
HTTPbis Working Group M. Belshe
Internet-Draft Twist
Intended status: Standards Track R. Peon
Expires: October 5, 2013 Google, Inc
 M. Thomson, Ed.
 Microsoft
 A. Melnikov, Ed.
 Isode Ltd
 April 3, 2013

Hypertext Transfer Protocol version 2.0
draft-ietf-httpbis-http2-02

Abstract

 This specification describes an optimised expression of the syntax of
 the Hypertext Transfer Protocol (HTTP). The HTTP/2.0 encapsulation
 enables more efficient transfer of representations by providing
 compressed header fields, simultaneous requests, and also introduces
 unsolicited push of representations from server to client.

 This document is an alternative to, but does not obsolete the HTTP
 message format. HTTP semantics remain unchanged.

Editorial Note (To be removed by RFC Editor)

 Discussion of this draft takes place on the HTTPBIS working group
 mailing list (ietf-http-wg@w3.org), which is archived at
 <http://lists.w3.org/Archives/Public/ietf-http-wg/>.

 Working Group information and related documents can be found at
 <http://tools.ietf.org/wg/httpbis/> (Wiki) and
 <https://github.com/http2/http2-spec> (source code and issues
 tracker).

 The changes in this draft are summarized in Appendix A.1.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

Belshe, et al. Expires October 5, 2013 [Page 1]

http://lists.w3.org/Archives/Public/ietf-http-wg/
http://tools.ietf.org/wg/httpbis/
https://github.com/http2/http2-spec
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP/2.0 April 2013

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 5, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 5
1.1. Document Organization 5
1.2. Conventions and Terminology 6

2. Starting HTTP/2.0 . 7
2.1. HTTP/2.0 Version Identification 7
2.2. Starting HTTP/2.0 for "http:" URIs 8
2.3. Starting HTTP/2.0 for "https:" URIs 8
2.4. Starting HTTP/2.0 with Prior Knowledge 9

3. HTTP/2.0 Framing Layer . 9
3.1. Session . 9
3.2. Session Header . 9
3.3. Framing . 10
3.3.1. Frame Header . 10
3.3.2. Frame Processing 11

3.4. Streams . 11
3.4.1. Stream Creation 12
3.4.2. Stream priority 12
3.4.3. Stream headers . 13
3.4.4. Stream data exchange 13
3.4.5. Stream half-close 13
3.4.6. Stream close . 13

3.5. Error Handling . 14
3.5.1. Session Error Handling 14
3.5.2. Stream Error Handling 15

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Belshe, et al. Expires October 5, 2013 [Page 2]

Internet-Draft HTTP/2.0 April 2013

3.5.3. Error Codes . 15
3.6. Stream Flow Control 16
3.6.1. Flow Control Principles 16
3.6.2. Appropriate Use of Flow Control 17

3.7. Frame Types . 18
3.7.1. DATA Frames . 18
3.7.2. HEADERS+PRIORITY 18
3.7.3. RST_STREAM . 18
3.7.4. SETTINGS . 19
3.7.5. PUSH_PROMISE . 22
3.7.6. PING . 23
3.7.7. GOAWAY . 23
3.7.8. HEADERS . 24
3.7.9. WINDOW_UPDATE . 25
3.7.10. Header Block . 28

4. HTTP Message Exchanges . 28
4.1. Connection Management 28
4.1.1. Use of GOAWAY . 29

4.2. HTTP Request/Response 29
4.2.1. HTTP Header Fields and HTTP/2.0 Headers 29
4.2.2. Request . 29
4.2.3. Response . 31

4.3. Server Push Transactions 32
4.3.1. Server implementation 33
4.3.2. Client implementation 34

5. Design Rationale and Notes 35
5.1. Separation of Framing Layer and Application Layer 35
5.2. Error handling - Framing Layer 35
5.3. One Connection Per Domain 36
5.4. Fixed vs Variable Length Fields 36
5.5. Server Push . 36

6. Security Considerations 37
6.1. Use of Same-origin constraints 37
6.2. Cross-Protocol Attacks 37
6.3. Cacheability of Pushed Resources 37

7. Privacy Considerations . 37
7.1. Long Lived Connections 38
7.2. SETTINGS frame . 38

8. IANA Considerations . 38
8.1. Frame Type Registry 38
8.2. Error Code Registry 39
8.3. Settings Registry . 39

9. Acknowledgements . 40
10. References . 41
10.1. Normative References 41
10.2. Informative References 42

Appendix A. Change Log (to be removed by RFC Editor before
 publication) . 42

Belshe, et al. Expires October 5, 2013 [Page 3]

Internet-Draft HTTP/2.0 April 2013

A.1. Since draft-ietf-httpbis-http2-01 42
A.2. Since draft-ietf-httpbis-http2-00 43
A.3. Since draft-mbelshe-httpbis-spdy-00 43

Belshe, et al. Expires October 5, 2013 [Page 4]

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-00
https://datatracker.ietf.org/doc/html/draft-mbelshe-httpbis-spdy-00

Internet-Draft HTTP/2.0 April 2013

1. Introduction

 The Hypertext Transfer Protocol (HTTP) is a wildly successful
 protocol. The HTTP/1.1 message encapsulation ([HTTP-p1], Section 3)
 is optimized for implementation simplicity and accessibility, not
 application performance. As such it has several characteristics that
 have a negative overall effect on application performance.

 The HTTP/1.1 encapsulation ensures that only one request can be
 delivered at a time on a given connection. HTTP/1.1 pipelining,
 which is not widely deployed, only partially addresses these
 concerns. Clients that need to make multiple requests therefore use
 commonly multiple connections to a server or servers in order to
 reduce the overall latency of those requests. [[anchor1: Need to tune
 the anti-pipelining comments here.]]

 Furthermore, HTTP/1.1 header fields are represented in an inefficient
 fashion, which, in addition to generating more or larger network
 packets, can cause the small initial TCP window to fill more quickly
 than is ideal. This results in excessive latency where multiple
 requests are made on a new TCP connection.

 This document defines an optimized mapping of the HTTP semantics to a
 TCP connection. This optimization reduces the latency costs of HTTP
 by allowing parallel requests on the same connection and by using an
 efficient coding for HTTP header fields. Prioritization of requests
 lets more important requests complete faster, further improving
 application performance.

 HTTP/2.0 applications have an improved impact on network congestion
 due to the use of fewer TCP connections to achieve the same effect.
 Fewer TCP connections compete more fairly with other flows. Long-
 lived connections are also more able to take better advantage of the
 available network capacity, rather than operating in the slow start
 phase of TCP.

 The HTTP/2.0 encapsulation also enables more efficient processing of
 messages by providing efficient message framing. Processing of
 header fields in HTTP/2.0 messages is more efficient (for entities
 that process many messages).

1.1. Document Organization

 The HTTP/2.0 Specification is split into three parts: starting
 HTTP/2.0 (Section 2), which covers how a HTTP/2.0 is started; a
 framing layer (Section 3), which multiplexes a TCP connection into
 independent, length-prefixed frames; and an HTTP layer (Section 4),
 which specifies the mechanism for overlaying HTTP request/response

Belshe, et al. Expires October 5, 2013 [Page 5]

Internet-Draft HTTP/2.0 April 2013

 pairs on top of the framing layer. While some of the framing layer
 concepts are isolated from the HTTP layer, building a generic framing
 layer has not been a goal. The framing layer is tailored to the
 needs of the HTTP protocol and server push.

1.2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 All numeric values are in network byte order. Values are unsigned
 unless otherwise indicated. Literal values are provided in decimal
 or hexadecimal as appropriate. Hexadecimal literals are prefixed
 with "0x" to distinguish them from decimal literals.

 The following terms are used:

 client: The endpoint initiating the HTTP/2.0 session.

 connection: A transport-level connection between two endpoints.

 endpoint: Either the client or server of a connection.

 frame: The smallest unit of communication, each containing a frame
 header.

 message: A complete sequence of frames.

 receiver: An endpoint that is receiving frames.

 sender: An endpoint that is transmitting frames.

 server: The endpoint which did not initiate the HTTP/2.0 session.

 session: A synonym for a connection.

 session error: An error on the HTTP/2.0 session.

 stream: A bi-directional flow of bytes across a virtual channel
 within a HTTP/2.0 session.

 stream error: An error on an individual HTTP/2.0 stream.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Belshe, et al. Expires October 5, 2013 [Page 6]

Internet-Draft HTTP/2.0 April 2013

2. Starting HTTP/2.0

 Just as HTTP/1.1 does, HTTP/2.0 uses the "http:" and "https:" URI
 schemes. An HTTP/2.0-capable client is therefore required to
 discover whether a server (or intermediary) supports HTTP/2.0.

 Different discovery mechanisms are defined for "http:" and "https:"
 URIs. Discovery for "http:" URIs is described in Section 2.2;
 discovery for "https:" URIs is described in Section 2.3.

2.1. HTTP/2.0 Version Identification

 HTTP/2.0 is identified using the string "HTTP/2.0". This
 identification is used in the HTTP/1.1 Upgrade header field, in the
 TLS-NPN [TLSNPN] [[anchor4: TBD]] field and other places where
 protocol identification is required.

 Negotiating "HTTP/2.0" implies the use of the transport, security,
 framing and message semantics described in this document.

 [[anchor5: Editor's Note: please remove the following text prior to
 the publication of a final version of this document.]]

 Only implementations of the final, published RFC can identify
 themselves as "HTTP/2.0". Until such an RFC exists, implementations
 MUST NOT identify themselves using "HTTP/2.0".

 Examples and text throughout the rest of this document use "HTTP/2.0"
 as a matter of editorial convenience only. Implementations of draft
 versions MUST NOT identify using this string.

 Implementations of draft versions of the protocol MUST add the string
 "-draft-" and the corresponding draft number to the identifier before
 the separator ('/'). For example, draft-ietf-httpbis-http2-03 is
 identified using the string "HTTP-draft-03/2.0".

 Non-compatible experiments that are based on these draft versions
 MUST instead replace the string "draft" with a different identifier.
 For example, an experimental implementation of packet mood-based
 encoding based on draft-ietf-httpbis-http2-07 might identify itself
 as "HTTP-emo-07/2.0". Note that any label MUST conform with the
 "token" syntax defined in Section 3.2.6 of [HTTP-p1]. Experimenters
 are encouraged to coordinate their experiments on the
 ietf-http-wg@w3.org mailing list.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-07

Belshe, et al. Expires October 5, 2013 [Page 7]

Internet-Draft HTTP/2.0 April 2013

2.2. Starting HTTP/2.0 for "http:" URIs

 A client that makes a request to an "http:" URI without prior
 knowledge about support for HTTP/2.0 uses the HTTP Upgrade mechanism
 (Section 6.7 of [HTTP-p1]). The client makes an HTTP/1.1 request
 that includes an Upgrade header field identifying HTTP/2.0.

 For example:

 GET /default.htm HTTP/1.1
 Host: server.example.com
 Connection: Upgrade
 Upgrade: HTTP/2.0

 A server that does not support HTTP/2.0 can respond to the request as
 though the Upgrade header field were absent:

 HTTP/1.1 200 OK
 Content-length: 243
 Content-type: text/html
 ...

 A server that supports HTTP/2.0 can accept the upgrade with a 101
 (Switching Protocols) status code. After the empty line that
 terminates the 101 response, the server can begin sending HTTP/2.0
 frames. These frames MUST include a response to the request that
 initiated the Upgrade.

 HTTP/1.1 101 Switching Protocols
 Connection: Upgrade
 Upgrade: HTTP/2.0

 [HTTP/2.0 session ...

 Once the server returns the 101 response, both the client and the
 server send a session header (Section 3.2).

2.3. Starting HTTP/2.0 for "https:" URIs

 A client that makes a request to an "https:" URI without prior
 knowledge about support for HTTP/2.0 uses TLS [RFC5246] with TLS-NPN
 [TLSNPN] extension. [[anchor6: TBD, maybe ALPN]]

 Once TLS negotiation is complete, both the client and the server send
 a session header (Section 3.2).

https://datatracker.ietf.org/doc/html/rfc5246

Belshe, et al. Expires October 5, 2013 [Page 8]

Internet-Draft HTTP/2.0 April 2013

2.4. Starting HTTP/2.0 with Prior Knowledge

 A client can learn that a particular server supports HTTP/2.0 by
 other means. A client MAY immediately send HTTP/2.0 frames to a
 server that is known to support HTTP/2.0. This only affects the
 resolution of "http:" URIs, servers supporting HTTP/2.0 are required
 to support protocol negotiation in TLS [TLSNPN].

 Prior support for HTTP/2.0 is not a strong signal that a given server
 will support HTTP/2.0 for future sessions. It is possible for server
 configurations to change or for configurations to differ between
 instances in clustered server. Different "transparent"
 intermediaries - intermediaries that are not explicitly selected by
 either client or server - are another source of variability.

3. HTTP/2.0 Framing Layer

3.1. Session

 The HTTP/2.0 session runs atop TCP ([RFC0793]). The client is the
 TCP connection initiator.

 HTTP/2.0 connections are persistent connections. For best
 performance, it is expected that clients will not close open
 connections until the user navigates away from all web pages
 referencing a connection, or until the server closes the connection.
 Servers are encouraged to leave connections open for as long as
 possible, but can terminate idle connections if necessary. When
 either endpoint closes the transport-level connection, it MUST first
 send a GOAWAY (Section 3.7.7) frame so that the endpoints can
 reliably determine if requests finished before the close.

3.2. Session Header

 After opening a TCP connection and performing either an HTTP/1.1
 Upgrade or TLS handshake, the client sends the client session header.
 The server replies with a server session header.

 The session header provides a final confirmation that both peers
 agree to use the HTTP/2.0 protocol. The SETTINGS frame ensures that
 client or server configuration is known as quickly as possible.

 The client session header is the 25 byte sequence
 0x464f4f202a20485454502f322e300d0a0d0a4241520d0a0d0a (the string "FOO
 * HTTP/2.0\r\n\r\nBAR\r\n\r\n") followed by a SETTINGS frame
 (Section 3.7.4). The client sends the client session header
 immediately after receiving an HTTP/1.1 Upgrade, or after receiving a
 TLS Finished message from the server.

https://datatracker.ietf.org/doc/html/rfc0793

Belshe, et al. Expires October 5, 2013 [Page 9]

Internet-Draft HTTP/2.0 April 2013

 The client session header is selected so that a large proportion
 of HTTP/1.1 or HTTP/1.0 servers and intermediaries do not attempt
 to process further frames. This doesn't address the concerns
 raised in [TALKING].

 The server session header is a SETTINGS frame (Section 3.7.4). The
 server sends the server session header immediately after receiving
 and validating the client session header.

 The client sends requests immediately after sending the session
 header, without waiting to receive a server session header. This
 ensures that confirming session headers does not add latency.

 Both client and server MUST close the connection if it does not begin
 with a valid session header. A GOAWAY frame (Section 3.7.7) MAY be
 omitted if it is clear that the peer is not using HTTP/2.0.

3.3. Framing

 Once the connection is established, clients and servers exchange
 HTTP/2.0 frames. Frames are the basic unit of communication.

3.3.1. Frame Header

 HTTP/2.0 frames share a common header format. Frames have an 8 byte
 header with between 0 and 65535 bytes of data.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length (16) | Type (8) | Flags (8) |
 +-+-------------+---------------+-------------------------------+
 |R| Stream Identifier (31) |
 +-+---+
 | Frame Data (0...) ...
 +---+

 Frame Header

 The fields of the frame header are defined as:

 Length: The 16-bit length of the frame payload in bytes. The length
 of the frame header is not included in this sum.

 Type: The 8-bit type of the frame. The frame type determines how
 the remainder of the frame header and payload are interpreted.
 Implementations MUST ignore frames that use types that they do not
 support.

Belshe, et al. Expires October 5, 2013 [Page 10]

Internet-Draft HTTP/2.0 April 2013

 Flags: An 8-bit field reserved for flags. Bits that have undefined
 semantics are reserved. The following flags are defined for all
 frame types:

 FINAL (0x1): Bit 1 (the least significant bit) indicates that
 this is the last frame in a stream. This places the stream
 into a half-closed state (Section 3.4.5). No further frames
 follow in the direction of the carrying frame.

 Frame types can define semantics for frame-specific flags.

 R: A reserved 1-bit field. The semantics of this bit are not
 defined.

 Stream Identifier: A 31-bit stream identifier (see Section 3.4.1).
 A value 0 is reserved for frames that are directed at the session
 as a whole instead of a single stream.

 Frame Data: Frames contain between 0 and 65535 bytes of data.

 Reserved bits in the frame header MUST be set to zero when sending
 and MUST be ignored when receiving frames, unless the semantics of
 the bit are known.

3.3.2. Frame Processing

 A frame of the maximum size might be too large for implementations
 with limited resources to process. Implementations MAY choose to
 support frames smaller than the maximum possible size. However,
 implementations MUST be able to receive frames containing at least
 8192 octets of payload.

 An implementation MUST immediately close a stream if it is unable to
 process a frame related to that stream due to it exceeding a size
 limit. The implementation MUST send a RST_STREAM frame
 (Section 3.7.3) containing FRAME_TOO_LARGE error code if the frame
 size limit is exceeded.

 [[anchor9: <https://github.com/http2/http2-spec/issues/28>: Need a
 way to signal the maximum frame size; no way to RST_STREAM on non-
 stream-related frames.]]

3.4. Streams

 Streams are independent sequences of bi-directional data divided into
 frames with several properties:

https://github.com/http2/http2-spec/issues/28

Belshe, et al. Expires October 5, 2013 [Page 11]

Internet-Draft HTTP/2.0 April 2013

 o Streams can be created by either the client or server.

 o Streams optionally carry a set of name-value header pairs.

 o Streams can concurrently send data interleaved with other streams.

 o Streams can be established and used unilaterally.

 o Streams can be cancelled.

3.4.1. Stream Creation

 Use of streams does not require negotiation. A stream is not
 created, streams are used by sending a frame on the stream.

 Streams are identified by a 31-bit numeric identifier. Streams
 initiated by a client use odd numbered stream identifiers. Streams
 initiated by the server use odd numbered stream identifiers. A
 stream identifier of zero MUST NOT be used to create a new stream.

 The stream identifier of a new stream MUST be greater than all other
 streams from that endpoint, unless the stream identifier was
 previously reserved (such as the promised stream identifier in a
 PUSH_PROMISE (Section 3.7.5) frame). An endpoint that receives an
 unexpected stream identifier MUST treat this as a session error
 (Section 3.5.1) of type PROTOCOL_ERROR.

 A long-lived session can result in available stream identifiers being
 exhausted. An endpoint that is unable to create a new stream
 identifier can establish a new session for any new streams.

 An endpoint cannot prevent the creation of a new stream, but it can
 request the early termination of an unwanted stream. Upon receipt of
 a frame, the recipient can terminate the corresponding stream by
 sending a stream error (Section 3.5.2) of type REFUSED_STREAM. This
 cannot prevent the initiating endpoint from sending frames for that
 stream prior to receiving this request.

3.4.2. Stream priority

 The creator of a stream assigns a priority for that stream. Priority
 is represented as a 31 bit integer. 0 represents the highest priority
 and 2^31-1 represents the lowest priority.

 The sender and recipient SHOULD use best-effort to process streams in
 the order of highest priority to lowest priority. [[anchor11: ED:
 toothless, useless "SHOULD": reword]]

Belshe, et al. Expires October 5, 2013 [Page 12]

Internet-Draft HTTP/2.0 April 2013

3.4.3. Stream headers

 Streams carry optional sets of header fields which carry metadata
 about the stream. After the stream has been created, and as long as
 the sender is not closed (Section 3.4.6) or half-closed
 (Section 3.4.5), each side may send HEADERS frame(s) containing the
 header data. Header data can be sent in multiple HEADERS frames, and
 HEADERS frames may be interleaved with data frames.

3.4.4. Stream data exchange

 Once a stream is created, it can be used to send arbitrary amounts of
 data. Generally this means that a series of data frames will be sent
 on the stream until a frame containing the FINAL flag (Section 3.3.1)
 is set. Once the FINAL flag has been set on any frame, the stream is
 considered to be half-closed.

3.4.5. Stream half-close

 When one side of the stream sends a frame with the FINAL flag set,
 the stream is half-closed from that endpoint. The sender of the
 FINAL flag MUST NOT send further frames on that stream. When both
 sides have half-closed, the stream is closed.

 An endpoint MUST treat the receipt of a data frame on a half-closed
 stream as a stream error (Section 3.5.2) of type STREAM_CLOSED.

 Streams that have never received packets can be considered to be
 half-closed in the direction that is silent. This allows either peer
 to create a unidirectional stream, which does not require an explicit
 close from the peer that does not transmit frames.

3.4.6. Stream close

 Streams can be terminated in the following ways:

 Normal termination: Normal stream termination occurs when both
 sender and recipient have half-closed the stream by sending a
 frame containing a FINAL flag (Section 3.3.1).

 Half-close on unidirectional stream: A stream that only has frames
 sent in one direction can be tentatively considered to be closed
 once a frame containing a FINAL flag is sent. The active sender
 on the stream MUST be prepared to receive frames after closing the
 stream.

Belshe, et al. Expires October 5, 2013 [Page 13]

Internet-Draft HTTP/2.0 April 2013

 Abrupt termination: Either the peer can send a RST_STREAM control
 frame at any time to terminate an active stream. RST_STREAM
 contains an error code to indicate the reason for termination. A
 RST_STREAM indicates that the sender will transmit no further data
 on the stream and that the receiver is requested to cease
 transmission.

 The sender of a RST_STREAM frame MUST allow for frames that have
 already been sent by the peer prior to the RST_STREAM being
 processed. If in-transit frames alter session state, these frames
 cannot be safely discarded. See Stream Error Handling
 (Section 3.5.2) for more details.

 TCP connection teardown: If the TCP connection is torn down while
 un-closed streams exist, then the endpoint must assume that the
 stream was abnormally interrupted and may be incomplete.

 If an endpoint receives a data frame after the stream is closed, it
 MAY send a RST_STREAM to the sender with the status PROTOCOL_ERROR.

3.5. Error Handling

 HTTP/2.0 framing permits two classes of error:

 o An error condition that renders the entire session unusable is a
 session error.

 o An error in an individual stream is a stream error.

3.5.1. Session Error Handling

 A session error is any error which prevents further processing of the
 framing layer or which corrupts any session state.

 An endpoint that encounters a session error MUST first send a GOAWAY
 (Section 3.7.7) frame with the stream identifier of the last stream
 that it successfully received from its peer. The GOAWAY frame
 includes an error code that indicates why the session is terminating.
 After sending the GOAWAY frame, the endpoint MUST close the TCP
 connection.

 It is possible that the GOAWAY will not be reliably received by the
 receiving endpoint. In the event of a session error, GOAWAY only
 provides a best-effort attempt to communicate with the peer about why
 the session is going down.

 An endpoint can end a session at any time. In particular, an
 endpoint MAY choose to treat a stream error as a session error if the

Belshe, et al. Expires October 5, 2013 [Page 14]

Internet-Draft HTTP/2.0 April 2013

 error is recurrent. Endpoints SHOULD send a GOAWAY frame when ending
 a session, as long as circumstances permit it.

3.5.2. Stream Error Handling

 A stream error is an error related to a specific stream identifier
 that does not affect processing of other streams at the framing
 layer.

 An endpoint that detects a stream error sends a RST_STREAM
 (Section 3.7.3) frame that contains the stream identifier of the
 stream where the error occurred. The RST_STREAM frame includes an
 error code that indicates the type of error.

 A RST_STREAM is the last frame that an endpoint can send on a stream.
 The peer that sends the RST_STREAM frame MUST be prepared to receive
 any frames that were sent or enqueued for sending by the remote peer.
 These frames can be ignored, except where they modify session state
 (such as the header compression state).

 An endpoint SHOULD NOT send more than one RST_STREAM frame for any
 stream. An endpoint MAY send additional RST_STREAM frames if it
 receives frames on a closed stream after more than a round trip time.
 This behaviour is permitted to deal with misbehaving implementations
 where treating this as a session error is inappropriate.

 An endpoint MUST NOT send a RST_STREAM in response to an RST_STREAM
 frame. This could trigger infinite loops of RST_STREAM frames.

3.5.3. Error Codes

 Error codes are 32-bit fields that are used in RST_STREAM and GOAWAY
 frames to convey the reasons for the stream or session error.

 Error codes share a common code space. Some error codes only apply
 to specific conditions and have no defined semantics in certain frame
 types.

 The following error codes are defined:

 NO_ERROR (0): The associated condition is not as a result of an
 error. For example, a GOAWAY might include this code to indicate
 graceful shutdown of a session.

 PROTOCOL_ERROR (1): An unspecific protocol error was detected. This
 error is for use when a more specific error code is not available.

Belshe, et al. Expires October 5, 2013 [Page 15]

Internet-Draft HTTP/2.0 April 2013

 INTERNAL_ERROR (2): The implementation encountered an unexpected
 internal error.

 FLOW_CONTROL_ERROR (3): The endpoint detected that its peer violated
 the flow control protocol.

 INVALID_STREAM (4): A frame was received for an inactive stream.

 STREAM_CLOSED (5): The endpoint received a frame after a stream was
 half-closed.

 FRAME_TOO_LARGE (6): The endpoint received a frame that was larger
 than the maximum size that it supports.

 REFUSED_STREAM (7): Indicates that the stream was refused before any
 processing has been done on the stream.

 CANCEL (8): Used by the creator of a stream to indicate that the
 stream is no longer needed.

3.6. Stream Flow Control

 Multiplexing streams introduces contention for access to the shared
 TCP connection. Stream contention can result in streams being
 blocked by other streams. A flow control scheme ensures that streams
 do not destructively interfere with other streams on the same TCP
 connection.

3.6.1. Flow Control Principles

 Experience with TCP congestion control has shown that algorithms can
 evolve over time to become more sophisticated without requiring
 protocol changes. TCP congestion control and its evolution is
 clearly different from HTTP/2.0 flow control, though the evolution of
 TCP congestion control algorithms shows that a similar approach could
 be feasible for HTTP/2.0 flow control.

 HTTP/2.0 stream flow control aims to allow for future improvements to
 flow control algorithms without requiring protocol changes. Flow
 control in HTTP/2.0 has the following characteristics:

 1. Flow control is hop-by-hop, not end-to-end.

 2. Flow control is based on window update messages. Receivers
 advertise how many octets they are prepared to receive on a
 stream. This is a credit-based scheme.

Belshe, et al. Expires October 5, 2013 [Page 16]

Internet-Draft HTTP/2.0 April 2013

 3. Flow control is directional with overall control provided by the
 receiver. A receiver MAY choose to set any window size that it
 desires for each stream and for the entire connection. A sender
 MUST respect flow control limits imposed by a receiver. Clients,
 servers and intermediaries all independently advertise their flow
 control preferences as a receiver and abide by the flow control
 limits set by their peer when sending.

 4. The initial value for the flow control window is 65536 bytes for
 both new streams and the overall connection.

 5. The frame type determines whether flow control applies to a
 frame. Of the frames specified in this document, only data
 frames are subject to flow control; all other frame types do not
 consume space in the advertised flow control window. This
 ensures that important control frames are not blocked by flow
 control.

 6. Flow control can be disabled by a receiver. A receiver can
 choose to either disable flow control for a stream or connection
 by declaring an infinite flow control limit.

 7. HTTP/2.0 standardizes only the format of the window update
 message (Section 3.7.9). This does not stipulate how a receiver
 decides when to send this message or the value that it sends.
 Nor does it specify how a sender chooses to send packets.
 Implementations are able to select any algorithm that suits their
 needs.

 Implementations are also responsible for managing how requests and
 responses are sent based on priority; choosing how to avoid head of
 line blocking for requests; and managing the creation of new streams.
 Algorithm choices for these could interact with any flow control
 algorithm.

3.6.2. Appropriate Use of Flow Control

 Flow control is defined to protect deployments (client, server or
 intermediary) that are operating under constraints. For example, a
 proxy must share memory between many connections. Flow control
 addresses cases where the receiver is unable process data on one
 stream, yet wants to be continue to process other streams.

 Deployments that do not rely on this capability SHOULD disable flow
 control for data that is being received. Note that flow control
 cannot be disabled for sending. Sending data is always subject to
 the flow control window advertised by the receiver.

Belshe, et al. Expires October 5, 2013 [Page 17]

Internet-Draft HTTP/2.0 April 2013

 Deployments with constrained resources (for example, memory), MAY
 employ flow control to limit the amount of memory a peer can consume.
 This can lead to suboptimal use of available network resources if
 flow control is enabled without knowledge of the bandwidth-delay
 product (see [RFC1323]).

 Implementation of flow control in full awareness of the current
 bandwidth-delay product is difficult, but it can ensure that
 constrained resources are protected without any reduction in
 connection utilization.

3.7. Frame Types

3.7.1. DATA Frames

 DATA frames (type=0) are used to convey HTTP message bodies. The
 payload of a data frame contains either a request or response body.

 No frame-specific flags are defined for DATA frames.

3.7.2. HEADERS+PRIORITY

 The HEADERS+PRIORITY frame (type=1) allows the sender to set header
 fields and stream priority at the same time. This MUST be used for
 each stream that is created.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |X| Priority (31) |
 +-+---+
 | Header Block (*) ...
 +---+

 HEADERS+PRIORITY Frame Payload

 The HEADERS+PRIORITY frame is identical to the HEADERS frame
 (Section 3.7.8), with a 32-bit field containing priority included
 before the header block.

 The most significant bit of the priority is reserved. The 31-bit
 priority indicates the priority for the stream, as assigned by the
 sender, see Section 3.4.2.

3.7.3. RST_STREAM

 The RST_STREAM frame (type=3) allows for abnormal termination of a
 stream. When sent by the creator of a stream, it indicates the

https://datatracker.ietf.org/doc/html/rfc1323

Belshe, et al. Expires October 5, 2013 [Page 18]

Internet-Draft HTTP/2.0 April 2013

 creator wishes to cancel the stream. When sent by the recipient of a
 stream, it indicates an error or that the recipient did not want to
 accept the stream, so the stream should be closed.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Error Code (32) |
 +---+

 RST_STREAM Frame Payload

 The RST_STREAM frame does not define any valid flags.

 The RST_STREAM frame contains a single 32-bit error code
 (Section 3.5.3). The error code indicates why the stream is being
 terminated.

 After receiving a RST_STREAM on a stream, the recipient must not send
 additional frames for that stream, and the stream moves into the
 closed state.

3.7.4. SETTINGS

 A SETTINGS frame (type=4) contains a set of id/value pairs for
 communicating configuration data about how the two endpoints may
 communicate. SETTINGS frames MUST be sent at the start of a session,
 but they can be sent at any other time by either endpoint. Settings
 are declarative, not negotiated, each peer indicates their own
 configuration.

 [[anchor17: Note that persistence of settings is under discussion in
 the WG and might be removed in a future version of this document.]]

 When the server is the sender, the sender can request that
 configuration data be persisted by the client across HTTP/2.0
 sessions and returned to the server in future communications.

 Clients persist settings on a per origin basis (see [RFC6454] for a
 definition of web origins). That is, when a client connects to a
 server, and the server persists settings within the client, the
 client SHOULD return the persisted settings on future connections to
 the same origin AND IP address and TCP port. Clients MUST NOT
 request servers to use the persistence features of the SETTINGS
 frames, and servers MUST ignore persistence related flags sent by a
 client.

 Valid frame-specific flags for the SETTINGS frame are:

https://datatracker.ietf.org/doc/html/rfc6454

Belshe, et al. Expires October 5, 2013 [Page 19]

Internet-Draft HTTP/2.0 April 2013

 CLEAR_PERSISTED (0x2): Bit 2 being set indicates a request to clear
 any previously persisted settings before processing the settings.
 Clients MUST NOT set this flag.

 SETTINGS frames always apply to a session, never a single stream.
 The stream identifier for a settings frame MUST be zero.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |SettingFlags(8)| Setting Identifier (24) |
 +---------------+---+
 | Value (32) |
 +---+

 SETTINGS ID/Value Pair

 The payload of a SETTINGS frame contains zero or more settings. Each
 setting is comprised of the following

 Settings Flags: An 8-bit flags field containing per-setting
 instructions. The following flags are valid:

 PERSIST_VALUE (0x1): Bit 1 (the least significant bit) being set
 indicates a request from the server to the client to persist
 this setting. A client MUST NOT set this flag.

 PERSISTED (0x2): Bit 2 being set indicates that this setting is a
 persisted setting being returned by the client to the server.
 This also indicates that this setting is not a client setting,
 but a value previously set by the server. A server MUST NOT
 set this flag.

 All other settings flags are reserved.

 Setting Identifier: A 24-bit field that identifies the setting.

 Value: A 32-bit value for the setting.

 The following settings are defined:

 SETTINGS_UPLOAD_BANDWIDTH (1): allows the sender to send its
 expected upload bandwidth on this channel. This number is an
 estimate. The value should be the integral number of kilobytes
 per second that the sender predicts as an expected maximum upload
 channel capacity.

Belshe, et al. Expires October 5, 2013 [Page 20]

Internet-Draft HTTP/2.0 April 2013

 SETTINGS_DOWNLOAD_BANDWIDTH (2): allows the sender to send its
 expected download bandwidth on this channel. This number is an
 estimate. The value should be the integral number of kilobytes
 per second that the sender predicts as an expected maximum
 download channel capacity.

 SETTINGS_ROUND_TRIP_TIME (3): allows the sender to send its expected
 round-trip-time on this channel. The round trip time is defined
 as the minimum amount of time to send a control frame from this
 client to the remote and receive a response. The value is
 represented in milliseconds.

 SETTINGS_MAX_CONCURRENT_STREAMS (4): allows the sender to inform the
 remote endpoint the maximum number of concurrent streams which it
 will allow. This limit is directional: it applies to the number
 of streams that the sender permits the receiver to create. By
 default there is no limit. For implementers it is recommended
 that this value be no smaller than 100, so as to not unnecessarily
 limit parallelism.

 SETTINGS_CURRENT_CWND (5): allows the sender to inform the remote
 endpoint of the current TCP CWND value.

 SETTINGS_DOWNLOAD_RETRANS_RATE (6): allows the sender to inform the
 remote endpoint the retransmission rate (bytes retransmitted /
 total bytes transmitted).

 SETTINGS_INITIAL_WINDOW_SIZE (7): allows the sender to inform the
 remote endpoint the initial window size (in bytes) for new
 streams.

 SETTINGS_FLOW_CONTROL_OPTIONS (10): This setting allows an endpoint
 to indicate that streams directed to them will not be subject to
 flow control. The least significant bit (0x1) is set to indicate
 that new streams are not flow controlled. Bit 2 (0x2) is set to
 indicate that the session is not flow controlled. All other bits
 are reserved.

 This setting applies to all streams, including existing streams.

 These bits cannot be cleared once set, see Section 3.7.9.4.

 The message is intentionally extensible for future information which
 may improve client-server communications. The sender does not need
 to send every type of ID/value. It must only send those for which it
 has accurate values to convey. When multiple ID/value pairs are
 sent, they should be sent in order of lowest id to highest id. A
 single SETTINGS frame MUST not contain multiple values for the same

Belshe, et al. Expires October 5, 2013 [Page 21]

Internet-Draft HTTP/2.0 April 2013

 ID. If the recipient of a SETTINGS frame discovers multiple values
 for the same ID, it MUST ignore all values except the first one.

 A server may send multiple SETTINGS frames containing different ID/
 Value pairs. When the same ID/Value is sent twice, the most recent
 value overrides any previously sent values. If the server sends IDs
 1, 2, and 3 with the FLAG_SETTINGS_PERSIST_VALUE in a first SETTINGS
 frame, and then sends IDs 4 and 5 with the
 FLAG_SETTINGS_PERSIST_VALUE, when the client returns the persisted
 state on its next SETTINGS frame, it SHOULD send all 5 settings (1,
 2, 3, 4, and 5 in this example) to the server.

3.7.5. PUSH_PROMISE

 The PUSH_PROMISE frame (type=5) allows the sender to signal a promise
 to create a stream and serve the referenced resource. Minimal data
 allowing the receiver to understand which resource(s) are to be
 pushed are to be included.

 PUSH_PROMISE frames are sent on an existing stream. They declare the
 intent to use another stream for the pushing of a resource. The
 PUSH_PROMISE allows the client an opportunity to reject pushed
 resources.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |X| Promised-Stream-ID (31) |
 +-+---+
 | Header Block (*) ...
 +---+

 PUSH_PROMISE Payload Format

 There are no frame-specific flags for the PUSH_PROMISE frame.

 The body of a PUSH_PROMISE includes a "Promised-Stream-ID". This 31-
 bit identifier indicates the stream on which the resource will be
 pushed. The promised stream identifier MUST be a valid choice for
 the next stream sent by the sender (see new stream identifier
 (Section 3.4.1)).

 There is no requirement that the streams referred to by this frame
 are created in the order referenced. The PUSH_PROMISE reserves
 stream identifiers for later use; these reserved identifiers can be
 used as prioritization needs dictate.

 The PUSH_PROMISE also includes a header block (Section 3.7.10), which

Belshe, et al. Expires October 5, 2013 [Page 22]

Internet-Draft HTTP/2.0 April 2013

 describes the resource that will be pushed.

3.7.6. PING

 The PING frame (type=6) is a mechanism for measuring a minimal round-
 trip time from the sender. PING frames can be sent from the client
 or the server.

 Recipients of a PING frame send an identical frame to the sender as
 soon as possible. PING should take highest priority if there is
 other data waiting to be sent.

 The PING frame defines a frame-specific flag:

 PONG (0x2): Bit 2 being set indicates that this ping frame is a ping
 response. An endpoint MUST set this flag in ping responses. An
 endpoint MUST NOT respond to ping frames containing this flag.

 The payload of a PING frame contains any value. A PING response MUST
 contain the contents of the PING request.

3.7.7. GOAWAY

 The GOAWAY frame (type=7) informs the remote side of the connection
 to stop creating streams on this session. It can be sent from the
 client or the server. Once sent, the sender will ignore frames sent
 on new streams for the remainder of the session. Recipients of a
 GOAWAY frame MUST NOT open additional streams on the session,
 although a new session can be established for new streams. The
 purpose of this message is to allow an endpoint to gracefully stop
 accepting new streams (perhaps for a reboot or maintenance), while
 still finishing processing of previously established streams.

 There is an inherent race condition between an endpoint starting new
 streams and the remote sending a GOAWAY message. To deal with this
 case, the GOAWAY contains the stream identifier of the last stream
 which was processed on the sending endpoint in this session. If the
 receiver of the GOAWAY used streams that are newer than the indicated
 stream identifier, they were not processed by the sender and the
 receiver may treat the streams as though they had never been created
 at all (hence the receiver may want to re-create the streams later on
 a new session).

 Endpoints should always send a GOAWAY message before closing a
 connection so that the remote can know whether a stream has been
 partially processed or not. (For example, if an HTTP client sends a
 POST at the same time that a server closes a connection, the client
 cannot know if the server started to process that POST request if the

Belshe, et al. Expires October 5, 2013 [Page 23]

Internet-Draft HTTP/2.0 April 2013

 server does not send a GOAWAY frame to indicate where it stopped
 working).

 After sending a GOAWAY message, the sender can ignore frames for new
 streams.

 [[anchor18: Issue: session state that is established by those
 "ignored" messages cannot be ignored without the state in the two
 peers becoming unsynchronized.]]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |X| Last-Stream-ID (31) |
 +-+---+
 | Error Code (32) |
 +---+

 GOAWAY Payload Format

 The GOAWAY frame does not define any valid flags.

 The GOAWAY frame applies to the session, not a specific stream. The
 stream identifier MUST be zero.

 The GOAWAY frame contains an identifier of the last stream that the
 sender of the GOAWAY is prepared to act upon, which can include
 processing and replies. This allows an endpoint to discover what
 streams might have had some effect or what might be safe to
 automatically retry. If no streams were acted upon, the last stream
 ID MUST be 0.

 The GOAWAY frame contains a 32-bit error code (Section 3.5.3) that
 contains the reason for closing the session.

3.7.8. HEADERS

 The HEADERS frame (type=8) provides header fields for a stream. It
 may be optionally sent on an existing stream at any time. Specific
 application of the headers in this frame is application-dependent.

 No frame-specific flags are defined for the HEADERS frame.

 The body of a HEADERS frame contains a Headers Block
 (Section 3.7.10).

Belshe, et al. Expires October 5, 2013 [Page 24]

Internet-Draft HTTP/2.0 April 2013

3.7.9. WINDOW_UPDATE

 The WINDOW_UPDATE frame (type=9) is used to implement flow control in
 HTTP/2.0.

 Flow control in HTTP/2.0 operates at two levels: on each individual
 stream and on the entire session.

 Flow control in HTTP/2.0 is hop by hop, that is, only between the two
 endpoints of a HTTP/2.0 connection. Intermediaries do not forward
 WINDOW_UPDATE messages between dependent sessions. However,
 throttling of data transfer by any recipient can indirectly cause the
 propagation of flow control information toward the original sender.

 Flow control only applies to frames that are identified as being
 subject to flow control. Of the frames defined in this document,
 only data frames are subject to flow control. Receivers MUST either
 buffer or process all other frames, terminate the corresponding
 stream, or terminate the session. The stream or session is
 terminated with a FLOW_CONTROL_ERROR code.

 Valid flags for the WINDOW_UPDATE frame are:

 END_FLOW_CONTROL (0x2): Bit 2 being set indicates that flow control
 for the identified stream or session is ended and subsequent
 frames do not need to be flow controlled.

 The WINDOW_UPDATE frame can be stream related or session related.
 The stream identifier in the WINDOW_UPDATE frame header identifies
 the affected stream, or includes a value of 0 to indicate that the
 session flow control window is updated.

 The payload of a WINDOW_UPDATE frame contains a 32-bit value. This
 value is the additional number of bytes that the sender can transmit
 in addition to the existing flow control window. The legal range for
 this field is 1 to 2^31 - 1 (0x7fffffff) bytes; the most significant
 bit of this value is reserved.

3.7.9.1. The Flow Control Window

 Flow control in HTTP/2.0 is implemented by a flow control window kept
 by the sender of each stream. The flow control window is a simple
 integer value that indicates how many bytes of data the sender is
 permitted to transmit. The flow control window size is a measure of
 the buffering capability of the recipient.

 Two flow control windows apply to the sending of every message: the
 stream flow control window and the session flow control window. The

Belshe, et al. Expires October 5, 2013 [Page 25]

Internet-Draft HTTP/2.0 April 2013

 sender MUST NOT send a flow controlled frame with a length that
 exceeds the space available in either of the flow control windows
 advertised by the receiver. Frames with zero length with the FINAL
 flag set (for example, an empty data frame) MAY be sent if there is
 no available space in either flow control window.

 For flow control calculations, the 8 byte frame header is not
 counted.

 After sending a flow controlled frame, the sender reduces the space
 available in both windows by the length of the transmitted frame.

 The receiver of a message sends a WINDOW_UPDATE frame as it consumes
 data and frees up space in flow control windows. Separate
 WINDOW_UPDATE messages are sent for the stream and session level flow
 control windows.

 A sender that receives a WINDOW_UPDATE frame updates the
 corresponding window by the amount specified in the frame.

 A sender MUST NOT allow a flow control window to exceed 2^31 - 1
 bytes. If a sender receives a WINDOW_UPDATE that causes a flow
 control window to exceed this maximum it MUST terminate either the
 stream or the session, as appropriate. For streams, the sender sends
 a RST_STREAM with the error code of FLOW_CONTROL_ERROR code; for the
 session, a GOAWAY message with a FLOW_CONTROL_ERROR code.

 Flow controlled frames from the sender and WINDOW_UPDATE frames from
 the receiver are completely asynchronous with respect to each other.
 This property allows a receiver to aggressively update the window
 size kept by the sender to prevent streams from stalling.

3.7.9.2. Initial Flow Control Window Size

 When a HTTP/2.0 connection is first established, new streams are
 created with an initial flow control window size of 65535 bytes. The
 session flow control window is 65536 bytes. Both endpoints can
 adjust the initial window size for new streams by including a value
 for SETTINGS_INITIAL_WINDOW_SIZE in the SETTINGS frame that forms
 part of the session header.

 Prior to receiving a SETTINGS frame that sets a value for
 SETTINGS_INITIAL_WINDOW_SIZE, a client can only use the default
 initial window size when sending flow controlled frames. Similarly,
 the session flow control window is set to the default initial window
 size until a WINDOW_UPDATE message is received.

 A SETTINGS frame can alter the initial flow control window size for

Belshe, et al. Expires October 5, 2013 [Page 26]

Internet-Draft HTTP/2.0 April 2013

 all current streams. When the value of SETTINGS_INITIAL_WINDOW_SIZE
 changes, a receiver MUST adjust the size of all flow control windows
 that it maintains by the difference between the new value and the old
 value.

 A change to SETTINGS_INITIAL_WINDOW_SIZE could cause the available
 space in a flow control window to become negative. A sender MUST
 track the negative flow control window and not send new flow
 controlled frames until it receives WINDOW_UPDATE messages that cause
 the flow control window to become positive.

 For example, if the server sets the initial window size to be 16KB,
 and the client sends 64KB immediately on connection establishment,
 the client will recalculate the available flow control window to be
 -48KB on receipt of the SETTINGS frame. The client retains a
 negative flow control window until WINDOW_UPDATE frames restore the
 window to being positive, after which the client can resume sending.

3.7.9.3. Reducing the Stream Window Size

 A receiver that wishes to use a smaller flow control window than the
 current size sends a new SETTINGS frame. However, the receiver MUST
 be prepared to receive data that exceeds this window size, since the
 sender might send data that exceeds the lower limit prior to
 processing the SETTINGS frame.

 A receiver has two options for handling streams that exceed flow
 control limits:

 1. The receiver can immediately send RST_STREAM with
 FLOW_CONTROL_ERROR error code for the affected streams.

 2. The receiver can accept the streams and tolerate the resulting
 head of line blocking, sending WINDOW_UPDATE messages as it
 consumes data.

 If a receiver decides to accept streams, both sides must recompute
 the available flow control window based on the initial window size
 sent in the SETTINGS.

3.7.9.4. Ending Flow Control

 After a recipient reads in a frame that marks the end of a stream
 (for example, a data stream with a FINAL flag set), it ceases
 transmission of WINDOW_UPDATE frames. A sender is not required to
 maintain the available flow control window for streams that it is no
 longer sending on.

Belshe, et al. Expires October 5, 2013 [Page 27]

Internet-Draft HTTP/2.0 April 2013

 Flow control can be disabled for all streams or the session using the
 SETTINGS_FLOW_CONTROL_OPTIONS setting. An implementation that does
 not wish to perform flow control can use this in the initial SETTINGS
 exchange.

 Flow control can be disabled for an individual stream or the overall
 session by sending a WINDOW_UPDATE with the END_FLOW_CONTROL flag
 set. The payload of a WINDOW_UPDATE frame that has the
 END_FLOW_CONTROL flag set is ignored.

 Flow control cannot be enabled again once disabled. Any attempt to
 re-enable flow control - by sending a WINDOW_UPDATE or by clearing
 the bits on the SETTINGS_FLOW_CONTROL_OPTIONS setting - MUST be
 rejected with a FLOW_CONTROL_ERROR error code.

3.7.10. Header Block

 The header block is found in the HEADERS, HEADERS+PRIORITY and
 PUSH_PROMISE frames. The header block consists of a set of header
 fields, which are name-value pairs. Headers are compressed using
 black magic.

 Compression of header fields is a work in progress, as is the format
 of this block.

4. HTTP Message Exchanges

 HTTP/2.0 is intended to be as compatible as possible with current
 web-based applications. This means that, from the perspective of the
 server business logic or application API, the features of HTTP are
 unchanged. To achieve this, all of the application request and
 response header semantics are preserved, although the syntax of
 conveying those semantics has changed. Thus, the rules from HTTP/1.1
 ([HTTP-p1], [HTTP-p2], [HTTP-p4], [HTTP-p5], [HTTP-p6], and
 [HTTP-p7]) apply with the changes in the sections below.

4.1. Connection Management

 Clients SHOULD NOT open more than one HTTP/2.0 session to a given
 origin ([RFC6454]) concurrently.

 Note that it is possible for one HTTP/2.0 session to be finishing
 (e.g. a GOAWAY message has been sent, but not all streams have
 finished), while another HTTP/2.0 session is starting.

https://datatracker.ietf.org/doc/html/rfc6454

Belshe, et al. Expires October 5, 2013 [Page 28]

Internet-Draft HTTP/2.0 April 2013

4.1.1. Use of GOAWAY

 HTTP/2.0 provides a GOAWAY message which can be used when closing a
 connection from either the client or server. Without a server GOAWAY
 message, HTTP has a race condition where the client sends a request
 just as the server is closing the connection, and the client cannot
 know if the server received the stream or not. By using the last-
 stream-id in the GOAWAY, servers can indicate to the client if a
 request was processed or not.

 Note that some servers will choose to send the GOAWAY and immediately
 terminate the connection without waiting for active streams to
 finish. The client will be able to determine this because HTTP/2.0
 streams are deterministically closed. This abrupt termination will
 force the client to heuristically decide whether to retry the pending
 requests. Clients always need to be capable of dealing with this
 case because they must deal with accidental connection termination
 cases, which are the same as the server never having sent a GOAWAY.

 More sophisticated servers will use GOAWAY to implement a graceful
 teardown. They will send the GOAWAY and provide some time for the
 active streams to finish before terminating the connection.

 If a HTTP/2.0 client closes the connection, it should also send a
 GOAWAY message. This allows the server to know if any server-push
 streams were received by the client.

 If the endpoint closing the connection has not received frames on any
 stream, the GOAWAY will contain a last-stream-id of 0.

4.2. HTTP Request/Response

4.2.1. HTTP Header Fields and HTTP/2.0 Headers

 At the application level, HTTP uses name-value pairs in its header
 fields. Because HTTP/2.0 merges the existing HTTP header fields with
 HTTP/2.0 headers, there is a possibility that some HTTP applications
 already use a particular header field name. To avoid any conflicts,
 all header fields introduced for layering HTTP over HTTP/2.0 are
 prefixed with ":". ":" is not a valid sequence in HTTP/1.* header
 field naming, preventing any possible conflict.

4.2.2. Request

 The client initiates a request by sending a HEADERS+PRIORITY frame.
 Requests that do not contain a body MUST set the FINAL flag,
 indicating that the client intends to send no further data on this
 stream, unless the server intends to push resources (see

Belshe, et al. Expires October 5, 2013 [Page 29]

Internet-Draft HTTP/2.0 April 2013

Section 4.3). HEADERS+PRIORITY frame does not contain the FINAL flag
 for requests that contain a body. The body of a request follows as a
 series of DATA frames. The last DATA frame sets the FINAL flag to
 indicate the end of the body.

 The header fields included in the HEADERS+PRIORITY frame contain all
 of the HTTP header fields that are associated with an HTTP request.
 The header block in HTTP/2.0 is mostly unchanged from today's HTTP
 header block, with the following differences:

 The following fields that are carried in the request line in
 HTTP/1.1 ([HTTP-p1], Section 3.1.1) are defined as special-valued
 name-value pairs:

 ":method": the HTTP method for this request (e.g. "GET", "POST",
 "HEAD", etc) ([HTTP-p2], Section 4)

 ":path": ":path" - the request-target for this URI with "/"
 prefixed (see [HTTP-p1], Section 3.1.1). For example, for
 "http://www.google.com/search?q=dogs" the path would be
 "/search?q=dogs". [[anchor26: what forms of the HTTPbis
 request-target are allowed here?]]

 These header fields MUST be present in HTTP requests.

 In addition, the following two name-value pairs MUST be present in
 every request:

 ":host": the host and optional port portions (see [RFC3986],
 Section 3.2) of the URI for this request (e.g. "www.google.com:
 1234"). This header field is the same as the HTTP 'Host'
 header field ([HTTP-p1], Section 5.4).

 ":scheme": the scheme portion of the URI for this request (e.g.
 "https")

 All header field names starting with ":" (whether defined in this
 document or future extensions to this document) MUST appear before
 any other header fields.

 Header field names MUST be all lowercase.

 The Connection, Host, Keep-Alive, Proxy-Connection, and Transfer-
 Encoding header fields are not valid and MUST not be sent.

 User-agents MUST support gzip compression. Regardless of the
 Accept-Encoding sent by the user-agent, the server may always send
 content encoded with gzip or deflate encoding. [[anchor27: Still

https://datatracker.ietf.org/doc/html/rfc3986#section-3.2
https://datatracker.ietf.org/doc/html/rfc3986#section-3.2

Belshe, et al. Expires October 5, 2013 [Page 30]

Internet-Draft HTTP/2.0 April 2013

 valid?]]

 If a server receives a request where the sum of the data frame
 payload lengths does not equal the size of the Content-Length
 header field, the server MUST return a 400 (Bad Request) error.

 Although POSTs are inherently chunked, POST requests SHOULD also
 be accompanied by a Content-Length header field. First, it
 informs the server of how much data to expect, which the server
 can used to track overall progress and provide appropriate user
 feedback. More importantly, some HTTP server implementations fail
 to correctly process requests that omit the Content-Length header
 field. Many existing clients send a Content-Length header field,
 which caused server implementations have come to depend upon its
 presence.

 The user-agent is free to prioritize requests as it sees fit. If the
 user-agent cannot make progress without receiving a resource, it
 should attempt to raise the priority of that resource. Resources
 such as images, SHOULD generally use the lowest priority.

 If a client sends a HEADERS+PRIORITY frame that omits a mandatory
 header, the server MUST reply with a HTTP 400 Bad Request reply.
 [[anchor28: Ed: why PROTOCOL_ERROR on missing ":status" in the
 response, but HTTP 400 here?]]

 If the server receives a data frame prior to a HEADERS or HEADERS+
 PRIORITY frame the server MUST treat this as a stream error
 (Section 3.5.2) of type PROTOCOL_ERROR.

4.2.3. Response

 The server responds to a client request with a HEADERS frame.
 Symmetric to the client's upload stream, server will send any
 response body in a series of DATA frames. The last data frame will
 contain the FINAL flag to indicate the end of the stream and the end
 of the response. A response that contains no body (such as a 204 or
 304 response) consists only of a HEADERS frame that contains the
 FINAL flag to indicate no further data will be sent on the stream.

 The response status line is unfolded into name-value pairs like
 other HTTP header fields and must be present:

 ":status": The HTTP response status code (e.g. "200" or "200 OK")

 All header field names starting with ":" (whether defined in this
 document or future extensions to this document) MUST appear before
 any other header fields.

Belshe, et al. Expires October 5, 2013 [Page 31]

Internet-Draft HTTP/2.0 April 2013

 All header field names MUST be all lowercase.

 The Connection, Keep-Alive, Proxy-Connection, and Transfer-
 Encoding header fields are not valid and MUST not be sent.

 Responses MAY be accompanied by a Content-Length header field for
 advisory purposes. This allows clients to learn the full size of
 an entity prior to receiving all the data frames. This can help
 in, for example, reporting progress.

 If a client receives a response where the sum of the data frame
 payload length does not equal the size of the Content-Length
 header field, the client MUST ignore the content length header
 field. [[anchor29: Ed: See
 <https://github.com/http2/http2-spec/issues/46>.]]

 If a client receives a response with an absent or duplicated status
 header, the client MUST treat this as a stream error (Section 3.5.2)
 of type PROTOCOL_ERROR.

 If the client receives a data frame prior to a HEADERS or HEADERS+
 PRIORITY frame the client MUST treat this as a stream error
 (Section 3.5.2) of type PROTOCOL_ERROR.

4.3. Server Push Transactions

 HTTP/2.0 enables a server to send multiple replies to a client for a
 single request. The rationale for this feature is that sometimes a
 server knows that it will need to send multiple resources in response
 to a single request. Without server push features, the client must
 first download the primary resource, then discover the secondary
 resource(s), and request them. Pushing of resources avoids the
 round-trip delay, but also creates a potential race where a server
 can be pushing content which a user-agent is in the process of
 requesting. The following mechanics attempt to prevent the race
 condition while enabling the performance benefit.

 Server push is an optional feature. Server push can be disabled by
 clients that do not wish to receive pushed resources by advertising a
 SETTINGS_MAX_CONCURRENT_STREAMS SETTING (Section 3.7.4) of zero.
 This prevents servers from creating the streams necessary to push
 resources.

 Browsers receiving a pushed response MUST validate that the server is
 authorized to push the resource using the same-origin policy
 ([RFC6454], Section 3). For example, a HTTP/2.0 connection to
 "example.com" is generally [[anchor30: Ed: weaselly use of
 "generally", needs better definition]] not permitted to push a

https://github.com/http2/http2-spec/issues/46
https://datatracker.ietf.org/doc/html/rfc6454#section-3

Belshe, et al. Expires October 5, 2013 [Page 32]

Internet-Draft HTTP/2.0 April 2013

 response for "www.example.org".

 A client that accepts pushed resources caches those resources as
 though they were responses to GET requests.

 Pushed responses are associated with a request at the HTTP/2.0
 framing layer. The PUSH_PROMISE includes a stream identifier for an
 associated request/response exchange that supplies request header
 fields. The pushed stream inherits all of the request header fields
 from the associated stream with the exception of resource
 identification header fields (":host", ":scheme", and ":path"), which
 are provided as part of the PUSH_PROMISE frame. Pushed resources
 always have an associated ":method" of "GET". A cache MUST store
 these inherited and implied request header fields with the cached
 resource.

 Implementation note: With server push, it is theoretically possible
 for servers to push unreasonable amounts of content or resources to
 the user-agent. Browsers MUST implement throttles to protect against
 unreasonable push attacks. [[anchor31: Ed: insufficiently specified
 to implement; would like to remove]]

4.3.1. Server implementation

 A server pushes resources in association with a request from the
 client. Prior to closing the response stream, the server sends a
 PUSH_PROMISE for each resource that it intends to push. The
 PUSH_PROMISE includes header fields that allow the client to identify
 the resource (":scheme", ":host", and ":port").

 A server can push multiple resources in response to a request, but
 these can only be sent while the response stream remains open. A
 server MUST NOT send a PUSH_PROMISE on a half-closed stream.

 The server SHOULD include any header fields in a PUSH_PROMISE that
 would allow a cache to determine if the resource is already cached
 (see [HTTP-p6], Section 4).

 After sending a PUSH_PROMISE, the server commences transmission of a
 pushed resource. A pushed resource uses a server-initiated stream.
 The server sends frames on this stream in the same order as an HTTP
 response (Section 4.2.3): a HEADERS frame followed by DATA frames.

 Many uses of server push are to send content that a client is likely
 to discover a need for based on the content of a response
 representation. To minimize the chances that a client will make a
 request for resources that are being pushed - causing duplicate
 copies of a resource to be sent by the server - a PUSH_PROMISE frame

Belshe, et al. Expires October 5, 2013 [Page 33]

Internet-Draft HTTP/2.0 April 2013

 SHOULD be sent prior to any content in the response representation
 that might allow a client to discover the pushed resource and request
 it.

 The server MUST only push resources that could have been returned
 from a GET request.

 Note: A server does not need to have all response header fields
 available at the time it issues a PUSH_PROMISE frame. All remaining
 header fields are included in the HEADERS frame. The HEADERS frame
 MUST NOT duplicate header fields from the PUSH_PROMISE frames.

4.3.2. Client implementation

 When fetching a resource the client has 3 possibilities:

 1. the resource is not being pushed

 2. the resource is being pushed, but the data has not yet arrived

 3. the resource is being pushed, and the data has started to arrive

 When a HEADERS+PRIORITY frame that contains an
 Associated-To-Stream-ID is received, the client MUST NOT[[anchor34:
 SHOULD NOT?]] issue GET requests for the resource in the pushed
 stream, and instead wait for the pushed stream to arrive.

 A server MUST NOT push a resource with an Associated-To-Stream-ID of
 0. Clients MUST treat this as a session error (Section 3.5.1) of
 type PROTOCOL_ERROR.

 When a client receives a PUSH_PROMISE frame from the server without a
 the ":host", ":scheme", and ":path" header fields, it MUST treat this
 as a stream error (Section 3.5.2) of type PROTOCOL_ERROR.

 To cancel individual server push streams, the client can issue a
 stream error (Section 3.5.2) of type CANCEL. Upon receipt, the
 server ceases transmission of the pushed data.

 To cancel all server push streams related to a request, the client
 may issue a stream error (Section 3.5.2) of type CANCEL on the
 associated-stream-id. By cancelling that stream, the server MUST
 immediately stop sending frames for any streams with
 in-association-to for the original stream. [[anchor35: Ed: Triggering
 side-effects on stream reset is going to be problematic for the
 framing layer. Purely from a design perspective, it's a layering
 violation. More practically speaking, the base request stream might
 already be removed. Special handling logic would be required.]]

Belshe, et al. Expires October 5, 2013 [Page 34]

Internet-Draft HTTP/2.0 April 2013

 If the server sends a HEADERS frame containing header fields that
 duplicate values on a previous HEADERS or PUSH_PROMISE frames on the
 same stream, the client MUST treat this as a stream error
 (Section 3.5.2) of type PROTOCOL_ERROR.

 If the server sends a HEADERS frame after sending a data frame for
 the same stream, the client MAY ignore the HEADERS frame. Ignoring
 the HEADERS frame after a data frame prevents handling of HTTP's
 trailing header fields (Section 4.1.1 of [HTTP-p1]).

5. Design Rationale and Notes

 Authors' notes: The notes in this section have no bearing on the
 HTTP/2.0 protocol as specified within this document, and none of
 these notes should be considered authoritative about how the protocol
 works. However, these notes may prove useful in future debates about
 how to resolve protocol ambiguities or how to evolve the protocol
 going forward. They may be removed before the final draft.

5.1. Separation of Framing Layer and Application Layer

 Readers may note that this specification sometimes blends the framing
 layer (Section 3) with requirements of a specific application - HTTP
 (Section 4). This is reflected in the request/response nature of the
 streams and the definition of the HEADERS which are very similar to
 HTTP, and other areas as well.

 This blending is intentional - the primary goal of this protocol is
 to create a low-latency protocol for use with HTTP. Isolating the
 two layers is convenient for description of the protocol and how it
 relates to existing HTTP implementations. However, the ability to
 reuse the HTTP/2.0 framing layer is a non goal.

5.2. Error handling - Framing Layer

 Error handling at the HTTP/2.0 layer splits errors into two groups:
 Those that affect an individual HTTP/2.0 stream, and those that do
 not.

 When an error is confined to a single stream, but general framing is
 in tact, HTTP/2.0 attempts to use the RST_STREAM as a mechanism to
 invalidate the stream but move forward without aborting the
 connection altogether.

 For errors occurring outside of a single stream context, HTTP/2.0
 assumes the entire session is hosed. In this case, the endpoint
 detecting the error should initiate a connection close.

Belshe, et al. Expires October 5, 2013 [Page 35]

Internet-Draft HTTP/2.0 April 2013

5.3. One Connection Per Domain

 HTTP/2.0 attempts to use fewer connections than other protocols have
 traditionally used. The rationale for this behavior is because it is
 very difficult to provide a consistent level of service (e.g. TCP
 slow-start), prioritization, or optimal compression when the client
 is connecting to the server through multiple channels.

 Through lab measurements, we have seen consistent latency benefits by
 using fewer connections from the client. The overall number of
 packets sent by HTTP/2.0 can be as much as 40% less than HTTP.
 Handling large numbers of concurrent connections on the server also
 does become a scalability problem, and HTTP/2.0 reduces this load.

 The use of multiple connections is not without benefit, however.
 Because HTTP/2.0 multiplexes multiple, independent streams onto a
 single stream, it creates a potential for head-of-line blocking
 problems at the transport level. In tests so far, the negative
 effects of head-of-line blocking (especially in the presence of
 packet loss) is outweighed by the benefits of compression and
 prioritization.

5.4. Fixed vs Variable Length Fields

 HTTP/2.0 favors use of fixed length 32bit fields in cases where
 smaller, variable length encodings could have been used. To some,
 this seems like a tragic waste of bandwidth. HTTP/2.0 chooses the
 simple encoding for speed and simplicity.

 The goal of HTTP/2.0 is to reduce latency on the network. The
 overhead of HTTP/2.0 frames is generally quite low. Each data frame
 is only an 8 byte overhead for a 1452 byte payload (~0.6%). At the
 time of this writing, bandwidth is already plentiful, and there is a
 strong trend indicating that bandwidth will continue to increase.
 With an average worldwide bandwidth of 1Mbps, and assuming that a
 variable length encoding could reduce the overhead by 50%, the
 latency saved by using a variable length encoding would be less than
 100 nanoseconds. More interesting are the effects when the larger
 encodings force a packet boundary, in which case a round-trip could
 be induced. However, by addressing other aspects of HTTP/2.0 and TCP
 interactions, we believe this is completely mitigated.

5.5. Server Push

 A subtle but important point is that server push streams must be
 declared before the associated stream is closed. The reason for this
 is so that proxies have a lifetime for which they can discard
 information about previous streams. If a pushed stream could

Belshe, et al. Expires October 5, 2013 [Page 36]

Internet-Draft HTTP/2.0 April 2013

 associate itself with an already-closed stream, then endpoints would
 not have a specific lifecycle for when they could disavow knowledge
 of the streams which went before.

6. Security Considerations

6.1. Use of Same-origin constraints

 This specification uses the same-origin policy ([RFC6454], Section 3)
 in all cases where verification of content is required.

6.2. Cross-Protocol Attacks

 By utilizing TLS, we believe that HTTP/2.0 introduces no new cross-
 protocol attacks. TLS encrypts the contents of all transmission
 (except the handshake itself), making it difficult for attackers to
 control the data which could be used in a cross-protocol attack.
 [[anchor45: Issue: This is no longer true]]

6.3. Cacheability of Pushed Resources

 Pushed resources do not have an associated request. In order for
 existing HTTP cache control validations (such as the Vary header
 field) to work, all cached resources must have a set of request
 header fields. For this reason, caches MUST be careful to inherit
 request header fields from the associated stream for the push. This
 includes the Cookie header field.

 Caching resources that are pushed is possible, based on the guidance
 provided by the origin server in the Cache-Control header field.
 However, this can cause issues if a single server hosts more than one
 tenant. For example, a server might offer multiple users each a
 small portion of its URI space.

 Where multiple tenants share space on the same server, that server
 MUST ensure that tenants are not able to push representations of
 resources that they do not have authority over. Failure to enforce
 this would allow a tenant to provide a representation that would be
 served out of cache, overriding the actual representation that the
 authoritative tenant provides.

 Pushed resources for which an origin server is not authoritative are
 never cached or used.

7. Privacy Considerations

https://datatracker.ietf.org/doc/html/rfc6454#section-3

Belshe, et al. Expires October 5, 2013 [Page 37]

Internet-Draft HTTP/2.0 April 2013

7.1. Long Lived Connections

 HTTP/2.0 aims to keep connections open longer between clients and
 servers in order to reduce the latency when a user makes a request.
 The maintenance of these connections over time could be used to
 expose private information. For example, a user using a browser
 hours after the previous user stopped using that browser may be able
 to learn about what the previous user was doing. This is a problem
 with HTTP in its current form as well, however the short lived
 connections make it less of a risk.

7.2. SETTINGS frame

 The HTTP/2.0 SETTINGS frame allows servers to store out-of-band
 transmitted information about the communication between client and
 server on the client. Although this is intended only to be used to
 reduce latency, renegade servers could use it as a mechanism to store
 identifying information about the client in future requests.

 Clients implementing privacy modes can disable client-persisted
 SETTINGS storage.

 Clients MUST clear persisted SETTINGS information when clearing the
 cookies.

8. IANA Considerations

 This document establishes registries for frame types, error codes and
 settings.

8.1. Frame Type Registry

 This document establishes a registry for HTTP/2.0 frame types. The
 "HTTP/2.0 Frame Type" registry operates under the "IETF Review"
 policy [RFC5226].

 Frame types are an 8-bit value. When reviewing new frame type
 registrations, special attention is advised for any frame type-
 specific flags that are defined. Frame flags can interact with
 existing flags and could prevent the creation of globally applicable
 flags.

 Initial values for the "HTTP/2.0 Frame Type" registry are shown in
 Table 1.

https://datatracker.ietf.org/doc/html/rfc5226

Belshe, et al. Expires October 5, 2013 [Page 38]

Internet-Draft HTTP/2.0 April 2013

 +------------+------------------+---------------------+
 | Frame Type | Name | Flags |
 +------------+------------------+---------------------+
 | 0 | DATA | - |
 | 1 | HEADERS+PRIORITY | - |
 | 3 | RST_STREAM | - |
 | 4 | SETTINGS | CLEAR_PERSISTED(2) |
 | 5 | PUSH_PROMISE | - |
 | 6 | PING | PONG(2) |
 | 7 | GOAWAY | - |
 | 8 | HEADERS | - |
 | 9 | WINDOW_UPDATE | END_FLOW_CONTROL(2) |
 +------------+------------------+---------------------+

 Table 1

8.2. Error Code Registry

 This document establishes a registry for HTTP/2.0 error codes. The
 "HTTP/2.0 Error Code" registry manages a 32-bit space. The "HTTP/2.0
 Error Code" registry operates under the "Expert Review" policy
 [RFC5226].

 Registrations for error codes are required to include a description
 of the error code. An expert reviewer is advised to examine new
 registrations for possible duplication with existing error codes.
 Use of existing registrations is to be encouraged, but not mandated.

 New registrations are advised to provide the following information:

 Error Code: The 32-bit error code value.

 Name: A name for the error code. Specifying an error code name is
 optional.

 Description: A description of the conditions where the error code is
 applicable.

 Specification: An optional reference for a specification that
 defines the error code.

 An initial set of error code registrations can be found in
Section 3.5.3.

8.3. Settings Registry

 This document establishes a registry for HTTP/2.0 settings. The
 "HTTP/2.0 Settings" registry manages a 24-bit space. The "HTTP/2.0

https://datatracker.ietf.org/doc/html/rfc5226

Belshe, et al. Expires October 5, 2013 [Page 39]

Internet-Draft HTTP/2.0 April 2013

 Settings" registry operates under the "Expert Review" policy
 [RFC5226].

 Registrations for settings are required to include a description of
 the setting. An expert reviewer is advised to examine new
 registrations for possible duplication with existing settings. Use
 of existing registrations is to be encouraged, but not mandated.

 New registrations are advised to provide the following information:

 Setting: The 24-bit setting value.

 Name: A name for the setting. Specifying a name is optional.

 Flags: Any setting-specific flags that apply, including their value
 and semantics.

 Description: A description of the setting. This might include the
 range of values, any applicable units and how to act upon a value
 when it is provided.

 Specification: An optional reference for a specification that
 defines the setting.

 An initial set of settings registrations can be found in
Section 3.7.4.

9. Acknowledgements

 This document includes substantial input from the following
 individuals:

 o Adam Langley, Wan-Teh Chang, Jim Morrison, Mark Nottingham, Alyssa
 Wilk, Costin Manolache, William Chan, Vitaliy Lvin, Joe Chan, Adam
 Barth, Ryan Hamilton, Gavin Peters, Kent Alstad, Kevin Lindsay,
 Paul Amer, Fan Yang, Jonathan Leighton (SPDY contributors).

 o Gabriel Montenegro and Willy Tarreau (Upgrade mechanism)

 o William Chan, Salvatore Loreto, Osama Mazahir, Gabriel Montenegro,
 Jitu Padhye, Roberto Peon, Rob Trace (Flow control)

 o Mark Nottingham and Julian Reschke

10. References

https://datatracker.ietf.org/doc/html/rfc5226

Belshe, et al. Expires October 5, 2013 [Page 40]

Internet-Draft HTTP/2.0 April 2013

10.1. Normative References

 [HTTP-p1] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing",

draft-ietf-httpbis-p1-messaging-22 (work in progress),
 February 2013.

 [HTTP-p2] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content",

draft-ietf-httpbis-p2-semantics-22 (work in progress),
 February 2013.

 [HTTP-p4] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests",

draft-ietf-httpbis-p4-conditional-22 (work in progress),
 February 2013.

 [HTTP-p5] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",

draft-ietf-httpbis-p5-range-22 (work in progress),
 February 2013.

 [HTTP-p6] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

draft-ietf-httpbis-p6-cache-22 (work in progress),
 February 2013.

 [HTTP-p7] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication",

draft-ietf-httpbis-p7-auth-22 (work in progress),
 February 2013.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p1-messaging-22
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-22
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-22
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p5-range-22
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p6-cache-22
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p7-auth-22
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246

Belshe, et al. Expires October 5, 2013 [Page 41]

Internet-Draft HTTP/2.0 April 2013

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 December 2011.

 [TLSNPN] Langley, A., "Transport Layer Security (TLS) Next Protocol
 Negotiation Extension", draft-agl-tls-nextprotoneg-04
 (work in progress), May 2012.

10.2. Informative References

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [TALKING] Huang, L-S., Chen, E., Barth, A., Rescorla, E., and C.
 Jackson, "Talking to Yourself for Fun and Profit", 2011,
 <http://w2spconf.com/2011/papers/websocket.pdf>.

Appendix A. Change Log (to be removed by RFC Editor before publication)

A.1. Since draft-ietf-httpbis-http2-01

 Added IANA considerations section for frame types, error codes and
 settings.

 Removed data frame compression.

 Added PUSH_PROMISE.

 Added globally applicable flags to framing.

 Removed zlib-based header compression mechanism.

 Updated references.

 Clarified stream identifier reuse.

 Removed CREDENTIALS frame and associated mechanisms.

 Added advice against naive implementation of flow control.

 Added session header section.

 Restructured frame header. Removed distinction between data and
 control frames.

 Altered flow control properties to include session-level limits.

 Added note on cacheability of pushed resources and multiple tenant
 servers.

https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/draft-agl-tls-nextprotoneg-04
https://datatracker.ietf.org/doc/html/rfc1323
http://w2spconf.com/2011/papers/websocket.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-01

Belshe, et al. Expires October 5, 2013 [Page 42]

Internet-Draft HTTP/2.0 April 2013

 Changed protocol label form based on discussions.

A.2. Since draft-ietf-httpbis-http2-00

 Changed title throughout.

 Removed section on Incompatibilities with SPDY draft#2.

 Changed INTERNAL_ERROR on GOAWAY to have a value of 2 <https://
 groups.google.com/forum/?fromgroups#!topic/spdy-dev/cfUef2gL3iU>.

 Replaced abstract and introduction.

 Added section on starting HTTP/2.0, including upgrade mechanism.

 Removed unused references.

 Added flow control principles (Section 3.6.1) based on <http://
tools.ietf.org/html/draft-montenegro-httpbis-http2-fc-principles-01>.

A.3. Since draft-mbelshe-httpbis-spdy-00

 Adopted as base for draft-ietf-httpbis-http2.

 Updated authors/editors list.

 Added status note.

Authors' Addresses

 Mike Belshe
 Twist

 EMail: mbelshe@chromium.org

 Roberto Peon
 Google, Inc

 EMail: fenix@google.com

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-00
http://tools.ietf.org/html/draft-montenegro-httpbis-http2-fc-principles-01
http://tools.ietf.org/html/draft-montenegro-httpbis-http2-fc-principles-01
https://datatracker.ietf.org/doc/html/draft-mbelshe-httpbis-spdy-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2

Belshe, et al. Expires October 5, 2013 [Page 43]

Internet-Draft HTTP/2.0 April 2013

 Martin Thomson (editor)
 Microsoft
 3210 Porter Drive
 Palo Alto 94043
 US

 EMail: martin.thomson@skype.net

 Alexey Melnikov (editor)
 Isode Ltd
 5 Castle Business Village
 36 Station Road
 Hampton, Middlesex TW12 2BX
 UK

 EMail: Alexey.Melnikov@isode.com

Belshe, et al. Expires October 5, 2013 [Page 44]

