbis-header-structure-01 39
D.15. Since draft-ietf-httpbis-header-structure-00 39

 Authors' Addresses . 39

1. Introduction

 Specifying the syntax of new HTTP header fields is an onerous task;
 even with the guidance in Section 8.3.1 of [RFC7231], there are many
 decisions - and pitfalls - for a prospective HTTP header field
 author.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-14
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-13
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-12
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-11
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-10
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-09
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-08
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-07
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-00
https://datatracker.ietf.org/doc/html/rfc7231#section-8.3.1

Nottingham & Kamp Expires July 31, 2020 [Page 3]

Internet-Draft Structured Headers for HTTP January 2020

 Once a header field is defined, bespoke parsers and serializers often
 need to be written, because each header has slightly different
 handling of what looks like common syntax.

 This document introduces a set of common data structures for use in
 definitions of new HTTP header field values to address these
 problems. In particular, it defines a generic, abstract model for
 header field values, along with a concrete serialisation for
 expressing that model in HTTP [RFC7230] header fields.

 HTTP headers that are defined as "Structured Headers" use the types
 defined in this specification to define their syntax and basic
 handling rules, thereby simplifying both their definition by
 specification writers and handling by implementations.

 Additionally, future versions of HTTP can define alternative
 serialisations of the abstract model of these structures, allowing
 headers that use it to be transmitted more efficiently without being
 redefined.

 Note that it is not a goal of this document to redefine the syntax of
 existing HTTP headers; the mechanisms described herein are only
 intended to be used with headers that explicitly opt into them.

Section 2 describes how to specify a Structured Header.

Section 3 defines a number of abstract data types that can be used in
 Structured Headers. Those abstract types can be serialized into and
 parsed from HTTP headers using the algorithms described in Section 4.

1.1. Intentionally Strict Processing

 This specification intentionally defines strict parsing and
 serialisation behaviours using step-by-step algorithms; the only
 error handling defined is to fail the operation altogether.

 It is designed to encourage faithful implementation and therefore
 good interoperability. Therefore, an implementation that tried to be
 "helpful" by being more tolerant of input would make interoperability
 worse, since that would create pressure on other implementations to
 implement similar (but likely subtly different) workarounds.

 In other words, strict processing is an intentional feature of this
 specification; it allows non-conformant input to be discovered and
 corrected by the producer early, and avoids both interoperability and
 security issues that might otherwise result.

https://datatracker.ietf.org/doc/html/rfc7230

Nottingham & Kamp Expires July 31, 2020 [Page 4]

Internet-Draft Structured Headers for HTTP January 2020

 Note that as a result of this strictness, if a header field is
 appended to by multiple parties (e.g., intermediaries, or different
 components in the sender), an error in one party's value is likely to
 cause the entire header field to fail parsing.

1.2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses algorithms to specify parsing and serialisation
 behaviours, and the Augmented Backus-Naur Form (ABNF) notation of
 [RFC5234] to illustrate expected syntax in HTTP header fields. In
 doing so, uses the VCHAR, SP, DIGIT, ALPHA and DQUOTE rules from
 [RFC5234]. It also includes the tchar rule from [RFC7230].

 When parsing from HTTP header fields, implementations MUST follow the
 algorithms, but MAY vary in implementation so as the behaviours are
 indistinguishable from specified behaviour. If there is disagreement
 between the parsing algorithms and ABNF, the specified algorithms
 take precedence. In some places, the algorithms are "greedy" with
 whitespace, but this should not affect conformance.

 For serialisation to header fields, the ABNF illustrates the range of
 acceptable wire representations with as much fidelity as possible,
 and the algorithms define the recommended way to produce them.
 Implementations MAY vary from the specified behaviour so long as the
 output still matches the ABNF.

2. Defining New Structured Headers

 To specify a HTTP header as a structured header, its authors needs
 to:

 o Reference this specification. Recipients and generators of the
 header need to know that the requirements of this document are in
 effect.

 o Specify the type of the header field itself; either Dictionary
 (Section 3.2), List (Section 3.1), or Item (Section 3.3).

 o Define the semantics of those structures.

 o Specify any additional constraints upon the structures used, as
 well as the consequences when those constraints are violated.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230

Nottingham & Kamp Expires July 31, 2020 [Page 5]

Internet-Draft Structured Headers for HTTP January 2020

 Typically, this means that a header definition will specify the top-
 level type - Dictionary, List or Item - and then define its allowable
 types, and constraints upon them. For example, a header defined as a
 List might have all Integer members, or a mix of types; a header
 defined as an Item might allow only Strings, and additionally only
 strings beginning with the letter "Q". Likewise, inner lists are
 only valid when a header definition explicitly allows them.

 When Structured Headers parsing fails, the header is ignored (see
Section 4.2); in most situations, violating header-specific

 constraints should have the same effect. Thus, if a header is
 defined as an Item and required to be an Integer, but a String is
 received, it will by default be ignored. If the header requires
 different error handling, this should be explicitly specified.

 However, both items and inner lists allow parameters as an
 extensibility mechanism; this means that values can later be extended
 to accommodate more information, if need be. As a result, header
 specifications are discouraged from defining the presence of an
 unrecognised parameter as an error condition.

 To help assure that this extensibility is available in the future,
 and to encourage consumers to use a fully capable Structured Headers
 parser, a header definition can specify that "grease" parameters be
 added by senders. For example, a specification could stipulate that
 all parameters beginning with the letter 'q' are reserved for this
 use.

 Note that a header field definition cannot relax the requirements of
 this specification because doing so would preclude handling by
 generic software; they can only add additional constraints (for
 example, on the numeric range of integers and decimals, the format of
 strings and tokens, the types allowed in a dictionary's values, or
 the number of items in a list). Likewise, header field definitions
 can only use Structured Headers for the entire header field value,
 not a portion thereof.

 This specification defines minimums for the length or number of
 various structures supported by Structured Headers implementations.
 It does not specify maximum sizes in most cases, but header authors
 should be aware that HTTP implementations do impose various limits on
 the size of individual header fields, the total number of fields,
 and/or the size of the entire header block.

 Specifications can refer to a Structured Header's field-name as a
 "structured header name" and its field-value as a "structured header
 value" as necessary. Header definitions are encouraged to use the

Nottingham & Kamp Expires July 31, 2020 [Page 6]

Internet-Draft Structured Headers for HTTP January 2020

 ABNF rules beginning with "sh-" defined in this specification; other
 rules in this specification are not intended for their use.

 For example, a fictitious Foo-Example header field might be specified
 as:

 42. Foo-Example Header

 The Foo-Example HTTP header field conveys information about how
 much Foo the message has.

 Foo-Example is a Item Structured Header [RFCxxxx]. Its value MUST be
 an Integer (Section Y.Y of [RFCxxxx]). Its ABNF is:

 Foo-Example = sh-integer

 Its value indicates the amount of Foo in the message, and MUST
 be between 0 and 10, inclusive; other values MUST cause
 the entire header to be ignored.

 The following parameters are defined:
 * A parameter whose name is "fooUrl", and whose value is a string
 (Section Y.Y of [RFCxxxx]), conveying the Foo URLs
 for the message. See below for processing requirements.

 "fooUrl" contains a URI-reference (Section 4.1 of
 [RFC3986], Section 4.1). If its value is not a valid URI-reference,
 that URL MUST be ignored. If its value is a relative reference
 (Section 4.2 of [RFC3986]), it MUST be resolved (Section 5 of
 [RFC3986]) before being used.

 For example:

 Foo-Example: 2; foourl="https://foo.example.com/"

3. Structured Data Types

 This section defines the abstract value types that can be composed
 into Structured Headers. The ABNF provided represents the on-wire
 format in HTTP headers.

 In summary:

 o There are three top-level types that a HTTP header can be defined
 as; Lists, Dictionaries, and Items.

 o Lists and Dictionaries are containers; their members can be Items
 or Inner Lists (which are themselves lists of items).

https://datatracker.ietf.org/doc/html/rfc3986#section-4.1
https://datatracker.ietf.org/doc/html/rfc3986#section-4.1
https://datatracker.ietf.org/doc/html/rfc3986#section-4.2
https://datatracker.ietf.org/doc/html/rfc3986#section-5
https://datatracker.ietf.org/doc/html/rfc3986#section-5

Nottingham & Kamp Expires July 31, 2020 [Page 7]

Internet-Draft Structured Headers for HTTP January 2020

 o Both Items and Inner Lists can be parameterised with key/value
 pairs.

3.1. Lists

 Lists are arrays of zero or more members, each of which can be an
 item (Section 3.3) or an inner list (Section 3.1.1), both of which
 can be parameterised (Section 3.1.2).

 The ABNF for lists in HTTP headers is:

 sh-list = list-member *(*SP "," *SP list-member)
 list-member = sh-item / inner-list

 In HTTP headers, each member is separated by a comma and optional
 whitespace. For example, a header field whose value is defined as a
 list of strings could look like:

 Example-StrListHeader: "foo", "bar", "It was the best of times."

 In HTTP headers, an empty list is denoted by not serialising the
 header at all.

 Note that lists can have their members split across multiple
 instances inside a block of fields; for example, the following are
 equivalent:

 Example-Hdr: foo, bar

 and

 Example-Hdr: foo
 Example-Hdr: bar

 However, members of a list cannot be safely split between instances;
 see Section 4.2 for details.

 Parsers MUST support lists containing at least 1024 members. Header
 specifications can constrain the types and cardinality of individual
 list values as they require.

3.1.1. Inner Lists

 An inner list is an array of zero or more items (Section 3.3). Both
 the individual items and the inner-list itself can be parameterised
 (Section 3.1.2).

 The ABNF for inner-lists in HTTP headers is:

Nottingham & Kamp Expires July 31, 2020 [Page 8]

Internet-Draft Structured Headers for HTTP January 2020

 inner-list = "(" *SP [sh-item *(1*SP sh-item) *SP] ")"
 *parameter

 In HTTP headers, inner lists are denoted by surrounding parenthesis,
 and have their values delimited by a single space. A header field
 whose value is defined as a list of inner-lists of strings could look
 like:

 Example-StrListListHeader: ("foo" "bar"), ("baz"), ("bat" "one"), ()

 Note that the last member in this example is an empty inner list.

 A header field whose value is defined as a list of inner-lists with
 parameters at both levels could look like:

 Example-ListListParam: ("foo"; a=1;b=2);lvl=5, ("bar" "baz");lvl=1

 Parsers MUST support inner-lists containing at least 256 members.
 Header specifications can constrain the types and cardinality of
 individual inner-list members as they require.

3.1.2. Parameters

 Parameters are an ordered map of key-values pairs that are associated
 with an item (Section 3.3) or inner-list (Section 3.1.1). The keys
 are unique within the scope of a map of parameters, and the values
 are bare items (i.e., they themselves cannot be parameterised; see

Section 3.3).

 The ABNF for parameters in HTTP headers is:

 parameter = ";" *SP param-name ["=" param-value]
 param-name = key
 key = lcalpha *(lcalpha / DIGIT / "_" / "-" / "." / "*")
 lcalpha = %x61-7A ; a-z
 param-value = bare-item

 In HTTP headers, parameters are separated from their item or inner-
 list and each other by semicolons. For example:

 Example-ParamListHeader: abc;a=1;b=2; cde_456, (ghi;jk=4 l);q="9";r=w

 Parameters whose value is Boolean true MUST omit that value when
 serialised. For example:

 Example-IntHeader: 1; a; b=?0

Nottingham & Kamp Expires July 31, 2020 [Page 9]

Internet-Draft Structured Headers for HTTP January 2020

 Note that this requirement is only on serialisation; parsers are
 still required to correctly handle the true value when it appears in
 parameters.

 Parsers MUST support at least 256 parameters on an item or inner-
 list, and support parameter keys with at least 64 characters. Header
 specifications can constrain the types and cardinality of individual
 parameter names and values as they require.

3.2. Dictionaries

 Dictionaries are ordered maps of name-value pairs, where the names
 are short, textual strings and the values are items (Section 3.3) or
 arrays of items, both of which can be parameterised (Section 3.1.2).
 There can be zero or more members, and their names are unique in the
 scope of the dictionary they occur within.

 Implementations MUST provide access to dictionaries both by index and
 by name. Specifications MAY use either means of accessing the
 members.

 The ABNF for dictionaries in HTTP headers is:

 sh-dictionary = dict-member *(*SP "," *SP dict-member)
 dict-member = member-name ["=" member-value]
 member-name = key
 member-value = sh-item / inner-list

 In HTTP headers, members are separated by a comma with optional
 whitespace, while names and values are separated by "=" (without
 whitespace). For example:

 Example-DictHeader: en="Applepie", da=:w4ZibGV0w6ZydGU=:

 Members whose value is Boolean true MUST omit that value when
 serialised, unless it has parameters. For example, here both "b" and
 "c" are true, but "c"'s value is serialised because it has
 parameters:

 Example-DictHeader: a=?0, b, c=?1; foo=bar

 Note that this requirement is only on serialisation; parsers are
 still required to correctly handle the true value when it appears in
 dictionary values.

 A dictionary with a member whose value is an inner-list of tokens:

 Example-DictListHeader: rating=1.5, feelings=(joy sadness)

Nottingham & Kamp Expires July 31, 2020 [Page 10]

Internet-Draft Structured Headers for HTTP January 2020

 A dictionary with a mix of singular and list values, some with
 parameters:

 Example-MixDict: a=(1 2), b=3, c=4;aa=bb, d=(5 6);valid=?1

 As with lists, an empty dictionary is represented in HTTP headers by
 omitting the entire header field.

 Typically, a header field specification will define the semantics of
 dictionaries by specifying the allowed type(s) for individual member
 names, as well as whether their presence is required or optional.
 Recipients MUST ignore names that are undefined or unknown, unless
 the header field's specification specifically disallows them.

 Note that dictionaries can have their members split across multiple
 instances inside a block of fields; for example, the following are
 equivalent:

 Example-Hdr: foo=1, bar=2

 and

 Example-Hdr: foo=1
 Example-Hdr: bar=2

 However, members of a dictionary cannot be safely split between
 instances; see Section 4.2 for details.

 Parsers MUST support dictionaries containing at least 1024 name/value
 pairs, and names with at least 64 characters.

3.3. Items

 An item is can be a integer (Section 3.3.1), decimal (Section 3.3.2),
 string (Section 3.3.3), token (Section 3.3.4), byte sequence
 (Section 3.3.5), or Boolean (Section 3.3.6). It can have associated
 parameters (Section 3.1.2).

 The ABNF for items in HTTP headers is:

 sh-item = bare-item *parameter
 bare-item = sh-integer / sh-decimal / sh-string / sh-token / sh-binary
 / sh-boolean

 For example, a header field that is defined to be an Item that is an
 integer might look like:

 Example-IntItemHeader: 5

Nottingham & Kamp Expires July 31, 2020 [Page 11]

Internet-Draft Structured Headers for HTTP January 2020

 or with parameters:

 Example-IntItemHeader: 5; foo=bar

3.3.1. Integers

 Integers have a range of -999,999,999,999,999 to 999,999,999,999,999
 inclusive (i.e., up to fifteen digits, signed), for IEEE 754
 compatibility ([IEEE754]).

 The ABNF for integers in HTTP headers is:

 sh-integer = ["-"] 1*15DIGIT

 For example:

 Example-IntegerHeader: 42

 Note that commas in integers are used in this section's prose only
 for readability; they are not valid in the wire format.

3.3.2. Decimals

 Decimals are numbers with an integer and a fractional component. The
 Integer component has at most 12 digits; the fractional component has
 at most three digits.

 The ABNF for decimals in HTTP headers is:

 sh-decimal = ["-"] 1*12DIGIT "." 1*3DIGIT

 For example, a header whose value is defined as a decimal could look
 like:

 Example-DecimalHeader: 4.5

3.3.3. Strings

 Strings are zero or more printable ASCII [RFC0020] characters (i.e.,
 the range %x20 to %x7E). Note that this excludes tabs, newlines,
 carriage returns, etc.

 The ABNF for strings in HTTP headers is:

 sh-string = DQUOTE *(chr) DQUOTE
 chr = unescaped / escaped
 unescaped = %x20-21 / %x23-5B / %x5D-7E
 escaped = "\" (DQUOTE / "\")

https://datatracker.ietf.org/doc/html/rfc0020

Nottingham & Kamp Expires July 31, 2020 [Page 12]

Internet-Draft Structured Headers for HTTP January 2020

 In HTTP headers, strings are delimited with double quotes, using a
 backslash ("\") to escape double quotes and backslashes. For
 example:

 Example-StringHeader: "hello world"

 Note that strings only use DQUOTE as a delimiter; single quotes do
 not delimit strings. Furthermore, only DQUOTE and "\" can be
 escaped; other characters after "\" MUST cause parsing to fail.

 Unicode is not directly supported in strings, because it causes a
 number of interoperability issues, and - with few exceptions - header
 values do not require it.

 When it is necessary for a field value to convey non-ASCII content, a
 byte sequence (Section 3.3.5) SHOULD be specified, along with a
 character encoding (preferably [UTF-8]).

 Parsers MUST support strings with at least 1024 characters.

3.3.4. Tokens

 Tokens are short textual words; their abstract model is identical to
 their expression in the HTTP header serialisation.

 The ABNF for tokens in HTTP headers is:

 sh-token = (ALPHA / "*") *(tchar / ":" / "/")

 Parsers MUST support tokens with at least 512 characters.

 Note that a Structured Header token allows the characters as the
 "token" ABNF rule defined in [RFC7230], with the exceptions that the
 first character is required to be either ALPHA or "*", and ":" and
 "/" are also allowed in subsequent characters.

3.3.5. Byte Sequences

 Byte sequences can be conveyed in Structured Headers.

 The ABNF for a byte sequence in HTTP headers is:

 sh-binary = ":" *(base64) ":"
 base64 = ALPHA / DIGIT / "+" / "/" / "="

 In HTTP headers, a byte sequence is delimited with colons and encoded
 using base64 ([RFC4648], Section 4). For example:

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc4648#section-4

Nottingham & Kamp Expires July 31, 2020 [Page 13]

Internet-Draft Structured Headers for HTTP January 2020

 Example-BinaryHdr: :cHJldGVuZCB0aGlzIGlzIGJpbmFyeSBjb250ZW50Lg==:

 Parsers MUST support byte sequences with at least 16384 octets after
 decoding.

3.3.6. Booleans

 Boolean values can be conveyed in Structured Headers.

 The ABNF for a Boolean in HTTP headers is:

 sh-boolean = "?" boolean
 boolean = "0" / "1"

 In HTTP headers, a boolean is indicated with a leading "?" character
 followed by a "1" for a true value or "0" for false. For example:

 Example-BoolHdr: ?1

4. Working With Structured Headers in HTTP Headers

 This section defines how to serialize and parse Structured Headers in
 header fields, and protocols compatible with them (e.g., in HTTP/2
 [RFC7540] before HPACK [RFC7541] is applied).

4.1. Serializing Structured Headers

 Given a structure defined in this specification, return an ASCII
 string suitable for use in a HTTP header value.

 1. If the structure is a Dictionary or List and its value is empty
 (i.e., it has no members), do not serialize the field at all
 (i.e., omit both the field-name and field-value).

 2. If the structure is a Dictionary, let output_string be the result
 of running Serializing a Dictionary (Section 4.1.2) with the
 structure.

 3. Else if the structure is a List, let output_string be the result
 of running Serializing a List (Section 4.1.1) with the structure.

 4. Else if the structure is an Item, let output_string be the result
 of running Serializing an Item (Section 4.1.3) with the
 structure.

 5. Else, fail serialisation.

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541

Nottingham & Kamp Expires July 31, 2020 [Page 14]

Internet-Draft Structured Headers for HTTP January 2020

 6. Return output_string converted into an array of bytes, using
 ASCII encoding [RFC0020].

4.1.1. Serializing a List

 Given an array of (member_value, parameters) tuples as input_list,
 return an ASCII string suitable for use in a HTTP header value.

 1. Let output be an empty string.

 2. For each (member_value, parameters) of input_list:

 1. If member_value is an array, append the result of running
 Serialising an Inner List (Section 4.1.1.1) with
 (member_value, parameters) to output.

 2. Otherwise, append the result of running Serializing an Item
 (Section 4.1.3) with (member_value, parameters) to output.

 3. If more member_values remain in input_list:

 1. Append a COMMA to output.

 2. Append a single SP to output.

 3. Return output.

4.1.1.1. Serialising an Inner List

 Given an array of (member_value, parameters) tuples as inner_list,
 and parameters as list_parameters, return an ASCII string suitable
 for use in a HTTP header value.

 1. Let output be the string "(".

 2. For each (member_value, parameters) of inner_list:

 1. Append the result of running Serializing an Item
 (Section 4.1.3) with (member_value, parameters) to output.

 2. If more values remain in inner_list, append a single SP to
 output.

 3. Append ")" to output.

 4. Append the result of running Serializing Parameters
Section 4.1.1.2 with list_parameters to output.

https://datatracker.ietf.org/doc/html/rfc0020

Nottingham & Kamp Expires July 31, 2020 [Page 15]

Internet-Draft Structured Headers for HTTP January 2020

 5. Return output.

4.1.1.2. Serializing Parameters

 Given an ordered dictionary as input_parameters (each member having a
 param_name and a param_value), return an ASCII string suitable for
 use in a HTTP header value.

 1. Let output be an empty string.

 2. For each parameter-name with a value of param_value in
 input_parameters:

 1. Append ";" to output.

 2. Append the result of running Serializing a Key
 (Section 4.1.1.3) with param_name to output.

 3. If param_value is not Boolean true:

 1. Append "=" to output.

 2. Append the result of running Serializing a bare Item
 (Section 4.1.3.1) with param_value to output.

 3. Return output.

4.1.1.3. Serializing a Key

 Given a key as input_key, return an ASCII string suitable for use in
 a HTTP header value.

 1. If input_key is not a sequence of characters, or contains
 characters not in lcalpha, DIGIT, "_", "-", ".", or "*" fail
 serialisation.

 2. If the first character of input_key is not lcalpha, fail parsing.

 3. Let output be an empty string.

 4. Append input_key to output.

 5. Return output.

Nottingham & Kamp Expires July 31, 2020 [Page 16]

Internet-Draft Structured Headers for HTTP January 2020

4.1.2. Serializing a Dictionary

 Given an ordered dictionary as input_dictionary (each member having a
 member_name and a tuple value of (member_value, parameters)), return
 an ASCII string suitable for use in a HTTP header value.

 1. Let output be an empty string.

 2. For each member_name with a value of (member_value, parameters)
 in input_dictionary:

 1. Append the result of running Serializing a Key
 (Section 4.1.1.3) with member's member_name to output.

 3. If member_value is not Boolean true or parameters is not empty:

 1. Append "=" to output.

 1. If member_value is an array, append the result of running
 Serialising an Inner List (Section 4.1.1.1) with
 (member_value, parameters) to output.

 2. Otherwise, append the result of running Serializing an
 Item (Section 4.1.3) with (member_value, parameters) to
 output.

 4. If more members remain in input_dictionary:

 1. Append a COMMA to output.

 2. Append a single SP to output.

 5. Return output.

4.1.3. Serializing an Item

 Given an item bare_item and parameters item_parameters as input,
 return an ASCII string suitable for use in a HTTP header value.

 1. Let output be an empty string.

 2. Append the result of running Serializing a Bare Item
Section 4.1.3.1 with bare_item to output.

 3. Append the result of running Serializing Parameters
Section 4.1.1.2 with item_parameters to output.

 4. Return output.

Nottingham & Kamp Expires July 31, 2020 [Page 17]

Internet-Draft Structured Headers for HTTP January 2020

4.1.3.1. Serialising a Bare Item

 Given an item as input_item, return an ASCII string suitable for use
 in a HTTP header value.

 1. If input_item is an integer, return the result of running
 Serializing an Integer (Section 4.1.4) with input_item.

 2. If input_item is a decimal, return the result of running
 Serializing a Decimal (Section 4.1.5) with input_item.

 3. If input_item is a string, return the result of running
 Serializing a String (Section 4.1.6) with input_item.

 4. If input_item is a token, return the result of running
 Serializing a Token (Section 4.1.7) with input_item.

 5. If input_item is a Boolean, return the result of running
 Serializing a Boolean (Section 4.1.9) with input_item.

 6. If input_item is a byte sequence, return the result of running
 Serializing a Byte Sequence (Section 4.1.8) with input_item.

 7. Otherwise, fail serialisation.

4.1.4. Serializing an Integer

 Given an integer as input_integer, return an ASCII string suitable
 for use in a HTTP header value.

 1. If input_integer is not an integer in the range of
 -999,999,999,999,999 to 999,999,999,999,999 inclusive, fail
 serialisation.

 2. Let output be an empty string.

 3. If input_integer is less than (but not equal to) 0, append "-" to
 output.

 4. Append input_integer's numeric value represented in base 10 using
 only decimal digits to output.

 5. Return output.

Nottingham & Kamp Expires July 31, 2020 [Page 18]

Internet-Draft Structured Headers for HTTP January 2020

4.1.5. Serializing a Decimal

 Given a decimal_number as input_decimal, return an ASCII string
 suitable for use in a HTTP header value.

 1. Let output be an empty string.

 2. If input_decimal is less than (but not equal to) 0, append "-" to
 output.

 3. Append input_decimal's integer component represented in base 10
 (using only decimal digits) to output; if it is zero, append "0".

 4. If the number of characters appended in the previous step is
 greater than 12, fail serialisation.

 5. Append "." to output.

 6. If input_decimal's fractional component is zero, append "0" to
 output.

 7. Else if input_decimal's fractional component has up to three
 digits, append them represented in base 10 (using only decimal
 digits) to output.

 8. Otherwise, append the first three digits of input_decimal's
 fractional component (represented in base 10, using only decimal
 digits) to output, rounding the final digit to the nearest value,
 or to the even value if it is equidistant.

 9. Return output.

4.1.6. Serializing a String

 Given a string as input_string, return an ASCII string suitable for
 use in a HTTP header value.

 1. If input_string is not a sequence of characters, or contains
 characters in the range %x00-1f or %x7f (i.e., is not in VCHAR or
 SP), fail serialisation.

 2. Let output be an empty string.

 3. Append DQUOTE to output.

 4. For each character char in input_string:

 1. If char is "\" or DQUOTE:

Nottingham & Kamp Expires July 31, 2020 [Page 19]

Internet-Draft Structured Headers for HTTP January 2020

 1. Append "\" to output.

 2. Append char to output.

 5. Append DQUOTE to output.

 6. Return output.

4.1.7. Serializing a Token

 Given a token as input_token, return an ASCII string suitable for use
 in a HTTP header value.

 1. If input_token is not a sequence of characters, the first
 character is not ALPHA or "*", or the remaining contain a
 character not in tchar, ":" or "/", fail serialisation.

 2. Let output be an empty string.

 3. Append input_token to output.

 4. Return output.

4.1.8. Serializing a Byte Sequence

 Given a byte sequence as input_bytes, return an ASCII string suitable
 for use in a HTTP header value.

 1. If input_bytes is not a sequence of bytes, fail serialisation.

 2. Let output be an empty string.

 3. Append ":" to output.

 4. Append the result of base64-encoding input_bytes as per
[RFC4648], Section 4, taking account of the requirements below.

 5. Append ":" to output.

 6. Return output.

 The encoded data is required to be padded with "=", as per [RFC4648],
 Section 3.2.

 Likewise, encoded data SHOULD have pad bits set to zero, as per
[RFC4648], Section 3.5, unless it is not possible to do so due to

 implementation constraints.

https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc4648#section-3.2
https://datatracker.ietf.org/doc/html/rfc4648#section-3.2
https://datatracker.ietf.org/doc/html/rfc4648#section-3.5

Nottingham & Kamp Expires July 31, 2020 [Page 20]

Internet-Draft Structured Headers for HTTP January 2020

4.1.9. Serializing a Boolean

 Given a Boolean as input_boolean, return an ASCII string suitable for
 use in a HTTP header value.

 1. If input_boolean is not a boolean, fail serialisation.

 2. Let output be an empty string.

 3. Append "?" to output.

 4. If input_boolean is true, append "1" to output.

 5. If input_boolean is false, append "0" to output.

 6. Return output.

4.2. Parsing Header Fields into Structured Headers

 When a receiving implementation parses HTTP header fields that are
 known to be Structured Headers, it is important that care be taken,
 as there are a number of edge cases that can cause interoperability
 or even security problems. This section specifies the algorithm for
 doing so.

 Given an array of bytes input_bytes that represents the chosen
 header's field-value (which is empty if that header is not present),
 and header_type (one of "dictionary", "list", or "item"), return the
 parsed header value.

 1. Convert input_bytes into an ASCII string input_string; if
 conversion fails, fail parsing.

 2. Discard any leading SP characters from input_string.

 3. If header_type is "list", let output be the result of running
 Parsing a List (Section 4.2.1) with input_string.

 4. If header_type is "dictionary", let output be the result of
 running Parsing a Dictionary (Section 4.2.2) with input_string.

 5. If header_type is "item", let output be the result of running
 Parsing an Item (Section 4.2.3) with input_string.

 6. Discard any leading SP characters from input_string.

 7. If input_string is not empty, fail parsing.

Nottingham & Kamp Expires July 31, 2020 [Page 21]

Internet-Draft Structured Headers for HTTP January 2020

 8. Otherwise, return output.

 When generating input_bytes, parsers MUST combine all instances of
 the target header field into one comma-separated field-value, as per

[RFC7230], Section 3.2.2; this assures that the header is processed
 correctly.

 For Lists and Dictionaries, this has the effect of correctly
 concatenating all instances of the header field, as long as
 individual individual members of the top-level data structure are not
 split across multiple header instances.

 Strings split across multiple header instances will have
 unpredictable results, because comma(s) and whitespace inserted upon
 combination will become part of the string output by the parser.
 Since concatenation might be done by an upstream intermediary, the
 results are not under the control of the serializer or the parser.

 Tokens, Integers, Decimals and Byte Sequences cannot be split across
 multiple headers because the inserted commas will cause parsing to
 fail.

 If parsing fails - including when calling another algorithm - the
 entire header field's value MUST be ignored (i.e., treated as if the
 header field were not present in the message). This is intentionally
 strict, to improve interoperability and safety, and specifications
 referencing this document are not allowed to loosen this requirement.

 Note that this requirement does not apply to an implementation that
 is not parsing the header field; for example, an intermediary is not
 required to strip a failing header field from a message before
 forwarding it.

4.2.1. Parsing a List

 Given an ASCII string as input_string, return an array of
 (item_or_inner_list, parameters) tuples. input_string is modified to
 remove the parsed value.

 1. Let members be an empty array.

 2. While input_string is not empty:

 1. Append the result of running Parsing an Item or Inner List
 (Section 4.2.1.1) with input_string to members.

 2. Discard any leading SP characters from input_string.

https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.2

Nottingham & Kamp Expires July 31, 2020 [Page 22]

Internet-Draft Structured Headers for HTTP January 2020

 3. If input_string is empty, return members.

 4. Consume the first character of input_string; if it is not
 COMMA, fail parsing.

 5. Discard any leading SP characters from input_string.

 6. If input_string is empty, there is a trailing comma; fail
 parsing.

 3. No structured data has been found; return members (which is
 empty).

4.2.1.1. Parsing an Item or Inner List

 Given an ASCII string as input_string, return the tuple
 (item_or_inner_list, parameters), where item_or_inner_list can be
 either a single bare item, or an array of (bare_item, parameters)
 tuples. input_string is modified to remove the parsed value.

 1. If the first character of input_string is "(", return the result
 of running Parsing an Inner List (Section 4.2.1.2) with
 input_string.

 2. Return the result of running Parsing an Item (Section 4.2.3) with
 input_string.

4.2.1.2. Parsing an Inner List

 Given an ASCII string as input_string, return the tuple (inner_list,
 parameters), where inner_list is an array of (bare_item, parameters)
 tuples. input_string is modified to remove the parsed value.

 1. Consume the first character of input_string; if it is not "(",
 fail parsing.

 2. Let inner_list be an empty array.

 3. While input_string is not empty:

 1. Discard any leading SP characters from input_string.

 2. If the first character of input_string is ")":

 1. Consume the first character of input_string.

 2. Let parameters be the result of running Parsing
 Parameters (Section 4.2.3.2) with input_string.

Nottingham & Kamp Expires July 31, 2020 [Page 23]

Internet-Draft Structured Headers for HTTP January 2020

 3. Return the tuple (inner_list, parameters).

 3. Let item be the result of running Parsing an Item
 (Section 4.2.3) with input_string.

 4. Append item to inner_list.

 5. If the first character of input_string is not SP or ")", fail
 parsing.

 4. The end of the inner list was not found; fail parsing.

4.2.2. Parsing a Dictionary

 Given an ASCII string as input_string, return an ordered map whose
 values are (item_or_inner_list, parameters) tuples. input_string is
 modified to remove the parsed value.

 1. Let dictionary be an empty, ordered map.

 2. While input_string is not empty:

 1. Let this_key be the result of running Parsing a Key
 (Section 4.2.3.3) with input_string.

 2. If the first character of input_string is "=":

 1. Consume the first character of input_string.

 2. Let member be the result of running Parsing an Item or
 Inner List (Section 4.2.1.1) with input_string.

 3. Otherwise:

 1. Let value be Boolean true.

 2. Let parameters be an empty, ordered map.

 3. Let member be the tuple (value, parameters).

 4. Add name this_key with value member to dictionary. If
 dictionary already contains a name this_key (comparing
 character-for-character), overwrite its value.

 5. Discard any leading SP characters from input_string.

 6. If input_string is empty, return dictionary.

Nottingham & Kamp Expires July 31, 2020 [Page 24]

Internet-Draft Structured Headers for HTTP January 2020

 7. Consume the first character of input_string; if it is not
 COMMA, fail parsing.

 8. Discard any leading SP characters from input_string.

 9. If input_string is empty, there is a trailing comma; fail
 parsing.

 3. No structured data has been found; return dictionary (which is
 empty).

4.2.3. Parsing an Item

 Given an ASCII string as input_string, return a (bare_item,
 parameters) tuple. input_string is modified to remove the parsed
 value.

 1. Let bare_item be the result of running Parsing a Bare Item
 (Section 4.2.3.1) with input_string.

 2. Let parameters be the result of running Parsing Parameters
 (Section 4.2.3.2) with input_string.

 3. Return the tuple (bare_item, parameters).

4.2.3.1. Parsing a Bare Item

 Given an ASCII string as input_string, return a bare item.
 input_string is modified to remove the parsed value.

 1. If the first character of input_string is a "-" or a DIGIT,
 return the result of running Parsing a Number (Section 4.2.4)
 with input_string.

 2. If the first character of input_string is a DQUOTE, return the
 result of running Parsing a String (Section 4.2.5) with
 input_string.

 3. If the first character of input_string is ":", return the result
 of running Parsing a Byte Sequence (Section 4.2.7) with
 input_string.

 4. If the first character of input_string is "?", return the result
 of running Parsing a Boolean (Section 4.2.8) with input_string.

 5. If the first character of input_string is an ALPHA or "*", return
 the result of running Parsing a Token (Section 4.2.6) with
 input_string.

Nottingham & Kamp Expires July 31, 2020 [Page 25]

Internet-Draft Structured Headers for HTTP January 2020

 6. Otherwise, the item type is unrecognized; fail parsing.

4.2.3.2. Parsing Parameters

 Given an ASCII string as input_string, return an ordered map whose
 values are bare items. input_string is modified to remove the parsed
 value.

 1. Let parameters be an empty, ordered map.

 2. While input_string is not empty:

 1. If the first character of input_string is not ";", exit the
 loop.

 2. Consume a ";" character from the beginning of input_string.

 3. Discard any leading SP characters from input_string.

 4. let param_name be the result of running Parsing a Key
 (Section 4.2.3.3) with input_string.

 5. Let param_value be Boolean true.

 6. If the first character of input_string is "=":

 1. Consume the "=" character at the beginning of
 input_string.

 2. Let param_value be the result of running Parsing a Bare
 Item (Section 4.2.3.1) with input_string.

 7. Append key param_name with value param_value to parameters.
 If parameters already contains a name param_name (comparing
 character-for-character), overwrite its value.

 3. Return parameters.

4.2.3.3. Parsing a Key

 Given an ASCII string as input_string, return a key. input_string is
 modified to remove the parsed value.

 1. If the first character of input_string is not lcalpha, fail
 parsing.

 2. Let output_string be an empty string.

Nottingham & Kamp Expires July 31, 2020 [Page 26]

Internet-Draft Structured Headers for HTTP January 2020

 3. While input_string is not empty:

 1. If the first character of input_string is not one of lcalpha,
 DIGIT, "_", "-", ".", or "*", return output_string.

 2. Let char be the result of removing the first character of
 input_string.

 3. Append char to output_string.

 4. Return output_string.

4.2.4. Parsing a Number

 Given an ASCII string as input_string, return a number. input_string
 is modified to remove the parsed value.

 NOTE: This algorithm parses both Integers (Section 3.3.1) and
 Decimals (Section 3.3.2), and returns the corresponding structure.

 1. Let type be "integer".

 2. Let sign be 1.

 3. Let input_number be an empty string.

 4. If the first character of input_string is "-", consume it and
 set sign to -1.

 5. If input_string is empty, there is an empty integer; fail
 parsing.

 6. If the first character of input_string is not a DIGIT, fail
 parsing.

 7. While input_string is not empty:

 1. Let char be the result of consuming the first character of
 input_string.

 2. If char is a DIGIT, append it to input_number.

 3. Else, if type is "integer" and char is ".":

 1. If input_number contains more than 12 characters, fail
 parsing.

Nottingham & Kamp Expires July 31, 2020 [Page 27]

Internet-Draft Structured Headers for HTTP January 2020

 2. Otherwise, append char to input_number and set type to
 "decimal".

 4. Otherwise, prepend char to input_string, and exit the loop.

 5. If type is "integer" and input_number contains more than 15
 characters, fail parsing.

 6. If type is "decimal" and input_number contains more than 16
 characters, fail parsing.

 8. If type is "integer":

 1. Parse input_number as an integer and let output_number be
 the product of the result and sign.

 2. If output_number is outside the range -999,999,999,999,999
 to 999,999,999,999,999 inclusive, fail parsing.

 9. Otherwise:

 1. If the final character of input_number is ".", fail parsing.

 2. If the number of characters after "." in input_number is
 greater than three, fail parsing.

 3. Parse input_number as a decimal number and let output_number
 be the product of the result and sign.

 10. Return output_number.

4.2.5. Parsing a String

 Given an ASCII string as input_string, return an unquoted string.
 input_string is modified to remove the parsed value.

 1. Let output_string be an empty string.

 2. If the first character of input_string is not DQUOTE, fail
 parsing.

 3. Discard the first character of input_string.

 4. While input_string is not empty:

 1. Let char be the result of consuming the first character of
 input_string.

Nottingham & Kamp Expires July 31, 2020 [Page 28]

Internet-Draft Structured Headers for HTTP January 2020

 2. If char is a backslash ("\"):

 1. If input_string is now empty, fail parsing.

 2. Let next_char be the result of consuming the first
 character of input_string.

 3. If next_char is not DQUOTE or "\", fail parsing.

 4. Append next_char to output_string.

 3. Else, if char is DQUOTE, return output_string.

 4. Else, if char is in the range %x00-1f or %x7f (i.e., is not
 in VCHAR or SP), fail parsing.

 5. Else, append char to output_string.

 5. Reached the end of input_string without finding a closing DQUOTE;
 fail parsing.

4.2.6. Parsing a Token

 Given an ASCII string as input_string, return a token. input_string
 is modified to remove the parsed value.

 1. If the first character of input_string is not ALPHA or "*", fail
 parsing.

 2. Let output_string be an empty string.

 3. While input_string is not empty:

 1. If the first character of input_string is not in tchar, ":"
 or "/", return output_string.

 2. Let char be the result of consuming the first character of
 input_string.

 3. Append char to output_string.

 4. Return output_string.

4.2.7. Parsing a Byte Sequence

 Given an ASCII string as input_string, return a byte sequence.
 input_string is modified to remove the parsed value.

Nottingham & Kamp Expires July 31, 2020 [Page 29]

Internet-Draft Structured Headers for HTTP January 2020

 1. If the first character of input_string is not ":", fail parsing.

 2. Discard the first character of input_string.

 3. If there is not a ":" character before the end of input_string,
 fail parsing.

 4. Let b64_content be the result of consuming content of
 input_string up to but not including the first instance of the
 character ":".

 5. Consume the ":" character at the beginning of input_string.

 6. If b64_content contains a character not included in ALPHA, DIGIT,
 "+", "/" and "=", fail parsing.

 7. Let binary_content be the result of Base 64 Decoding [RFC4648]
 b64_content, synthesizing padding if necessary (note the
 requirements about recipient behaviour below).

 8. Return binary_content.

 Because some implementations of base64 do not allow reject of encoded
 data that is not properly "=" padded (see [RFC4648], Section 3.2),
 parsers SHOULD NOT fail when it is not present, unless they cannot be
 configured to do so.

 Because some implementations of base64 do not allow rejection of
 encoded data that has non-zero pad bits (see [RFC4648], Section 3.5),
 parsers SHOULD NOT fail when it is present, unless they cannot be
 configured to do so.

 This specification does not relax the requirements in [RFC4648],
 Section 3.1 and 3.3; therefore, parsers MUST fail on characters
 outside the base64 alphabet, and on line feeds in encoded data.

4.2.8. Parsing a Boolean

 Given an ASCII string as input_string, return a Boolean. input_string
 is modified to remove the parsed value.

 1. If the first character of input_string is not "?", fail parsing.

 2. Discard the first character of input_string.

 3. If the first character of input_string matches "1", discard the
 first character, and return true.

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648#section-3.2
https://datatracker.ietf.org/doc/html/rfc4648#section-3.5
https://datatracker.ietf.org/doc/html/rfc4648#section-3.1
https://datatracker.ietf.org/doc/html/rfc4648#section-3.1

Nottingham & Kamp Expires July 31, 2020 [Page 30]

Internet-Draft Structured Headers for HTTP January 2020

 4. If the first character of input_string matches "0", discard the
 first character, and return false.

 5. No value has matched; fail parsing.

5. IANA Considerations

 This draft has no actions for IANA.

6. Security Considerations

 The size of most types defined by Structured Headers is not limited;
 as a result, extremely large header fields could be an attack vector
 (e.g., for resource consumption). Most HTTP implementations limit
 the sizes of individual header fields as well as the overall header
 block size to mitigate such attacks.

 It is possible for parties with the ability to inject new HTTP header
 fields to change the meaning of a Structured Header. In some
 circumstances, this will cause parsing to fail, but it is not
 possible to reliably fail in all such circumstances.

7. References

7.1. Normative References

 [RFC0020] Cerf, V., "ASCII format for network interchange", STD 80,
RFC 20, DOI 10.17487/RFC0020, October 1969,

 <https://www.rfc-editor.org/info/rfc20>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

https://datatracker.ietf.org/doc/html/rfc20
https://www.rfc-editor.org/info/rfc20
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230

Nottingham & Kamp Expires July 31, 2020 [Page 31]

Internet-Draft Structured Headers for HTTP January 2020

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic",
 IEEE 754-2019, DOI 10.1109/IEEESTD.2019.8766229,
 ISBN 978-1-5044-5924-2, July 2019,
 <https://ieeexplore.ieee.org/document/8766229>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <https://www.rfc-editor.org/info/rfc7541>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [UTF-8] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <http://www.rfc-editor.org/info/std63>.

7.3. URIs

 [1] https://lists.w3.org/Archives/Public/ietf-http-wg/

 [2] https://httpwg.github.io/

 [3] https://github.com/httpwg/http-extensions/labels/header-structure

 [4] https://github.com/httpwg/structured-header-tests

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://ieeexplore.ieee.org/document/8766229
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7493
https://www.rfc-editor.org/info/rfc7493
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541
https://www.rfc-editor.org/info/rfc7541
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://datatracker.ietf.org/doc/html/rfc3629
http://www.rfc-editor.org/info/std63
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.github.io/
https://github.com/httpwg/http-extensions/labels/header-structure
https://github.com/httpwg/structured-header-tests

Nottingham & Kamp Expires July 31, 2020 [Page 32]

Internet-Draft Structured Headers for HTTP January 2020

 [5] https://github.com/httpwg/wiki/wiki/Structured-Headers

 [6] https://github.com/httpwg/structured-header-tests

Appendix A. Acknowledgements

 Many thanks to Matthew Kerwin for his detailed feedback and careful
 consideration during the development of this specification.

Appendix B. Frequently Asked Questions

B.1. Why not JSON?

 Earlier proposals for structured headers were based upon JSON
 [RFC8259]. However, constraining its use to make it suitable for
 HTTP header fields required senders and recipients to implement
 specific additional handling.

 For example, JSON has specification issues around large numbers and
 objects with duplicate members. Although advice for avoiding these
 issues is available (e.g., [RFC7493]), it cannot be relied upon.

 Likewise, JSON strings are by default Unicode strings, which have a
 number of potential interoperability issues (e.g., in comparison).
 Although implementers can be advised to avoid non-ASCII content where
 unnecessary, this is difficult to enforce.

 Another example is JSON's ability to nest content to arbitrary
 depths. Since the resulting memory commitment might be unsuitable
 (e.g., in embedded and other limited server deployments), it's
 necessary to limit it in some fashion; however, existing JSON
 implementations have no such limits, and even if a limit is
 specified, it's likely that some header field definition will find a
 need to violate it.

 Because of JSON's broad adoption and implementation, it is difficult
 to impose such additional constraints across all implementations;
 some deployments would fail to enforce them, thereby harming
 interoperability. In short, if it looks like JSON, people will be
 tempted to use a JSON parser / serialiser on header fields.

 Since a major goal for Structured Headers is to improve
 interoperability and simplify implementation, these concerns led to a
 format that requires a dedicated parser and serializer.

 Additionally, there were widely shared feelings that JSON doesn't
 "look right" in HTTP headers.

https://github.com/httpwg/wiki/wiki/Structured-Headers
https://github.com/httpwg/structured-header-tests
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc7493

Nottingham & Kamp Expires July 31, 2020 [Page 33]

Internet-Draft Structured Headers for HTTP January 2020

B.2. Structured Headers don't "fit" my data.

 Structured headers intentionally limits the complexity of data
 structures, to assure that it can be processed in a performant manner
 with little overhead. This means that work is necessary to fit some
 data types into them.

 Sometimes, this can be achieved by creating limited substructures in
 values, and/or using more than one header. For example, consider:

 Example-Thing: name="Widget", cost=89.2, descriptions=(foo bar)
 Example-Description: foo; url="https://example.net"; context=123,
 bar; url="https://example.org"; context=456

 Since the description contains an array of key/value pairs, we use a
 List to represent them, with the token for each item in the array
 used to identify it in the "descriptions" member of the Example-Thing
 dictionary header.

 When specifying more than one header, it's important to remember to
 describe what a processor's behaviour should be when one of the
 headers is missing.

 If you need to fit arbitrarily complex data into a header, Structured
 Headers is probably a poor fit for your use case.

Appendix C. Implementation Notes

 A generic implementation of this specification should expose the top-
 level parse (Section 4.2) and serialize (Section 4.1) functions.
 They need not be functions; for example, it could be implemented as
 an object, with methods for each of the different top-level types.

 For interoperability, it's important that generic implementations be
 complete and follow the algorithms closely; see Section 1.1. To aid
 this, a common test suite is being maintained by the community at

https://github.com/httpwg/structured-header-tests [6].

 Implementers should note that dictionaries and parameters are order-
 preserving maps. Some headers may not convey meaning in the ordering
 of these data types, but it should still be exposed so that
 applications which need to use it will have it available.

 Likewise, implementations should note that it's important to preserve
 the distinction between tokens and strings. While most programming
 languages have native types that map to the other types well, it may
 be necessary to create a wrapper "token" object or use a parameter on
 functions to assure that these types remain separate.

https://github.com/httpwg/structured-header-tests

Nottingham & Kamp Expires July 31, 2020 [Page 34]

Internet-Draft Structured Headers for HTTP January 2020

Appendix D. Changes

 RFC Editor: Please remove this section before publication.

D.1. Since draft-ietf-httpbis-header-structure-14

 o Editorial improvements.

 o Allow empty dictionary values (#992).

 o Change value of omitted parameter value to True (#995).

 o Explain more about splitting dictionaries and lists across header
 instances (#997).

 o Disallow HTAB, replace OWS with spaces (#998).

 o Change byte sequence delimiters from "*" to ":" (#991).

 o Allow tokens to start with "*" (#991).

 o Change Floats to fixed-precision Decimals (#982).

 o Round the fractional component of decimal, rather than truncating
 it (#982).

 o Handle duplicate dictionary and parameter keys by overwriting
 their values, rather than failing (#997).

 o Allow "." in key (#1027).

 o Check first character of key in serialisation (#1037).

 o Talk about greasing headers (#1015).

D.2. Since draft-ietf-httpbis-header-structure-13

 o Editorial improvements.

 o Define "structured header name" and "structured header value"
 terms (#908).

 o Corrected text about valid characters in strings (#931).

 o Removed most instances of the word "textual", as it was redundant
 (#915).

 o Allowed parameters on Items and Inner Lists (#907).

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-14
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-13

Nottingham & Kamp Expires July 31, 2020 [Page 35]

Internet-Draft Structured Headers for HTTP January 2020

 o Expand the range of characters in token (#961).

 o Disallow OWS before ";" delimiter in parameters (#961).

D.3. Since draft-ietf-httpbis-header-structure-12

 o Editorial improvements.

 o Reworked float serialisation (#896).

 o Don't add a trailing space in inner-list (#904).

D.4. Since draft-ietf-httpbis-header-structure-11

 o Allow * in key (#844).

 o Constrain floats to six digits of precision (#848).

 o Allow dictionary members to have parameters (#842).

D.5. Since draft-ietf-httpbis-header-structure-10

 o Update abstract (#799).

 o Input and output are now arrays of bytes (#662).

 o Implementations need to preserve difference between token and
 string (#790).

 o Allow empty dictionaries and lists (#781).

 o Change parameterized lists to have primary items (#797).

 o Allow inner lists in both dictionaries and lists; removes lists of
 lists (#816).

 o Subsume Parameterised Lists into Lists (#839).

D.6. Since draft-ietf-httpbis-header-structure-09

 o Changed Boolean from T/F to 1/0 (#784).

 o Parameters are now ordered maps (#765).

 o Clamp integers to 15 digits (#737).

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-12
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-11
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-10
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-09

Nottingham & Kamp Expires July 31, 2020 [Page 36]

Internet-Draft Structured Headers for HTTP January 2020

D.7. Since draft-ietf-httpbis-header-structure-08

 o Disallow whitespace before items properly (#703).

 o Created "key" for use in dictionaries and parameters, rather than
 relying on identifier (#702). Identifiers have a separate minimum
 supported size.

 o Expanded the range of special characters allowed in identifier to
 include all of ALPHA, ".", ":", and "%" (#702).

 o Use "?" instead of "!" to indicate a Boolean (#719).

 o Added "Intentionally Strict Processing" (#684).

 o Gave better names for referring specs to use in Parameterised
 Lists (#720).

 o Added Lists of Lists (#721).

 o Rename Identifier to Token (#725).

 o Add implementation guidance (#727).

D.8. Since draft-ietf-httpbis-header-structure-07

 o Make Dictionaries ordered mappings (#659).

 o Changed "binary content" to "byte sequence" to align with Infra
 specification (#671).

 o Changed "mapping" to "map" for #671.

 o Don't fail if byte sequences aren't "=" padded (#658).

 o Add Booleans (#683).

 o Allow identifiers in items again (#629).

 o Disallowed whitespace before items (#703).

 o Explain the consequences of splitting a string across multiple
 headers (#686).

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-08
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-07

Nottingham & Kamp Expires July 31, 2020 [Page 37]

Internet-Draft Structured Headers for HTTP January 2020

D.9. Since draft-ietf-httpbis-header-structure-06

 o Add a FAQ.

 o Allow non-zero pad bits.

 o Explicitly check for integers that violate constraints.

D.10. Since draft-ietf-httpbis-header-structure-05

 o Reorganise specification to separate parsing out.

 o Allow referencing specs to use ABNF.

 o Define serialisation algorithms.

 o Refine relationship between ABNF, parsing and serialisation
 algorithms.

D.11. Since draft-ietf-httpbis-header-structure-04

 o Remove identifiers from item.

 o Remove most limits on sizes.

 o Refine number parsing.

D.12. Since draft-ietf-httpbis-header-structure-03

 o Strengthen language around failure handling.

D.13. Since draft-ietf-httpbis-header-structure-02

 o Split Numbers into Integers and Floats.

 o Define number parsing.

 o Tighten up binary parsing and give it an explicit end delimiter.

 o Clarify that mappings are unordered.

 o Allow zero-length strings.

 o Improve string parsing algorithm.

 o Improve limits in algorithms.

 o Require parsers to combine header fields before processing.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-02

Nottingham & Kamp Expires July 31, 2020 [Page 38]

Internet-Draft Structured Headers for HTTP January 2020

 o Throw an error on trailing garbage.

D.14. Since draft-ietf-httpbis-header-structure-01

 o Replaced with draft-nottingham-structured-headers.

D.15. Since draft-ietf-httpbis-header-structure-00

 o Added signed 64bit integer type.

 o Drop UTF8, and settle on BCP137 ::EmbeddedUnicodeChar for h1-
 unicode-string.

 o Change h1_blob delimiter to ":" since "'" is valid t_char

Authors' Addresses

 Mark Nottingham
 Fastly

 Email: mnot@mnot.net
 URI: https://www.mnot.net/

 Poul-Henning Kamp
 The Varnish Cache Project

 Email: phk@varnish-cache.org

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-01
https://datatracker.ietf.org/doc/html/draft-nottingham-structured-headers
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-00
https://datatracker.ietf.org/doc/html/bcp137
https://www.mnot.net/

Nottingham & Kamp Expires July 31, 2020 [Page 39]

