
HTTPbis Working Group M. Belshe
Internet-Draft Twist
Intended status: Standards Track R. Peon
Expires: May 15, 2014 Google, Inc
 M. Thomson, Ed.
 Microsoft
 A. Melnikov, Ed.
 Isode Ltd
 November 11, 2013

Hypertext Transfer Protocol version 2.0
draft-ietf-httpbis-http2-08

Abstract

 This specification describes an optimized expression of the syntax of
 the Hypertext Transfer Protocol (HTTP). HTTP/2.0 enables a more
 efficient use of network resources and a reduced perception of
 latency by introducing header field compression and allowing multiple
 concurrent messages on the same connection. It also introduces
 unsolicited push of representations from servers to clients.

 This document is an alternative to, but does not obsolete, the
 HTTP/1.1 message syntax. HTTP's existing semantics remain unchanged.

 This version of the draft has been marked for implementation.
 Interoperability testing will occur in the HTTP/2.0 interim in
 Zurich, CH, starting 2014-01-22.

Editorial Note (To be removed by RFC Editor)

 Discussion of this draft takes place on the HTTPBIS working group
 mailing list (ietf-http-wg@w3.org), which is archived at
 <http://lists.w3.org/Archives/Public/ietf-http-wg/>.

 Working Group information and related documents can be found at
 <http://tools.ietf.org/wg/httpbis/> (Wiki) and
 <https://github.com/http2/http2-spec> (source code and issues
 tracker).

 The changes in this draft are summarized in Appendix A.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

Belshe, et al. Expires May 15, 2014 [Page 1]

http://lists.w3.org/Archives/Public/ietf-http-wg/
http://tools.ietf.org/wg/httpbis/
https://github.com/http2/http2-spec
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft HTTP/2.0 November 2013

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 15, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 5
1.1. Document Organization 5
1.2. Conventions and Terminology 6

2. HTTP/2.0 Protocol Overview 6
2.1. HTTP Frames . 7
2.2. HTTP Multiplexing . 7
2.3. HTTP Semantics . 7

3. Starting HTTP/2.0 . 7
3.1. HTTP/2.0 Version Identification 7
3.2. Starting HTTP/2.0 for "http" URIs 8
3.2.1. HTTP2-Settings Header Field 10

3.3. Starting HTTP/2.0 for "https" URIs 10
3.4. Starting HTTP/2.0 with Prior Knowledge 10
3.5. HTTP/2.0 Connection Header 11

4. HTTP Frames . 12
4.1. Frame Format . 12
4.2. Frame Size . 13
4.3. Header Compression and Decompression 13

5. Streams and Multiplexing 14

http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Belshe, et al. Expires May 15, 2014 [Page 2]

Internet-Draft HTTP/2.0 November 2013

5.1. Stream States . 15
5.1.1. Stream Identifiers 19
5.1.2. Stream Concurrency 19

5.2. Flow Control . 20
5.2.1. Flow Control Principles 20
5.2.2. Appropriate Use of Flow Control 21

5.3. Stream priority . 22
5.4. Error Handling . 22
5.4.1. Connection Error Handling 22
5.4.2. Stream Error Handling 23
5.4.3. Connection Termination 23

6. Frame Definitions . 24
6.1. DATA . 24
6.2. HEADERS . 24
6.3. PRIORITY . 26
6.4. RST_STREAM . 26
6.5. SETTINGS . 27
6.5.1. Setting Format . 28
6.5.2. Defined Settings 29
6.5.3. Settings Synchronization 29

6.6. PUSH_PROMISE . 30
6.7. PING . 31
6.8. GOAWAY . 32
6.9. WINDOW_UPDATE . 34
6.9.1. The Flow Control Window 35
6.9.2. Initial Flow Control Window Size 36
6.9.3. Reducing the Stream Window Size 37
6.9.4. Ending Flow Control 37

6.10. CONTINUATION . 38
7. Error Codes . 39
8. HTTP Message Exchanges . 40
8.1. HTTP Request/Response Exchange 40
8.1.1. Informational Responses 41
8.1.2. Examples . 41
8.1.3. HTTP Header Fields 43
8.1.4. Request Reliability Mechanisms in HTTP/2.0 45

8.2. Server Push . 46
8.2.1. Push Requests . 47
8.2.2. Push Responses . 48

8.3. The CONNECT Method . 48
9. Additional HTTP Requirements/Considerations 49
9.1. Connection Management 50
9.2. Use of TLS Features 50
9.3. GZip Content-Encoding 51

10. Security Considerations 51
10.1. Server Authority and Same-Origin 51
10.2. Cross-Protocol Attacks 51
10.3. Intermediary Encapsulation Attacks 51

Belshe, et al. Expires May 15, 2014 [Page 3]

Internet-Draft HTTP/2.0 November 2013

10.4. Cacheability of Pushed Resources 52
10.5. Denial of Service Considerations 52

11. Privacy Considerations . 53
12. IANA Considerations . 53
12.1. Registration of HTTP/2.0 Identification String 54
12.2. Frame Type Registry 54
12.3. Error Code Registry 55
12.4. Settings Registry . 55
12.5. HTTP2-Settings Header Field Registration 56

13. Acknowledgements . 56
14. References . 57
14.1. Normative References 57
14.2. Informative References 58

Appendix A. Change Log (to be removed by RFC Editor before
 publication) . 59

A.1. Since draft-ietf-httpbis-http2-07 59
A.2. Since draft-ietf-httpbis-http2-06 59
A.3. Since draft-ietf-httpbis-http2-05 59
A.4. Since draft-ietf-httpbis-http2-04 59
A.5. Since draft-ietf-httpbis-http2-03 60
A.6. Since draft-ietf-httpbis-http2-02 60
A.7. Since draft-ietf-httpbis-http2-01 60
A.8. Since draft-ietf-httpbis-http2-00 61
A.9. Since draft-mbelshe-httpbis-spdy-00 61

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-07
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-00
https://datatracker.ietf.org/doc/html/draft-mbelshe-httpbis-spdy-00

Belshe, et al. Expires May 15, 2014 [Page 4]

Internet-Draft HTTP/2.0 November 2013

1. Introduction

 The Hypertext Transfer Protocol (HTTP) is a wildly successful
 protocol. However, the HTTP/1.1 message format ([HTTP-p1], Section

3) is optimized for implementation simplicity and accessibility, not
 application performance. As such it has several characteristics that
 have a negative overall effect on application performance.

 In particular, HTTP/1.0 only allows one request to be outstanding at
 a time on a given connection. HTTP/1.1 pipelining only partially
 addressed request concurrency and suffers from head-of-line blocking.
 Therefore, clients that need to make many requests typically use
 multiple connections to a server in order to reduce latency.

 Furthermore, HTTP/1.1 header fields are often repetitive and verbose,
 which, in addition to generating more or larger network packets, can
 cause the small initial TCP congestion window to quickly fill. This
 can result in excessive latency when multiple requests are made on a
 single new TCP connection.

 This document addresses these issues by defining an optimized mapping
 of HTTP's semantics to an underlying connection. Specifically, it
 allows interleaving of request and response messages on the same
 connection and uses an efficient coding for HTTP header fields. It
 also allows prioritization of requests, letting more important
 requests complete more quickly, further improving performance.

 The resulting protocol is designed to be more friendly to the
 network, because fewer TCP connections can be used, in comparison to
 HTTP/1.x. This means less competition with other flows, and longer-
 lived connections, which in turn leads to better utilization of
 available network capacity.

 Finally, this encapsulation also enables more scalable processing of
 messages through use of binary message framing.

1.1. Document Organization

 The HTTP/2.0 Specification is split into three parts: starting
 HTTP/2.0 (Section 3), which covers how a HTTP/2.0 connection is
 initiated; a framing layer (Section 4), which multiplexes a single
 TCP connection into independent frames of various types; and an HTTP
 layer (Section 8), which specifies the mechanism for expressing HTTP
 interactions using the framing layer. While some of the framing
 layer concepts are isolated from HTTP, building a generic framing
 layer has not been a goal. The framing layer is tailored to the
 needs of the HTTP protocol and server push.

Belshe, et al. Expires May 15, 2014 [Page 5]

Internet-Draft HTTP/2.0 November 2013

1.2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 All numeric values are in network byte order. Values are unsigned
 unless otherwise indicated. Literal values are provided in decimal
 or hexadecimal as appropriate. Hexadecimal literals are prefixed
 with "0x" to distinguish them from decimal literals.

 The following terms are used:

 client: The endpoint initiating the HTTP connection.

 connection: A transport-level connection between two endpoints.

 connection error: An error on the HTTP/2.0 connection.

 endpoint: Either the client or server of the connection.

 frame: The smallest unit of communication within an HTTP/2.0
 connection, consisting of a header and a variable-length sequence
 of bytes structured according to the frame type.

 peer: An endpoint. When discussing a particular endpoint, "peer"
 refers to the endpoint that is remote to the primary subject of
 discussion.

 receiver: An endpoint that is receiving frames.

 sender: An endpoint that is transmitting frames.

 server: The endpoint which did not initiate the HTTP connection.

 stream: A bi-directional flow of frames across a virtual channel
 within the HTTP/2.0 connection.

 stream error: An error on the individual HTTP/2.0 stream.

2. HTTP/2.0 Protocol Overview

 HTTP/2.0 provides an optimized transport for HTTP semantics.

 An HTTP/2.0 connection is an application level protocol running on
 top of a TCP connection ([TCP]). The client is the TCP connection
 initiator.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Belshe, et al. Expires May 15, 2014 [Page 6]

Internet-Draft HTTP/2.0 November 2013

 This document describes the HTTP/2.0 protocol using a logical
 structure that is formed of three parts: framing, streams, and
 application mapping. This structure is provided primarily as an aid
 to specification, implementations are free to diverge from this
 structure as necessary.

2.1. HTTP Frames

 HTTP/2.0 provides an efficient serialization of HTTP semantics. HTTP
 requests and responses are encoded into length-prefixed frames (see

Section 4.1).

 HTTP header fields are compressed into a series of frames that
 contain header block fragments (see Section 4.3).

2.2. HTTP Multiplexing

 HTTP/2.0 provides the ability to multiplex HTTP requests and
 responses over a single connection. Multiple requests or responses
 can be sent concurrently on a connection using streams (Section 5).
 In order to maintain independent streams, flow control and
 prioritization are necessary.

2.3. HTTP Semantics

 HTTP/2.0 defines how HTTP requests and responses are mapped to
 streams (see Section 8.1) and introduces a new interaction model,
 server push (Section 8.2).

3. Starting HTTP/2.0

 HTTP/2.0 uses the same "http" and "https" URI schemes used by
 HTTP/1.1. HTTP/2.0 shares the same default port numbers: 80 for
 "http" URIs and 443 for "https" URIs. As a result, implementations
 processing requests for target resource URIs like
 "http://example.org/foo" or "https://example.com/bar" are required to
 first discover whether the upstream server (the immediate peer to
 which the client wishes to establish a connection) supports HTTP/2.0.

 The means by which support for HTTP/2.0 is determined is different
 for "http" and "https" URIs. Discovery for "http" URIs is described
 in Section 3.2. Discovery for "https" URIs is described in

Section 3.3.

3.1. HTTP/2.0 Version Identification

 The protocol defined in this document is identified using the string
 "HTTP/2.0". This identification is used in the HTTP/1.1 Upgrade

Belshe, et al. Expires May 15, 2014 [Page 7]

Internet-Draft HTTP/2.0 November 2013

 header field, in the TLS application layer protocol negotiation
 extension [TLSALPN] field, and other places where protocol
 identification is required.

 Negotiating "HTTP/2.0" implies the use of the transport, security,
 framing and message semantics described in this document.

 [[anchor6: Editor's Note: please remove the remainder of this section
 prior to the publication of a final version of this document.]]

 Only implementations of the final, published RFC can identify
 themselves as "HTTP/2.0". Until such an RFC exists, implementations
 MUST NOT identify themselves using "HTTP/2.0".

 Examples and text throughout the rest of this document use "HTTP/2.0"
 as a matter of editorial convenience only. Implementations of draft
 versions MUST NOT identify using this string. The exception to this
 rule is the string included in the connection header sent by clients
 immediately after establishing an HTTP/2.0 connection (see

Section 3.5); this fixed length sequence of octets does not change.

 Implementations of draft versions of the protocol MUST add the string
 "-draft-" and the corresponding draft number to the identifier before
 the separator ('/'). For example, draft-ietf-httpbis-http2-03 is
 identified using the string "HTTP-draft-03/2.0".

 Non-compatible experiments that are based on these draft versions
 MUST instead replace the string "draft" with a different identifier.
 For example, an experimental implementation of packet mood-based
 encoding based on draft-ietf-httpbis-http2-07 might identify itself
 as "HTTP-emo-07/2.0". Note that any label MUST conform to the
 "token" syntax defined in Section 3.2.6 of [HTTP-p1]. Experimenters
 are encouraged to coordinate their experiments on the
 ietf-http-wg@w3.org mailing list.

3.2. Starting HTTP/2.0 for "http" URIs

 A client that makes a request to an "http" URI without prior
 knowledge about support for HTTP/2.0 uses the HTTP Upgrade mechanism
 (Section 6.7 of [HTTP-p1]). The client makes an HTTP/1.1 request
 that includes an Upgrade header field identifying HTTP/2.0. The
 HTTP/1.1 request MUST include exactly one HTTP2-Settings
 (Section 3.2.1) header field.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-07

Belshe, et al. Expires May 15, 2014 [Page 8]

Internet-Draft HTTP/2.0 November 2013

 For example:

 GET /default.htm HTTP/1.1
 Host: server.example.com
 Connection: Upgrade, HTTP2-Settings
 Upgrade: HTTP/2.0
 HTTP2-Settings: <base64url encoding of HTTP/2.0 SETTINGS payload>

 Requests that contain an entity body MUST be sent in their entirety
 before the client can send HTTP/2.0 frames. This means that a large
 request entity can block the use of the connection until it is
 completely sent.

 If concurrency of an initial request with subsequent requests is
 important, a small request can be used to perform the upgrade to
 HTTP/2.0, at the cost of an additional round-trip.

 A server that does not support HTTP/2.0 can respond to the request as
 though the Upgrade header field were absent:

 HTTP/1.1 200 OK
 Content-Length: 243
 Content-Type: text/html

 ...

 A server that supports HTTP/2.0 can accept the upgrade with a 101
 (Switching Protocols) response. After the empty line that terminates
 the 101 response, the server can begin sending HTTP/2.0 frames.
 These frames MUST include a response to the request that initiated
 the Upgrade.

 HTTP/1.1 101 Switching Protocols
 Connection: Upgrade
 Upgrade: HTTP/2.0

 [HTTP/2.0 connection ...

 The first HTTP/2.0 frame sent by the server is a SETTINGS frame
 (Section 6.5). Upon receiving the 101 response, the client sends a
 connection header (Section 3.5), which includes a SETTINGS frame.

 The HTTP/1.1 request that is sent prior to upgrade is assigned stream
 identifier 1 and is assigned the highest possible priority. Stream 1
 is implicitly half closed from the client toward the server, since
 the request is completed as an HTTP/1.1 request. After commencing
 the HTTP/2.0 connection, stream 1 is used for the response.

Belshe, et al. Expires May 15, 2014 [Page 9]

Internet-Draft HTTP/2.0 November 2013

3.2.1. HTTP2-Settings Header Field

 A request that upgrades from HTTP/1.1 to HTTP/2.0 MUST include
 exactly one "HTTP2-Settings" header field. The "HTTP2-Settings"
 header field is a hop-by-hop header field that includes settings that
 govern the HTTP/2.0 connection, provided in anticipation of the
 server accepting the request to upgrade. A server MUST reject an
 attempt to upgrade if this header field is not present.

 HTTP2-Settings = token68

 The content of the "HTTP2-Settings" header field is the payload of a
 SETTINGS frame (Section 6.5), encoded as a base64url string (that is,
 the URL- and filename-safe Base64 encoding described in Section 5 of
 [RFC4648], with any trailing '=' characters omitted). The ABNF
 [RFC5234] production for "token68" is defined in Section 2.1 of
 [HTTP-p7].

 The client MUST include values for the following settings
 (Section 6.5.1):

 o SETTINGS_MAX_CONCURRENT_STREAMS

 o SETTINGS_INITIAL_WINDOW_SIZE

 As a hop-by-hop header field, the "Connection" header field MUST
 include a value of "HTTP2-Settings" in addition to "Upgrade" when
 upgrading to HTTP/2.0.

 A server decodes and interprets these values as it would any other
 SETTINGS frame. Providing these values in the Upgrade request
 ensures that the protocol does not require default values for the
 above settings, and gives a client an opportunity to provide other
 settings prior to receiving any frames from the server.

3.3. Starting HTTP/2.0 for "https" URIs

 A client that makes a request to an "https" URI without prior
 knowledge about support for HTTP/2.0 uses TLS [TLS12] with the
 application layer protocol negotiation extension [TLSALPN].

 Once TLS negotiation is complete, both the client and the server send
 a connection header (Section 3.5).

3.4. Starting HTTP/2.0 with Prior Knowledge

 A client can learn that a particular server supports HTTP/2.0 by
 other means. A client MAY immediately send HTTP/2.0 frames to a

https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc5234

Belshe, et al. Expires May 15, 2014 [Page 10]

Internet-Draft HTTP/2.0 November 2013

 server that is known to support HTTP/2.0, after the connection header
 (Section 3.5). This only affects the resolution of "http" URIs;
 servers supporting HTTP/2.0 are required to support protocol
 negotiation in TLS [TLSALPN] for "https" URIs.

 Prior support for HTTP/2.0 is not a strong signal that a given server
 will support HTTP/2.0 for future connections. It is possible for
 server configurations to change or for configurations to differ
 between instances in clustered server. Interception proxies (a.k.a.
 "transparent" proxies) are another source of variability.

3.5. HTTP/2.0 Connection Header

 Upon establishment of a TCP connection and determination that
 HTTP/2.0 will be used by both peers, each endpoint MUST send a
 connection header as a final confirmation and to establish the
 initial settings for the HTTP/2.0 connection.

 The client connection header starts with a sequence of 24 octets,
 which in hex notation are:

 505249202a20485454502f322e300d0a0d0a534d0d0a0d0a

 (the string "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"). This sequence is
 followed by a SETTINGS frame (Section 6.5). The client sends the
 client connection header immediately upon receipt of a 101 Switching
 Protocols response (indicating a successful upgrade), or as the first
 application data octets of a TLS connection. If starting an HTTP/2.0
 connection with prior knowledge of server support for the protocol,
 the client connection header is sent upon connection establishment.

 The client connection header is selected so that a large
 proportion of HTTP/1.1 or HTTP/1.0 servers and intermediaries do
 not attempt to process further frames. Note that this does not
 address the concerns raised in [TALKING].

 The server connection header consists of just a SETTINGS frame
 (Section 6.5) that MUST be the first frame the server sends in the
 HTTP/2.0 connection.

 To avoid unnecessary latency, clients are permitted to send
 additional frames to the server immediately after sending the client
 connection header, without waiting to receive the server connection
 header. It is important to note, however, that the server connection
 header SETTINGS frame might include parameters that necessarily alter
 how a client is expected to communicate with the server. Upon
 receiving the SETTINGS frame, the client is expected to honor any
 parameters established.

Belshe, et al. Expires May 15, 2014 [Page 11]

Internet-Draft HTTP/2.0 November 2013

 Clients and servers MUST terminate the TCP connection if either peer
 does not begin with a valid connection header. A GOAWAY frame
 (Section 6.8) MAY be omitted if it is clear that the peer is not
 using HTTP/2.0.

4. HTTP Frames

 Once the HTTP/2.0 connection is established, endpoints can begin
 exchanging frames.

4.1. Frame Format

 All frames begin with an 8-octet header followed by a payload of
 between 0 and 16,383 octets.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | R | Length (14) | Type (8) | Flags (8) |
 +-+-+-----------+---------------+-------------------------------+
 |R| Stream Identifier (31) |
 +-+---+
 | Frame Payload (0...) ...
 +---+

 Frame Header

 The fields of the frame header are defined as:

 R: A reserved 2-bit field. The semantics of these bits are undefined
 and the bit MUST remain unset (0) when sending and MUST be ignored
 when receiving.

 Length: The length of the frame payload expressed as an unsigned 14-
 bit integer. The 8 octets of the frame header are not included in
 this value.

 Type: The 8-bit type of the frame. The frame type determines how
 the remainder of the frame header and payload are interpreted.
 Implementations MUST ignore frames of unsupported or unrecognized
 types.

 Flags: An 8-bit field reserved for frame-type specific boolean
 flags.

 Flags are assigned semantics specific to the indicated frame type.
 Flags that have no defined semantics for a particular frame type
 MUST be ignored, and MUST be left unset (0) when sending.

Belshe, et al. Expires May 15, 2014 [Page 12]

Internet-Draft HTTP/2.0 November 2013

 R: A reserved 1-bit field. The semantics of this bit are undefined
 and the bit MUST remain unset (0) when sending and MUST be ignored
 when receiving.

 Stream Identifier: A 31-bit stream identifier (see Section 5.1.1).
 The value 0 is reserved for frames that are associated with the
 connection as a whole as opposed to an individual stream.

 The structure and content of the frame payload is dependent entirely
 on the frame type.

4.2. Frame Size

 The maximum size of a frame payload varies by frame type. The
 absolute maximum size of a frame is 2^14-1 (16,383) octets. All
 implementations SHOULD be capable of receiving and minimally
 processing frames up to this maximum size.

 Certain frame types, such as PING (see Section 6.7), impose
 additional limits on the amount of payload data allowed. Likewise,
 additional size limits can be set by specific application uses (see

Section 9).

 If a frame size exceeds any defined limit, or is too small to contain
 mandatory frame data, the endpoint MUST send a FRAME_SIZE_ERROR
 error. Frame size errors in frames that affect connection-level
 state MUST be treated as a connection error (Section 5.4.1).

4.3. Header Compression and Decompression

 A header field in HTTP/2.0 is a name-value pair with one or more
 associated values. They are used within HTTP request and response
 messages as well as server push operations (see Section 8.2).

 Header sets are logical collections of zero or more header fields
 arranged at the application layer. When transmitted over a
 connection, the header set is serialized into a header block using
 HTTP Header Compression [COMPRESSION]. The serialized header block
 is then divided into one or more octet sequences, called header block
 fragments, and transmitted within the payload of HEADERS
 (Section 6.2), PUSH_PROMISE (Section 6.6) or CONTINUATION
 (Section 6.10) frames.

 A receiving endpoint reassembles the header block by concatenating
 the individual fragments, then decompresses the block to reconstruct
 the header set.

 A complete header block consists of either:

Belshe, et al. Expires May 15, 2014 [Page 13]

Internet-Draft HTTP/2.0 November 2013

 o a single HEADERS or PUSH_PROMISE frame each respectively with the
 END_HEADERS or END_PUSH_PROMISE flag set, or

 o a HEADERS or PUSH_PROMISE frame with the END_HEADERS or
 END_PUSH_PROMISE flag cleared and one or more CONTINUATION frames,
 where the last CONTINUATION frame has the END_HEADER flag set.

 Header blocks MUST be transmitted as a contiguous sequence of frames,
 with no interleaved frames of any other type, or from any other
 stream. The last frame in a sequence of HEADERS or CONTINUATION
 frames MUST have the END_HEADERS flag set. The last frame in a
 sequence of PUSH_PROMISEor CONTINUATION frames MUST have the
 END_PUSH_PROMISE or END_HEADERS flag set (respectively).

 Header block fragments can only be sent as the payload of HEADERS,
 PUSH_PROMISE or CONTINUATION frames. HEADERS, PUSH_PROMISE and
 CONTINUATION frames carry data that can modify the compression
 context maintained by a receiver. An endpoint receiving HEADERS,
 PUSH_PROMISE or CONTINUATION frames MUST reassemble header blocks and
 perform decompression even if the frames are to be discarded. A
 receiver MUST terminate the connection with a connection error
 (Section 5.4.1) of type COMPRESSION_ERROR, if it does not decompress
 a header block.

5. Streams and Multiplexing

 A "stream" is an independent, bi-directional sequence of HEADERS and
 DATA frames exchanged between the client and server within an
 HTTP/2.0 connection. Streams have several important characteristics:

 o A single HTTP/2.0 connection can contain multiple concurrently
 open streams, with either endpoint interleaving frames from
 multiple streams.

 o Streams can be established and used unilaterally or shared by
 either the client or server.

 o Streams can be closed by either endpoint.

 o The order in which frames are sent within a stream is significant.
 Recipients process frames in the order they are received.

 o Streams are identified by an integer. Stream identifiers are
 assigned to streams by the initiating endpoint.

Belshe, et al. Expires May 15, 2014 [Page 14]

Internet-Draft HTTP/2.0 November 2013

5.1. Stream States

 The lifecycle of a stream is shown in Figure 1.

 +--------+
 PP | | PP
 ,--------| idle |--------.
 / | | \
 v +--------+ v
 +----------+ | +----------+
 | | | H | |
 ,---| reserved | | | reserved |---.
 | | (local) | v | (remote) | |
 | +----------+ +--------+ +----------+ |
 | | ES | | ES | |
 | | H ,-------| open |-------. | H |
 | | / | | \ | |
 | v v +--------+ v v |
 | +----------+ | +----------+ | | | | |
 | | half | | | half | |
 | | closed | | R | closed | |
 | | (remote) | | | (local) | |
 | +----------+ | +----------+ |
 | | v | |
 | | ES / R +--------+ ES / R | |
 | `----------->| |<-----------' |
 | R | closed | R |
 `-------------------->| |<--------------------'
 +--------+

 Figure 1: Stream States

 Both endpoints have a subjective view of the state of a stream that
 could be different when frames are in transit. Endpoints do not
 coordinate the creation of streams, they are created unilaterally by
 either endpoint. The negative consequences of a mismatch in states
 are limited to the "closed" state after sending RST_STREAM, where
 frames might be received for some time after closing.

 Streams have the following states:

 idle:
 All streams start in the "idle" state. In this state, no frames
 have been exchanged.

 The following transitions are valid from this state:

Belshe, et al. Expires May 15, 2014 [Page 15]

Internet-Draft HTTP/2.0 November 2013

 * Sending or receiving a HEADERS frame causes the stream to
 become "open". The stream identifier is selected as described
 in Section 5.1.1. The same HEADERS frame can also cause a
 stream to immediately become "half closed".

 * Sending a PUSH_PROMISE frame marks the associated stream for
 later use. The stream state for the reserved stream
 transitions to "reserved (local)".

 * Receiving a PUSH_PROMISE frame marks the associated stream as
 reserved by the remote peer. The state of the stream becomes
 "reserved (remote)".

 reserved (local):
 A stream in the "reserved (local)" state is one that has been
 promised by sending a PUSH_PROMISE frame. A PUSH_PROMISE frame
 reserves an idle stream by associating the stream with an open
 stream that was initiated by the remote peer (see Section 8.2).

 In this state, only the following transitions are possible:

 * The endpoint can send a HEADERS frame. This causes the stream
 to open in a "half closed (remote)" state.

 * Either endpoint can send a RST_STREAM frame to cause the stream
 to become "closed". This releases the stream reservation.

 An endpoint MUST NOT send frames other than than HEADERS or
 RST_STREAM in this state.

 A PRIORITY frame MAY be received in this state. Receiving any
 frame other than HEADERS, RST_STREAM, or PRIORITY MUST be treated
 as a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 reserved (remote):
 A stream in the "reserved (remote)" state has been reserved by a
 remote peer.

 In this state, only the following transitions are possible:

 * Receiving a HEADERS frame causes the stream to transition to
 "half closed (local)".

 * Either endpoint can send a RST_STREAM frame to cause the stream
 to become "closed". This releases the stream reservation.

Belshe, et al. Expires May 15, 2014 [Page 16]

Internet-Draft HTTP/2.0 November 2013

 An endpoint MAY send a PRIORITY frame in this state to
 reprioritize the reserved stream. An endpoint MUST NOT send any
 other type of frame other than RST_STREAM or PRIORITY.

 Receiving any other type of frame other than HEADERS or RST_STREAM
 MUST be treated as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 open:
 A stream in the "open" state may be used by both peers to send
 frames of any type. In this state, sending peers observe
 advertised stream level flow control limits (Section 5.2).

 From this state either endpoint can send a frame with an
 END_STREAM flag set, which causes the stream to transition into
 one of the "half closed" states: an endpoint sending an END_STREAM
 flag causes the stream state to become "half closed (local)"; an
 endpoint receiving an END_STREAM flag causes the stream state to
 become "half closed (remote)". A HEADERS frame bearing an
 END_STREAM flag can be followed by CONTINUATION frames.

 Either endpoint can send a RST_STREAM frame from this state,
 causing it to transition immediately to "closed".

 half closed (local):
 A stream that is in the "half closed (local)" state cannot be used
 for sending frames.

 A stream transitions from this state to "closed" when a frame that
 contains an END_STREAM flag is received, or when either peer sends
 a RST_STREAM frame. A HEADERS frame bearing an END_STREAM flag
 can be followed by CONTINUATION frames.

 A receiver can ignore WINDOW_UPDATE or PRIORITY frames in this
 state. These frame types might arrive for a short period after a
 frame bearing the END_STREAM flag is sent.

 half closed (remote):
 A stream that is "half closed (remote)" is no longer being used by
 the peer to send frames. In this state, an endpoint is no longer
 obligated to maintain a receiver flow control window if it
 performs flow control.

 If an endpoint receives additional frames for a stream that is in
 this state, other than CONTINUATION frames, it MUST respond with a
 stream error (Section 5.4.2) of type STREAM_CLOSED.

 A stream can transition from this state to "closed" by sending a

Belshe, et al. Expires May 15, 2014 [Page 17]

Internet-Draft HTTP/2.0 November 2013

 frame that contains a END_STREAM flag, or when either peer sends a
 RST_STREAM frame.

 closed:
 The "closed" state is the terminal state.

 An endpoint MUST NOT send frames on a closed stream. An endpoint
 that receives any frame after receiving a RST_STREAM MUST treat
 that as a stream error (Section 5.4.2) of type STREAM_CLOSED.
 Similarly, an endpoint that receives any frame after receiving a
 DATA frame with the END_STREAM flag set, or any frame except a
 CONTINUATION frame after receiving a HEADERS frame with a
 END_STREAM flag set MUST treat that as a stream error
 (Section 5.4.2) of type STREAM_CLOSED.

 WINDOW_UPDATE, PRIORITY, or RST_STREAM frames can be received in
 this state for a short period after a DATA or HEADERS frame
 containing an END_STREAM flag is sent. Until the remote peer
 receives and processes the frame bearing the END_STREAM flag, it
 might send frame of any of these types. Endpoints MUST ignore
 WINDOW_UPDATE, PRIORITY, or RST_STREAM frames received in this
 state, though endpoints MAY choose to treat frames that arrive a
 significant time after sending END_STREAM as a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR.

 If this state is reached as a result of sending a RST_STREAM
 frame, the peer that receives the RST_STREAM might have already
 sent - or enqueued for sending - frames on the stream that cannot
 be withdrawn. An endpoint MUST ignore frames that it receives on
 closed streams after it has sent a RST_STREAM frame. An endpoint
 MAY choose to limit the period over which it ignores frames and
 treat frames that arrive after this time as being in error.

 Flow controlled frames (i.e., DATA) received after sending
 RST_STREAM are counted toward the connection flow control window.
 Even though these frames might be ignored, because they are sent
 before the sender receives the RST_STREAM, the sender will
 consider the frames to count against the flow control window.

 An endpoint might receive a PUSH_PROMISE frame after it sends
 RST_STREAM. PUSH_PROMISE causes a stream to become "reserved".
 The RST_STREAM does not cancel any promised stream. Therefore, if
 promised streams are not desired, a RST_STREAM can be used to
 close any of those streams.

 In the absence of more specific guidance elsewhere in this document,
 implementations SHOULD treat the receipt of a message that is not
 expressly permitted in the description of a state as a connection

Belshe, et al. Expires May 15, 2014 [Page 18]

Internet-Draft HTTP/2.0 November 2013

 error (Section 5.4.1) of type PROTOCOL_ERROR.

5.1.1. Stream Identifiers

 Streams are identified with an unsigned 31-bit integer. Streams
 initiated by a client MUST use odd-numbered stream identifiers; those
 initiated by the server MUST use even-numbered stream identifiers. A
 stream identifier of zero (0x0) is used for connection control
 message; the stream identifier zero MUST NOT be used to establish a
 new stream.

 A stream identifier of one (0x1) is used to respond to the HTTP/1.1
 request which was specified during Upgrade (see Section 3.2). After
 the upgrade completes, stream 0x1 is "half closed (local)" to the
 client. Therefore, stream 0x1 cannot be selected as a new stream
 identifier by a client that upgrades from HTTP/1.1.

 The identifier of a newly established stream MUST be numerically
 greater than all streams that the initiating endpoint has opened or
 reserved. This governs streams that are opened using a HEADERS frame
 and streams that are reserved using PUSH_PROMISE. An endpoint that
 receives an unexpected stream identifier MUST respond with a
 connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 The first use of a new stream identifier implicitly closes all
 streams in the "idle" state that might have been initiated by that
 peer with a lower-valued stream identifier. For example, if a client
 sends a HEADERS frame on stream 7 without ever sending a frame on
 stream 5, then stream 5 transitions to the "closed" state when the
 first frame for stream 7 is sent or received.

 Stream identifiers cannot be reused. Long-lived connections can
 result in endpoint exhausting the available range of stream
 identifiers. A client that is unable to establish a new stream
 identifier can establish a new connection for new streams.

5.1.2. Stream Concurrency

 A peer can limit the number of concurrently active streams using the
 SETTINGS_MAX_CONCURRENT_STREAMS parameters within a SETTINGS frame.
 The maximum concurrent streams setting is specific to each endpoint
 and applies only to the peer that receives the setting. That is,
 clients specify the maximum number of concurrent streams the server
 can initiate, and servers specify the maximum number of concurrent
 streams the client can initiate. Endpoints MUST NOT exceed the limit
 set by their peer.

 Streams that are in the "open" state, or either of the "half closed"

Belshe, et al. Expires May 15, 2014 [Page 19]

Internet-Draft HTTP/2.0 November 2013

 states count toward the maximum number of streams that an endpoint is
 permitted to open. Streams in any of these three states count toward
 the limit advertised in the SETTINGS_MAX_CONCURRENT_STREAMS setting
 (see Section 6.5.2).

 Streams in either of the "reserved" states do not count as open, even
 if a small amount of application state is retained to ensure that the
 promised stream can be successfully used.

5.2. Flow Control

 Using streams for multiplexing introduces contention over use of the
 TCP connection, resulting in blocked streams. A flow control scheme
 ensures that streams on the same connection do not destructively
 interfere with each other. Flow control is used for both individual
 streams and for the connection as a whole.

 HTTP/2.0 provides for flow control through use of the WINDOW_UPDATE
 frame type.

5.2.1. Flow Control Principles

 HTTP/2.0 stream flow control aims to allow for future improvements to
 flow control algorithms without requiring protocol changes. Flow
 control in HTTP/2.0 has the following characteristics:

 1. Flow control is hop-by-hop, not end-to-end.

 2. Flow control is based on window update frames. Receivers
 advertise how many bytes they are prepared to receive on a stream
 and for the entire connection. This is a credit-based scheme.

 3. Flow control is directional with overall control provided by the
 receiver. A receiver MAY choose to set any window size that it
 desires for each stream and for the entire connection. A sender
 MUST respect flow control limits imposed by a receiver. Clients,
 servers and intermediaries all independently advertise their flow
 control preferences as a receiver and abide by the flow control
 limits set by their peer when sending.

 4. The initial value for the flow control window is 65,535 bytes for
 both new streams and the overall connection.

 5. The frame type determines whether flow control applies to a
 frame. Of the frames specified in this document, only DATA
 frames are subject to flow control; all other frame types do not
 consume space in the advertised flow control window. This
 ensures that important control frames are not blocked by flow

Belshe, et al. Expires May 15, 2014 [Page 20]

Internet-Draft HTTP/2.0 November 2013

 control.

 6. Flow control can be disabled by a receiver. A receiver can
 choose to disable both forms of flow control by sending the
 SETTINGS_FLOW_CONTROL_OPTIONS setting. See Ending Flow Control
 (Section 6.9.4) for more details.

 7. HTTP/2.0 standardizes only the format of the WINDOW_UPDATE frame
 (Section 6.9). This does not stipulate how a receiver decides
 when to send this frame or the value that it sends. Nor does it
 specify how a sender chooses to send packets. Implementations
 are able to select any algorithm that suits their needs.

 Implementations are also responsible for managing how requests and
 responses are sent based on priority; choosing how to avoid head of
 line blocking for requests; and managing the creation of new streams.
 Algorithm choices for these could interact with any flow control
 algorithm.

5.2.2. Appropriate Use of Flow Control

 Flow control is defined to protect endpoints that are operating under
 resource constraints. For example, a proxy needs to share memory
 between many connections, and also might have a slow upstream
 connection and a fast downstream one. Flow control addresses cases
 where the receiver is unable process data on one stream, yet wants to
 continue to process other streams in the same connection.

 Deployments that do not require this capability SHOULD disable flow
 control for data that is being received. Note that flow control
 cannot be disabled for sending. Sending data is always subject to
 the flow control window advertised by the receiver.

 Deployments with constrained resources (for example, memory) MAY
 employ flow control to limit the amount of memory a peer can consume.
 Note, however, that this can lead to suboptimal use of available
 network resources if flow control is enabled without knowledge of the
 bandwidth-delay product (see [RFC1323]).

 Even with full awareness of the current bandwidth-delay product,
 implementation of flow control can be difficult. When using flow
 control, the receive MUST read from the TCP receive buffer in a
 timely fashion. Failure to do so could lead to a deadlock when
 critical frames, such as WINDOW_UPDATE, are not available to
 HTTP/2.0. However, flow control can ensure that constrained
 resources are protected without any reduction in connection
 utilization.

https://datatracker.ietf.org/doc/html/rfc1323

Belshe, et al. Expires May 15, 2014 [Page 21]

Internet-Draft HTTP/2.0 November 2013

5.3. Stream priority

 The endpoint establishing a new stream can assign a priority for the
 stream. Priority is represented as an unsigned 31-bit integer. 0
 represents the highest priority and 2^31-1 represents the lowest
 priority.

 The purpose of this value is to allow an endpoint to express the
 relative priority of a stream. An endpoint can use this information
 to preferentially allocate resources to a stream. Within HTTP/2.0,
 priority can be used to select streams for transmitting frames when
 there is limited capacity for sending. For instance, an endpoint
 might enqueue frames for all concurrently active streams. As
 transmission capacity becomes available, frames from higher priority
 streams might be sent before lower priority streams.

 Explicitly setting the priority for a stream does not guarantee any
 particular processing or transmission order for the stream relative
 to any other stream. Nor is there any mechanism provided by which
 the initiator of a stream can force or require a receiving endpoint
 to process concurrent streams in a particular order.

 Unless explicitly specified in the HEADERS frame (Section 6.2) during
 stream creation, the default stream priority is 2^30.

 Pushed streams (Section 8.2) have a lower priority than their
 associated stream. The promised stream inherits the priority value
 of the associated stream plus one, up to a maximum of 2^31-1.

5.4. Error Handling

 HTTP/2.0 framing permits two classes of error:

 o An error condition that renders the entire connection unusable is
 a connection error.

 o An error in an individual stream is a stream error.

 A list of error codes is included in Section 7.

5.4.1. Connection Error Handling

 A connection error is any error which prevents further processing of
 the framing layer or which corrupts any connection state.

 An endpoint that encounters a connection error SHOULD first send a
 GOAWAY frame (Section 6.8) with the stream identifier of the last
 stream that it successfully received from its peer. The GOAWAY frame

Belshe, et al. Expires May 15, 2014 [Page 22]

Internet-Draft HTTP/2.0 November 2013

 includes an error code that indicates why the connection is
 terminating. After sending the GOAWAY frame, the endpoint MUST close
 the TCP connection.

 It is possible that the GOAWAY will not be reliably received by the
 receiving endpoint. In the event of a connection error, GOAWAY only
 provides a best-effort attempt to communicate with the peer about why
 the connection is being terminated.

 An endpoint can end a connection at any time. In particular, an
 endpoint MAY choose to treat a stream error as a connection error.
 Endpoints SHOULD send a GOAWAY frame when ending a connection, as
 long as circumstances permit it.

5.4.2. Stream Error Handling

 A stream error is an error related to a specific stream identifier
 that does not affect processing of other streams.

 An endpoint that detects a stream error sends a RST_STREAM frame
 (Section 6.4) that contains the stream identifier of the stream where
 the error occurred. The RST_STREAM frame includes an error code that
 indicates the type of error.

 A RST_STREAM is the last frame that an endpoint can send on a stream.
 The peer that sends the RST_STREAM frame MUST be prepared to receive
 any frames that were sent or enqueued for sending by the remote peer.
 These frames can be ignored, except where they modify connection
 state (such as the state maintained for header compression
 (Section 4.3)).

 Normally, an endpoint SHOULD NOT send more than one RST_STREAM frame
 for any stream. However, an endpoint MAY send additional RST_STREAM
 frames if it receives frames on a closed stream after more than a
 round-trip time. This behavior is permitted to deal with misbehaving
 implementations.

 An endpoint MUST NOT send a RST_STREAM in response to an RST_STREAM
 frame, to avoid looping.

5.4.3. Connection Termination

 If the TCP connection is torn down while streams remain in open or
 half closed states, then the endpoint MUST assume that the stream was
 abnormally interrupted and could be incomplete.

Belshe, et al. Expires May 15, 2014 [Page 23]

Internet-Draft HTTP/2.0 November 2013

6. Frame Definitions

 This specification defines a number of frame types, each identified
 by a unique 8-bit type code. Each frame type serves a distinct
 purpose either in the establishment and management of the connection
 as a whole, or of individual streams.

 The transmission of specific frame types can alter the state of a
 connection. If endpoints fail to maintain a synchronized view of the
 connection state, successful communication within the connection will
 no longer be possible. Therefore, it is important that endpoints
 have a shared comprehension of how the state is affected by the use
 any given frame. Accordingly, while it is expected that new frame
 types will be introduced by extensions to this protocol, only frames
 defined by this document are permitted to alter the connection state.

6.1. DATA

 DATA frames (type=0x0) convey arbitrary, variable-length sequences of
 octets associated with a stream. One or more DATA frames are used,
 for instance, to carry HTTP request or response payloads.

 The DATA frame defines the following flags:

 END_STREAM (0x1): Bit 1 being set indicates that this frame is the
 last that the endpoint will send for the identified stream.
 Setting this flag causes the stream to enter one of "half closed"
 states or "closed" state (Section 5.1).

 RESERVED (0x2): Bit 2 is reserved for future use.

 DATA frames MUST be associated with a stream. If a DATA frame is
 received whose stream identifier field is 0x0, the recipient MUST
 respond with a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 DATA frames are subject to flow control and can only be sent when a
 stream is in the "open" or "half closed (remote)" states. If a DATA
 frame is received whose stream is not in "open" or "half closed
 (local)" state, the recipient MUST respond with a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR.

6.2. HEADERS

 The HEADERS frame (type=0x1) carries name-value pairs. It is used to
 open a stream (Section 5.1). HEADERS frames can be sent on a stream
 in the "open" or "half closed (remote)" states.

Belshe, et al. Expires May 15, 2014 [Page 24]

Internet-Draft HTTP/2.0 November 2013

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |X| Priority (31) |
 +-+---+
 | Header Block Fragment (*) ...
 +---+

 HEADERS Frame Payload

 The HEADERS frame defines the following flags:

 END_STREAM (0x1): Bit 1 being set indicates that the header block
 (Section 4.3) is the last that the endpoint will send for the
 identified stream. Setting this flag causes the stream to enter
 one of "half closed" states (Section 5.1).

 A HEADERS frame that is followed by CONTINUATION frames carries
 the END_STREAM flag that signals the end of a stream. A
 CONTINUATION frame cannot be used to terminate a stream.

 RESERVED (0x2): Bit 2 is reserved for future use.

 END_HEADERS (0x4): Bit 3 being set indicates that this frame
 contains an entire header block (Section 4.3) and is not followed
 by any CONTINUATION frames.

 A HEADERS frame without the END_HEADERS flag set MUST be followed
 by a CONTINUATION frame for the same stream. A receiver MUST
 treat the receipt of any other type of frame or a frame on a
 different stream as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 PRIORITY (0x8): Bit 4 being set indicates that the first four octets
 of this frame contain a single reserved bit and a 31-bit priority;
 see Section 5.3. If this bit is not set, the four bytes do not
 appear and the frame only contains a header block fragment.

 The payload of a HEADERS frame contains a header block fragment
 (Section 4.3). A header block that does not fit within a HEADERS
 frame is continued in a CONTINUATION frame (Section 6.10).

 HEADERS frames MUST be associated with a stream. If a HEADERS frame
 is received whose stream identifier field is 0x0, the recipient MUST
 respond with a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 The HEADERS frame changes the connection state as described in

Belshe, et al. Expires May 15, 2014 [Page 25]

Internet-Draft HTTP/2.0 November 2013

Section 4.3.

6.3. PRIORITY

 The PRIORITY frame (type=0x2) specifies the sender-advised priority
 of a stream. It can be sent at any time for an existing stream.
 This enables reprioritisation of existing streams.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |X| Priority (31) |
 +-+---+

 PRIORITY Frame Payload

 The payload of a PRIORITY frame contains a single reserved bit and a
 31-bit priority.

 The PRIORITY frame does not define any flags.

 The PRIORITY frame is associated with an existing stream. If a
 PRIORITY frame is received with a stream identifier of 0x0, the
 recipient MUST respond with a connection error (Section 5.4.1) of
 type PROTOCOL_ERROR.

 The PRIORITY frame can be sent on a stream in any of the "reserved
 (remote)", "open", "half-closed (local)", or "half closed (remote)"
 states, though it cannot be sent between consecutive frames that
 comprise a single header block (Section 4.3). Note that this frame
 could arrive after processing or frame sending has completed, which
 would cause it to have no effect. For a stream that is in the "half
 closed (remote)" state, this frame can only affect processing of the
 stream and not frame transmission.

6.4. RST_STREAM

 The RST_STREAM frame (type=0x3) allows for abnormal termination of a
 stream. When sent by the initiator of a stream, it indicates that
 they wish to cancel the stream or that an error condition has
 occurred. When sent by the receiver of a stream, it indicates that
 either the receiver is rejecting the stream, requesting that the
 stream be cancelled or that an error condition has occurred.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Error Code (32) |

Belshe, et al. Expires May 15, 2014 [Page 26]

Internet-Draft HTTP/2.0 November 2013

 +---+

 RST_STREAM Frame Payload

 The RST_STREAM frame contains a single unsigned, 32-bit integer
 identifying the error code (Section 7). The error code indicates why
 the stream is being terminated.

 The RST_STREAM frame does not define any flags.

 The RST_STREAM frame fully terminates the referenced stream and
 causes it to enter the closed state. After receiving a RST_STREAM on
 a stream, the receiver MUST NOT send additional frames for that
 stream. However, after sending the RST_STREAM, the sending endpoint
 MUST be prepared to receive and process additional frames sent on the
 stream that might have been sent by the peer prior to the arrival of
 the RST_STREAM.

 RST_STREAM frames MUST be associated with a stream. If a RST_STREAM
 frame is received with a stream identifier of 0x0, the recipient MUST
 treat this as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 RST_STREAM frames MUST NOT be sent for a stream in the "idle" state.
 If a RST_STREAM frame identifying an idle stream is received, the
 recipient MUST treat this as a connection error (Section 5.4.1) of
 type PROTOCOL_ERROR.

6.5. SETTINGS

 The SETTINGS frame (type=0x4) conveys configuration parameters that
 affect how endpoints communicate. The parameters are either
 constraints on peer behavior or preferences.

 Settings are not negotiated. Settings describe characteristics of
 the sending peer, which are used by the receiving peer. Different
 values for the same setting can be advertised by each peer. For
 example, a client might set a high initial flow control window,
 whereas a server might set a lower value to conserve resources.

 SETTINGS frames MUST be sent at the start of a connection, and MAY be
 sent at any other time by either endpoint over the lifetime of the
 connection.

 Implementations MUST support all of the settings defined by this
 specification and MAY support additional settings defined by
 extensions. Unsupported or unrecognized settings MUST be ignored.
 New settings MUST NOT be defined or implemented in a way that

Belshe, et al. Expires May 15, 2014 [Page 27]

Internet-Draft HTTP/2.0 November 2013

 requires endpoints to understand them in order to communicate
 successfully.

 Each setting in a SETTINGS frame replaces the existing value for that
 setting. Settings are processed in the order in which they appear,
 and a receiver of a SETTINGS frame does not need to maintain any
 state other than the current value of settings. Therefore, the value
 of a setting is the last value that is seen by a receiver. This
 permits the inclusion of the same settings multiple times in the same
 SETTINGS frame, though doing so does nothing other than waste
 connection capacity.

 The SETTINGS frame defines the following flag:

 ACK (0x1): Bit 1 being set indicates that this frame acknowledges
 receipt and application of the peer's SETTINGS frame. When this
 bit is set, the payload of the SETTINGS frame MUST be empty.
 Receipt of a SETTINGS frame with the ACK flag set and a length
 field value other than 0 MUST be treated as a connection error
 (Section 5.4.1) of type FRAME_SIZE_ERROR. For more info, see
 Settings Synchronization (Section 6.5.3).

 SETTINGS frames always apply to a connection, never a single stream.
 The stream identifier for a settings frame MUST be zero. If an
 endpoint receives a SETTINGS frame whose stream identifier field is
 anything other than 0x0, the endpoint MUST respond with a connection
 error (Section 5.4.1) of type PROTOCOL_ERROR.

 The SETTINGS frame affects connection state. A badly formed or
 incomplete SETTINGS frame MUST be treated as a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR.

6.5.1. Setting Format

 The payload of a SETTINGS frame consists of zero or more settings.
 Each setting consists of an 8-bit reserved field, an unsigned 24-bit
 setting identifier, and an unsigned 32-bit value.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Reserved (8) | Setting Identifier (24) |
 +---------------+---+
 | Value (32) |
 +---+

 Setting Format

Belshe, et al. Expires May 15, 2014 [Page 28]

Internet-Draft HTTP/2.0 November 2013

6.5.2. Defined Settings

 The following settings are defined:

 SETTINGS_HEADER_TABLE_SIZE (1): Allows the sender to inform the
 remote endpoint of the size of the header compression table used
 to decode header blocks. The space available for encoding cannot
 be changed; it is determined by the setting sent by the peer that
 receives the header blocks. The initial value is 4096 bytes.

 SETTINGS_ENABLE_PUSH (2): This setting can be use to disable server
 push (Section 8.2). An endpoint MUST NOT send a PUSH_PROMISE
 frame if it receives this setting set to a value of 0. The
 initial value is 1, which indicates that push is permitted.

 SETTINGS_MAX_CONCURRENT_STREAMS (4): Indicates the maximum number of
 concurrent streams that the sender will allow. This limit is
 directional: it applies to the number of streams that the sender
 permits the receiver to create. Initially there is no limit to
 this value. It is recommended that this value be no smaller than
 100, so as to not unnecessarily limit parallelism.

 SETTINGS_INITIAL_WINDOW_SIZE (7): Indicates the sender's initial
 window size (in bytes) for stream level flow control.

 This settings affects the window size of all streams, including
 existing streams, see Section 6.9.2.

 SETTINGS_FLOW_CONTROL_OPTIONS (10): Indicates flow control options.
 The least significant bit (0x1) of the value is set to indicate
 that the sender has disabled all flow control. This bit cannot be
 cleared once set, see Section 6.9.4.

 All bits other than the least significant are reserved.

6.5.3. Settings Synchronization

 Most values in SETTINGS benefit from or require an understanding of
 when the peer has received and applied the changed setting values.
 In order to provide such synchronization timepoints, the recipient of
 a SETTINGS frame in which the ACK flag is not set MUST apply the
 updated settings as soon as possible upon receipt.

 The values in the SETTINGS frame MUST be applied in the order they
 appear, with no other frame processing between values. Once all
 values have been applied, the recipient MUST immediately emit a
 SETTINGS frame with the ACK flag set. The sender of altered settings
 applies changes upon receiving a SETTINGS frame with the ACK flag

Belshe, et al. Expires May 15, 2014 [Page 29]

Internet-Draft HTTP/2.0 November 2013

 set.

 If the sender of a SETTINGS frame does not receive an acknowledgement
 within a reasonable amount of time, it MAY issue a connection error
 (Section 5.4.1) of type SETTINGS_TIMEOUT.

6.6. PUSH_PROMISE

 The PUSH_PROMISE frame (type=0x5) is used to notify the peer endpoint
 in advance of streams the sender intends to initiate. The
 PUSH_PROMISE frame includes the unsigned 31-bit identifier of the
 stream the endpoint plans to create along with a set of headers that
 provide additional context for the stream. Section 8.2 contains a
 thorough description of the use of PUSH_PROMISE frames.

 PUSH_PROMISE MUST NOT be sent if the SETTINGS_ENABLE_PUSH setting of
 the peer endpoint is set to 0.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |X| Promised-Stream-ID (31) |
 +-+---+
 | Header Block Fragment (*) ...
 +---+

 PUSH_PROMISE Payload Format

 The payload of a PUSH_PROMISE includes a "Promised-Stream-ID". This
 unsigned 31-bit integer identifies the stream the endpoint intends to
 start sending frames for. The promised stream identifier MUST be a
 valid choice for the next stream sent by the sender (see new stream
 identifier (Section 5.1.1)).

 Following the "Promised-Stream-ID" is a header block fragment
 (Section 4.3).

 PUSH_PROMISE frames MUST be associated with an existing, peer-
 initiated stream. If the stream identifier field specifies the value
 0x0, a recipient MUST respond with a connection error (Section 5.4.1)
 of type PROTOCOL_ERROR.

 The PUSH_PROMISE frame defines the following flags:

 END_PUSH_PROMISE (0x4): Bit 3 being set indicates that this frame
 contains an entire header block (Section 4.3) and is not followed
 by any CONTINUATION frames.

Belshe, et al. Expires May 15, 2014 [Page 30]

Internet-Draft HTTP/2.0 November 2013

 A PUSH_PROMISE frame without the END_PUSH_PROMISE flag set MUST be
 followed by a CONTINUATION frame for the same stream. A receiver
 MUST treat the receipt of any other type of frame or a frame on a
 different stream as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 Promised streams are not required to be used in order promised. The
 PUSH_PROMISE only reserves stream identifiers for later use.

 Recipients of PUSH_PROMISE frames can choose to reject promised
 streams by returning a RST_STREAM referencing the promised stream
 identifier back to the sender of the PUSH_PROMISE.

 The PUSH_PROMISE frame modifies the connection state as defined in
Section 4.3.

 A PUSH_PROMISE frame modifies the connection state in two ways. The
 inclusion of a header block (Section 4.3) potentially modifies the
 compression state. PUSH_PROMISE also reserves a stream for later
 use, causing the promised stream to enter the "reserved" state. A
 sender MUST NOT send a PUSH_PROMISE on a stream unless that stream is
 either "open" or "half closed (remote)"; the sender MUST ensure that
 the promised stream is a valid choice for a new stream identifier
 (Section 5.1.1) (that is, the promised stream MUST be in the "idle"
 state).

 Since PUSH_PROMISE reserves a stream, ignoring a PUSH_PROMISE frame
 causes the stream state to become indeterminate. A receiver MUST
 treat the receipt of a PUSH_PROMISE on a stream that is neither
 "open" nor "half-closed (local)" as a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR. Similarly, a receiver MUST
 treat the receipt of a PUSH_PROMISE that promises an illegal stream
 identifier (Section 5.1.1) (that is, an identifier for a stream that
 is not currently in the "idle" state) as a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR, unless the receiver recently
 sent a RST_STREAM frame to cancel the associated stream (see

Section 5.1).

6.7. PING

 The PING frame (type=0x6) is a mechanism for measuring a minimal
 round-trip time from the sender, as well as determining whether an
 idle connection is still functional. PING frames can be sent from
 any endpoint.

Belshe, et al. Expires May 15, 2014 [Page 31]

Internet-Draft HTTP/2.0 November 2013

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 | Opaque Data (64) |
 | |
 +---+

 PING Payload Format

 In addition to the frame header, PING frames MUST contain 8 octets of
 data in the payload. A sender can include any value it chooses and
 use those bytes in any fashion.

 Receivers of a PING frame that does not include a ACK flag MUST send
 a PING frame with the ACK flag set in response, with an identical
 payload. PING responses SHOULD given higher priority than any other
 frame.

 The PING frame defines the following flags:

 ACK (0x1): Bit 1 being set indicates that this PING frame is a PING
 response. An endpoint MUST set this flag in PING responses. An
 endpoint MUST NOT respond to PING frames containing this flag.

 PING frames are not associated with any individual stream. If a PING
 frame is received with a stream identifier field value other than
 0x0, the recipient MUST respond with a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR.

 Receipt of a PING frame with a length field value other than 8 MUST
 be treated as a connection error (Section 5.4.1) of type
 FRAME_SIZE_ERROR.

6.8. GOAWAY

 The GOAWAY frame (type=0x7) informs the remote peer to stop creating
 streams on this connection. It can be sent from the client or the
 server. Once sent, the sender will ignore frames sent on new streams
 for the remainder of the connection. Receivers of a GOAWAY frame
 MUST NOT open additional streams on the connection, although a new
 connection can be established for new streams. The purpose of this
 frame is to allow an endpoint to gracefully stop accepting new
 streams (perhaps for a reboot or maintenance), while still finishing
 processing of previously established streams.

 There is an inherent race condition between an endpoint starting new
 streams and the remote sending a GOAWAY frame. To deal with this

Belshe, et al. Expires May 15, 2014 [Page 32]

Internet-Draft HTTP/2.0 November 2013

 case, the GOAWAY contains the stream identifier of the last stream
 which was processed on the sending endpoint in this connection. If
 the receiver of the GOAWAY used streams that are newer than the
 indicated stream identifier, they were not processed by the sender
 and the receiver may treat the streams as though they had never been
 created at all (hence the receiver may want to re-create the streams
 later on a new connection).

 Endpoints SHOULD always send a GOAWAY frame before closing a
 connection so that the remote can know whether a stream has been
 partially processed or not. For example, if an HTTP client sends a
 POST at the same time that a server closes a connection, the client
 cannot know if the server started to process that POST request if the
 server does not send a GOAWAY frame to indicate where it stopped
 working. An endpoint might choose to close a connection without
 sending GOAWAY for misbehaving peers.

 After sending a GOAWAY frame, the sender can discard frames for new
 streams. However, any frames that alter connection state cannot be
 completely ignored. For instance, HEADERS, PUSH_PROMISE and
 CONTINUATION frames MUST be minimally processed to ensure a
 consistent compression state (see Section 4.3); similarly DATA frames
 MUST be counted toward the connection flow control window.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |X| Last-Stream-ID (31) |
 +-+---+
 | Error Code (32) |
 +---+
 | Additional Debug Data (*) |
 +---+

 GOAWAY Payload Format

 The GOAWAY frame does not define any flags.

 The GOAWAY frame applies to the connection, not a specific stream.
 The stream identifier MUST be zero.

 The last stream identifier in the GOAWAY frame contains the highest
 numbered stream identifier for which the sender of the GOAWAY frame
 has received frames on and might have taken some action on. All
 streams up to and including the identified stream might have been
 processed in some way. The last stream identifier is set to 0 if no
 streams were processed.

Belshe, et al. Expires May 15, 2014 [Page 33]

Internet-Draft HTTP/2.0 November 2013

 Note: In this case, "processed" means that some data from the
 stream was passed to some higher layer of software that might have
 taken some action as a result.

 If a connection terminates without a GOAWAY frame, this value is
 effectively the highest stream identifier.

 On streams with lower or equal numbered identifiers that were not
 closed completely prior to the connection being closed, re-attempting
 requests, transactions, or any protocol activity is not possible
 (with the exception of idempotent actions like HTTP GET, PUT, or
 DELETE). Any protocol activity that uses higher numbered streams can
 be safely retried using a new connection.

 Activity on streams numbered lower or equal to the last stream
 identifier might still complete successfully. The sender of a GOAWAY
 frame might gracefully shut down a connection by sending a GOAWAY
 frame, maintaining the connection in an open state until all in-
 progress streams complete.

 The last stream ID MUST be 0 if no streams were acted upon.

 The GOAWAY frame also contains a 32-bit error code (Section 7) that
 contains the reason for closing the connection.

 Endpoints MAY append opaque data to the payload of any GOAWAY frame.
 Additional debug data is intended for diagnostic purposes only and
 carries no semantic value. Debug data MUST NOT be persistently
 stored, since it could contain sensitive information.

6.9. WINDOW_UPDATE

 The WINDOW_UPDATE frame (type=0x9) is used to implement flow control.

 Flow control operates at two levels: on each individual stream and on
 the entire connection.

 Both types of flow control are hop by hop; that is, only between the
 two endpoints. Intermediaries do not forward WINDOW_UPDATE frames
 between dependent connections. However, throttling of data transfer
 by any receiver can indirectly cause the propagation of flow control
 information toward the original sender.

 Flow control only applies to frames that are identified as being
 subject to flow control. Of the frame types defined in this
 document, this includes only DATA frame. Frames that are exempt from
 flow control MUST be accepted and processed, unless the receiver is
 unable to assign resources to handling the frame. A receiver MAY

Belshe, et al. Expires May 15, 2014 [Page 34]

Internet-Draft HTTP/2.0 November 2013

 respond with a stream error (Section 5.4.2) or connection error
 (Section 5.4.1) of type FLOW_CONTROL_ERROR if it is unable accept a
 frame.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |X| Window Size Increment (31) |
 +-+---+

 WINDOW_UPDATE Payload Format

 The payload of a WINDOW_UPDATE frame is one reserved bit, plus an
 unsigned 31-bit integer indicating the number of bytes that the
 sender can transmit in addition to the existing flow control window.
 The legal range for the increment to the flow control window is 1 to
 2^31 - 1 (0x7fffffff) bytes.

 The WINDOW_UPDATE frame does not define any flags.

 The WINDOW_UPDATE frame can be specific to a stream or to the entire
 connection. In the former case, the frame's stream identifier
 indicates the affected stream; in the latter, the value "0" indicates
 that the entire connection is the subject of the frame.

 WINDOW_UPDATE can be sent by a peer that has sent a frame bearing the
 END_STREAM flag. This means that a receiver could receive a
 WINDOW_UPDATE frame on a "half closed (remote)" or "closed" stream.
 A receiver MUST NOT treat this as an error, see Section 5.1.

 A receiver that receives a flow controlled frame MUST always account
 for its contribution against the connection flow control window,
 unless the receiver treats this as a connection error
 (Section 5.4.1). This is necessary even if the frame is in error.
 Since the sender counts the frame toward the flow control window, if
 the receiver does not, the flow control window at sender and receiver
 can become different.

6.9.1. The Flow Control Window

 Flow control in HTTP/2.0 is implemented using a window kept by each
 sender on every stream. The flow control window is a simple integer
 value that indicates how many bytes of data the sender is permitted
 to transmit; as such, its size is a measure of the buffering
 capability of the receiver.

 Two flow control windows are applicable: the stream flow control
 window and the connection flow control window. The sender MUST NOT

Belshe, et al. Expires May 15, 2014 [Page 35]

Internet-Draft HTTP/2.0 November 2013

 send a flow controlled frame with a length that exceeds the space
 available in either of the flow control windows advertised by the
 receiver. Frames with zero length with the END_STREAM flag set (for
 example, an empty data frame) MAY be sent if there is no available
 space in either flow control window.

 For flow control calculations, the 8 byte frame header is not
 counted.

 After sending a flow controlled frame, the sender reduces the space
 available in both windows by the length of the transmitted frame.

 The receiver of a frame sends a WINDOW_UPDATE frame as it consumes
 data and frees up space in flow control windows. Separate
 WINDOW_UPDATE frames are sent for the stream and connection level
 flow control windows.

 A sender that receives a WINDOW_UPDATE frame updates the
 corresponding window by the amount specified in the frame.

 A sender MUST NOT allow a flow control window to exceed 2^31 - 1
 bytes. If a sender receives a WINDOW_UPDATE that causes a flow
 control window to exceed this maximum it MUST terminate either the
 stream or the connection, as appropriate. For streams, the sender
 sends a RST_STREAM with the error code of FLOW_CONTROL_ERROR code;
 for the connection, a GOAWAY frame with a FLOW_CONTROL_ERROR code.

 Flow controlled frames from the sender and WINDOW_UPDATE frames from
 the receiver are completely asynchronous with respect to each other.
 This property allows a receiver to aggressively update the window
 size kept by the sender to prevent streams from stalling.

6.9.2. Initial Flow Control Window Size

 When a HTTP/2.0 connection is first established, new streams are
 created with an initial flow control window size of 65,535 bytes.
 The connection flow control window is 65,535 bytes. Both endpoints
 can adjust the initial window size for new streams by including a
 value for SETTINGS_INITIAL_WINDOW_SIZE in the SETTINGS frame that
 forms part of the connection header.

 Prior to receiving a SETTINGS frame that sets a value for
 SETTINGS_INITIAL_WINDOW_SIZE, an endpoint can only use the default
 initial window size when sending flow controlled frames. Similarly,
 the connection flow control window is set to the default initial
 window size until a WINDOW_UPDATE frame is received.

 A SETTINGS frame can alter the initial flow control window size for

Belshe, et al. Expires May 15, 2014 [Page 36]

Internet-Draft HTTP/2.0 November 2013

 all current streams. When the value of SETTINGS_INITIAL_WINDOW_SIZE
 changes, a receiver MUST adjust the size of all stream flow control
 windows that it maintains by the difference between the new value and
 the old value. A SETTINGS frame cannot alter the connection flow
 control window.

 A change to SETTINGS_INITIAL_WINDOW_SIZE could cause the available
 space in a flow control window to become negative. A sender MUST
 track the negative flow control window, and MUST NOT send new flow
 controlled frames until it receives WINDOW_UPDATE frames that cause
 the flow control window to become positive.

 For example, if the client sends 60KB immediately on connection
 establishment, and the server sets the initial window size to be
 16KB, the client will recalculate the available flow control window
 to be -44KB on receipt of the SETTINGS frame. The client retains a
 negative flow control window until WINDOW_UPDATE frames restore the
 window to being positive, after which the client can resume sending.

6.9.3. Reducing the Stream Window Size

 A receiver that wishes to use a smaller flow control window than the
 current size can send a new SETTINGS frame. However, the receiver
 MUST be prepared to receive data that exceeds this window size, since
 the sender might send data that exceeds the lower limit prior to
 processing the SETTINGS frame.

 A receiver has two options for handling streams that exceed flow
 control limits:

 1. The receiver can immediately send RST_STREAM with
 FLOW_CONTROL_ERROR error code for the affected streams.

 2. The receiver can accept the streams and tolerate the resulting
 head of line blocking, sending WINDOW_UPDATE frames as it
 consumes data.

 If a receiver decides to accept streams, both sides MUST recompute
 the available flow control window based on the initial window size
 sent in the SETTINGS.

6.9.4. Ending Flow Control

 After a receiver reads in a frame that marks the end of a stream (for
 example, a data stream with a END_STREAM flag set), it MUST cease
 transmission of WINDOW_UPDATE frames for that stream. A sender is
 not obligated to maintain the available flow control window for
 streams that it is no longer sending on.

Belshe, et al. Expires May 15, 2014 [Page 37]

Internet-Draft HTTP/2.0 November 2013

 Flow control can be disabled for the entire connection using the
 SETTINGS_FLOW_CONTROL_OPTIONS setting. This setting ends all forms
 of flow control. An implementation that does not wish to perform
 flow control can use this in the initial SETTINGS exchange.

 Flow control cannot be enabled again once disabled. Any attempt to
 re-enable flow control - by sending a WINDOW_UPDATE or by clearing
 the bits on the SETTINGS_FLOW_CONTROL_OPTIONS setting - MUST be
 rejected with a FLOW_CONTROL_ERROR error code.

6.10. CONTINUATION

 The CONTINUATION frame (type=0xA) is used to continue a sequence of
 header block fragments (Section 4.3). Any number of CONTINUATION
 frames can be sent on an existing stream, as long as the preceding
 frame on the same stream is one of HEADERS, PUSH_PROMISE or
 CONTINUATION without the END_HEADERS or END_PUSH_PROMISE flag set.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Header Block Fragment (*) ...
 +---+

 CONTINUATION Frame Payload

 The CONTINUATION frame defines the following flags:

 END_HEADERS (0x4): Bit 3 being set indicates that this frame ends a
 header block (Section 4.3).

 If the END_HEADERS bit is not set, this frame MUST be followed by
 another CONTINUATION frame. A receiver MUST treat the receipt of
 any other type of frame or a frame on a different stream as a
 connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 The payload of a CONTINUATION frame contains a header block fragment
 (Section 4.3).

 The CONTINUATION frame changes the connection state as defined in
Section 4.3.

 CONTINUATION frames MUST be associated with a stream. If a
 CONTINUATION frame is received whose stream identifier field is 0x0,
 the recipient MUST respond with a connection error (Section 5.4.1) of
 type PROTOCOL_ERROR.

 A CONTINUATION frame MUST be preceded by a HEADERS, PUSH_PROMISE or

Belshe, et al. Expires May 15, 2014 [Page 38]

Internet-Draft HTTP/2.0 November 2013

 CONTINUATION frame without the END_HEADERS flag set. A recipient
 that observes violation of this rule MUST respond with a connection
 error (Section 5.4.1) of type PROTOCOL_ERROR.

7. Error Codes

 Error codes are 32-bit fields that are used in RST_STREAM and GOAWAY
 frames to convey the reasons for the stream or connection error.

 Error codes share a common code space. Some error codes only apply
 to specific conditions and have no defined semantics in certain frame
 types.

 The following error codes are defined:

 NO_ERROR (0): The associated condition is not as a result of an
 error. For example, a GOAWAY might include this code to indicate
 graceful shutdown of a connection.

 PROTOCOL_ERROR (1): The endpoint detected an unspecific protocol
 error. This error is for use when a more specific error code is
 not available.

 INTERNAL_ERROR (2): The endpoint encountered an unexpected internal
 error.

 FLOW_CONTROL_ERROR (3): The endpoint detected that its peer violated
 the flow control protocol.

 SETTINGS_TIMEOUT (4): The endpoint sent a SETTINGS frame, but did
 not receive a response in a timely manner. See Settings
 Synchronization (Section 6.5.3).

 STREAM_CLOSED (5): The endpoint received a frame after a stream was
 half closed.

 FRAME_SIZE_ERROR (6): The endpoint received a frame that was larger
 than the maximum size that it supports.

 REFUSED_STREAM (7): The endpoint refuses the stream prior to
 performing any application processing, see Section 8.1.4 for
 details.

 CANCEL (8): Used by the endpoint to indicate that the stream is no
 longer needed.

Belshe, et al. Expires May 15, 2014 [Page 39]

Internet-Draft HTTP/2.0 November 2013

 COMPRESSION_ERROR (9): The endpoint is unable to maintain the
 compression context for the connection.

 CONNECT_ERROR (10): The connection established in response to a
 CONNECT request (Section 8.3) was reset or abnormally closed.

 ENHANCE_YOUR_CALM (420): The endpoint detected that its peer is
 exhibiting a behavior over a given amount of time that has caused
 it to refuse to process further frames.

8. HTTP Message Exchanges

 HTTP/2.0 is intended to be as compatible as possible with current
 web-based applications. This means that, from the perspective of the
 server business logic or application API, the features of HTTP are
 unchanged. To achieve this, all of the application request and
 response header semantics are preserved, although the syntax of
 conveying those semantics has changed. Thus, the rules from HTTP/1.1
 ([HTTP-p1], [HTTP-p2], [HTTP-p4], [HTTP-p5], [HTTP-p6], and
 [HTTP-p7]) apply with the changes in the sections below.

8.1. HTTP Request/Response Exchange

 A client sends an HTTP request on a new stream, using a previously
 unused stream identifier (Section 5.1.1). A server sends an HTTP
 response on the same stream as the request.

 An HTTP request or response each consist of:

 1. a HEADERS frame;

 2. one contiguous sequence of zero or more CONTINUATION frames;

 3. zero or more DATA frames; and

 4. optionally, a contiguous sequence that starts with a HEADERS
 frame, followed by zero or more CONTINUATION frames.

 The last frame in the sequence bears an END_STREAM flag, though a
 HEADERS frame bearing the END_STREAM flag can be followed by
 CONTINUATION frames that carry any remaining portions of the header
 block.

 Other frames MAY be interspersed with these frames, but those frames
 do not carry HTTP semantics. In particular, HEADERS frames (and any
 CONTINUATION frames that follow) other than the first and optional
 last frames in this sequence do not carry HTTP semantics.

Belshe, et al. Expires May 15, 2014 [Page 40]

Internet-Draft HTTP/2.0 November 2013

 Trailing header fields are carried in a header block that also
 terminates the stream. That is, a sequence starting with a HEADERS
 frame, followed by zero or more CONTINUATION frames, where the
 HEADERS frame bears an END_STREAM flag. Header blocks after the
 first that do not terminate the stream are not part of an HTTP
 request or response.

 An HTTP request/response exchange fully consumes a single stream. A
 request starts with the HEADERS frame that puts the stream into an
 "open" state and ends with a frame bearing END_STREAM, which causes
 the stream to become "half closed" for the client. A response starts
 with a HEADERS frame and ends with a frame bearing END_STREAM, which
 places the stream in the "closed" state.

8.1.1. Informational Responses

 [[anchor12: This section is likely to change significantly. This
 only captures the high points.]]

 The 1xx series of HTTP response codes ([HTTP-p2], Section 6.2) are
 not supported by HTTP/2.0.

 An intermediary that translates HTTP/1.1 requests to HTTP/2.0 MUST
 generate any mandatory informational responses. For instance, a
 translating intermediary generates a 100 (Continue) response if a
 request includes an Expect header field with a "100-continue" token
 ([HTTP-p2], Section 5.1.1).

 An intermediary that translates HTTP/1.1 responses to HTTP/2.0 MUST
 ignore informational responses.

8.1.2. Examples

 This section shows HTTP/1.1 requests and responses, with
 illustrations of equivalent HTTP/2.0 requests and responses.

 An HTTP GET request includes request header fields and no body and is
 therefore transmitted as a single contiguous sequence of HEADERS
 frames containing the serialized block of request header fields. The
 last HEADERS frame in the sequence has both the END_HEADERS and
 END_STREAM flag set:

Belshe, et al. Expires May 15, 2014 [Page 41]

Internet-Draft HTTP/2.0 November 2013

 GET /resource HTTP/1.1 HEADERS
 Host: example.org ==> + END_STREAM
 Accept: image/jpeg + END_HEADERS
 :method = GET
 :scheme = https
 :authority = example.org
 :path = /resource
 accept = image/jpeg

 Similarly, a response that includes only response header fields is
 transmitted as a sequence of HEADERS frames containing the serialized
 block of response header fields. The last HEADERS frame in the
 sequence has both the END_HEADERS and END_STREAM flag set:

 HTTP/1.1 204 No Content HEADERS
 Content-Length: 0 ===> + END_STREAM
 + END_HEADERS
 :status = 204
 content-length: 0

 An HTTP POST request that includes request header fields and payload
 data is transmitted as one HEADERS frame, followed by zero or more
 CONTINUATION frames, containing the request header fields followed by
 one or more DATA frames, with the last CONTINUATION (or HEADERS)
 frame having the END_HEADERS flag set and the final DATA frame having
 the END_STREAM flag set:

 POST /resource HTTP/1.1 HEADERS
 Host: example.org ==> - END_STREAM
 Content-Type: image/jpeg + END_HEADERS
 Content-Length: 123 :method = POST
 :scheme = https
 {binary data} :authority = example.org
 :path = /resource
 content-type = image/jpeg
 content-length = 123

 DATA
 + END_STREAM
 {binary data}

 A response that includes header fields and payload data is
 transmitted as a HEADERS frame, followed by zero or more CONTINUATION
 frames, followed by one or more DATA frames, with the last DATA frame
 in the sequence having the END_STREAM flag set:

Belshe, et al. Expires May 15, 2014 [Page 42]

Internet-Draft HTTP/2.0 November 2013

 HTTP/1.1 200 OK HEADERS
 Content-Type: image/jpeg ==> - END_STREAM
 Content-Length: 123 + END_HEADERS
 :status = 200
 {binary data} content-type = image/jpeg
 content-length = 123

 DATA
 + END_STREAM
 {binary data}

 Trailing header fields are sent as a header block after both the
 request or response header block and all the DATA frames have been
 sent. The sequence of HEADERS/CONTINUATION frames that bears the
 trailers includes a terminal frame that has both END_HEADERS and
 END_STREAM flags set.

 HTTP/1.1 200 OK HEADERS
 Content-Type: image/jpeg ===> - END_STREAM
 Content-Length: 123 + END_HEADERS
 Transfer-Encoding: chunked :status = 200
 TE: trailers content-length = 123
 123 content-type = image/jpeg
 {binary data}
 0 DATA
 Foo: bar - END_STREAM
 {binary data}

 HEADERS
 + END_STREAM
 + END_HEADERS
 foo: bar

8.1.3. HTTP Header Fields

 HTTP/2.0 request and response header fields carry information as a
 series of key-value pairs. This includes the target URI for the
 request, the status code for the response, as well as HTTP header
 fields.

 HTTP header field names are strings of ASCII characters that are
 compared in a case-insensitive fashion. Header field names MUST be
 converted to lowercase prior to their encoding in HTTP/2.0. A
 request or response containing uppercase header field names MUST be
 treated as malformed (Section 8.1.3.3).

 The semantics of HTTP header fields are not altered by this
 specification, though header fields relating to connection management

Belshe, et al. Expires May 15, 2014 [Page 43]

Internet-Draft HTTP/2.0 November 2013

 or request framing are no longer necessary. An HTTP/2.0 request or
 response MUST NOT include any of the following header fields:
 Connection, Keep-Alive, Proxy-Connection, TE, Transfer-Encoding, and
 Upgrade. A request or response containing these header fields MUST
 be treated as malformed (Section 8.1.3.3).

 Note: HTTP/2.0 purposefully does not support upgrade from HTTP/2.0
 to another protocol. The handshake methods described in Section 3
 are sufficient to negotiate the use of alternative protocols.

8.1.3.1. Request Header Fields

 HTTP/2.0 defines a number of header fields starting with a colon ':'
 character that carry information about the request target:

 o The ":method" header field includes the HTTP method ([HTTP-p2],
 Section 4).

 o The ":scheme" header field includes the scheme portion of the
 target URI ([RFC3986], Section 3.1).

 o The ":authority" header field includes the authority portion of
 the target URI ([RFC3986], Section 3.2).

 To ensure that the HTTP/1.1 request line can be reproduced
 accurately, this header field MUST be omitted when translating
 from an HTTP/1.1 request that has a request target in origin or
 asterisk form (see [HTTP-p1], Section 5.3). Clients that generate
 HTTP/2.0 requests directly SHOULD instead omit the "Host" header
 field. An intermediary that converts a request to HTTP/1.1 MUST
 create a "Host" header field if one is not present in a request by
 copying the value of the ":authority" header field.

 o The ":path" header field includes the path and query parts of the
 target URI (the "path-absolute" production from [RFC3986] and
 optionally a '?' character followed by the "query" production, see

[RFC3986], Section 3.3 and [RFC3986], Section 3.4). This field
 MUST NOT be empty; URIs that do not contain a path component MUST
 include a value of '/', unless the request is an OPTIONS in
 asterisk form, in which case the ":path" header field MUST include
 '*'.

 All HTTP/2.0 requests MUST include exactly one valid value for all of
 these header fields, unless this is a CONNECT request (Section 8.3).
 An HTTP request that omits mandatory header fields is malformed
 (Section 8.1.3.3).

 Header field names that contain a colon are only valid in the

https://datatracker.ietf.org/doc/html/rfc3986#section-3.1
https://datatracker.ietf.org/doc/html/rfc3986#section-3.2
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986#section-3.3
https://datatracker.ietf.org/doc/html/rfc3986#section-3.4

Belshe, et al. Expires May 15, 2014 [Page 44]

Internet-Draft HTTP/2.0 November 2013

 HTTP/2.0 context. These are not HTTP header fields. Implementations
 MUST NOT generate header fields that start with a colon, but they
 MUST ignore any header field that starts with a colon. In
 particular, header fields with names starting with a colon MUST NOT
 be exposed as HTTP header fields.

 HTTP/2.0 does not define a way to carry the version identifier that
 is included in the HTTP/1.1 request line.

8.1.3.2. Response Header Fields

 A single ":status" header field is defined that carries the HTTP
 status code field (see [HTTP-p2], Section 6). This header field MUST
 be included in all responses, otherwise the response is malformed
 (Section 8.1.3.3).

 HTTP/2.0 does not define a way to carry the version or reason phrase
 that is included in an HTTP/1.1 status line.

8.1.3.3. Malformed Requests and Responses

 A malformed request or response is one that uses a valid sequence of
 HTTP/2.0 frames, but is otherwise invalid due to the presence of
 prohibited header fields, the absence of mandatory header fields, or
 the inclusion of uppercase header field names.

 A request or response that includes an entity body can include a
 "content-length" header field. A request or response is also
 malformed if the value of a "content-length" header field does not
 equal the sum of the DATA frame payload lengths that form the body.

 Intermediaries that process HTTP requests or responses (i.e., all
 intermediaries other than those acting as tunnels) MUST NOT forward a
 malformed request or response.

 Implementations that detect malformed requests or responses need to
 ensure that the stream ends. For malformed requests, a server MAY
 send an HTTP response to prior to closing or resetting the stream.
 Clients MUST NOT accept a malformed response.

8.1.4. Request Reliability Mechanisms in HTTP/2.0

 In HTTP/1.1, an HTTP client is unable to retry a non-idempotent
 request when an error occurs, because there is no means to determine
 the nature of the error. It is possible that some server processing
 occurred prior to the error, which could result in undesirable
 effects if the request were reattempted.

Belshe, et al. Expires May 15, 2014 [Page 45]

Internet-Draft HTTP/2.0 November 2013

 HTTP/2.0 provides two mechanisms for providing a guarantee to a
 client that a request has not been processed:

 o The GOAWAY frame indicates the highest stream number that might
 have been processed. Requests on streams with higher numbers are
 therefore guaranteed to be safe to retry.

 o The REFUSED_STREAM error code can be included in a RST_STREAM
 frame to indicate that the stream is being closed prior to any
 processing having occurred. Any request that was sent on the
 reset stream can be safely retried.

 Clients MUST NOT treat requests that have not been processed as
 having failed. Clients MAY automatically retry these requests,
 including those with non-idempotent methods.

 A server MUST NOT indicate that a stream has not been processed
 unless it can guarantee that fact. If frames that are on a stream
 are passed to the application layer for any stream, then
 REFUSED_STREAM MUST NOT be used for that stream, and a GOAWAY frame
 MUST include a stream identifier that is greater than or equal to the
 given stream identifier.

 In addition to these mechanisms, the PING frame provides a way for a
 client to easily test a connection. Connections that remain idle can
 become broken as some middleboxes (for instance, network address
 translators, or load balancers) silently discard connection bindings.
 The PING frame allows a client to safely test whether a connection is
 still active without sending a request.

8.2. Server Push

 HTTP/2.0 enables a server to pre-emptively send (or "push") multiple
 associated resources to a client in response to a single request.
 This feature becomes particularly helpful when the server knows the
 client will need to have those resources available in order to fully
 process the originally requested resource.

 Pushing additional resources is optional, and is negotiated only
 between individual endpoints. The SETTINGS_ENABLE_PUSH setting can
 be set to 0 to indicate that server push is disabled. Even if
 enabled, an intermediary could receive pushed resources from the
 server but could choose not to forward those on to the client. How
 to make use of the pushed resources is up to that intermediary.
 Equally, the intermediary might choose to push additional resources
 to the client, without any action taken by the server.

 A server can only push requests that are safe (see [HTTP-p2], Section

Belshe, et al. Expires May 15, 2014 [Page 46]

Internet-Draft HTTP/2.0 November 2013

 4.2.1), cacheable (see [HTTP-p6], Section 3) and do not include a
 request body.

8.2.1. Push Requests

 Server push is semantically equivalent to a server responding to a
 request. The PUSH_PROMISE frame, or frames, sent by the server
 includes a header block that contains a complete set of request
 header fields that the server attributes to the request. It is not
 possible to push a response to a request that includes a request
 body.

 Pushed resources are always associated with an explicit request from
 a client. The PUSH_PROMISE frames sent by the server are sent on the
 stream created for the original request. The PUSH_PROMISE frame
 includes a promised stream identifier, chosen from the stream
 identifiers available to the server (see Section 5.1.1).

 The header fields in PUSH_PROMISE and any subsequent CONTINUATION
 frames MUST be a valid and complete set of request header fields
 (Section 8.1.3.1). The server MUST include a method in the ":method"
 header field that is safe and cacheable. If a client receives a
 PUSH_PROMISE that does not include a complete and valid set of header
 fields, or the ":method" header field identifies a method that is not
 safe, it MUST respond with a stream error (Section 5.4.2) of type
 PROTOCOL_ERROR.

 The server SHOULD send PUSH_PROMISE (Section 6.6) frames prior to
 sending any frames that reference the promised resources. This
 avoids a race where clients issue requests for resources prior to
 receiving any PUSH_PROMISE frames.

 For example, if the server receives a request for a document
 containing embedded links to multiple image files, and the server
 chooses to push those additional images to the client, sending push
 promises before the DATA frames that contain the image links ensure
 that the client is able to see the promises before discovering the
 resources. Similarly, if the server pushes resources referenced by
 the header block (for instance, in Link header fields), sending the
 push promises before sending the header block ensures that clients do
 not request those resources.

 PUSH_PROMISE frames MUST NOT be sent by the client. PUSH_PROMISE
 frames can be sent by the server on any stream that was opened by the
 client. They MUST be sent on a stream that is in either the "open"
 or "half closed (remote)" state to the server. PUSH_PROMISE frames
 are interspersed with the frames that comprise a response, though
 they cannot be interspersed with HEADERS and CONTINUATION frames that

Belshe, et al. Expires May 15, 2014 [Page 47]

Internet-Draft HTTP/2.0 November 2013

 comprise a single header block.

8.2.2. Push Responses

 After sending the PUSH_PROMISE frame, the server can begin delivering
 the pushed resource as a response (Section 8.1.3.2) on a server-
 initiated stream that uses the promised stream identifier. The
 server uses this stream to transmit an HTTP response, using the same
 sequence of frames as defined in Section 8.1. This stream becomes
 "half closed" to the client (Section 5.1) after the initial HEADERS
 frame is sent.

 Once a client receives a PUSH_PROMISE frame and chooses to accept the
 pushed resource, the client SHOULD NOT issue any requests for the
 promised resource until after the promised stream has closed.

 If the client determines, for any reason, that it does not wish to
 receive the pushed resource from the server, or if the server takes
 too long to begin sending the promised resource, the client can send
 an RST_STREAM frame, using either the CANCEL or REFUSED_STREAM codes,
 and referencing the pushed stream's identifier.

 A client can use the SETTINGS_MAX_CONCURRENT_STREAMS setting to limit
 the number of resources that can be concurrently pushed by a server.
 Advertising a SETTINGS_MAX_CONCURRENT_STREAMS value of zero disables
 server push by preventing the server from creating the necessary
 streams. This does not prohibit a server from sending PUSH_PROMISE
 frames; clients need to reset any promised streams that are not
 wanted.

 Clients receiving a pushed response MUST validate that the server is
 authorized to push the resource using the same-origin policy
 ([RFC6454], Section 3). For example, a HTTP/2.0 connection to
 "example.com" is generally [[anchor16: Ed: weaselly use of
 "generally", needs better definition]] not permitted to push a
 response for "www.example.org".

8.3. The CONNECT Method

 The HTTP pseudo-method CONNECT ([HTTP-p2], Section 4.3.6) is used to
 convert an HTTP/1.1 connection into a tunnel to a remote host.
 CONNECT is primarily used with HTTP proxies to established a TLS
 session with a server for the purposes of interacting with "https"
 resources.

 In HTTP/2.0, the CONNECT method is used to establish a tunnel over a
 single HTTP/2.0 stream to a remote host. The HTTP header field
 mapping works as mostly as defined in Request Header Fields

https://datatracker.ietf.org/doc/html/rfc6454#section-3

Belshe, et al. Expires May 15, 2014 [Page 48]

Internet-Draft HTTP/2.0 November 2013

 (Section 8.1.3.1), with a few differences. Specifically:

 o The ":method" header field is set to "CONNECT".

 o The ":scheme" and ":path" header fields MUST be omitted.

 o The ":authority" header field contains the host and port to
 connect to (equivalent to the authority-form of the request-target
 of CONNECT requests, see [HTTP-p1], Section 5.3).

 A proxy that supports CONNECT, establishes a TCP connection [TCP] to
 the server identified in the ":path" header field. Once this
 connection is successfully established, the proxy sends a HEADERS
 frame containing a 2xx series status code, as defined in [HTTP-p2],
 Section 4.3.6.

 After the initial HEADERS frame sent by each peer, all subsequent
 DATA frames correspond to data sent on the TCP connection. The
 payload of any DATA frames sent by the client are transmitted by the
 proxy to the TCP server; data received from the TCP server is
 assembled into DATA frames by the proxy. Frame types other than DATA
 or stream management frames (RST_STREAM, WINDOW_UPDATE, and PRIORITY)
 MUST NOT be sent on a connected stream, and MUST be treated as a
 stream error (Section 5.4.2) if received.

 The TCP connection can be closed by either peer. The END_STREAM flag
 on a DATA frame is treated as being equivalent to the TCP FIN bit. A
 client is expected to send a DATA frame with the END_STREAM flag set
 after receiving a frame bearing the END_STREAM flag. A proxy that
 receives a DATA frame with the END_STREAM flag set sends the attached
 data with the FIN bit set on the last TCP segment. A proxy that
 receives a TCP segment with the FIN bit set sends a DATA frame with
 the END_STREAM flag set. Note that the final TCP segment or DATA
 frame could be empty.

 A TCP connection error is signaled with RST_STREAM. A proxy treats
 any error in the TCP connection, which includes receiving a TCP
 segment with the RST bit set, as a stream error (Section 5.4.2) of
 type CONNECT_ERROR. Correspondingly, a proxy MUST send a TCP segment
 with the RST bit set if it detects an error with the stream or the
 HTTP/2.0 connection.

9. Additional HTTP Requirements/Considerations

 This section outlines attributes of the HTTP protocol that improve
 interoperability, reduce exposure to known security vulnerabilities,
 or reduce the potential for implementation variation.

Belshe, et al. Expires May 15, 2014 [Page 49]

Internet-Draft HTTP/2.0 November 2013

9.1. Connection Management

 HTTP/2.0 connections are persistent. For best performance, it is
 expected clients will not close connections until it is determined
 that no further communication with a server is necessary (for
 example, when a user navigates away from a particular web page), or
 until the server closes the connection.

 Clients SHOULD NOT open more than one HTTP/2.0 connection to a given
 origin ([RFC6454]) concurrently. A client can create additional
 connections as replacements, either to replace connections that are
 near to exhausting the available stream identifiers (Section 5.1.1),
 or to replace connections that have encountered errors
 (Section 5.4.1).

 Servers are encouraged to maintain open connections for as long as
 possible, but are permitted to terminate idle connections if
 necessary. When either endpoint chooses to close the transport-level
 TCP connection, the terminating endpoint SHOULD first send a GOAWAY
 (Section 6.8) frame so that both endpoints can reliably determine
 whether previously sent frames have been processed and gracefully
 complete or terminate any necessary remaining tasks.

9.2. Use of TLS Features

 Implementations of HTTP/2.0 MUST support TLS 1.1 [TLS11]. [[anchor19:
 The working group intends to require at least the use of TLS 1.2
 [TLS12] prior to publication of this document; negotiating TLS 1.1 is
 permitted to enable the creation of interoperable implementations of
 early drafts.]]

 The TLS implementation MUST support the Server Name Indication (SNI)
 [TLS-EXT] extension to TLS. HTTP/2.0 clients MUST indicate the
 target domain name when negotiating TLS.

 A server that receives a TLS handshake that does not include either
 TLS 1.1 or SNI, MUST NOT negotiate HTTP/2.0. Removing HTTP/2.0
 protocols from consideration could result in the removal of all
 protocols from the set of protocols offered by the client. This
 causes protocol negotiation failure, as described in Section 3.2 of
 [TLSALPN].

 Implementations are encouraged not to negotiate TLS cipher suites
 with known vulnerabilities, such as [RC4].

https://datatracker.ietf.org/doc/html/rfc6454

Belshe, et al. Expires May 15, 2014 [Page 50]

Internet-Draft HTTP/2.0 November 2013

9.3. GZip Content-Encoding

 Clients MUST support gzip compression for HTTP response bodies.
 Regardless of the value of the accept-encoding header field, a server
 MAY send responses with gzip or deflate encoding. A compressed
 response MUST still bear an appropriate content-encoding header
 field.

10. Security Considerations

10.1. Server Authority and Same-Origin

 This specification uses the same-origin policy ([RFC6454], Section 3)
 to determine whether an origin server is permitted to provide
 content.

 A server that is contacted using TLS is authenticated based on the
 certificate that it offers in the TLS handshake (see [RFC2818],
 Section 3). A server is considered authoritative for an "https"
 resource if it has been successfully authenticated for the domain
 part of the origin of the resource that it is providing.

 A server is considered authoritative for an "http" resource if the
 connection is established to a resolved IP address for the domain in
 the origin of the resource.

 A client MUST NOT use, in any way, resources provided by a server
 that is not authoritative for those resources.

10.2. Cross-Protocol Attacks

 When using TLS, we believe that HTTP/2.0 introduces no new cross-
 protocol attacks. TLS encrypts the contents of all transmission
 (except the handshake itself), making it difficult for attackers to
 control the data which could be used in a cross-protocol attack.
 [[anchor22: Issue: This is no longer true]]

10.3. Intermediary Encapsulation Attacks

 HTTP/2.0 header field names and values are encoded as sequences of
 octets with a length prefix. This enables HTTP/2.0 to carry any
 string of octets as the name or value of a header field. An
 intermediary that translates HTTP/2.0 requests or responses into
 HTTP/1.1 directly could permit the creation of corrupted HTTP/1.1
 messages. An attacker might exploit this behavior to cause the
 intermediary to create HTTP/1.1 messages with illegal header fields,
 extra header fields, or even new messages that are entirely
 falsified.

https://datatracker.ietf.org/doc/html/rfc6454#section-3
https://datatracker.ietf.org/doc/html/rfc2818#section-3
https://datatracker.ietf.org/doc/html/rfc2818#section-3

Belshe, et al. Expires May 15, 2014 [Page 51]

Internet-Draft HTTP/2.0 November 2013

 An intermediary that performs translation into HTTP/1.1 cannot alter
 the semantics of requests or responses. In particular, header field
 names or values that contain characters not permitted by HTTP/1.1,
 including carriage return (U+000D) or line feed (U+000A) MUST NOT be
 translated verbatim, as stipulated in [HTTP-p1], Section 3.2.4.

 Translation from HTTP/1.x to HTTP/2.0 does not produce the same
 opportunity to an attacker. Intermediaries that perform translation
 to HTTP/2.0 MUST remove any instances of the "obs-fold" production
 from header field values.

10.4. Cacheability of Pushed Resources

 Pushed resources are responses without an explicit request; the
 request for a pushed resource is synthesized from the request that
 triggered the push, plus resource identification information provided
 by the server. Request header fields are necessary for HTTP cache
 control validations (such as the Vary header field) to work. For
 this reason, caches MUST associate the request header fields from the
 PUSH_PROMISE frame with the response headers and content delivered on
 the pushed stream. This includes the Cookie header field.

 Caching resources that are pushed is possible, based on the guidance
 provided by the origin server in the Cache-Control header field.
 However, this can cause issues if a single server hosts more than one
 tenant. For example, a server might offer multiple users each a
 small portion of its URI space.

 Where multiple tenants share space on the same server, that server
 MUST ensure that tenants are not able to push representations of
 resources that they do not have authority over. Failure to enforce
 this would allow a tenant to provide a representation that would be
 served out of cache, overriding the actual representation that the
 authoritative tenant provides.

 Pushed resources for which an origin server is not authoritative are
 never cached or used.

10.5. Denial of Service Considerations

 An HTTP/2.0 connection can demand a greater commitment of resources
 to operate than a HTTP/1.1 connection. The use of header compression
 and flow control require that an implementation commit resources for
 storing a greater amount of state. Settings for these features
 ensure that memory commitments for these features are strictly
 bounded. Processing capacity cannot be guarded in the same fashion.

 The SETTINGS frame can be abused to cause a peer to expend additional

Belshe, et al. Expires May 15, 2014 [Page 52]

Internet-Draft HTTP/2.0 November 2013

 processing time. This might be done by pointlessly changing
 settings, setting multiple undefined settings, or changing the same
 setting multiple times in the same frame. Similarly, WINDOW_UPDATE
 or PRIORITY frames can be abused to cause an unnecessary waste of
 resources.

 Large numbers of small or empty frames can be abused to cause a peer
 to expend time processing frame headers. Note however that some uses
 are entirely legitimate, such as the sending of an empty DATA frame
 to end a stream.

 Header compression also offers some opportunities to waste processing
 resources, see [COMPRESSION] for more details on potential abuses.

 In all these cases, there are legitimate reasons to use these
 protocol mechanisms. These features become a burden only when they
 are used unnecessarily or to excess.

 An endpoint that doesn't monitor this behavior exposes itself to a
 risk of denial of service attack. Implementations SHOULD track the
 use of these types of frames and set limits on their use. An
 endpoint MAY treat activity that is suspicious as a connection error
 (Section 5.4.1) of type ENHANCE_YOUR_CALM.

11. Privacy Considerations

 HTTP/2.0 aims to keep connections open longer between clients and
 servers in order to reduce the latency when a user makes a request.
 The maintenance of these connections over time could be used to
 expose private information. For example, a user using a browser
 hours after the previous user stopped using that browser may be able
 to learn about what the previous user was doing. This is a problem
 with HTTP in its current form as well, however the short lived
 connections make it less of a risk.

12. IANA Considerations

 A string for identifying HTTP/2.0 is entered into the "Application
 Layer Protocol Negotiation (ALPN) Protocol IDs" registry established
 in [TLSALPN].

 This document establishes registries for frame types, error codes and
 settings. These new registries are entered in a new "Hypertext
 Transfer Protocol (HTTP) 2.0 Parameters" section.

 This document registers the "HTTP2-Settings" header field for use in
 HTTP.

Belshe, et al. Expires May 15, 2014 [Page 53]

Internet-Draft HTTP/2.0 November 2013

12.1. Registration of HTTP/2.0 Identification String

 This document creates a registration for the identification of
 HTTP/2.0 in the "Application Layer Protocol Negotiation (ALPN)
 Protocol IDs" registry established in [TLSALPN].

 Protocol: HTTP/2.0

 Identification Sequence: 0x48 0x54 0x54 0x50 0x2f 0x32 0x2e 0x30
 ("HTTP/2.0")

 Specification: This document (RFCXXXX)

12.2. Frame Type Registry

 This document establishes a registry for HTTP/2.0 frame types. The
 "HTTP/2.0 Frame Type" registry operates under the "IETF Review"
 policy [RFC5226].

 Frame types are an 8-bit value. When reviewing new frame type
 registrations, special attention is advised for any frame type-
 specific flags that are defined. Frame flags can interact with
 existing flags and could prevent the creation of globally applicable
 flags.

 Initial values for the "HTTP/2.0 Frame Type" registry are shown in
 Table 1.

 +--------+---------------+---------------------------+--------------+
 | Frame | Name | Flags | Section |
 | Type | | | |
 +--------+---------------+---------------------------+--------------+
0	DATA	END_STREAM(1)	Section 6.1
1	HEADERS	END_STREAM(1),	Section 6.2
		END_HEADERS(4),	
		PRIORITY(8)	
2	PRIORITY	-	Section 6.3
3	RST_STREAM	-	Section 6.4
4	SETTINGS	ACK(1)	Section 6.5
5	PUSH_PROMISE	END_PUSH_PROMISE(4)	Section 6.6
6	PING	ACK(1)	Section 6.7
7	GOAWAY	-	Section 6.8
9	WINDOW_UPDATE	-	Section 6.9
10	CONTINUATION	END_HEADERS(4)	Section 6.10
 +--------+---------------+---------------------------+--------------+

 Table 1

https://datatracker.ietf.org/doc/html/rfc5226

Belshe, et al. Expires May 15, 2014 [Page 54]

Internet-Draft HTTP/2.0 November 2013

12.3. Error Code Registry

 This document establishes a registry for HTTP/2.0 error codes. The
 "HTTP/2.0 Error Code" registry manages a 32-bit space. The "HTTP/2.0
 Error Code" registry operates under the "Expert Review" policy
 [RFC5226].

 Registrations for error codes are required to include a description
 of the error code. An expert reviewer is advised to examine new
 registrations for possible duplication with existing error codes.
 Use of existing registrations is to be encouraged, but not mandated.

 New registrations are advised to provide the following information:

 Error Code: The 32-bit error code value.

 Name: A name for the error code. Specifying an error code name is
 optional.

 Description: A description of the conditions where the error code is
 applicable.

 Specification: An optional reference for a specification that
 defines the error code.

 An initial set of error code registrations can be found in Section 7.

12.4. Settings Registry

 This document establishes a registry for HTTP/2.0 settings. The
 "HTTP/2.0 Settings" registry manages a 24-bit space. The "HTTP/2.0
 Settings" registry operates under the "Expert Review" policy
 [RFC5226].

 Registrations for settings are required to include a description of
 the setting. An expert reviewer is advised to examine new
 registrations for possible duplication with existing settings. Use
 of existing registrations is to be encouraged, but not mandated.

 New registrations are advised to provide the following information:

 Setting: The 24-bit setting value.

 Name: A name for the setting. Specifying a name is optional.

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Belshe, et al. Expires May 15, 2014 [Page 55]

Internet-Draft HTTP/2.0 November 2013

 Flags: Any setting-specific flags that apply, including their value
 and semantics.

 Description: A description of the setting. This might include the
 range of values, any applicable units and how to act upon a value
 when it is provided.

 Specification: An optional reference for a specification that
 defines the setting.

 An initial set of settings registrations can be found in
Section 6.5.2.

12.5. HTTP2-Settings Header Field Registration

 This section registers the "HTTP2-Settings" header field in the
 Permanent Message Header Field Registry [BCP90].

 Header field name: HTTP2-Settings

 Applicable protocol: http

 Status: standard

 Author/Change controller: IETF

 Specification document(s): Section 3.2.1 of this document

 Related information: This header field is only used by an HTTP/2.0
 client for Upgrade-based negotiation.

13. Acknowledgements

 This document includes substantial input from the following
 individuals:

 o Adam Langley, Wan-Teh Chang, Jim Morrison, Mark Nottingham, Alyssa
 Wilk, Costin Manolache, William Chan, Vitaliy Lvin, Joe Chan, Adam
 Barth, Ryan Hamilton, Gavin Peters, Kent Alstad, Kevin Lindsay,
 Paul Amer, Fan Yang, Jonathan Leighton (SPDY contributors).

 o Gabriel Montenegro and Willy Tarreau (Upgrade mechanism)

 o William Chan, Salvatore Loreto, Osama Mazahir, Gabriel Montenegro,
 Jitu Padhye, Roberto Peon, Rob Trace (Flow control)

 o Mark Nottingham, Julian Reschke, James Snell, Jeff Pinner, Mike
 Bishop (Substantial editorial contributions)

Belshe, et al. Expires May 15, 2014 [Page 56]

Internet-Draft HTTP/2.0 November 2013

14. References

14.1. Normative References

 [COMPRESSION] Ruellan, H. and R. Peon, "HPACK - Header Compression
 for HTTP/2.0",

draft-ietf-httpbis-header-compression-04 (work in
 progress), October 2013.

 [HTTP-p1] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Message Syntax and
 Routing", draft-ietf-httpbis-p1-messaging-24 (work in
 progress), September 2013.

 [HTTP-p2] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Semantics and Content",

draft-ietf-httpbis-p2-semantics-24 (work in progress),
 September 2013.

 [HTTP-p4] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Conditional Requests",

draft-ietf-httpbis-p4-conditional-24 (work in
 progress), September 2013.

 [HTTP-p5] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Range
 Requests", draft-ietf-httpbis-p5-range-24 (work in
 progress), September 2013.

 [HTTP-p6] Fielding, R., Ed., Nottingham, M., Ed., and J.
 Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1):
 Caching", draft-ietf-httpbis-p6-cache-24 (work in
 progress), September 2013.

 [HTTP-p7] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Authentication",

draft-ietf-httpbis-p7-auth-24 (work in progress),
 September 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter,
 "Uniform Resource Identifier (URI): Generic Syntax",
 STD 66, RFC 3986, January 2005.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p1-messaging-24
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-24
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-24
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p5-range-24
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p6-cache-24
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p7-auth-24
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc3986

Belshe, et al. Expires May 15, 2014 [Page 57]

Internet-Draft HTTP/2.0 November 2013

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing
 an IANA Considerations Section in RFCs", BCP 26,

RFC 5226, May 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 December 2011.

 [TCP] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [TLS-EXT] Eastlake, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 January 2011.

 [TLS11] Dierks, T. and E. Rescorla, "The Transport Layer
 Security (TLS) Protocol Version 1.1", RFC 4346,
 April 2006.

 [TLS12] Dierks, T. and E. Rescorla, "The Transport Layer
 Security (TLS) Protocol Version 1.2", RFC 5246,
 August 2008.

 [TLSALPN] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application Layer
 Protocol Negotiation Extension",

draft-ietf-tls-applayerprotoneg-02 (work in progress),
 September 2013.

14.2. Informative References

 [BCP90] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90,

RFC 3864, September 2004.

 [RC4] Rivest, R., "The RC4 encryption algorithm", RSA Data
 Security, Inc. , March 1992.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP
 Extensions for High Performance", RFC 1323, May 1992.

 [TALKING] Huang, L-S., Chen, E., Barth, A., Rescorla, E., and C.
 Jackson, "Talking to Yourself for Fun and Profit",

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/draft-ietf-tls-applayerprotoneg-02
https://datatracker.ietf.org/doc/html/bcp90
https://datatracker.ietf.org/doc/html/rfc3864
https://datatracker.ietf.org/doc/html/rfc1323

Belshe, et al. Expires May 15, 2014 [Page 58]

Internet-Draft HTTP/2.0 November 2013

 2011, <http://w2spconf.com/2011/papers/websocket.pdf>.

Appendix A. Change Log (to be removed by RFC Editor before publication)

A.1. Since draft-ietf-httpbis-http2-07

 Marked draft for implementation.

A.2. Since draft-ietf-httpbis-http2-06

 Adding definition for CONNECT method.

 Constraining the use of push to safe, cacheable methods with no
 request body.

 Changing from :host to :authority to remove any potential confusion.

 Adding setting for header compression table size.

 Adding settings acknowledgement.

 Removing unnecessary and potentially problematic flags from
 CONTINUATION.

 Added denial of service considerations.

A.3. Since draft-ietf-httpbis-http2-05

 Marking the draft ready for implementation.

 Renumbering END_PUSH_PROMISE flag.

 Editorial clarifications and changes.

A.4. Since draft-ietf-httpbis-http2-04

 Added CONTINUATION frame for HEADERS and PUSH_PROMISE.

 PUSH_PROMISE is no longer implicitly prohibited if
 SETTINGS_MAX_CONCURRENT_STREAMS is zero.

 Push expanded to allow all safe methods without a request body.

 Clarified the use of HTTP header fields in requests and responses.
 Prohibited HTTP/1.1 hop-by-hop header fields.

 Requiring that intermediaries not forward requests with missing or
 illegal routing :-headers.

http://w2spconf.com/2011/papers/websocket.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-07
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-04

Belshe, et al. Expires May 15, 2014 [Page 59]

Internet-Draft HTTP/2.0 November 2013

 Clarified requirements around handling different frames after stream
 close, stream reset and GOAWAY.

 Added more specific prohibitions for sending of different frame types
 in various stream states.

 Making the last received setting value the effective value.

 Clarified requirements on TLS version, extension and ciphers.

A.5. Since draft-ietf-httpbis-http2-03

 Committed major restructuring atrocities.

 Added reference to first header compression draft.

 Added more formal description of frame lifecycle.

 Moved END_STREAM (renamed from FINAL) back to HEADERS/DATA.

 Removed HEADERS+PRIORITY, added optional priority to HEADERS frame.

 Added PRIORITY frame.

A.6. Since draft-ietf-httpbis-http2-02

 Added continuations to frames carrying header blocks.

 Replaced use of "session" with "connection" to avoid confusion with
 other HTTP stateful concepts, like cookies.

 Removed "message".

 Switched to TLS ALPN from NPN.

 Editorial changes.

A.7. Since draft-ietf-httpbis-http2-01

 Added IANA considerations section for frame types, error codes and
 settings.

 Removed data frame compression.

 Added PUSH_PROMISE.

 Added globally applicable flags to framing.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-01

Belshe, et al. Expires May 15, 2014 [Page 60]

Internet-Draft HTTP/2.0 November 2013

 Removed zlib-based header compression mechanism.

 Updated references.

 Clarified stream identifier reuse.

 Removed CREDENTIALS frame and associated mechanisms.

 Added advice against naive implementation of flow control.

 Added session header section.

 Restructured frame header. Removed distinction between data and
 control frames.

 Altered flow control properties to include session-level limits.

 Added note on cacheability of pushed resources and multiple tenant
 servers.

 Changed protocol label form based on discussions.

A.8. Since draft-ietf-httpbis-http2-00

 Changed title throughout.

 Removed section on Incompatibilities with SPDY draft#2.

 Changed INTERNAL_ERROR on GOAWAY to have a value of 2 <https://
 groups.google.com/forum/?fromgroups#!topic/spdy-dev/cfUef2gL3iU>.

 Replaced abstract and introduction.

 Added section on starting HTTP/2.0, including upgrade mechanism.

 Removed unused references.

 Added flow control principles (Section 5.2.1) based on <http://
tools.ietf.org/html/draft-montenegro-httpbis-http2-fc-principles-01>.

A.9. Since draft-mbelshe-httpbis-spdy-00

 Adopted as base for draft-ietf-httpbis-http2.

 Updated authors/editors list.

 Added status note.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-00
http://tools.ietf.org/html/draft-montenegro-httpbis-http2-fc-principles-01
http://tools.ietf.org/html/draft-montenegro-httpbis-http2-fc-principles-01
https://datatracker.ietf.org/doc/html/draft-mbelshe-httpbis-spdy-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2

Belshe, et al. Expires May 15, 2014 [Page 61]

Internet-Draft HTTP/2.0 November 2013

Authors' Addresses

 Mike Belshe
 Twist

 EMail: mbelshe@chromium.org

 Roberto Peon
 Google, Inc

 EMail: fenix@google.com

 Martin Thomson (editor)
 Microsoft
 3210 Porter Drive
 Palo Alto 94304
 US

 EMail: martin.thomson@gmail.com

 Alexey Melnikov (editor)
 Isode Ltd
 5 Castle Business Village
 36 Station Road
 Hampton, Middlesex TW12 2BX
 UK

 EMail: Alexey.Melnikov@isode.com

Belshe, et al. Expires May 15, 2014 [Page 62]

