
HTTPbis Working Group M. Belshe
Internet-Draft Twist
Intended status: Standards Track R. Peon
Expires: November 30, 2013 Google, Inc
 M. Thomson, Ed.
 Microsoft
 A. Melnikov, Ed.
 Isode Ltd
 May 29, 2013

Hypertext Transfer Protocol version 2.0
draft-ietf-httpbis-http2-03

Abstract

 This specification describes an optimized expression of the syntax of
 the Hypertext Transfer Protocol (HTTP). The HTTP/2.0 encapsulation
 enables more efficient use of network resources and reduced
 perception of latency by allowing header field compression and
 multiple concurrent messages on the same connection. It also
 introduces unsolicited push of representations from servers to
 clients.

 This document is an alternative to, but does not obsolete the
 HTTP/1.1 message format or protocol. HTTP's existing semantics
 remain unchanged.

Editorial Note (To be removed by RFC Editor)

 Discussion of this draft takes place on the HTTPBIS working group
 mailing list (ietf-http-wg@w3.org), which is archived at
 <http://lists.w3.org/Archives/Public/ietf-http-wg/>.

 Working Group information and related documents can be found at
 <http://tools.ietf.org/wg/httpbis/> (Wiki) and
 <https://github.com/http2/http2-spec> (source code and issues
 tracker).

 The changes in this draft are summarized in Appendix A.1.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute

Belshe, et al. Expires November 30, 2013 [Page 1]

http://lists.w3.org/Archives/Public/ietf-http-wg/
http://tools.ietf.org/wg/httpbis/
https://github.com/http2/http2-spec
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft HTTP/2.0 May 2013

 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 30, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 5
1.1. Document Organization 5
1.2. Conventions and Terminology 6

2. Starting HTTP/2.0 . 6
2.1. HTTP/2.0 Version Identification 7
2.2. Starting HTTP/2.0 for "http:" URIs 8
2.3. Starting HTTP/2.0 for "https:" URIs 8
2.4. Starting HTTP/2.0 with Prior Knowledge 9

3. HTTP/2.0 Framing Layer . 9
3.1. Connection . 9
3.2. Connection Header . 9
3.3. Framing . 10
3.3.1. Frame Header . 10
3.3.2. Frame Size . 12

3.4. Streams . 12
3.4.1. Stream Creation 13
3.4.2. Stream priority 13
3.4.3. Stream half-close 14
3.4.4. Stream close . 14

3.5. Error Handling . 15
3.5.1. Connection Error Handling 15

http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Belshe, et al. Expires November 30, 2013 [Page 2]

Internet-Draft HTTP/2.0 May 2013

3.5.2. Stream Error Handling 16
3.5.3. Error Codes . 16

3.6. Stream Flow Control 17
3.6.1. Flow Control Principles 17
3.6.2. Appropriate Use of Flow Control 18

3.7. Header Blocks . 19
3.8. Frame Types . 19
3.8.1. DATA Frames . 20
3.8.2. HEADERS+PRIORITY 20
3.8.3. RST_STREAM . 21
3.8.4. SETTINGS . 21
3.8.5. PUSH_PROMISE . 25
3.8.6. PING . 26
3.8.7. GOAWAY . 26
3.8.8. HEADERS . 28
3.8.9. WINDOW_UPDATE . 29

4. HTTP Message Exchanges . 32
4.1. Connection Management 32
4.2. HTTP Request/Response 33
4.2.1. HTTP Header Fields and HTTP/2.0 Headers 33
4.2.2. Request . 33
4.2.3. Response . 34

4.3. Server Push Transactions 35
4.3.1. Server implementation 36
4.3.2. Client implementation 37

5. Design Rationale and Notes 38
5.1. Separation of Framing Layer and Application Layer 38
5.2. Error handling - Framing Layer 39
5.3. One Connection per Domain 39
5.4. Fixed vs Variable Length Fields 39
5.5. Server Push . 40

6. Security Considerations 40
6.1. Server Authority and Same-Origin 40
6.2. Cross-Protocol Attacks 40
6.3. Cacheability of Pushed Resources 41

7. Privacy Considerations . 41
7.1. Long Lived Connections 41
7.2. SETTINGS frame . 41

8. IANA Considerations . 42
8.1. Frame Type Registry 42
8.2. Error Code Registry 43
8.3. Settings Registry . 43

9. Acknowledgements . 44
10. References . 44
10.1. Normative References 44
10.2. Informative References 45

Appendix A. Change Log (to be removed by RFC Editor before
 publication) . 46

Belshe, et al. Expires November 30, 2013 [Page 3]

Internet-Draft HTTP/2.0 May 2013

A.1. Since draft-ietf-httpbis-http2-02 46
A.2. Since draft-ietf-httpbis-http2-01 46
A.3. Since draft-ietf-httpbis-http2-00 47
A.4. Since draft-mbelshe-httpbis-spdy-00 47

Belshe, et al. Expires November 30, 2013 [Page 4]

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-00
https://datatracker.ietf.org/doc/html/draft-mbelshe-httpbis-spdy-00

Internet-Draft HTTP/2.0 May 2013

1. Introduction

 The Hypertext Transfer Protocol (HTTP) is a wildly successful
 protocol. However, the HTTP/1.1 message encapsulation ([HTTP-p1],
 Section 3) is optimized for implementation simplicity and
 accessibility, not application performance. As such it has several
 characteristics that have a negative overall effect on application
 performance.

 In particular, HTTP/1.0 only allows one request to be delivered at a
 time on a given connection. HTTP/1.1 pipelining only partially
 addressed request concurrency, and is not widely deployed.
 Therefore, clients that need to make many requests (as is common on
 the Web) typically use multiple connections to a server in order to
 reduce perceived latency.

 Furthermore, HTTP/1.1 header fields are often repetitive and verbose,
 which, in addition to generating more or larger network packets, can
 cause the small initial TCP congestion window to quickly fill. This
 can result in excessive latency when multiple requests are made on a
 single new TCP connection.

 This document addresses these issues by defining an optimized mapping
 of HTTP's semantics to an underlying connection. Specifically, it
 allows interleaving of request and response messages on the same
 connection and uses an efficient coding for HTTP header fields. It
 also allows prioritization of requests, letting more important
 requests complete more quickly, further improving perceived
 performance.

 The resulting protocol is designed to have be more friendly to the
 network, because fewer TCP connections can be used, in comparison to
 HTTP/1.x. This means less competition with other flows, and longer-
 lived connections, which in turn leads to better utilization of
 available network capacity.

 Finally, this encapsulation also enables more scalable processing of
 messages through use of binary message framing.

1.1. Document Organization

 The HTTP/2.0 Specification is split into three parts: starting
 HTTP/2.0 (Section 2), which covers how a HTTP/2.0 connection is
 initiated; a framing layer (Section 3), which multiplexes a single
 TCP connection into independent frames of various types; and an HTTP
 layer (Section 4), which specifies the mechanism for expressing HTTP
 interactions using the framing layer. While some of the framing
 layer concepts are isolated from HTTP, building a generic framing

Belshe, et al. Expires November 30, 2013 [Page 5]

Internet-Draft HTTP/2.0 May 2013

 layer has not been a goal. The framing layer is tailored to the
 needs of the HTTP protocol and server push.

1.2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 All numeric values are in network byte order. Values are unsigned
 unless otherwise indicated. Literal values are provided in decimal
 or hexadecimal as appropriate. Hexadecimal literals are prefixed
 with "0x" to distinguish them from decimal literals.

 The following terms are used:

 client: The endpoint initiating the HTTP connection.

 connection: A transport-level connection between two endpoints.

 endpoint: Either the client or server of the connection.

 frame: The smallest unit of communication within an HTTP/2.0
 connection, consisting of a header and a variable-length sequence
 of bytes structured according to the frame type.

 peer: An endpoint. When discussing a particular endpoint, "peer"
 refers to the endpoint that is remote to the primary subject of
 discussion.

 receiver: An endpoint that is receiving frames.

 sender: An endpoint that is transmitting frames.

 server: The endpoint which did not initiate the HTTP connection.

 connection error: An error on the HTTP/2.0 connection.

 stream: A bi-directional flow of frames across a virtual channel
 within the HTTP/2.0 connection.

 stream error: An error on the individual HTTP/2.0 stream.

2. Starting HTTP/2.0

 HTTP/2.0 uses the same "http:" and "https:" URI schemes used by
 HTTP/1.1. As a result, implementations processing requests for
 target resource URIs like "http://example.org/foo" or

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Belshe, et al. Expires November 30, 2013 [Page 6]

Internet-Draft HTTP/2.0 May 2013

 "https://example.com/bar" are required to first discover whether the
 upstream server (the immediate peer to which the client wishes to
 establish a connection) supports HTTP/2.0.

 The means by which support for HTTP/2.0 is determined is different
 for "http" and "https" URIs. Discovery for "https:" URIs is
 described in Section 2.3. Discovery for "http" URIs is described
 here.

2.1. HTTP/2.0 Version Identification

 The protocol defined in this document is identified using the string
 "HTTP/2.0". This identification is used in the HTTP/1.1 Upgrade
 header field, in the TLS application layer protocol negotiation
 extension [TLSALPN] field and other places where protocol
 identification is required.

 Negotiating "HTTP/2.0" implies the use of the transport, security,
 framing and message semantics described in this document.

 [[anchor3: Editor's Note: please remove the following text prior to
 the publication of a final version of this document.]]

 Only implementations of the final, published RFC can identify
 themselves as "HTTP/2.0". Until such an RFC exists, implementations
 MUST NOT identify themselves using "HTTP/2.0".

 Examples and text throughout the rest of this document use "HTTP/2.0"
 as a matter of editorial convenience only. Implementations of draft
 versions MUST NOT identify using this string.

 Implementations of draft versions of the protocol MUST add the string
 "-draft-" and the corresponding draft number to the identifier before
 the separator ('/'). For example, draft-ietf-httpbis-http2-03 is
 identified using the string "HTTP-draft-03/2.0".

 Non-compatible experiments that are based on these draft versions
 MUST instead replace the string "draft" with a different identifier.
 For example, an experimental implementation of packet mood-based
 encoding based on draft-ietf-httpbis-http2-07 might identify itself
 as "HTTP-emo-07/2.0". Note that any label MUST conform to the
 "token" syntax defined in Section 3.2.6 of [HTTP-p1]. Experimenters
 are encouraged to coordinate their experiments on the
 ietf-http-wg@w3.org mailing list.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-07

Belshe, et al. Expires November 30, 2013 [Page 7]

Internet-Draft HTTP/2.0 May 2013

2.2. Starting HTTP/2.0 for "http:" URIs

 A client that makes a request to an "http:" URI without prior
 knowledge about support for HTTP/2.0 uses the HTTP Upgrade mechanism
 (Section 6.7 of [HTTP-p1]). The client makes an HTTP/1.1 request
 that includes an Upgrade header field identifying HTTP/2.0.

 For example:

 GET /default.htm HTTP/1.1
 Host: server.example.com
 Connection: Upgrade
 Upgrade: HTTP/2.0

 A server that does not support HTTP/2.0 can respond to the request as
 though the Upgrade header field were absent:

 HTTP/1.1 200 OK
 Content-length: 243
 Content-type: text/html
 ...

 A server that supports HTTP/2.0 can accept the upgrade with a 101
 (Switching Protocols) status code. After the empty line that
 terminates the 101 response, the server can begin sending HTTP/2.0
 frames. These frames MUST include a response to the request that
 initiated the Upgrade.

 HTTP/1.1 101 Switching Protocols
 Connection: Upgrade
 Upgrade: HTTP/2.0

 [HTTP/2.0 connection ...

 The first HTTP/2.0 frame sent by the server is a SETTINGS frame
 (Section 3.8.4). Upon receiving the 101 response, the client sends a
 connection header (Section 3.2), which includes a SETTINGS frame.

2.3. Starting HTTP/2.0 for "https:" URIs

 A client that makes a request to an "https:" URI without prior
 knowledge about support for HTTP/2.0 uses TLS [RFC5246] with the
 application layer protocol negotiation extension [TLSALPN].

 Once TLS negotiation is complete, both the client and the server send
 a connection header (Section 3.2).

https://datatracker.ietf.org/doc/html/rfc5246

Belshe, et al. Expires November 30, 2013 [Page 8]

Internet-Draft HTTP/2.0 May 2013

2.4. Starting HTTP/2.0 with Prior Knowledge

 A client can learn that a particular server supports HTTP/2.0 by
 other means. A client MAY immediately send HTTP/2.0 frames to a
 server that is known to support HTTP/2.0. This only affects the
 resolution of "http:" URIs, servers supporting HTTP/2.0 are required
 to support protocol negotiation in TLS [TLSALPN] for "https:" URIs.

 Prior support for HTTP/2.0 is not a strong signal that a given server
 will support HTTP/2.0 for future connections. It is possible for
 server configurations to change or for configurations to differ
 between instances in clustered server. Interception proxies (a.k.a.
 "transparent" proxies) are another source of variability.

3. HTTP/2.0 Framing Layer

3.1. Connection

 The HTTP/2.0 connection is an Application Level protocol running on
 top of a TCP connection ([RFC0793]). The client is the TCP
 connection initiator.

 HTTP/2.0 connections are persistent. That is, for best performance,
 it is expected a clients will not close connections until it is
 determined that no further communication with a server is necessary
 (for example, when a user navigates away from a particular web page),
 or until the server closes the connection.

 Servers are encouraged to maintain open connections for as long as
 possible, but are permitted to terminate idle connections if
 necessary. When either endpoint chooses to close the transport-level
 TCP connection, the terminating endpoint MUST first send a GOAWAY
 (Section 3.8.7) frame so that both endpoints can reliably determine
 whether previously sent frames have been processed and gracefully
 complete or terminate any necessary remaining tasks.

3.2. Connection Header

 Upon establishment of a TCP connection and determination that
 HTTP/2.0 will be used by both peers to communicate, each endpoint
 MUST send a connection header as a final confirmation and to
 establish the default parameters for the HTTP/2.0 connection.

 The client connection header is a sequence of 24 octets (in hex
 notation)

 464f4f202a20485454502f322e300d0a0d0a42410d0a0d0a

https://datatracker.ietf.org/doc/html/rfc0793

Belshe, et al. Expires November 30, 2013 [Page 9]

Internet-Draft HTTP/2.0 May 2013

 (the string "FOO * HTTP/2.0\r\n\r\nBA\r\n\r\n") followed by a
 SETTINGS frame (Section 3.8.4). The client sends the client
 connection header immediately upon receipt of a 101 Switching
 Protocols response (indicating a successful upgrade), or after
 receiving a TLS Finished message from the server. If starting an
 HTTP/2.0 connection with prior knowledge of server support for the
 protocol, the client connection header is sent upon connection
 establishment.

 The client connection header is selected so that a large
 proportion of HTTP/1.1 or HTTP/1.0 servers and intermediaries do
 not attempt to process further frames. Note that this does not
 address the concerns raised in [TALKING].

 The server connection header consists of just a SETTINGS frame
 (Section 3.8.4) that MUST be the first frame the server sends in the
 HTTP/2.0 connection.

 To avoid unnecessary latency, clients are permitted to send
 additional frames to the server immediately after sending the client
 connection header, without waiting to receive the server connection
 header. It is important to note, however, that the server connection
 header SETTINGS frame might include parameters that necessarily alter
 how a client is expected to communicate with the server. Upon
 receiving the SETTINGS frame, the client is expected to honor any
 parameters established.

 Clients and servers MUST terminate the TCP connection if either peer
 does not begin with a valid connection header. A GOAWAY frame
 (Section 3.8.7) MAY be omitted if it is clear that the peer is not
 using HTTP/2.0.

3.3. Framing

 Once the HTTP/2.0 connection is established, clients and servers can
 begin exchanging frames.

3.3.1. Frame Header

 HTTP/2.0 frames share a common base format consisting of an 8-byte
 header followed by 0 to 65535 bytes of data.

Belshe, et al. Expires November 30, 2013 [Page 10]

Internet-Draft HTTP/2.0 May 2013

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length (16) | Type (8) | Flags (8) |
 +-+-------------+---------------+-------------------------------+
 |R| Stream Identifier (31) |
 +-+---+
 | Frame Data (0...) ...
 +---+

 Frame Header

 The fields of the frame header are defined as:

 Length: The length of the frame data expressed as an unsigned 16-bit
 integer. The 8 bytes of the frame header are not included in this
 value.

 Type: The 8-bit type of the frame. The frame type determines how
 the remainder of the frame header and data are interpreted.
 Implementations MUST ignore unsupported and unrecognized frame
 types.

 Flags: An 8-bit field reserved for frame-type specific boolean
 flags.

 The least significant bit (0x1) - the FINAL bit - is defined for
 all frame types as an indication that this frame is the last the
 endpoint will send for the identified stream. Setting this flag
 causes the stream to enter the half-closed state (Section 3.4.3).
 Implementations MUST process the FINAL bit for all frames whose
 stream identifier field is not 0x0. The FINAL bit MUST NOT be set
 on frames that use a stream identifier of 0.

 The remaining flags can be assigned semantics specific to the
 indicated frame type. Flags that have no defined semantics for a
 particular frame type MUST be ignored, and MUST be left unset (0)
 when sending.

 R: A reserved 1-bit field. The semantics of this bit are undefined
 and the bit MUST remain unset (0) when sending and MUST be ignored
 when receiving.

 Stream Identifier: A 31-bit stream identifier (see Section 3.4.1).
 A value 0 is reserved for frames that are associated with the
 connection as a whole as opposed to an individual stream.

 The structure and content of the remaining frame data is dependent

Belshe, et al. Expires November 30, 2013 [Page 11]

Internet-Draft HTTP/2.0 May 2013

 entirely on the frame type.

3.3.2. Frame Size

 Implementations with limited resources might not be capable of
 processing large frame sizes. Such implementations MAY choose to
 place additional limits on the maximum frame size. However, all
 implementations MUST be capable of receiving and processing frames
 containing at least 8192 octets of data. [[anchor6: Ed. Question:
 Does this minimum include the 8-byte header or just the frame data?]]

 An implementation MUST terminate a stream immediately if it is unable
 to process a frame due it's size. This is done by sending an
 RST_STREAM frame (Section 3.8.3) containing the FRAME_TOO_LARGE error
 code.

 [[anchor7: <https://github.com/http2/http2-spec/issues/28>: Need a
 way to signal the maximum frame size; no way to RST_STREAM on non-
 stream-related frames.]]

3.4. Streams

 A "stream" is an independent, bi-directional sequence of frames
 exchanged between the client and server within an HTTP/2.0
 connection. Streams have several important characteristics:

 o Streams can be established and used unilaterally or shared by
 either the client or server.

 o Streams can be rejected or cancelled by either endpoint.

 o Multiple types of frames can be sent by either endpoint within a
 single stream.

 o The order in which frames are sent within a stream is significant.
 Recipients are required to process frames in the order they are
 received.

 o Streams optionally carry a set of name-value header pairs that are
 expressed within the headers block of HEADERS+PRIORITY, HEADERS,
 or PUSH_PROMISE frames.

 o A single HTTP/2.0 connection can contain multiple concurrently
 active streams, with either endpoint interleaving frames from
 multiple streams.

https://github.com/http2/http2-spec/issues/28

Belshe, et al. Expires November 30, 2013 [Page 12]

Internet-Draft HTTP/2.0 May 2013

3.4.1. Stream Creation

 There is no coordination or shared action between the client and
 server required to create a stream. Rather, new streams are
 established by sending a frame whose stream identifier field
 references a previously unused stream identifier.

 All streams are identified by an unsigned 31-bit integer. Streams
 initiated by a client use odd numbered stream identifiers; those
 initiated by the server use even numbered stream identifiers. A
 stream identifier of zero MUST NOT be used to establish a new stream.

 The identifier of a newly established stream MUST be numerically
 greater than all previously established streams from that endpoint
 within the HTTP/2.0 connection, unless the identifier has been
 reserved using a PUSH_PROMISE (Section 3.8.5) frame. An endpoint
 that receives an unexpected stream identifier MUST respond with a
 connection error (Section 3.5.1) of type PROTOCOL_ERROR.

 A peer can limit the total number of concurrently active streams
 using the SETTINGS_MAX_CONCURRENT_STREAMS parameters within a
 SETTINGS frame. The maximum concurrent streams setting is specific
 to each endpoint and applies only to the peer. That is, clients
 specify the maximum number of concurrent streams the server can
 initiate, and servers specify the maximum number of concurrent
 streams the client can initiate. Peer endpoints MUST NOT exceed this
 limit. All concurrently active streams initiated by an endpoint,
 including streams that are half-open (Section 3.4.3) in any
 direction, count toward that endpoint's limit.

 Stream identifiers cannot be reused within a connection. Long-lived
 connections can cause an endpoint to exhaust the available range of
 stream identifiers. A client that is unable to establish a new
 stream identifier can establish a new connection for new streams.

 Either endpoint can request the early termination of an unwanted
 stream by sending an RST_STREAM frame (Section 3.5.2) with an error
 code of either REFUSED_STREAM (if no frames have been processed) or
 CANCEL (if at least one frame has been processed). Such termination
 might not take effect immediately as the peer might have sent
 additional frames on the stream prior to receiving the termination
 request.

3.4.2. Stream priority

 The endpoint establishing a new stream can assign a priority for the
 stream. Priority is represented as an unsigned 31-bit integer. 0
 represents the highest priority and 2^31-1 represents the lowest

Belshe, et al. Expires November 30, 2013 [Page 13]

Internet-Draft HTTP/2.0 May 2013

 priority.

 The purpose of this value is to allow the initiating endpoint to
 request that frames for the stream be processed with higher priority
 relative to any other concurrently active streams. That is, if an
 endpoint receives interleaved frames for multiple streams, the
 endpoint ought to make a best-effort attempt at processing frames for
 higher priority streams before processing those for lower priority
 streams.

 Explicitly setting the priority for a stream does not guarantee any
 particular processing order for the stream relative to any other
 stream. Nor is there is any mechanism provided by which the
 initiator of a stream can force or require a receiving endpoint to
 process frames from one stream before processing frames from another.

3.4.3. Stream half-close

 When an endpoint sends a frame for a stream with the FINAL flag set,
 the stream is considered to be half-closed for that endpoint.
 Subsequent frames MUST NOT be sent by that endpoint for the half
 closed stream for the remaining duration of the HTTP/2.0 connection.
 When both endpoints have sent frames with the FINAL flag set, the
 stream is considered to be fully closed.

 If an endpoint receives additional frames for a stream that was
 previously half-closed by the sending peer, the recipient MUST
 respond with a stream error (Section 3.5.2) of type STREAM_CLOSED.

 An endpoint that has not yet half-closed a stream by sending the
 FINAL flag can continue sending frames on the stream.

 It is not necessary for an endpoint to half-close a stream for which
 it has not sent any frames. This allows endpoints to use fully
 unidirectional streams that do not require explicit action or
 acknowledgement from the receiver.

3.4.4. Stream close

 Streams can be terminated in the following ways:

 Normal termination: Normal stream termination occurs when both
 client and server have half-closed the stream by sending a frame
 containing a FINAL flag (Section 3.3.1).

Belshe, et al. Expires November 30, 2013 [Page 14]

Internet-Draft HTTP/2.0 May 2013

 Half-close on unidirectional stream: A stream that only has frames
 sent in one direction can be tentatively considered to be closed
 once a frame containing a FINAL flag is sent. The active sender
 on the stream MUST be prepared to receive frames after closing the
 stream.

 Abrupt termination: Either peer can send a RST_STREAM control frame
 at any time to terminate an active stream. RST_STREAM contains an
 error code to indicate the reason for termination. A RST_STREAM
 indicates that the sender will transmit no further data on the
 stream and that the receiver is advised to cease transmission on
 it.

 The sender of a RST_STREAM frame MUST allow for frames that have
 already been sent by the peer prior to the RST_STREAM being
 processed. If in-transit frames alter connection state, these
 frames cannot be safely discarded. See Stream Error Handling
 (Section 3.5.2) for more details.

 TCP connection teardown: If the TCP connection is torn down while
 un-closed streams exist, then the endpoint MUST assume that the
 stream was abnormally interrupted and may be incomplete.

3.5. Error Handling

 HTTP/2.0 framing permits two classes of error:

 o An error condition that renders the entire connection unusable is
 a connection error.

 o An error in an individual stream is a stream error.

3.5.1. Connection Error Handling

 A connection error is any error which prevents further processing of
 the framing layer or which corrupts any connection state.

 An endpoint that encounters a connection error MUST first send a
 GOAWAY (Section 3.8.7) frame with the stream identifier of the last
 stream that it successfully received from its peer. The GOAWAY frame
 includes an error code that indicates why the connection is
 terminating. After sending the GOAWAY frame, the endpoint MUST close
 the TCP connection.

 It is possible that the GOAWAY will not be reliably received by the
 receiving endpoint. In the event of a connection error, GOAWAY only
 provides a best-effort attempt to communicate with the peer about why
 the connection is being terminated.

Belshe, et al. Expires November 30, 2013 [Page 15]

Internet-Draft HTTP/2.0 May 2013

 An endpoint can end a connection at any time. In particular, an
 endpoint MAY choose to treat a stream error as a connection error if
 the error is recurrent. Endpoints SHOULD send a GOAWAY frame when
 ending a connection, as long as circumstances permit it.

3.5.2. Stream Error Handling

 A stream error is an error related to a specific stream identifier
 that does not affect processing of other streams at the framing
 layer.

 An endpoint that detects a stream error sends a RST_STREAM
 (Section 3.8.3) frame that contains the stream identifier of the
 stream where the error occurred. The RST_STREAM frame includes an
 error code that indicates the type of error.

 A RST_STREAM is the last frame that an endpoint can send on a stream.
 The peer that sends the RST_STREAM frame MUST be prepared to receive
 any frames that were sent or enqueued for sending by the remote peer.
 These frames can be ignored, except where they modify connection
 state (such as the state maintained for header compression
 (Section 3.7)).

 Normally, an endpoint SHOULD NOT send more than one RST_STREAM frame
 for any stream. However, an endpoint MAY send additional RST_STREAM
 frames if it receives frames on a closed stream after more than a
 round trip time. This behavior is permitted to deal with misbehaving
 implementations.

 An endpoint MUST NOT send a RST_STREAM in response to an RST_STREAM
 frame, to avoid looping.

3.5.3. Error Codes

 Error codes are 32-bit fields that are used in RST_STREAM and GOAWAY
 frames to convey the reasons for the stream or connection error.

 Error codes share a common code space. Some error codes only apply
 to specific conditions and have no defined semantics in certain frame
 types.

 The following error codes are defined:

 NO_ERROR (0): The associated condition is not as a result of an
 error. For example, a GOAWAY might include this code to indicate
 graceful shutdown of a connection.

Belshe, et al. Expires November 30, 2013 [Page 16]

Internet-Draft HTTP/2.0 May 2013

 PROTOCOL_ERROR (1): The endpoint detected an unspecific protocol
 error. This error is for use when a more specific error code is
 not available.

 INTERNAL_ERROR (2): The endpoint encountered an unexpected internal
 error.

 FLOW_CONTROL_ERROR (3): The endpoint detected that its peer violated
 the flow control protocol.

 INVALID_STREAM (4): The endpoint received a frame for an inactive
 stream.

 STREAM_CLOSED (5): The endpoint received a frame after a stream was
 half-closed.

 FRAME_TOO_LARGE (6): The endpoint received a frame that was larger
 than the maximum size that it supports.

 REFUSED_STREAM (7): The endpoint is refusing the stream before
 processing its payload.

 CANCEL (8): Used by the creator of a stream to indicate that the
 stream is no longer needed.

 COMPRESSION_ERROR (9): The endpoint is unable to maintain the
 compression context for the connection.

3.6. Stream Flow Control

 Using streams for multiplexing introduces contention over use of the
 TCP connection, resulting in blocked streams. A flow control scheme
 ensures that streams on the same connection do not destructively
 interfere with each other.

 HTTP/2.0 provides for flow control through use of the WINDOW_UPDATE
 (Section 3.8.9) frame type.

3.6.1. Flow Control Principles

 Experience with TCP congestion control has shown that algorithms can
 evolve over time to become more sophisticated without requiring
 protocol changes. TCP congestion control and its evolution is
 clearly different from HTTP/2.0 flow control, though the evolution of
 TCP congestion control algorithms shows that a similar approach could
 be feasible for HTTP/2.0 flow control.

 HTTP/2.0 stream flow control aims to allow for future improvements to

Belshe, et al. Expires November 30, 2013 [Page 17]

Internet-Draft HTTP/2.0 May 2013

 flow control algorithms without requiring protocol changes. Flow
 control in HTTP/2.0 has the following characteristics:

 1. Flow control is hop-by-hop, not end-to-end.

 2. Flow control is based on window update frames. Receivers
 advertise how many octets they are prepared to receive on a
 stream. This is a credit-based scheme.

 3. Flow control is directional with overall control provided by the
 receiver. A receiver MAY choose to set any window size that it
 desires for each stream and for the entire connection. A sender
 MUST respect flow control limits imposed by a receiver. Clients,
 servers and intermediaries all independently advertise their flow
 control preferences as a receiver and abide by the flow control
 limits set by their peer when sending.

 4. The initial value for the flow control window is 65536 bytes for
 both new streams and the overall connection.

 5. The frame type determines whether flow control applies to a
 frame. Of the frames specified in this document, only data
 frames are subject to flow control; all other frame types do not
 consume space in the advertised flow control window. This
 ensures that important control frames are not blocked by flow
 control.

 6. Flow control can be disabled by a receiver. A receiver can
 choose to either disable flow control for a stream or connection
 by declaring an infinite flow control limit.

 7. HTTP/2.0 standardizes only the format of the window update frame
 (Section 3.8.9). This does not stipulate how a receiver decides
 when to send this frame or the value that it sends. Nor does it
 specify how a sender chooses to send packets. Implementations
 are able to select any algorithm that suits their needs.

 Implementations are also responsible for managing how requests and
 responses are sent based on priority; choosing how to avoid head of
 line blocking for requests; and managing the creation of new streams.
 Algorithm choices for these could interact with any flow control
 algorithm.

3.6.2. Appropriate Use of Flow Control

 Flow control is defined to protect endpoints (client, server or
 intermediary) that are operating under resource constraints. For
 example, a proxy needs to share memory between many connections, and

Belshe, et al. Expires November 30, 2013 [Page 18]

Internet-Draft HTTP/2.0 May 2013

 also might have a slow upstream connection and a fast downstream one.
 Flow control addresses cases where the receiver is unable process
 data on one stream, yet wants to continue to process other streams in
 the same connection.

 Deployments that do not require this capability SHOULD disable flow
 control for data that is being received. Note that flow control
 cannot be disabled for sending. Sending data is always subject to
 the flow control window advertised by the receiver.

 Deployments with constrained resources (for example, memory) MAY
 employ flow control to limit the amount of memory a peer can consume.
 Note, however, that this can lead to suboptimal use of available
 network resources if flow control is enabled without knowledge of the
 bandwidth-delay product (see [RFC1323]).

 Even with full awareness of the current bandwidth-delay product,
 implementation of flow control is difficult. However, it can ensure
 that constrained resources are protected without any reduction in
 connection utilization.

3.7. Header Blocks

 The header block is found in the HEADERS, HEADERS+PRIORITY and
 PUSH_PROMISE frames. The header block consists of a set of header
 fields, which are name-value pairs. Headers are compressed using
 black magic.

 Compression of header fields is a work in progress, as is the format
 of this block.

 The contents of header blocks MUST be processed by the compression
 context, even if stream has been reset or the frame is discarded. If
 header blocks cannot be processed, the receiver MUST treat the
 connection with a connection error (Section 3.5.1) of type
 COMPRESSION_ERROR.

3.8. Frame Types

 This specification defines a number of frame types, each identified
 by a unique 8-bit type code. Each frame type serves a distinct
 purpose either in the establishment and management of the connection
 as a whole, or of individual streams.

 The transmission of specific frame types can alter the state of a
 connection. If endpoints fail to maintain a synchronized view of the
 connection state, successful communication within the connection will
 no longer be possible. Therefore, it is important that endpoints

https://datatracker.ietf.org/doc/html/rfc1323

Belshe, et al. Expires November 30, 2013 [Page 19]

Internet-Draft HTTP/2.0 May 2013

 have a shared comprehension of how the state is affected by the use
 any given frame. Accordingly, while it is expected that new frame
 types will be introduced by extensions to this protocol, only frames
 defined by this document are permitted to alter the connection state.

3.8.1. DATA Frames

 DATA frames (type=0x0) convey arbitrary, variable-length sequences of
 octets associated with a stream. One or more DATA frames are used,
 for instance, to carry HTTP request or response payloads.

 The DATA frame does not define any type-specific flags.

 DATA frames MUST be associated with a stream. If a DATA frame is
 received whose stream identifier field is 0x0, the recipient MUST
 respond with a connection error (Section 3.5.1) of type
 PROTOCOL_ERROR.

3.8.2. HEADERS+PRIORITY

 The HEADERS+PRIORITY frame (type=0x1) allows the sender to set header
 fields and stream priority at the same time.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |X| Priority (31) |
 +-+---+
 | Header Block (*) ...
 +---+

 HEADERS+PRIORITY Frame Payload

 The HEADERS+PRIORITY frame is identical to the HEADERS frame
 (Section 3.8.8), preceded by a single reserved bit and a 31-bit
 priority; see Section 3.4.2.

 HEADERS+PRIORITY uses the same flags as the HEADERS frame, except
 that a HEADERS+PRIORITY frame with a CONTINUES bit MUST be followed
 by another HEADERS+PRIORITY frame. See HEADERS frame (Section 3.8.8)
 for any flags.

 HEADERS+PRIORITY frames MUST be associated with a stream. If a
 HEADERS+PRIORITY frame is received whose stream identifier field is
 0x0, the recipient MUST respond with a connection error
 (Section 3.5.1) of type PROTOCOL_ERROR.

 The HEADERS+PRIORITY frame modifies the connection state as defined

Belshe, et al. Expires November 30, 2013 [Page 20]

Internet-Draft HTTP/2.0 May 2013

 in Section 3.7.

3.8.3. RST_STREAM

 The RST_STREAM frame (type=0x3) allows for abnormal termination of a
 stream. When sent by the initiator of a stream, it indicates that
 they wish to cancel the stream. When sent by the receiver of a
 stream, it indicates that either the receiver is rejecting the
 stream, requesting that the stream be cancelled or that an error
 condition has occurred.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Error Code (32) |
 +---+

 RST_STREAM Frame Payload

 The RST_STREAM frame contains a single unsigned, 32-bit integer
 identifying the error code (Section 3.5.3). The error code indicates
 why the stream is being terminated.

 No type-flags are defined.

 The RST_STREAM frame fully terminates the referenced stream and
 causes it to enter the closed state. After receiving a RST_STREAM on
 a stream, the receiver MUST NOT send additional frames for that
 stream. However, after sending the RST_STREAM, the sending endpoint
 MUST be prepared to receive and process additional frames sent on the
 stream that might have been sent by the peer prior to the arrival of
 the RST_STREAM.

 RST_STREAM frames MUST be associated with a stream. If a RST_STREAM
 frame is received whose stream identifier field is 0x0 the recipient
 MUST respond with a connection error (Section 3.5.1) of type
 PROTOCOL_ERROR.

3.8.4. SETTINGS

 The SETTINGS frame (type=0x4) conveys configuration parameters that
 affect how endpoints communicate. The parameters are either
 constraints on peer behavior or preferences.

 SETTINGS frames MUST be sent at the start of a connection, and MAY be
 sent at any other time by either endpoint over the lifetime of the
 connection.

Belshe, et al. Expires November 30, 2013 [Page 21]

Internet-Draft HTTP/2.0 May 2013

 Implementations MUST support all of the settings defined by this
 specification and MAY support additional settings defined by
 extensions. Unsupported or unrecognized settings MUST be ignored.
 New settings MUST NOT be defined or implemented in a way that
 requires endpoints to understand then in order to communicate
 successfully.

 A SETTINGS frame is not required to include every defined setting;
 senders can include only those parameters for which it has accurate
 values and a need to convey. When multiple parameters are sent, they
 SHOULD be sent in order of numerically lowest ID to highest ID. A
 single SETTINGS frame MUST NOT contain multiple values for the same
 ID. If the receiver of a SETTINGS frame discovers multiple values
 for the same ID, it MUST ignore all values for that ID except the
 first one.

 Over the lifetime of a connection, an endpoint MAY send multiple
 SETTINGS frames containing previously unspecified parameters or new
 values for parameters whose values have already been established.
 Only the most recent value provided setting value applies.

 The SETTINGS frame defines the following flag:

 CLEAR_PERSISTED (0x2): Bit 2 being set indicates a request to clear
 any previously persisted settings before processing the settings.
 Clients MUST NOT set this flag.

 SETTINGS frames always apply to a connection, never a single stream.
 The stream identifier for a settings frame MUST be zero. If an
 endpoint receives a SETTINGS frame whose stream identifier field is
 anything other than 0x0, the endpoint MUST respond with a connection
 error (Section 3.5.1) of type PROTOCOL_ERROR.

3.8.4.1. Setting Format

 The payload of a SETTINGS frame consists of zero or more settings.
 Each setting consists of an 8-bit flags field specifying per-item
 instructions, an unsigned 24-bit setting identifier, and an unsigned
 32-bit value.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |SettingFlags(8)| Setting Identifier (24) |
 +---------------+---+
 | Value (32) |
 +---+

Belshe, et al. Expires November 30, 2013 [Page 22]

Internet-Draft HTTP/2.0 May 2013

 Setting Format

 Two flags are defined for the 8-bit flags field:

 PERSIST_VALUE (0x1): Bit 1 (the least significant bit) being set
 indicates a request from the server to the client to persist this
 setting. A client MUST NOT set this flag.

 PERSISTED (0x2): Bit 2 being set indicates that this setting is a
 persisted setting being returned by the client to the server.
 This also indicates that this setting is not a client setting, but
 a value previously set by the server. A server MUST NOT set this
 flag.

3.8.4.2. Setting Persistence

 [[anchor12: Note that persistence of settings is under discussion in
 the WG and might be removed in a future version of this document.]]

 A server endpoint can request that configuration parameters sent to a
 client in a SETTINGS frame are to be persisted by the client across
 HTTP/2.0 connections and returned to the server in any new SETTINGS
 frame the client sends to the server in the current connection or any
 future connections.

 Persistence is requested on a per-setting basis by setting the
 PERSIST_VALUE flag (0x1).

 Client endpoints are not permitted to make such requests. Servers
 MUST ignore any attempt by clients to request that a server persist
 configuration parameters.

 Persistence of configuration parameters is done on a per-origin basis
 (see [RFC6454]). That is, when a client establishes a connection
 with a server, and the server requests that the client maintain
 persistent settings, the client SHOULD return the persisted settings
 on all future connections to the same origin, IP address and TCP
 port.

 Whenever the client sends a SETTINGS frame in the current connection,
 or establishes a new connection with the same origin, persisted
 configuration parameters are sent with the PERSISTED flag (0x2) set
 for each persisted parameter.

 Persisted settings accumulate until the server requests that all
 previously persisted settings are to be cleared by setting the
 CLEAR_PERSISTED (0x2) flag on the SETTINGS frame.

https://datatracker.ietf.org/doc/html/rfc6454

Belshe, et al. Expires November 30, 2013 [Page 23]

Internet-Draft HTTP/2.0 May 2013

 For example, if the server sends IDs 1, 2, and 3 with the
 FLAG_SETTINGS_PERSIST_VALUE in a first SETTINGS frame, and then sends
 IDs 4 and 5 with the FLAG_SETTINGS_PERSIST_VALUE in a subsequent
 SETTINGS frame, the client will return values for all 5 settings (1,
 2, 3, 4, and 5 in this example) to the server.

3.8.4.3. Defined Settings

 The following settings are defined:

 SETTINGS_UPLOAD_BANDWIDTH (1): indicates the sender's estimated
 upload bandwidth for this connection. The value is an the
 integral number of kilobytes per second that the sender predicts
 as an expected maximum upload channel capacity.

 SETTINGS_DOWNLOAD_BANDWIDTH (2): indicates the sender's estimated
 download bandwidth for this connection. The value is an integral
 number of kilobytes per second that the sender predicts as an
 expected maximum download channel capacity.

 SETTINGS_ROUND_TRIP_TIME (3): indicates the sender's estimated
 round-trip-time for this connection. The round trip time is
 defined as the minimum amount of time to send a control frame from
 this client to the remote and receive a response. The value is
 represented in milliseconds.

 SETTINGS_MAX_CONCURRENT_STREAMS (4): indicates the maximum number of
 concurrent streams that the sender will allow. This limit is
 directional: it applies to the number of streams that the sender
 permits the receiver to create. By default there is no limit. It
 is recommended that this value be no smaller than 100, so as to
 not unnecessarily limit parallelism.

 SETTINGS_CURRENT_CWND (5): indicates the sender's current TCP CWND
 value.

 SETTINGS_DOWNLOAD_RETRANS_RATE (6): indicates the sender's
 retransmission rate (bytes retransmitted / total bytes
 transmitted).

 SETTINGS_INITIAL_WINDOW_SIZE (7): indicates the sender's initial
 stream window size (in bytes) for new streams.

 SETTINGS_FLOW_CONTROL_OPTIONS (10): indicates that streams directed
 to the sender will not be subject to flow control. The least
 significant bit (0x1) is set to indicate that new streams are not
 flow controlled. All other bits are reserved.

Belshe, et al. Expires November 30, 2013 [Page 24]

Internet-Draft HTTP/2.0 May 2013

 This setting applies to all streams, including existing streams.

 These bits cannot be cleared once set, see Section 3.8.9.4.

3.8.5. PUSH_PROMISE

 The PUSH_PROMISE frame (type=0x5) is used to notify the peer endpoint
 in advance of streams the sender intends to initiate. The
 PUSH_PROMISE frame includes the unsigned 31-bit identifier of the
 stream the endpoint plans to create along with a minimal set of
 headers that provide additional context for the stream. Section 4.3
 contains a thorough description of the use of PUSH_PROMISE frames.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |X| Promised-Stream-ID (31) |
 +-+---+
 | Header Block (*) ...
 +---+

 PUSH_PROMISE Payload Format

 The payload of a PUSH_PROMISE includes a "Promised-Stream-ID". This
 unsigned 31-bit integer identifies the stream the endpoint intends to
 start sending frames for. The promised stream identifier MUST be a
 valid choice for the next stream sent by the sender (see new stream
 identifier (Section 3.4.1)).

 PUSH_PROMISE frames MUST be associated with an existing stream. If
 the stream identifier field specifies the value 0x0, a recipient MUST
 respond with a connection error (Section 3.5.1) of type
 PROTOCOL_ERROR.

 The state of promised streams is bound to the state of the original
 associated stream on which the PUSH_PROMISE frame were sent. If the
 originating stream state changes to fully closed, all associated
 promised streams fully close as well. [[anchor13: Ed. Note: We need
 clarification on this point. How synchronized are the lifecycles of
 streams and associated promised streams?]]

 PUSH_PROMISE uses the same flags as the HEADERS frame, except that a
 PUSH_PROMISE frame with a CONTINUES bit MUST be followed by another
 PUSH_PROMISE frame. See HEADERS frame (Section 3.8.8) for any flags.

 Promised streams are not required to be used in order promised. The
 PUSH_PROMISE only reserves stream identifiers for later use.

Belshe, et al. Expires November 30, 2013 [Page 25]

Internet-Draft HTTP/2.0 May 2013

 Recipients of PUSH_PROMISE frames can choose to reject promised
 streams by returning a RST_STREAM referencing the promised stream
 identifier back to the sender of the PUSH_PROMISE.

 The PUSH_PROMISE frame modifies the connection state as defined in
Section 3.7.

3.8.6. PING

 The PING frame (type=0x6) is a mechanism for measuring a minimal
 round-trip time from the sender, as well as determining whether an
 idle connection is still functional. PING frames can be sent from
 any endpoint.

 PING frames consist of an arbitrary, variable-length sequence of
 octets. Receivers of a PING send a response PING frame with the PONG
 flag set and precisely the same sequence of octets back to the sender
 as soon as possible.

 Processing of PING frames SHOULD be performed with the highest
 priority if there are additional frames waiting to be processed.

 The PING frame defines one type-specific flag:

 PONG (0x2): Bit 2 being set indicates that this PING frame is a PING
 response. An endpoint MUST set this flag in PING responses. An
 endpoint MUST NOT respond to PING frames containing this flag.

 PING frames are not associated with any individual stream. If a PING
 frame is received with a stream identifier field value other than
 0x0, the recipient MUST respond with a connection error
 (Section 3.5.1) of type PROTOCOL_ERROR.

3.8.7. GOAWAY

 The GOAWAY frame (type=0x7) informs the remote peer to stop creating
 streams on this connection. It can be sent from the client or the
 server. Once sent, the sender will ignore frames sent on new streams
 for the remainder of the connection. Receivers of a GOAWAY frame
 MUST NOT open additional streams on the connection, although a new
 connection can be established for new streams. The purpose of this
 frame is to allow an endpoint to gracefully stop accepting new
 streams (perhaps for a reboot or maintenance), while still finishing
 processing of previously established streams.

 There is an inherent race condition between an endpoint starting new
 streams and the remote sending a GOAWAY frame. To deal with this
 case, the GOAWAY contains the stream identifier of the last stream

Belshe, et al. Expires November 30, 2013 [Page 26]

Internet-Draft HTTP/2.0 May 2013

 which was processed on the sending endpoint in this connection. If
 the receiver of the GOAWAY used streams that are newer than the
 indicated stream identifier, they were not processed by the sender
 and the receiver may treat the streams as though they had never been
 created at all (hence the receiver may want to re-create the streams
 later on a new connection).

 Endpoints should always send a GOAWAY frame before closing a
 connection so that the remote can know whether a stream has been
 partially processed or not. (For example, if an HTTP client sends a
 POST at the same time that a server closes a connection, the client
 cannot know if the server started to process that POST request if the
 server does not send a GOAWAY frame to indicate where it stopped
 working).

 After sending a GOAWAY frame, the sender can ignore frames for new
 streams.

 [[anchor14: Issue: connection state that is established by those
 "ignored" frames cannot be ignored without the state in the two peers
 becoming unsynchronized.]]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |X| Last-Stream-ID (31) |
 +-+---+
 | Error Code (32) |
 +---+

 GOAWAY Payload Format

 The GOAWAY frame does not define any type-specific flags.

 The GOAWAY frame applies to the connection, not a specific stream.
 The stream identifier MUST be zero.

 The last stream identifier in the GOAWAY frame contains the highest
 numbered stream identifier for which the sender of the GOAWAY frame
 has received frames on and might have taken some action on. All
 streams up to and including the identified stream might have been
 processed in some way. The last stream identifier is set to 0 if no
 streams were processed.

 Note: In this case, "processed" means that some data from the
 stream was passed to some higher layer of software that might have
 taken some action as a result.

Belshe, et al. Expires November 30, 2013 [Page 27]

Internet-Draft HTTP/2.0 May 2013

 On streams with lower or equal numbered identifiers that do not close
 completely prior to the connection being closed, re-attempting
 requests, transactions, or any protocol activity is not possible
 (with the exception of idempotent actions like HTTP GET, PUT, or
 DELETE). Any protocol activity that uses higher numbered streams can
 be safely retried using a new connection.

 Activity on streams numbered lower or equal to the last stream
 identifier might still complete successfully. The sender of a GOAWAY
 frame gracefully shut down a connection by sending a GOAWAY frame,
 maintaining the connection in an open state until all in-progress
 streams complete.

 The last stream ID MUST be 0 if no streams were acted upon.

 The GOAWAY frame also contains a 32-bit error code (Section 3.5.3)
 that contains the reason for closing the connection.

3.8.8. HEADERS

 The HEADERS frame (type=0x8) provides header fields for a stream.
 Any number of HEADERS frames can may be sent on an existing stream at
 any time.

 Additional type-specific flags for the HEADERS frame are:

 CONTINUES (0x2): The CONTINUES bit indicates that this frame does
 not contain the entire payload necessary to provide a complete set
 of headers.

 The payload for a complete set of headers is provided by a
 sequence of HEADERS frames, terminated by a HEADERS frame without
 the CONTINUES bit. Once the sequence terminates, the payload of
 all HEADERS frames are concatenated and interpreted as a single
 block.

 A HEADERS frame that includes a CONTINUES bit MUST be followed by
 a HEADERS frame for the same stream. A receiver MUST treat the
 receipt of any other type of frame or a frame on a different
 stream as a connection error (Section 3.5.1) of type
 PROTOCOL_ERROR.

 The payload of a HEADERS frame contains a Headers Block
 (Section 3.7).

 The HEADERS frame is associated with an existing stream. If a
 HEADERS frame is received with a stream identifier of 0x0, the
 recipient MUST respond with a stream error (Section 3.5.2) of type

Belshe, et al. Expires November 30, 2013 [Page 28]

Internet-Draft HTTP/2.0 May 2013

 PROTOCOL_ERROR.

 The HEADERS frame changes the connection state as defined in
Section 3.7.

3.8.9. WINDOW_UPDATE

 The WINDOW_UPDATE frame (type=0x9) is used to implement flow control.

 Flow control operates at two levels: on each individual stream and on
 the entire connection.

 Both types of flow control are hop by hop; that is, only between the
 two endpoints. Intermediaries do not forward WINDOW_UPDATE frames
 between dependent connections. However, throttling of data transfer
 by any receiver can indirectly cause the propagation of flow control
 information toward the original sender.

 Flow control only applies to frames that are identified as being
 subject to flow control. Of the frame types defined in this
 document, this includes only DATA frame. Frames that are exempt from
 flow control MUST be accepted and processed, unless the receiver is
 unable to assign resources to handling the frame. A receiver MAY
 respond with a stream error (Section 3.5.2) or connection error
 (Section 3.5.1) of type FLOW_CONTROL_ERROR if it is unable accept a
 frame.

 The following additional flags are defined for the WINDOW_UPDATE
 frame:

 END_FLOW_CONTROL (0x2): Bit 2 being set indicates that flow control
 for the identified stream or connection has been ended; subsequent
 frames do not need to be flow controlled.

 The WINDOW_UPDATE frame can be specific to a stream or to the entire
 connection. In the former case, the frame's stream identifier
 indicates the affected stream; in the latter, the value "0" indicates
 that the entire connection is the subject of the frame.

 The payload of a WINDOW_UPDATE frame is a 32-bit value indicating the
 additional number of bytes that the sender can transmit in addition
 to the existing flow control window. The legal range for this field
 is 1 to 2^31 - 1 (0x7fffffff) bytes; the most significant bit of this
 value is reserved.

Belshe, et al. Expires November 30, 2013 [Page 29]

Internet-Draft HTTP/2.0 May 2013

3.8.9.1. The Flow Control Window

 Flow control in HTTP/2.0 is implemented using a window kept by each
 sender on every stream. The flow control window is a simple integer
 value that indicates how many bytes of data the sender is permitted
 to transmit; as such, its size is a measure of the buffering
 capability of the receiver.

 Two flow control windows are applicable; the stream flow control
 window and the connection flow control window. The sender MUST NOT
 send a flow controlled frame with a length that exceeds the space
 available in either of the flow control windows advertised by the
 receiver. Frames with zero length with the FINAL flag set (for
 example, an empty data frame) MAY be sent if there is no available
 space in either flow control window.

 For flow control calculations, the 8 byte frame header is not
 counted.

 After sending a flow controlled frame, the sender reduces the space
 available in both windows by the length of the transmitted frame.

 The receiver of a frame sends a WINDOW_UPDATE frame as it consumes
 data and frees up space in flow control windows. Separate
 WINDOW_UPDATE frames are sent for the stream and connection level
 flow control windows.

 A sender that receives a WINDOW_UPDATE frame updates the
 corresponding window by the amount specified in the frame.

 A sender MUST NOT allow a flow control window to exceed 2^31 - 1
 bytes. If a sender receives a WINDOW_UPDATE that causes a flow
 control window to exceed this maximum it MUST terminate either the
 stream or the connection, as appropriate. For streams, the sender
 sends a RST_STREAM with the error code of FLOW_CONTROL_ERROR code;
 for the connection, a GOAWAY frame with a FLOW_CONTROL_ERROR code.

 Flow controlled frames from the sender and WINDOW_UPDATE frames from
 the receiver are completely asynchronous with respect to each other.
 This property allows a receiver to aggressively update the window
 size kept by the sender to prevent streams from stalling.

3.8.9.2. Initial Flow Control Window Size

 When a HTTP/2.0 connection is first established, new streams are
 created with an initial flow control window size of 65535 bytes. The
 connection flow control window is 65536 bytes. Both endpoints can
 adjust the initial window size for new streams by including a value

Belshe, et al. Expires November 30, 2013 [Page 30]

Internet-Draft HTTP/2.0 May 2013

 for SETTINGS_INITIAL_WINDOW_SIZE in the SETTINGS frame that forms
 part of the connection header.

 Prior to receiving a SETTINGS frame that sets a value for
 SETTINGS_INITIAL_WINDOW_SIZE, a client can only use the default
 initial window size when sending flow controlled frames. Similarly,
 the connection flow control window is set to the default initial
 window size until a WINDOW_UPDATE frame is received.

 A SETTINGS frame can alter the initial flow control window size for
 all current streams. When the value of SETTINGS_INITIAL_WINDOW_SIZE
 changes, a receiver MUST adjust the size of all flow control windows
 that it maintains by the difference between the new value and the old
 value.

 A change to SETTINGS_INITIAL_WINDOW_SIZE could cause the available
 space in a flow control window to become negative. A sender MUST
 track the negative flow control window, and MUST NOT send new flow
 controlled frames until it receives WINDOW_UPDATE frames that cause
 the flow control window to become positive.

 For example, if the server sets the initial window size to be 16KB,
 and the client sends 64KB immediately on connection establishment,
 the client will recalculate the available flow control window to be
 -48KB on receipt of the SETTINGS frame. The client retains a
 negative flow control window until WINDOW_UPDATE frames restore the
 window to being positive, after which the client can resume sending.

3.8.9.3. Reducing the Stream Window Size

 A receiver that wishes to use a smaller flow control window than the
 current size can send a new SETTINGS frame. However, the receiver
 MUST be prepared to receive data that exceeds this window size, since
 the sender might send data that exceeds the lower limit prior to
 processing the SETTINGS frame.

 A receiver has two options for handling streams that exceed flow
 control limits:

 1. The receiver can immediately send RST_STREAM with
 FLOW_CONTROL_ERROR error code for the affected streams.

 2. The receiver can accept the streams and tolerate the resulting
 head of line blocking, sending WINDOW_UPDATE frames as it
 consumes data.

 If a receiver decides to accept streams, both sides MUST recompute
 the available flow control window based on the initial window size

Belshe, et al. Expires November 30, 2013 [Page 31]

Internet-Draft HTTP/2.0 May 2013

 sent in the SETTINGS.

3.8.9.4. Ending Flow Control

 After a receiver reads in a frame that marks the end of a stream (for
 example, a data stream with a FINAL flag set), it MUST cease
 transmission of WINDOW_UPDATE frames for that stream. A sender is
 not obligated to maintain the available flow control window for
 streams that it is no longer sending on.

 Flow control can be disabled for all streams or the connection using
 the SETTINGS_FLOW_CONTROL_OPTIONS setting. An implementation that
 does not wish to perform flow control can use this in the initial
 SETTINGS exchange.

 Flow control can be disabled for an individual stream or the overall
 connection by sending a WINDOW_UPDATE with the END_FLOW_CONTROL flag
 set. The payload of a WINDOW_UPDATE frame that has the
 END_FLOW_CONTROL flag set is ignored.

 Flow control cannot be enabled again once disabled. Any attempt to
 re-enable flow control - by sending a WINDOW_UPDATE or by clearing
 the bits on the SETTINGS_FLOW_CONTROL_OPTIONS setting - MUST be
 rejected with a FLOW_CONTROL_ERROR error code.

4. HTTP Message Exchanges

 HTTP/2.0 is intended to be as compatible as possible with current
 web-based applications. This means that, from the perspective of the
 server business logic or application API, the features of HTTP are
 unchanged. To achieve this, all of the application request and
 response header semantics are preserved, although the syntax of
 conveying those semantics has changed. Thus, the rules from HTTP/1.1
 ([HTTP-p1], [HTTP-p2], [HTTP-p4], [HTTP-p5], [HTTP-p6], and
 [HTTP-p7]) apply with the changes in the sections below.

4.1. Connection Management

 Clients SHOULD NOT open more than one HTTP/2.0 connection to a given
 origin ([RFC6454]) concurrently.

 Note that it is possible for one HTTP/2.0 connection to be finishing
 (e.g. a GOAWAY frame has been sent, but not all streams have
 finished), while another HTTP/2.0 connection is starting.

https://datatracker.ietf.org/doc/html/rfc6454

Belshe, et al. Expires November 30, 2013 [Page 32]

Internet-Draft HTTP/2.0 May 2013

4.2. HTTP Request/Response

4.2.1. HTTP Header Fields and HTTP/2.0 Headers

 At the application level, HTTP uses name-value pairs in its header
 fields. Because HTTP/2.0 merges the existing HTTP header fields with
 HTTP/2.0 headers, there is a possibility that some HTTP applications
 already use a particular header field name. To avoid any conflicts,
 all header fields introduced for layering HTTP over HTTP/2.0 are
 prefixed with ":". ":" is not a valid sequence in HTTP/1.* header
 field naming, preventing any possible conflict.

4.2.2. Request

 The client initiates a request by sending a HEADERS+PRIORITY frame.
 Requests that do not contain a body MUST set the FINAL flag,
 indicating that the client intends to send no further data on this
 stream, unless the server intends to push resources (see

Section 4.3). HEADERS+PRIORITY frame does not contain the FINAL flag
 for requests that contain a body. The body of a request follows as a
 series of DATA frames. The last DATA frame sets the FINAL flag to
 indicate the end of the body.

 The header fields included in the HEADERS+PRIORITY frame contain all
 of the HTTP header fields associated with an HTTP request. The
 definitions of these headers are largely unchanged relative to
 HTTP/1.1, with a few notable exceptions:

 o The HTTP/1.1 request-line has been split into two separate header
 fields named :method and :path, whose values specify the HTTP
 method for the request and the request-target, respectively. The
 HTTP-version component of the request-line is removed entirely
 from the headers.

 o The host and optional port portions of the request URI (see
[RFC3986], Section 3.2), is specified using the new :host header

 field. [[anchor21: Ed. Note: it needs to be clarified whether or
 not this replaces the existing HTTP/1.1 Host header.]]

 o A new :scheme header field has been added to specify the scheme
 portion of the request-target (e.g. "https")

 o All header field names MUST be lowercased, and the definitions of
 all header field names defined by HTTP/1.1 are updated to be all
 lowercase.

 o The Connection, Host, Keep-Alive, Proxy-Connection, and Transfer-
 Encoding header fields are no longer valid and MUST not be sent.

https://datatracker.ietf.org/doc/html/rfc3986#section-3.2

Belshe, et al. Expires November 30, 2013 [Page 33]

Internet-Draft HTTP/2.0 May 2013

 All HTTP Requests MUST include the ":method", ":path", ":host", and
 ":scheme" header fields.

 Header fields whose names begin with ":" (whether defined in this
 document or future extensions to this document) MUST appear before
 any other header fields.

 If a client sends a HEADERS+PRIORITY frame that omits a mandatory
 header, the server MUST reply with a HTTP 400 Bad Request reply.
 [[anchor22: Ed: why PROTOCOL_ERROR on missing ":status" in the
 response, but HTTP 400 here?]]

 If a server receives a request where the sum of the data frame
 payload lengths does not equal the size of the Content-Length header
 field, the server MUST return a 400 (Bad Request) error.

 Although POSTs are inherently chunked, POST requests SHOULD also be
 accompanied by a Content-Length header field. First, it informs the
 server of how much data to expect, which the server can use to track
 overall progress and provide appropriate user feedback. More
 importantly, some HTTP server implementations fail to correctly
 process requests that omit the Content-Length header field. Many
 existing clients send a Content-Length header field, and some server
 implementations have come to depend upon its presence.

 A client provides priority in requests as a hint to the server. A
 server SHOULD attempt to provide responses to higher priority
 requests before lower priority requests. A server could send lower
 priority responses during periods that higher priority responses are
 unavailable to ensure better utilization of a connection.

 If the server receives a data frame prior to a HEADERS+PRIORITY frame
 the server MUST treat this as a stream error (Section 3.5.2) of type
 PROTOCOL_ERROR.

4.2.3. Response

 The server responds to a client request using the same stream
 identifier that was used by the request. An HTTP response begins
 with a HEADERS frame. An HTTP response body consists of a series of
 DATA frames. The last data frame contains a FINAL flag to indicate
 the end of the response. A response that contains no body (such as a
 204 or 304 response) consists only of a HEADERS frame that contains
 the FINAL flag to indicate no further data will be sent on the
 stream.

Belshe, et al. Expires November 30, 2013 [Page 34]

Internet-Draft HTTP/2.0 May 2013

 The response status line is unfolded into name-value pairs like
 other HTTP header fields and must be present:

 ":status": The HTTP response status code (e.g. "200" or "200 OK")

 All header field names starting with ":" (whether defined in this
 document or future extensions to this document) MUST appear before
 any other header fields.

 All header field names MUST be all lowercase.

 The Connection, Keep-Alive, Proxy-Connection, and Transfer-
 Encoding header fields are not valid and MUST not be sent.

 Responses MAY be accompanied by a Content-Length header field for
 advisory purposes. This allows clients to learn the full size of
 an entity prior to receiving all the data frames. This can help
 in, for example, reporting progress.

 If a client receives a response where the sum of the data frame
 payload length does not equal the size of the Content-Length
 header field, the client MUST ignore the content length header
 field. [[anchor23: Ed: See
 <https://github.com/http2/http2-spec/issues/46>.]]

 If a client receives a response with an absent or duplicated status
 header, the client MUST treat this as a stream error (Section 3.5.2)
 of type PROTOCOL_ERROR.

 If the client receives a data frame prior to a HEADERS frame the
 client MUST treat this as a stream error (Section 3.5.2) of type
 PROTOCOL_ERROR.

 Clients MUST support gzip compression. Regardless of the value of
 the Accept-Encoding header field, a server MAY send responses with
 gzip or deflate encoding. A compressed response MUST still bear an
 appropriate Content-Encoding header field.

4.3. Server Push Transactions

 HTTP/2.0 enables a server to send multiple replies to a client for a
 single request. The rationale for this feature is that sometimes a
 server knows that it will need to send multiple resources in response
 to a single request. Without server push features, the client must
 first download the primary resource, then discover the secondary
 resource(s), and request them.

 Server push is an optional feature. The

https://github.com/http2/http2-spec/issues/46

Belshe, et al. Expires November 30, 2013 [Page 35]

Internet-Draft HTTP/2.0 May 2013

 SETTINGS_MAX_CONCURRENT_STREAMS setting from the client limits the
 number of resources that can be concurrently pushed by a server.
 Server push can be disabled by clients that do not wish to receive
 pushed resources by advertising a SETTINGS_MAX_CONCURRENT_STREAMS
 SETTING (Section 3.8.4) of zero. This prevents servers from creating
 the streams necessary to push resources.

 Clients receiving a pushed response MUST validate that the server is
 authorized to push the resource using the same-origin policy
 ([RFC6454], Section 3). For example, a HTTP/2.0 connection to
 "example.com" is generally [[anchor24: Ed: weaselly use of
 "generally", needs better definition]] not permitted to push a
 response for "www.example.org".

 A client that accepts pushed resources caches those resources as
 though they were responses to GET requests.

 Pushing of resources avoids the round-trip delay, but also creates a
 potential race where a server can be pushing content which a client
 is in the process of requesting. The PUSH_PROMISE frame reduces the
 chances of this condition occurring, while retaining the performance
 benefit.

 Pushed responses are associated with a request at the HTTP/2.0
 framing layer. The PUSH_PROMISE is sent on the stream for the
 associated request, which allows a receiver to correlate the pushed
 resource with a request. The pushed stream inherits all of the
 request header fields from the associated stream with the exception
 of resource identification header fields (":host", ":scheme", and
 ":path"), which are provided as part of the PUSH_PROMISE frame.

 Pushed resources always have an associated ":method" of "GET". A
 cache MUST store these inherited and implied request header fields
 with the cached resource.

4.3.1. Server implementation

 A server pushes resources in association with a request from the
 client. Prior to closing the response stream, the server sends a
 PUSH_PROMISE for each resource that it intends to push. The
 PUSH_PROMISE includes header fields that allow the client to identify
 the resource (":scheme", ":host", and ":path").

 A server can push multiple resources in response to a request, but
 all pushed resources MUST be promised on the response stream for the
 associated request. A server cannot send a PUSH_PROMISE on a new
 stream or a half-closed stream.

https://datatracker.ietf.org/doc/html/rfc6454#section-3

Belshe, et al. Expires November 30, 2013 [Page 36]

Internet-Draft HTTP/2.0 May 2013

 The server SHOULD include any header fields in a PUSH_PROMISE that
 would allow a cache to determine if the resource is already cached
 (see [HTTP-p6], Section 4).

 After sending a PUSH_PROMISE, the server commences transmission of a
 pushed resource. A pushed resource uses a server-initiated stream.
 The server sends frames on this stream in the same order as an HTTP
 response (Section 4.2.3): a HEADERS frame followed by DATA frames.

 Many uses of server push are to send content that a client is likely
 to discover a need for based on the content of a response
 representation. To minimize the chances that a client will make a
 request for resources that are being pushed - causing duplicate
 copies of a resource to be sent by the server - a PUSH_PROMISE frame
 SHOULD be sent prior to any content in the response representation
 that might allow a client to discover the pushed resource and request
 it.

 The server MUST only push resources that could have been returned
 from a GET request.

 Note: A server does not need to have all response header fields
 available at the time it issues a PUSH_PROMISE frame. All remaining
 header fields are included in the HEADERS frame. The HEADERS frame
 MUST NOT duplicate header fields from the PUSH_PROMISE frames.

4.3.2. Client implementation

 When fetching a resource the client has 3 possibilities:

 1. the resource is not being pushed

 2. the resource is being pushed, but the data has not yet arrived

 3. the resource is being pushed, and the data has started to arrive

 A client SHOULD NOT issue GET requests for a resource that has been
 promised. A client is instead advised to wait for the pushed
 resource to arrive.

 When a client receives a PUSH_PROMISE frame from the server without a
 the ":host", ":scheme", and ":path" header fields, it MUST treat this
 as a stream error (Section 3.5.2) of type PROTOCOL_ERROR.

 To cancel individual server push streams, the client can issue a
 stream error (Section 3.5.2) of type CANCEL. After receiving a
 PUSH_PROMISE frame, the client is able to cancel the pushed resource
 before receiving any frames on the promised stream. The server

Belshe, et al. Expires November 30, 2013 [Page 37]

Internet-Draft HTTP/2.0 May 2013

 ceases transmission of the pushed resource; if the server has not
 commenced transmission, it does not start.

 To cancel all server push streams related to a request, the client
 may issue a stream error (Section 3.5.2) of type CANCEL on the
 associated-stream-id. By cancelling that stream, the server MUST
 immediately stop sending frames for any streams with
 in-association-to for the original stream. [[anchor27: Ed: Triggering
 side-effects on stream reset is going to be problematic for the
 framing layer. Purely from a design perspective, it's a layering
 violation. More practically speaking, the base request stream might
 already be removed. Special handling logic would be required.]]

 A client can choose to time out pushed streams if the server does not
 provide the resource in a timely fashion. A stream error
 (Section 3.5.2) of type CANCEL can be used to stop a timed out push.

 If the server sends a HEADERS frame containing header fields that
 duplicate values on a previous HEADERS or PUSH_PROMISE frames on the
 same stream, the client MUST treat this as a stream error
 (Section 3.5.2) of type PROTOCOL_ERROR.

 If the server sends a HEADERS frame after sending a data frame for
 the same stream, the client MAY ignore the HEADERS frame. Ignoring
 the HEADERS frame after a data frame prevents handling of HTTP's
 trailing header fields (Section 4.1.1 of [HTTP-p1]).

5. Design Rationale and Notes

 Authors' notes: The notes in this section have no bearing on the
 HTTP/2.0 protocol as specified within this document, and none of
 these notes should be considered authoritative about how the protocol
 works. However, these notes may prove useful in future debates about
 how to resolve protocol ambiguities or how to evolve the protocol
 going forward. They may be removed before the final draft.

5.1. Separation of Framing Layer and Application Layer

 Readers may note that this specification sometimes blends the framing
 layer (Section 3) with requirements of a specific application - HTTP
 (Section 4). This is reflected in the request/response nature of the
 streams and the definition of the HEADERS which are very similar to
 HTTP, and other areas as well.

 This blending is intentional - the primary goal of this protocol is
 to create a low-latency protocol for use with HTTP. Isolating the
 two layers is convenient for description of the protocol and how it
 relates to existing HTTP implementations. However, the ability to

Belshe, et al. Expires November 30, 2013 [Page 38]

Internet-Draft HTTP/2.0 May 2013

 reuse the HTTP/2.0 framing layer is a non goal.

5.2. Error handling - Framing Layer

 Error handling at the HTTP/2.0 layer splits errors into two groups:
 Those that affect an individual HTTP/2.0 stream, and those that do
 not.

 When an error is confined to a single stream, but general framing is
 intact, HTTP/2.0 attempts to use the RST_STREAM as a mechanism to
 invalidate the stream but move forward without aborting the
 connection altogether.

 For errors occurring outside of a single stream context, HTTP/2.0
 assumes the entire connection is hosed. In this case, the endpoint
 detecting the error should initiate a connection close.

5.3. One Connection per Domain

 HTTP/2.0 attempts to use fewer connections than other protocols have
 traditionally used. The rationale for this behavior is because it is
 very difficult to provide a consistent level of service (e.g. TCP
 slow-start), prioritization, or optimal compression when the client
 is connecting to the server through multiple channels.

 Through lab measurements, we have seen consistent latency benefits by
 using fewer connections from the client. The overall number of
 packets sent by HTTP/2.0 can be as much as 40% less than HTTP.
 Handling large numbers of concurrent connections on the server also
 does become a scalability problem, and HTTP/2.0 reduces this load.

 The use of multiple connections is not without benefit, however.
 Because HTTP/2.0 multiplexes multiple, independent streams onto a
 single stream, it creates a potential for head-of-line blocking
 problems at the transport level. In tests so far, the negative
 effects of head-of-line blocking (especially in the presence of
 packet loss) is outweighed by the benefits of compression and
 prioritization.

5.4. Fixed vs Variable Length Fields

 HTTP/2.0 favors use of fixed length 32bit fields in cases where
 smaller, variable length encodings could have been used. To some,
 this seems like a tragic waste of bandwidth. HTTP/2.0 chooses the
 simple encoding for speed and simplicity.

 The goal of HTTP/2.0 is to reduce latency on the network. The
 overhead of HTTP/2.0 frames is generally quite low. Each data frame

Belshe, et al. Expires November 30, 2013 [Page 39]

Internet-Draft HTTP/2.0 May 2013

 is only an 8 byte overhead for a 1452 byte payload (~0.6%). At the
 time of this writing, bandwidth is already plentiful, and there is a
 strong trend indicating that bandwidth will continue to increase.
 With an average worldwide bandwidth of 1Mbps, and assuming that a
 variable length encoding could reduce the overhead by 50%, the
 latency saved by using a variable length encoding would be less than
 100 nanoseconds. More interesting are the effects when the larger
 encodings force a packet boundary, in which case a round-trip could
 be induced. However, by addressing other aspects of HTTP/2.0 and TCP
 interactions, we believe this is completely mitigated.

5.5. Server Push

 A subtle but important point is that server push streams must be
 declared before the associated stream is closed. The reason for this
 is so that proxies have a lifetime for which they can discard
 information about previous streams. If a pushed stream could
 associate itself with an already-closed stream, then endpoints would
 not have a specific lifecycle for when they could disavow knowledge
 of the streams which went before.

6. Security Considerations

6.1. Server Authority and Same-Origin

 This specification uses the same-origin policy ([RFC6454], Section 3)
 to determine whether an origin server is permitted to provide
 content.

 A server that is contacted using TLS is authenticated based on the
 certificate that it offers in the TLS handshake (see [RFC2818],
 Section 3). A server is considered authoritative for an "https:"
 resource if it has been successfully authenticated for the domain
 part of the origin of the resource that it is providing.

 A server is considered authoritative for an "http:" resource if the
 connection is established to a resolved IP address for the domain in
 the origin of the resource.

 A client MUST NOT use, in any way, resources provided by a server
 that is not authoritative for those resources.

6.2. Cross-Protocol Attacks

 When using TLS, we believe that HTTP/2.0 introduces no new cross-
 protocol attacks. TLS encrypts the contents of all transmission
 (except the handshake itself), making it difficult for attackers to
 control the data which could be used in a cross-protocol attack.

https://datatracker.ietf.org/doc/html/rfc6454#section-3
https://datatracker.ietf.org/doc/html/rfc2818#section-3
https://datatracker.ietf.org/doc/html/rfc2818#section-3

Belshe, et al. Expires November 30, 2013 [Page 40]

Internet-Draft HTTP/2.0 May 2013

 [[anchor37: Issue: This is no longer true]]

6.3. Cacheability of Pushed Resources

 Pushed resources are synthesized responses without an explicit
 request; the request for a pushed resource is synthesized from the
 request that triggered the push, plus resource identification
 information provided by the server. Request header fields are
 necessary for HTTP cache control validations (such as the Vary header
 field) to work. For this reason, caches MUST inherit request header
 fields from the associated stream for the push. This includes the
 Cookie header field.

 Caching resources that are pushed is possible, based on the guidance
 provided by the origin server in the Cache-Control header field.
 However, this can cause issues if a single server hosts more than one
 tenant. For example, a server might offer multiple users each a
 small portion of its URI space.

 Where multiple tenants share space on the same server, that server
 MUST ensure that tenants are not able to push representations of
 resources that they do not have authority over. Failure to enforce
 this would allow a tenant to provide a representation that would be
 served out of cache, overriding the actual representation that the
 authoritative tenant provides.

 Pushed resources for which an origin server is not authoritative are
 never cached or used.

7. Privacy Considerations

7.1. Long Lived Connections

 HTTP/2.0 aims to keep connections open longer between clients and
 servers in order to reduce the latency when a user makes a request.
 The maintenance of these connections over time could be used to
 expose private information. For example, a user using a browser
 hours after the previous user stopped using that browser may be able
 to learn about what the previous user was doing. This is a problem
 with HTTP in its current form as well, however the short lived
 connections make it less of a risk.

7.2. SETTINGS frame

 The HTTP/2.0 SETTINGS frame allows servers to store out-of-band
 transmitted information about the communication between client and
 server on the client. Although this is intended only to be used to
 reduce latency, renegade servers could use it as a mechanism to store

Belshe, et al. Expires November 30, 2013 [Page 41]

Internet-Draft HTTP/2.0 May 2013

 identifying information about the client in future requests.

 Clients implementing privacy modes can disable client-persisted
 SETTINGS storage.

 Clients MUST clear persisted SETTINGS information when clearing the
 cookies.

8. IANA Considerations

 This document establishes registries for frame types, error codes and
 settings.

8.1. Frame Type Registry

 This document establishes a registry for HTTP/2.0 frame types. The
 "HTTP/2.0 Frame Type" registry operates under the "IETF Review"
 policy [RFC5226].

 Frame types are an 8-bit value. When reviewing new frame type
 registrations, special attention is advised for any frame type-
 specific flags that are defined. Frame flags can interact with
 existing flags and could prevent the creation of globally applicable
 flags.

 Initial values for the "HTTP/2.0 Frame Type" registry are shown in
 Table 1.

 +------------+------------------+---------------------+
 | Frame Type | Name | Flags |
 +------------+------------------+---------------------+
 | 0 | DATA | - |
 | 1 | HEADERS+PRIORITY | - |
 | 3 | RST_STREAM | - |
 | 4 | SETTINGS | CLEAR_PERSISTED(2) |
 | 5 | PUSH_PROMISE | - |
 | 6 | PING | PONG(2) |
 | 7 | GOAWAY | - |
 | 8 | HEADERS | - |
 | 9 | WINDOW_UPDATE | END_FLOW_CONTROL(2) |
 +------------+------------------+---------------------+

 Table 1

https://datatracker.ietf.org/doc/html/rfc5226

Belshe, et al. Expires November 30, 2013 [Page 42]

Internet-Draft HTTP/2.0 May 2013

8.2. Error Code Registry

 This document establishes a registry for HTTP/2.0 error codes. The
 "HTTP/2.0 Error Code" registry manages a 32-bit space. The "HTTP/2.0
 Error Code" registry operates under the "Expert Review" policy
 [RFC5226].

 Registrations for error codes are required to include a description
 of the error code. An expert reviewer is advised to examine new
 registrations for possible duplication with existing error codes.
 Use of existing registrations is to be encouraged, but not mandated.

 New registrations are advised to provide the following information:

 Error Code: The 32-bit error code value.

 Name: A name for the error code. Specifying an error code name is
 optional.

 Description: A description of the conditions where the error code is
 applicable.

 Specification: An optional reference for a specification that
 defines the error code.

 An initial set of error code registrations can be found in
Section 3.5.3.

8.3. Settings Registry

 This document establishes a registry for HTTP/2.0 settings. The
 "HTTP/2.0 Settings" registry manages a 24-bit space. The "HTTP/2.0
 Settings" registry operates under the "Expert Review" policy
 [RFC5226].

 Registrations for settings are required to include a description of
 the setting. An expert reviewer is advised to examine new
 registrations for possible duplication with existing settings. Use
 of existing registrations is to be encouraged, but not mandated.

 New registrations are advised to provide the following information:

 Setting: The 24-bit setting value.

 Name: A name for the setting. Specifying a name is optional.

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Belshe, et al. Expires November 30, 2013 [Page 43]

Internet-Draft HTTP/2.0 May 2013

 Flags: Any setting-specific flags that apply, including their value
 and semantics.

 Description: A description of the setting. This might include the
 range of values, any applicable units and how to act upon a value
 when it is provided.

 Specification: An optional reference for a specification that
 defines the setting.

 An initial set of settings registrations can be found in
Section 3.8.4.3.

9. Acknowledgements

 This document includes substantial input from the following
 individuals:

 o Adam Langley, Wan-Teh Chang, Jim Morrison, Mark Nottingham, Alyssa
 Wilk, Costin Manolache, William Chan, Vitaliy Lvin, Joe Chan, Adam
 Barth, Ryan Hamilton, Gavin Peters, Kent Alstad, Kevin Lindsay,
 Paul Amer, Fan Yang, Jonathan Leighton (SPDY contributors).

 o Gabriel Montenegro and Willy Tarreau (Upgrade mechanism)

 o William Chan, Salvatore Loreto, Osama Mazahir, Gabriel Montenegro,
 Jitu Padhye, Roberto Peon, Rob Trace (Flow control)

 o Mark Nottingham, Julian Reschke, James Snell (Editorial)

10. References

10.1. Normative References

 [HTTP-p1] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing",

draft-ietf-httpbis-p1-messaging-22 (work in progress),
 February 2013.

 [HTTP-p2] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content",

draft-ietf-httpbis-p2-semantics-22 (work in progress),
 February 2013.

 [HTTP-p4] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests",

draft-ietf-httpbis-p4-conditional-22 (work in progress),
 February 2013.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p1-messaging-22
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-22
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-22

Belshe, et al. Expires November 30, 2013 [Page 44]

Internet-Draft HTTP/2.0 May 2013

 [HTTP-p5] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",

draft-ietf-httpbis-p5-range-22 (work in progress),
 February 2013.

 [HTTP-p6] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

draft-ietf-httpbis-p6-cache-22 (work in progress),
 February 2013.

 [HTTP-p7] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication",

draft-ietf-httpbis-p7-auth-22 (work in progress),
 February 2013.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 December 2011.

 [TLSALPN] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application Layer Protocol
 Negotiation Extension", draft-ietf-tls-applayerprotoneg-01
 (work in progress), April 2013.

10.2. Informative References

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [TALKING] Huang, L-S., Chen, E., Barth, A., Rescorla, E., and C.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p5-range-22
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p6-cache-22
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p7-auth-22
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/draft-ietf-tls-applayerprotoneg-01
https://datatracker.ietf.org/doc/html/rfc1323

Belshe, et al. Expires November 30, 2013 [Page 45]

Internet-Draft HTTP/2.0 May 2013

 Jackson, "Talking to Yourself for Fun and Profit", 2011,
 <http://w2spconf.com/2011/papers/websocket.pdf>.

Appendix A. Change Log (to be removed by RFC Editor before publication)

A.1. Since draft-ietf-httpbis-http2-02

 Added continuations to frames carrying header blocks.

 Replaced use of "session" with "connection" to avoid confusion with
 other HTTP stateful concepts, like cookies.

 Removed "message".

 Switched to TLS ALPN from NPN.

 Editorial changes.

A.2. Since draft-ietf-httpbis-http2-01

 Added IANA considerations section for frame types, error codes and
 settings.

 Removed data frame compression.

 Added PUSH_PROMISE.

 Added globally applicable flags to framing.

 Removed zlib-based header compression mechanism.

 Updated references.

 Clarified stream identifier reuse.

 Removed CREDENTIALS frame and associated mechanisms.

 Added advice against naive implementation of flow control.

 Added session header section.

 Restructured frame header. Removed distinction between data and
 control frames.

 Altered flow control properties to include session-level limits.

 Added note on cacheability of pushed resources and multiple tenant
 servers.

http://w2spconf.com/2011/papers/websocket.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-01

Belshe, et al. Expires November 30, 2013 [Page 46]

Internet-Draft HTTP/2.0 May 2013

 Changed protocol label form based on discussions.

A.3. Since draft-ietf-httpbis-http2-00

 Changed title throughout.

 Removed section on Incompatibilities with SPDY draft#2.

 Changed INTERNAL_ERROR on GOAWAY to have a value of 2 <https://
 groups.google.com/forum/?fromgroups#!topic/spdy-dev/cfUef2gL3iU>.

 Replaced abstract and introduction.

 Added section on starting HTTP/2.0, including upgrade mechanism.

 Removed unused references.

 Added flow control principles (Section 3.6.1) based on <http://
tools.ietf.org/html/draft-montenegro-httpbis-http2-fc-principles-01>.

A.4. Since draft-mbelshe-httpbis-spdy-00

 Adopted as base for draft-ietf-httpbis-http2.

 Updated authors/editors list.

 Added status note.

Authors' Addresses

 Mike Belshe
 Twist

 EMail: mbelshe@chromium.org

 Roberto Peon
 Google, Inc

 EMail: fenix@google.com

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-00
http://tools.ietf.org/html/draft-montenegro-httpbis-http2-fc-principles-01
http://tools.ietf.org/html/draft-montenegro-httpbis-http2-fc-principles-01
https://datatracker.ietf.org/doc/html/draft-mbelshe-httpbis-spdy-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2

Belshe, et al. Expires November 30, 2013 [Page 47]

Internet-Draft HTTP/2.0 May 2013

 Martin Thomson (editor)
 Microsoft
 3210 Porter Drive
 Palo Alto 94304
 US

 EMail: martin.thomson@skype.net

 Alexey Melnikov (editor)
 Isode Ltd
 5 Castle Business Village
 36 Station Road
 Hampton, Middlesex TW12 2BX
 UK

 EMail: Alexey.Melnikov@isode.com

Belshe, et al. Expires November 30, 2013 [Page 48]

