
HTTPbis Working Group M. Belshe
Internet-Draft Twist
Intended status: Standards Track R. Peon
Expires: December 19, 2014 Google, Inc
 M. Thomson, Ed.
 Mozilla
 June 17, 2014

Hypertext Transfer Protocol version 2
draft-ietf-httpbis-http2-13

Abstract

 This specification describes an optimized expression of the syntax of
 the Hypertext Transfer Protocol (HTTP). HTTP/2 enables a more
 efficient use of network resources and a reduced perception of
 latency by introducing header field compression and allowing multiple
 concurrent messages on the same connection. It also introduces
 unsolicited push of representations from servers to clients.

 This specification is an alternative to, but does not obsolete, the
 HTTP/1.1 message syntax. HTTP's existing semantics remain unchanged.

Editorial Note (To be removed by RFC Editor)

 Discussion of this draft takes place on the HTTPBIS working group
 mailing list (ietf-http-wg@w3.org), which is archived at [1].

 Working Group information can be found at [2]; that specific to
 HTTP/2 are at [3].

 The changes in this draft are summarized in Appendix A.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Belshe, et al. Expires December 19, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP/2 June 2014

 This Internet-Draft will expire on December 19, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. HTTP/2 Protocol Overview 5
2.1. Document Organization 6
2.2. Conventions and Terminology 6

3. Starting HTTP/2 . 7
3.1. HTTP/2 Version Identification 8
3.2. Starting HTTP/2 for "http" URIs 9
3.2.1. HTTP2-Settings Header Field 10

3.3. Starting HTTP/2 for "https" URIs 11
3.4. Starting HTTP/2 with Prior Knowledge 11
3.5. HTTP/2 Connection Preface 11

4. HTTP Frames . 12
4.1. Frame Format . 12
4.2. Frame Size . 13
4.3. Header Compression and Decompression 14

5. Streams and Multiplexing 15
5.1. Stream States . 15
5.1.1. Stream Identifiers 20
5.1.2. Stream Concurrency 21

5.2. Flow Control . 21
5.2.1. Flow Control Principles 21
5.2.2. Appropriate Use of Flow Control 22

5.3. Stream priority . 23
5.3.1. Stream Dependencies 24
5.3.2. Dependency Weighting 25
5.3.3. Reprioritization 25
5.3.4. Prioritization State Management 26
5.3.5. Default Priorities 27

5.4. Error Handling . 27

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Belshe, et al. Expires December 19, 2014 [Page 2]

Internet-Draft HTTP/2 June 2014

5.4.1. Connection Error Handling 27
5.4.2. Stream Error Handling 28
5.4.3. Connection Termination 28

5.5. Extending HTTP/2 . 28
6. Frame Definitions . 29
6.1. DATA . 29
6.2. HEADERS . 31
6.3. PRIORITY . 33
6.4. RST_STREAM . 34
6.5. SETTINGS . 35
6.5.1. SETTINGS Format 36
6.5.2. Defined SETTINGS Parameters 36
6.5.3. Settings Synchronization 37

6.6. PUSH_PROMISE . 38
6.7. PING . 40
6.8. GOAWAY . 41
6.9. WINDOW_UPDATE . 43
6.9.1. The Flow Control Window 44
6.9.2. Initial Flow Control Window Size 45
6.9.3. Reducing the Stream Window Size 46

6.10. CONTINUATION . 47
7. Error Codes . 47
8. HTTP Message Exchanges 49
8.1. HTTP Request/Response Exchange 49
8.1.1. Informational Responses 50
8.1.2. HTTP Header Fields 51
8.1.3. Examples . 55
8.1.4. Request Reliability Mechanisms in HTTP/2 58

8.2. Server Push . 59
8.2.1. Push Requests . 59
8.2.2. Push Responses 60

8.3. The CONNECT Method 61
9. Additional HTTP Requirements/Considerations 62
9.1. Connection Management 62
9.1.1. Connection Reuse 63
9.1.2. The 421 (Not Authoritative) Status Code 64

9.2. Use of TLS Features 64
9.2.1. TLS Features . 64
9.2.2. TLS Cipher Suites 65

10. Security Considerations 65
10.1. Server Authority . 65
10.2. Cross-Protocol Attacks 66
10.3. Intermediary Encapsulation Attacks 66
10.4. Cacheability of Pushed Responses 67
10.5. Denial of Service Considerations 67
10.5.1. Limits on Header Block Size 68

10.6. Use of Compression 69
10.7. Use of Padding . 69

Belshe, et al. Expires December 19, 2014 [Page 3]

Internet-Draft HTTP/2 June 2014

10.8. Privacy Considerations 70
11. IANA Considerations . 70
11.1. Registration of HTTP/2 Identification Strings 70
11.2. Frame Type Registry 71
11.3. Settings Registry 72
11.4. Error Code Registry 72
11.5. HTTP2-Settings Header Field Registration 73
11.6. PRI Method Registration 74
11.7. The 421 Not Authoritative HTTP Status Code 74

12. Acknowledgements . 74
13. References . 75
13.1. Normative References 75
13.2. Informative References 76
13.3. URIs . 77

Appendix A. Change Log (to be removed by RFC Editor before
 publication) . 78

A.1. Since draft-ietf-httpbis-http2-12 78
A.2. Since draft-ietf-httpbis-http2-11 78
A.3. Since draft-ietf-httpbis-http2-10 78
A.4. Since draft-ietf-httpbis-http2-09 79
A.5. Since draft-ietf-httpbis-http2-08 79
A.6. Since draft-ietf-httpbis-http2-07 79
A.7. Since draft-ietf-httpbis-http2-06 79
A.8. Since draft-ietf-httpbis-http2-05 80
A.9. Since draft-ietf-httpbis-http2-04 80
A.10. Since draft-ietf-httpbis-http2-03 80
A.11. Since draft-ietf-httpbis-http2-02 81
A.12. Since draft-ietf-httpbis-http2-01 81
A.13. Since draft-ietf-httpbis-http2-00 82
A.14. Since draft-mbelshe-httpbis-spdy-00 82

1. Introduction

 The Hypertext Transfer Protocol (HTTP) is a wildly successful
 protocol. However, the HTTP/1.1 message format ([RFC7230],
 Section 3) was designed to be implemented with the tools at hand in
 the 1990s, not modern Web application performance. As such it has
 several characteristics that have a negative overall effect on
 application performance today.

 In particular, HTTP/1.0 only allows one request to be outstanding at
 a time on a given connection. HTTP/1.1 pipelining only partially
 addressed request concurrency and suffers from head-of-line blocking.
 Therefore, clients that need to make many requests typically use
 multiple connections to a server in order to reduce latency.

 Furthermore, HTTP/1.1 header fields are often repetitive and verbose,
 which, in addition to generating more or larger network packets, can

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-12
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-11
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-10
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-09
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-08
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-07
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-00
https://datatracker.ietf.org/doc/html/draft-mbelshe-httpbis-spdy-00
https://datatracker.ietf.org/doc/html/rfc7230#section-3
https://datatracker.ietf.org/doc/html/rfc7230#section-3

Belshe, et al. Expires December 19, 2014 [Page 4]

Internet-Draft HTTP/2 June 2014

 cause the small initial TCP [TCP] congestion window to quickly fill.
 This can result in excessive latency when multiple requests are made
 on a single new TCP connection.

 This specification addresses these issues by defining an optimized
 mapping of HTTP's semantics to an underlying connection.
 Specifically, it allows interleaving of request and response messages
 on the same connection and uses an efficient coding for HTTP header
 fields. It also allows prioritization of requests, letting more
 important requests complete more quickly, further improving
 performance.

 The resulting protocol is designed to be more friendly to the
 network, because fewer TCP connections can be used in comparison to
 HTTP/1.x. This means less competition with other flows, and longer-
 lived connections, which in turn leads to better utilization of
 available network capacity.

 Finally, this encapsulation also enables more efficient processing of
 messages through use of binary message framing.

2. HTTP/2 Protocol Overview

 HTTP/2 provides an optimized transport for HTTP semantics. HTTP/2
 supports all of the core features of HTTP/1.1, but aims to be more
 efficient in several ways.

 The basic protocol unit in HTTP/2 is a frame (Section 4.1). Each
 frame type serves a different purpose. For example, HEADERS and DATA
 frames form the basis of HTTP requests and responses (Section 8.1);
 other frame types like SETTINGS, WINDOW_UPDATE, and PUSH_PROMISE are
 used in support of other HTTP/2 features.

 Multiplexing of requests is achieved by having each HTTP request-
 response exchanged assigned to a single stream (Section 5). Streams
 are largely independent of each other, so a blocked or stalled
 request does not prevent progress on other requests.

 Flow control and prioritization ensure that it is possible to
 properly use multiplexed streams. Flow control (Section 5.2) helps
 to ensure that only data that can be used by a receiver is
 transmitted. Prioritization (Section 5.3) ensures that limited
 resources can be directed to the most important requests first.

 HTTP/2 adds a new interaction mode, whereby a server can push
 responses to a client (Section 8.2). Server push allows a server to
 speculatively send a client data that the server anticipates the
 client will need, trading off some network usage against a potential

Belshe, et al. Expires December 19, 2014 [Page 5]

Internet-Draft HTTP/2 June 2014

 latency gain. The server does this by synthesizing a request, which
 it sends as a PUSH_PROMISE frame. The server is then able to send a
 response to the synthetic request on a separate stream.

 Frames that contain HTTP header fields are compressed (Section 4.3).
 HTTP requests can be highly redundant, so compression can reduce the
 size of requests and responses significantly.

2.1. Document Organization

 The HTTP/2 specification is split into four parts:

 o Starting HTTP/2 (Section 3) covers how an HTTP/2 connection is
 initiated.

 o The framing (Section 4) and streams (Section 5) layers describe
 the way HTTP/2 frames are structured and formed into multiplexed
 streams.

 o Frame (Section 6) and error (Section 7) definitions include
 details of the frame and error types used in HTTP/2.

 o HTTP mappings (Section 8) and additional requirements (Section 9)
 describe how HTTP semantics are expressed using frames and
 streams.

 While some of the frame and stream layer concepts are isolated from
 HTTP, the intent is not to define a completely generic framing layer.
 The framing and streams layers are tailored to the needs of the HTTP
 protocol and server push.

2.2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 All numeric values are in network byte order. Values are unsigned
 unless otherwise indicated. Literal values are provided in decimal
 or hexadecimal as appropriate. Hexadecimal literals are prefixed
 with "0x" to distinguish them from decimal literals.

 The following terms are used:

 client: The endpoint initiating the HTTP/2 connection.

 connection: A transport-level connection between two endpoints.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Belshe, et al. Expires December 19, 2014 [Page 6]

Internet-Draft HTTP/2 June 2014

 connection error: An error that affects the entire HTTP/2
 connection.

 endpoint: Either the client or server of the connection.

 frame: The smallest unit of communication within an HTTP/2
 connection, consisting of a header and a variable-length sequence
 of bytes structured according to the frame type.

 peer: An endpoint. When discussing a particular endpoint, "peer"
 refers to the endpoint that is remote to the primary subject of
 discussion.

 receiver: An endpoint that is receiving frames.

 sender: An endpoint that is transmitting frames.

 server: The endpoint which did not initiate the HTTP/2 connection.

 stream: A bi-directional flow of frames across a virtual channel
 within the HTTP/2 connection.

 stream error: An error on the individual HTTP/2 stream.

 Finally, the terms "gateway", "intermediary", "proxy", and "tunnel"
 are defined in Section 2.3 of [RFC7230].

3. Starting HTTP/2

 An HTTP/2 connection is an application level protocol running on top
 of a TCP connection ([TCP]). The client is the TCP connection
 initiator.

 HTTP/2 uses the same "http" and "https" URI schemes used by HTTP/1.1.
 HTTP/2 shares the same default port numbers: 80 for "http" URIs and
 443 for "https" URIs. As a result, implementations processing
 requests for target resource URIs like "http://example.org/foo" or
 "https://example.com/bar" are required to first discover whether the
 upstream server (the immediate peer to which the client wishes to
 establish a connection) supports HTTP/2.

 The means by which support for HTTP/2 is determined is different for
 "http" and "https" URIs. Discovery for "http" URIs is described in

Section 3.2. Discovery for "https" URIs is described in Section 3.3.

https://datatracker.ietf.org/doc/html/rfc7230#section-2.3

Belshe, et al. Expires December 19, 2014 [Page 7]

Internet-Draft HTTP/2 June 2014

3.1. HTTP/2 Version Identification

 The protocol defined in this document has two identifiers.

 o The string "h2" identifies the protocol where HTTP/2 uses TLS
 [TLS12]. This identifier is used in the TLS application layer
 protocol negotiation extension (ALPN) [TLSALPN] field and any
 place that HTTP/2 over TLS is identified.

 The "h2" string is serialized into an ALPN protocol identifier as
 the two octet sequence: 0x68, 0x32.

 o The string "h2c" identifies the protocol where HTTP/2 is run over
 cleartext TCP. This identifier is used in the HTTP/1.1 Upgrade
 header field and any place that HTTP/2 over TCP is identified.

 Negotiating "h2" or "h2c" implies the use of the transport, security,
 framing and message semantics described in this document.

 [[CREF1: RFC Editor's Note: please remove the remainder of this
 section prior to the publication of a final version of this
 document.]]

 Only implementations of the final, published RFC can identify
 themselves as "h2" or "h2c". Until such an RFC exists,
 implementations MUST NOT identify themselves using these strings.

 Examples and text throughout the rest of this document use "h2" as a
 matter of editorial convenience only. Implementations of draft
 versions MUST NOT identify using this string.

 Implementations of draft versions of the protocol MUST add the string
 "-" and the corresponding draft number to the identifier. For
 example, draft-ietf-httpbis-http2-11 over TLS is identified using the
 string "h2-11".

 Non-compatible experiments that are based on these draft versions
 MUST append the string "-" and an experiment name to the identifier.
 For example, an experimental implementation of packet mood-based
 encoding based on draft-ietf-httpbis-http2-09 might identify itself
 as "h2-09-emo". Note that any label MUST conform to the "token"
 syntax defined in Section 3.2.6 of [RFC7230]. Experimenters are
 encouraged to coordinate their experiments on the ietf-http-wg@w3.org
 mailing list.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-11
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-09
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6

Belshe, et al. Expires December 19, 2014 [Page 8]

Internet-Draft HTTP/2 June 2014

3.2. Starting HTTP/2 for "http" URIs

 A client that makes a request to an "http" URI without prior
 knowledge about support for HTTP/2 uses the HTTP Upgrade mechanism
 (Section 6.7 of [RFC7230]). The client makes an HTTP/1.1 request
 that includes an Upgrade header field identifying HTTP/2 with the
 "h2c" token. The HTTP/1.1 request MUST include exactly one
 HTTP2-Settings (Section 3.2.1) header field.

 For example:

 GET / HTTP/1.1
 Host: server.example.com
 Connection: Upgrade, HTTP2-Settings
 Upgrade: h2c
 HTTP2-Settings: <base64url encoding of HTTP/2 SETTINGS payload>

 Requests that contain an entity body MUST be sent in their entirety
 before the client can send HTTP/2 frames. This means that a large
 request entity can block the use of the connection until it is
 completely sent.

 If concurrency of an initial request with subsequent requests is
 important, a small request can be used to perform the upgrade to
 HTTP/2, at the cost of an additional round-trip.

 A server that does not support HTTP/2 can respond to the request as
 though the Upgrade header field were absent:

 HTTP/1.1 200 OK
 Content-Length: 243
 Content-Type: text/html

 ...

 A server MUST ignore a "h2" token in an Upgrade header field.
 Presence of a token with "h2" implies HTTP/2 over TLS, which is
 instead negotiated as described in Section 3.3.

 A server that supports HTTP/2 can accept the upgrade with a 101
 (Switching Protocols) response. After the empty line that terminates
 the 101 response, the server can begin sending HTTP/2 frames. These
 frames MUST include a response to the request that initiated the
 Upgrade.

https://datatracker.ietf.org/doc/html/rfc7230#section-6.7

Belshe, et al. Expires December 19, 2014 [Page 9]

Internet-Draft HTTP/2 June 2014

 HTTP/1.1 101 Switching Protocols
 Connection: Upgrade
 Upgrade: h2c

 [HTTP/2 connection ...

 The first HTTP/2 frame sent by the server is a SETTINGS frame
 (Section 6.5). Upon receiving the 101 response, the client sends a
 connection preface (Section 3.5), which includes a SETTINGS frame.

 The HTTP/1.1 request that is sent prior to upgrade is assigned stream
 identifier 1 and is assigned default priority values (Section 5.3.5).
 Stream 1 is implicitly half closed from the client toward the server,
 since the request is completed as an HTTP/1.1 request. After
 commencing the HTTP/2 connection, stream 1 is used for the response.

3.2.1. HTTP2-Settings Header Field

 A request that upgrades from HTTP/1.1 to HTTP/2 MUST include exactly
 one "HTTP2-Settings" header field. The "HTTP2-Settings" header field
 is a hop-by-hop header field that includes parameters that govern the
 HTTP/2 connection, provided in anticipation of the server accepting
 the request to upgrade.

 HTTP2-Settings = token68

 A server MUST reject an attempt to upgrade if this header field is
 not present. A server MUST NOT send this header field.

 The content of the "HTTP2-Settings" header field is the payload of a
 SETTINGS frame (Section 6.5), encoded as a base64url string (that is,
 the URL- and filename-safe Base64 encoding described in Section 5 of
 [RFC4648], with any trailing '=' characters omitted). The ABNF
 [RFC5234] production for "token68" is defined in Section 2.1 of
 [RFC7235].

 As a hop-by-hop header field, the "Connection" header field MUST
 include a value of "HTTP2-Settings" in addition to "Upgrade" when
 upgrading to HTTP/2.

 A server decodes and interprets these values as it would any other
 SETTINGS frame. Acknowledgement of the SETTINGS parameters
 (Section 6.5.3) is not necessary, since a 101 response serves as
 implicit acknowledgment. Providing these values in the Upgrade
 request ensures that the protocol does not require default values for
 the above SETTINGS parameters, and gives a client an opportunity to
 provide other parameters prior to receiving any frames from the
 server.

https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7235#section-2.1
https://datatracker.ietf.org/doc/html/rfc7235#section-2.1

Belshe, et al. Expires December 19, 2014 [Page 10]

Internet-Draft HTTP/2 June 2014

3.3. Starting HTTP/2 for "https" URIs

 A client that makes a request to an "https" URI without prior
 knowledge about support for HTTP/2 uses TLS [TLS12] with the
 application layer protocol negotiation extension [TLSALPN].

 HTTP/2 over TLS uses the "h2" application token. The "h2c" token
 MUST NOT be sent by a client or selected by a server.

 Once TLS negotiation is complete, both the client and the server send
 a connection preface (Section 3.5).

3.4. Starting HTTP/2 with Prior Knowledge

 A client can learn that a particular server supports HTTP/2 by other
 means. For example, [ALT-SVC] describes a mechanism for advertising
 this capability.

 A client MAY immediately send HTTP/2 frames to a server that is known
 to support HTTP/2, after the connection preface (Section 3.5). A
 server can identify such a connection by the use of the "PRI" method
 in the connection preface. This only affects the establishment of
 HTTP/2 connections over cleartext TCP; implementations that support
 HTTP/2 over TLS MUST use protocol negotiation in TLS [TLSALPN].

 Prior support for HTTP/2 is not a strong signal that a given server
 will support HTTP/2 for future connections. It is possible for
 server configurations to change; for configurations to differ between
 instances in clustered server; or network conditions to change.

3.5. HTTP/2 Connection Preface

 Upon establishment of a TCP connection and determination that HTTP/2
 will be used by both peers, each endpoint MUST send a connection
 preface as a final confirmation and to establish the initial SETTINGS
 parameters for the HTTP/2 connection.

 The client connection preface starts with a sequence of 24 octets,
 which in hex notation are:

 0x505249202a20485454502f322e300d0a0d0a534d0d0a0d0a

 (the string "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"). This sequence is
 followed by a SETTINGS frame (Section 6.5). The SETTINGS frame MAY
 be empty. The client sends the client connection preface immediately
 upon receipt of a 101 Switching Protocols response (indicating a
 successful upgrade), or as the first application data octets of a TLS
 connection. If starting an HTTP/2 connection with prior knowledge of

Belshe, et al. Expires December 19, 2014 [Page 11]

Internet-Draft HTTP/2 June 2014

 server support for the protocol, the client connection preface is
 sent upon connection establishment.

 The client connection preface is selected so that a large
 proportion of HTTP/1.1 or HTTP/1.0 servers and intermediaries do
 not attempt to process further frames. Note that this does not
 address the concerns raised in [TALKING].

 The server connection preface consists of a potentially empty
 SETTINGS frame (Section 6.5) that MUST be the first frame the server
 sends in the HTTP/2 connection.

 To avoid unnecessary latency, clients are permitted to send
 additional frames to the server immediately after sending the client
 connection preface, without waiting to receive the server connection
 preface. It is important to note, however, that the server
 connection preface SETTINGS frame might include parameters that
 necessarily alter how a client is expected to communicate with the
 server. Upon receiving the SETTINGS frame, the client is expected to
 honor any parameters established.

 Clients and servers MUST terminate the TCP connection if either peer
 does not begin with a valid connection preface. A GOAWAY frame
 (Section 6.8) can be omitted if it is clear that the peer is not
 using HTTP/2.

4. HTTP Frames

 Once the HTTP/2 connection is established, endpoints can begin
 exchanging frames.

4.1. Frame Format

 All frames begin with a fixed 8-octet header followed by a payload of
 between 0 and 16,383 octets.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | R | Length (14) | Type (8) | Flags (8) |
 +-+-+-----------+---------------+-------------------------------+
 |R| Stream Identifier (31) |
 +=+===+
 | Frame Payload (0...) ...
 +---+

 Frame Layout

Belshe, et al. Expires December 19, 2014 [Page 12]

Internet-Draft HTTP/2 June 2014

 The fields of the frame header are defined as:

 R: A reserved 2-bit field. The semantics of these bits are undefined
 and the bits MUST remain unset (0) when sending and MUST be
 ignored when receiving.

 Length: The length of the frame payload expressed as an unsigned
 14-bit integer. The 8 octets of the frame header are not included
 in this value.

 Type: The 8-bit type of the frame. The frame type determines the
 format and semantics of the frame. Implementations MUST ignore
 and discard any frame that has a type that is unknown.

 Flags: An 8-bit field reserved for frame-type specific boolean
 flags.

 Flags are assigned semantics specific to the indicated frame type.
 Flags that have no defined semantics for a particular frame type
 MUST be ignored, and MUST be left unset (0) when sending.

 R: A reserved 1-bit field. The semantics of this bit are undefined
 and the bit MUST remain unset (0) when sending and MUST be ignored
 when receiving.

 Stream Identifier: A 31-bit stream identifier (see Section 5.1.1).
 The value 0 is reserved for frames that are associated with the
 connection as a whole as opposed to an individual stream.

 The structure and content of the frame payload is dependent entirely
 on the frame type.

4.2. Frame Size

 The maximum size of a frame payload varies by frame type. The
 absolute maximum size of a frame payload is 2^14-1 (16,383) octets,
 meaning that the maximum frame size is 16,391 octets. All
 implementations MUST be capable of receiving and minimally processing
 frames up to this maximum size.

 Certain frame types, such as PING (Section 6.7), impose additional
 limits on the amount of payload data allowed.

 If a frame size exceeds any defined limit, or is too small to contain
 mandatory frame data, the endpoint MUST send a FRAME_SIZE_ERROR
 error. A frame size error in a frame that could alter the state of
 the entire connection MUST be treated as a connection error
 (Section 5.4.1); this includes any frame carrying a header block

Belshe, et al. Expires December 19, 2014 [Page 13]

Internet-Draft HTTP/2 June 2014

 (Section 4.3) (that is, HEADERS, PUSH_PROMISE, and CONTINUATION),
 SETTINGS, and any WINDOW_UPDATE frame with a stream identifier of 0.

4.3. Header Compression and Decompression

 A header field in HTTP/2 is a name with one or more associated
 values. They are used within HTTP request and response messages as
 well as server push operations (see Section 8.2).

 Header sets are collections of zero or more header fields. When
 transmitted over a connection, a header set is serialized into a
 header block using HTTP Header Compression [COMPRESSION]. The
 serialized header block is then divided into one or more octet
 sequences, called header block fragments, and transmitted within the
 payload of HEADERS (Section 6.2), PUSH_PROMISE (Section 6.6) or
 CONTINUATION (Section 6.10) frames.

 HTTP Header Compression does not preserve the relative ordering of
 header fields. Header fields with multiple values are encoded into a
 single header field using a special delimiter (see Section 8.1.2.3),
 this preserves the relative order of values for that header field.

 The Cookie header field [COOKIE] is treated specially by the HTTP
 mapping (see Section 8.1.2.4).

 A receiving endpoint reassembles the header block by concatenating
 its fragments, then decompresses the block to reconstruct the header
 set.

 A complete header block consists of either:

 o a single HEADERS or PUSH_PROMISE frame, with the END_HEADERS flag
 set, or

 o a HEADERS or PUSH_PROMISE frame with the END_HEADERS flag cleared
 and one or more CONTINUATION frames, where the last CONTINUATION
 frame has the END_HEADERS flag set.

 Header compression is stateful, using a single compression context
 for the entire connection. Each header block is processed as a
 discrete unit. Header blocks MUST be transmitted as a contiguous
 sequence of frames, with no interleaved frames of any other type or
 from any other stream. The last frame in a sequence of HEADERS or
 CONTINUATION frames MUST have the END_HEADERS flag set. The last
 frame in a sequence of PUSH_PROMISE or CONTINUATION frames MUST have
 the END_HEADERS flag set. This allows a header block to be logically
 equivalent to a single frame.

Belshe, et al. Expires December 19, 2014 [Page 14]

Internet-Draft HTTP/2 June 2014

 Header block fragments can only be sent as the payload of HEADERS,
 PUSH_PROMISE or CONTINUATION frames, because these frames carry data
 that can modify the compression context maintained by a receiver. An
 endpoint receiving HEADERS, PUSH_PROMISE or CONTINUATION frames MUST
 reassemble header blocks and perform decompression even if the frames
 are to be discarded. A receiver MUST terminate the connection with a
 connection error (Section 5.4.1) of type COMPRESSION_ERROR if it does
 not decompress a header block.

5. Streams and Multiplexing

 A "stream" is an independent, bi-directional sequence of frames
 exchanged between the client and server within an HTTP/2 connection.
 Streams have several important characteristics:

 o A single HTTP/2 connection can contain multiple concurrently open
 streams, with either endpoint interleaving frames from multiple
 streams.

 o Streams can be established and used unilaterally or shared by
 either the client or server.

 o Streams can be closed by either endpoint.

 o The order in which frames are sent on a stream is significant.
 Recipients process frames in the order they are received. In
 particular, the order of HEADERS, and DATA frames is semantically
 significant.

 o Streams are identified by an integer. Stream identifiers are
 assigned to streams by the endpoint initiating the stream.

5.1. Stream States

 The lifecycle of a stream is shown in Figure 1.

Belshe, et al. Expires December 19, 2014 [Page 15]

Internet-Draft HTTP/2 June 2014

 +--------+
 PP | | PP
 ,--------| idle |--------.
 / | | \
 v +--------+ v
 +----------+ | +----------+
 | | | H | |
 ,---| reserved | | | reserved |---.
 | | (local) | v | (remote) | |
 | +----------+ +--------+ +----------+ |
 | | ES | | ES | |
 | | H ,-------| open |-------. | H |
 | | / | | \ | |
 | v v +--------+ v v |
 | +----------+ | +----------+ | | | | |
 | | half | | | half | |
 | | closed | | R | closed | |
 | | (remote) | | | (local) | |
 | +----------+ | +----------+ |
 | | v | |
 | | ES / R +--------+ ES / R | |
 | `----------->| |<-----------' |
 | R | closed | R |
 `-------------------->| |<--------------------'
 +--------+

 H: HEADERS frame (with implied CONTINUATIONs)
 PP: PUSH_PROMISE frame (with implied CONTINUATIONs)
 ES: END_STREAM flag
 R: RST_STREAM frame

 Figure 1: Stream States

 Note that this diagram shows stream state transitions and frames that
 affect those transitions only. In this regard, CONTINUATION frames
 do not result in state transitions and are effectively part of the
 HEADERS or PUSH_PROMISE that they follow.

 Both endpoints have a subjective view of the state of a stream that
 could be different when frames are in transit. Endpoints do not
 coordinate the creation of streams; they are created unilaterally by
 either endpoint. The negative consequences of a mismatch in states
 are limited to the "closed" state after sending RST_STREAM, where
 frames might be received for some time after closing.

 Streams have the following states:

Belshe, et al. Expires December 19, 2014 [Page 16]

Internet-Draft HTTP/2 June 2014

 idle:
 All streams start in the "idle" state. In this state, no frames
 have been exchanged.

 The following transitions are valid from this state:

 * Sending or receiving a HEADERS frame causes the stream to
 become "open". The stream identifier is selected as described
 in Section 5.1.1. The same HEADERS frame can also cause a
 stream to immediately become "half closed".

 * Sending a PUSH_PROMISE frame marks the associated stream for
 later use. The stream state for the reserved stream
 transitions to "reserved (local)".

 * Receiving a PUSH_PROMISE frame marks the associated stream as
 reserved by the remote peer. The state of the stream becomes
 "reserved (remote)".

 reserved (local):
 A stream in the "reserved (local)" state is one that has been
 promised by sending a PUSH_PROMISE frame. A PUSH_PROMISE frame
 reserves an idle stream by associating the stream with an open
 stream that was initiated by the remote peer (see Section 8.2).

 In this state, only the following transitions are possible:

 * The endpoint can send a HEADERS frame. This causes the stream
 to open in a "half closed (remote)" state.

 * Either endpoint can send a RST_STREAM frame to cause the stream
 to become "closed". This releases the stream reservation.

 An endpoint MUST NOT send frames other than HEADERS or RST_STREAM
 in this state.

 A PRIORITY frame MAY be received in this state. Receiving any
 frames other than RST_STREAM, or PRIORITY MUST be treated as a
 connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 reserved (remote):
 A stream in the "reserved (remote)" state has been reserved by a
 remote peer.

 In this state, only the following transitions are possible:

 * Receiving a HEADERS frame causes the stream to transition to
 "half closed (local)".

Belshe, et al. Expires December 19, 2014 [Page 17]

Internet-Draft HTTP/2 June 2014

 * Either endpoint can send a RST_STREAM frame to cause the stream
 to become "closed". This releases the stream reservation.

 An endpoint MAY send a PRIORITY frame in this state to
 reprioritize the reserved stream. An endpoint MUST NOT send any
 other type of frame other than RST_STREAM or PRIORITY.

 Receiving any other type of frame other than HEADERS or RST_STREAM
 MUST be treated as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 open:
 A stream in the "open" state may be used by both peers to send
 frames of any type. In this state, sending peers observe
 advertised stream level flow control limits (Section 5.2).

 From this state either endpoint can send a frame with an
 END_STREAM flag set, which causes the stream to transition into
 one of the "half closed" states: an endpoint sending an END_STREAM
 flag causes the stream state to become "half closed (local)"; an
 endpoint receiving an END_STREAM flag causes the stream state to
 become "half closed (remote)".

 Either endpoint can send a RST_STREAM frame from this state,
 causing it to transition immediately to "closed".

 half closed (local):
 A stream that is in the "half closed (local)" state cannot be used
 for sending frames. Only WINDOW_UPDATE, PRIORITY and RST_STREAM
 frames can be sent in this state.

 A stream transitions from this state to "closed" when a frame that
 contains an END_STREAM flag is received, or when either peer sends
 a RST_STREAM frame.

 A receiver can ignore WINDOW_UPDATE frames in this state, which
 might arrive for a short period after a frame bearing the
 END_STREAM flag is sent.

 PRIORITY frames received in this state are used to reprioritize
 streams that depend on the current stream.

 half closed (remote):
 A stream that is "half closed (remote)" is no longer being used by
 the peer to send frames. In this state, an endpoint is no longer
 obligated to maintain a receiver flow control window if it
 performs flow control.

Belshe, et al. Expires December 19, 2014 [Page 18]

Internet-Draft HTTP/2 June 2014

 If an endpoint receives additional frames for a stream that is in
 this state, other than WINDOW_UPDATE, PRIORITY or RST_STREAM, it
 MUST respond with a stream error (Section 5.4.2) of type
 STREAM_CLOSED.

 A stream can transition from this state to "closed" by sending a
 frame that contains an END_STREAM flag, or when either peer sends
 a RST_STREAM frame.

 closed:
 The "closed" state is the terminal state.

 An endpoint MUST NOT send frames on a closed stream. An endpoint
 that receives any frame other than PRIORITY after receiving a
 RST_STREAM MUST treat that as a stream error (Section 5.4.2) of
 type STREAM_CLOSED. Similarly, an endpoint that receives any
 frames after receiving a frame with the END_STREAM flag set MUST
 treat that as a connection error (Section 5.4.1) of type
 STREAM_CLOSED, unless the frame is permitted as described below.

 WINDOW_UPDATE or RST_STREAM frames can be received in this state
 for a short period after a DATA or HEADERS frame containing an
 END_STREAM flag is sent. Until the remote peer receives and
 processes the frame bearing the END_STREAM flag, it might send
 frames of these types. Endpoints MUST ignore WINDOW_UPDATE or
 RST_STREAM frames received in this state, though endpoints MAY
 choose to treat frames that arrive a significant time after
 sending END_STREAM as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 PRIORITY frames can be sent on closed streams to prioritize
 streams that are dependent on the closed stream. Endpoints SHOULD
 process PRIORITY frame, though they can be ignored if the stream
 has been removed from the dependency tree (see Section 5.3.4).

 If this state is reached as a result of sending a RST_STREAM
 frame, the peer that receives the RST_STREAM might have already
 sent - or enqueued for sending - frames on the stream that cannot
 be withdrawn. An endpoint MUST ignore frames that it receives on
 closed streams after it has sent a RST_STREAM frame. An endpoint
 MAY choose to limit the period over which it ignores frames and
 treat frames that arrive after this time as being in error.

 Flow controlled frames (i.e., DATA) received after sending
 RST_STREAM are counted toward the connection flow control window.
 Even though these frames might be ignored, because they are sent
 before the sender receives the RST_STREAM, the sender will
 consider the frames to count against the flow control window.

Belshe, et al. Expires December 19, 2014 [Page 19]

Internet-Draft HTTP/2 June 2014

 An endpoint might receive a PUSH_PROMISE frame after it sends
 RST_STREAM. PUSH_PROMISE causes a stream to become "reserved"
 even if the associated stream has been reset. Therefore, a
 RST_STREAM is needed to close an unwanted promised stream.

 In the absence of more specific guidance elsewhere in this document,
 implementations SHOULD treat the receipt of a message that is not
 expressly permitted in the description of a state as a connection
 error (Section 5.4.1) of type PROTOCOL_ERROR.

5.1.1. Stream Identifiers

 Streams are identified with an unsigned 31-bit integer. Streams
 initiated by a client MUST use odd-numbered stream identifiers; those
 initiated by the server MUST use even-numbered stream identifiers. A
 stream identifier of zero (0x0) is used for connection control
 messages; the stream identifier zero cannot be used to establish a
 new stream.

 HTTP/1.1 requests that are upgraded to HTTP/2 (see Section 3.2) are
 responded to with a stream identifier of one (0x1). After the
 upgrade completes, stream 0x1 is "half closed (local)" to the client.
 Therefore, stream 0x1 cannot be selected as a new stream identifier
 by a client that upgrades from HTTP/1.1.

 The identifier of a newly established stream MUST be numerically
 greater than all streams that the initiating endpoint has opened or
 reserved. This governs streams that are opened using a HEADERS frame
 and streams that are reserved using PUSH_PROMISE. An endpoint that
 receives an unexpected stream identifier MUST respond with a
 connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 The first use of a new stream identifier implicitly closes all
 streams in the "idle" state that might have been initiated by that
 peer with a lower-valued stream identifier. For example, if a client
 sends a HEADERS frame on stream 7 without ever sending a frame on
 stream 5, then stream 5 transitions to the "closed" state when the
 first frame for stream 7 is sent or received.

 Stream identifiers cannot be reused. Long-lived connections can
 result in an endpoint exhausting the available range of stream
 identifiers. A client that is unable to establish a new stream
 identifier can establish a new connection for new streams. A server
 that is unable to establish a new stream identifier can send a GOAWAY
 frame so that the client is forced to open a new connection for new
 streams.

Belshe, et al. Expires December 19, 2014 [Page 20]

Internet-Draft HTTP/2 June 2014

5.1.2. Stream Concurrency

 A peer can limit the number of concurrently active streams using the
 SETTINGS_MAX_CONCURRENT_STREAMS parameter (see Section 6.5.2) within
 a SETTINGS frame. The maximum concurrent streams setting is specific
 to each endpoint and applies only to the peer that receives the
 setting. That is, clients specify the maximum number of concurrent
 streams the server can initiate, and servers specify the maximum
 number of concurrent streams the client can initiate.

 Streams that are in the "open" state, or either of the "half closed"
 states count toward the maximum number of streams that an endpoint is
 permitted to open. Streams in any of these three states count toward
 the limit advertised in the SETTINGS_MAX_CONCURRENT_STREAMS setting.
 Streams in either of the "reserved" states do not count toward the
 stream limit.

 Endpoints MUST NOT exceed the limit set by their peer. An endpoint
 that receives a HEADERS frame that causes their advertised concurrent
 stream limit to be exceeded MUST treat this as a stream error
 (Section 5.4.2). An endpoint that wishes to reduce the value of
 SETTINGS_MAX_CONCURRENT_STREAMS to a value that is below the current
 number of open streams can either close streams that exceed the new
 value or allow streams to complete.

5.2. Flow Control

 Using streams for multiplexing introduces contention over use of the
 TCP connection, resulting in blocked streams. A flow control scheme
 ensures that streams on the same connection do not destructively
 interfere with each other. Flow control is used for both individual
 streams and for the connection as a whole.

 HTTP/2 provides for flow control through use of the WINDOW_UPDATE
 frame (Section 6.9).

5.2.1. Flow Control Principles

 HTTP/2 stream flow control aims to allow for future improvements to
 flow control algorithms without requiring protocol changes. Flow
 control in HTTP/2 has the following characteristics:

 1. Flow control is hop-by-hop, not end-to-end.

 2. Flow control is based on window update frames. Receivers
 advertise how many bytes they are prepared to receive on a stream
 and for the entire connection. This is a credit-based scheme.

Belshe, et al. Expires December 19, 2014 [Page 21]

Internet-Draft HTTP/2 June 2014

 3. Flow control is directional with overall control provided by the
 receiver. A receiver MAY choose to set any window size that it
 desires for each stream and for the entire connection. A sender
 MUST respect flow control limits imposed by a receiver. Clients,
 servers and intermediaries all independently advertise their flow
 control window as a receiver and abide by the flow control limits
 set by their peer when sending.

 4. The initial value for the flow control window is 65,535 bytes for
 both new streams and the overall connection.

 5. The frame type determines whether flow control applies to a
 frame. Of the frames specified in this document, only DATA
 frames are subject to flow control; all other frame types do not
 consume space in the advertised flow control window. This
 ensures that important control frames are not blocked by flow
 control.

 6. Flow control cannot be disabled.

 7. HTTP/2 defines only the format and semantics of the WINDOW_UPDATE
 frame (Section 6.9). This document does not stipulate how a
 receiver decides when to send this frame or the value that it
 sends. Nor does it specify how a sender chooses to send packets.
 Implementations are able to select any algorithm that suits their
 needs.

 Implementations are also responsible for managing how requests and
 responses are sent based on priority; choosing how to avoid head of
 line blocking for requests; and managing the creation of new streams.
 Algorithm choices for these could interact with any flow control
 algorithm.

5.2.2. Appropriate Use of Flow Control

 Flow control is defined to protect endpoints that are operating under
 resource constraints. For example, a proxy needs to share memory
 between many connections, and also might have a slow upstream
 connection and a fast downstream one. Flow control addresses cases
 where the receiver is unable process data on one stream, yet wants to
 continue to process other streams in the same connection.

 Deployments that do not require this capability can advertise a flow
 control window of the maximum size, incrementing the available space
 when new data is received. This effectively disables flow control
 for that receiver. Conversely, a sender is always subject to the
 flow control window advertised by the receiver.

Belshe, et al. Expires December 19, 2014 [Page 22]

Internet-Draft HTTP/2 June 2014

 Deployments with constrained resources (for example, memory) can
 employ flow control to limit the amount of memory a peer can consume.
 Note, however, that this can lead to suboptimal use of available
 network resources if flow control is enabled without knowledge of the
 bandwidth-delay product (see [RFC1323]).

 Even with full awareness of the current bandwidth-delay product,
 implementation of flow control can be difficult. When using flow
 control, the receiver MUST read from the TCP receive buffer in a
 timely fashion. Failure to do so could lead to a deadlock when
 critical frames, such as WINDOW_UPDATE, are not read and acted upon.

5.3. Stream priority

 A client can assign a priority for a new stream by including
 prioritization information in the HEADERS frame (Section 6.2) that
 opens the stream. For an existing stream, the PRIORITY frame
 (Section 6.3) can be used to change the priority.

 The purpose of prioritization is to allow an endpoint to express how
 it would prefer its peer allocate resources when managing concurrent
 streams. Most importantly, priority can be used to select streams
 for transmitting frames when there is limited capacity for sending.

 Streams can be prioritized by marking them as dependent on the
 completion of other streams (Section 5.3.1). Each dependency is
 assigned a relative weight, a number that is used to determine the
 relative proportion of available resources that are assigned to
 streams dependent on the same stream.

 [[CREF2: Note that stream dependencies have not yet been validated in
 practice. The theory might be fairly sound, but there are no
 implementations currently sending these. If it turns out that they
 are not useful, or actively harmful, implementations will be
 requested to avoid creating stream dependencies.]]

 Explicitly setting the priority for a stream is input to a
 prioritization process. It does not guarantee any particular
 processing or transmission order for the stream relative to any other
 stream. An endpoint cannot force a peer to process concurrent
 streams in a particular order using priority. Expressing priority is
 therefore only ever a suggestion.

 Prioritization information can be specified explicitly for streams as
 they are created using the HEADERS frame, or changed using the
 PRIORITY frame. Providing prioritization information is optional, so
 default values are used if no explicit indicator is provided
 (Section 5.3.5).

https://datatracker.ietf.org/doc/html/rfc1323

Belshe, et al. Expires December 19, 2014 [Page 23]

Internet-Draft HTTP/2 June 2014

5.3.1. Stream Dependencies

 Each stream can be given an explicit dependency on another stream.
 Including a dependency expresses a preference to allocate resources
 to the identified stream rather than to the dependent stream.

 A stream that is not dependent on any other stream is given a stream
 dependency of 0x0. In other words, the non-existent stream 0 forms
 the root of the tree.

 A stream that depends on another stream is a dependent stream. The
 stream upon which a stream is dependent is a parent stream.

 When assigning a dependency on another stream, the stream is added as
 a new dependency of the parent stream. Dependent streams that share
 the same parent are not order with respect to each other. For
 example, if streams B and C are dependent on stream A, and if stream
 D is created with a dependency on stream A, this results in a
 dependency order of A followed by B, C, and D in any order.

 A A
 / \ ==> /|\
 B C B D C

 Example of Default Dependency Creation

 An exclusive flag allows for the insertion of a new level of
 dependencies. The exclusive flag causes the stream to become the
 sole dependency of its parent stream, causing other dependencies to
 become dependent on the prioritized stream. In the previous example,
 if stream D is created with an exclusive dependency on stream A, this
 results in D becoming the dependency parent of B and C.

 A
 A |
 / \ ==> D
 B C / \
 B C

 Example of Exclusive Dependency Creation

 Inside the dependency tree, a dependent stream SHOULD only be
 allocated resources if all of the streams that it depends on (the
 chain of parent streams up to 0x0) are either closed, or it is not
 possible to make progress on them.

 A stream cannot depend on itself. An endpoint MUST treat this as a
 stream error (Section 5.4.2) of type PROTOCOL_ERROR.

Belshe, et al. Expires December 19, 2014 [Page 24]

Internet-Draft HTTP/2 June 2014

5.3.2. Dependency Weighting

 All dependent streams are allocated an integer weight between 1 to
 256 (inclusive).

 Streams with the same parent SHOULD be allocated resources
 proportionally based on their weight. Thus, if stream B depends on
 stream A with weight 4, and C depends on stream A with weight 12, and
 if no progress can be made on A, stream B ideally receives one third
 of the resources allocated to stream C.

5.3.3. Reprioritization

 Stream priorities are changed using the PRIORITY frame. Setting a
 dependency causes a stream to become dependent on the identified
 parent stream.

 Dependent streams move with their parent stream if the parent is
 reprioritized. Setting a dependency with the exclusive flag for a
 reprioritized stream moves all the dependencies of the new parent
 stream to become dependent on the reprioritized stream.

 If a stream is made dependent on one of its own dependencies, the
 formerly dependent stream is first moved to be dependent on the
 reprioritized stream's previous parent. The moved dependency retains
 its weight.

 For example, consider an original dependency tree where B and C
 depend on A, D and E depend on C, and F depends on D. If A is made
 dependent on D, then D takes the place of A. All other dependency
 relationships stay the same, except for F, which becomes dependent on
 A if the reprioritization is exclusive.

 ? ? ? ?
 | / \ | |
 A D A D D
 / \ / / \ / \ |
 B C ==> F B C ==> F A OR A
 / \ | / \ /|\
 D E E B C B C F
 | | |
 F E E
 (intermediate) (non-exclusive) (exclusive)

 Example of Dependency Reordering

Belshe, et al. Expires December 19, 2014 [Page 25]

Internet-Draft HTTP/2 June 2014

5.3.4. Prioritization State Management

 When a stream is removed from the dependency tree, its dependencies
 can be moved to become dependent on the parent of the closed stream.
 The weights of new dependencies are recalculated by distributing the
 weight of the dependency of the closed stream proportionally based on
 the weights of its dependencies.

 Streams that are removed from the dependency tree cause some
 prioritization information to be lost. Resources are shared between
 streams with the same parent stream, which means that if a stream in
 that set closes or becomes blocked, any spare capacity allocated to a
 stream is distributed to the immediate neighbors of the stream.
 However, if the common dependency is removed from the tree, those
 streams share resources with streams at the next highest level.

 For example, assume streams A and B share a parent, and streams C and
 D both depend on stream A. Prior to the removal of stream A, if
 streams A and D are unable to proceed, then stream C receives all the
 resources dedicated to stream A. If stream A is removed from the
 tree, the weight of stream A is divided between streams C and D. If
 stream D is still unable to proceed, this results in stream C
 receiving a reduced proportion of resources. For equal starting
 weights, C receives one third, rather than one half, of available
 resources.

 It is possible for a stream to become closed while prioritization
 information that creates a dependency on that stream is in transit.
 If a stream identified in a dependency has had any associated
 priority information destroyed, then the dependent stream is instead
 assigned a default priority. This potentially creates suboptimal
 prioritization, since the stream could be given a priority that is
 higher than intended.

 To avoid these problems, an endpoint SHOULD retain stream
 prioritization state for a period after streams become closed. The
 longer state is retained, the lower the chance that streams are
 assigned incorrect or default priority values.

 This could create a large state burden for an endpoint, so this state
 MAY be limited. An endpoint MAY apply a fixed upper limit on the
 number of closed streams for which prioritization state is tracked to
 limit state exposure. The amount of additional state an endpoint
 maintains could be dependent on load; under high load, prioritization
 state can be discarded to limit resource commitments. In extreme
 cases, an endpoint could even discard prioritization state for active
 or reserved streams. If a fixed limit is applied, endpoints SHOULD

Belshe, et al. Expires December 19, 2014 [Page 26]

Internet-Draft HTTP/2 June 2014

 maintain state for at least as many streams as allowed by their
 setting for SETTINGS_MAX_CONCURRENT_STREAMS.

 An endpoint receiving a PRIORITY frame that changes the priority of a
 closed stream SHOULD alter the dependencies of the streams that
 depend on it, if it has retained enough state to do so.

5.3.5. Default Priorities

 Providing priority information is optional. Streams are assigned a
 default dependency on stream 0x0. Pushed streams (Section 8.2)
 initially depend on their associated stream. In both cases, streams
 are assigned a default weight of 16.

5.4. Error Handling

 HTTP/2 framing permits two classes of error:

 o An error condition that renders the entire connection unusable is
 a connection error.

 o An error in an individual stream is a stream error.

 A list of error codes is included in Section 7.

5.4.1. Connection Error Handling

 A connection error is any error which prevents further processing of
 the framing layer, or which corrupts any connection state.

 An endpoint that encounters a connection error SHOULD first send a
 GOAWAY frame (Section 6.8) with the stream identifier of the last
 stream that it successfully received from its peer. The GOAWAY frame
 includes an error code that indicates why the connection is
 terminating. After sending the GOAWAY frame, the endpoint MUST close
 the TCP connection.

 It is possible that the GOAWAY will not be reliably received by the
 receiving endpoint. In the event of a connection error, GOAWAY only
 provides a best effort attempt to communicate with the peer about why
 the connection is being terminated.

 An endpoint can end a connection at any time. In particular, an
 endpoint MAY choose to treat a stream error as a connection error.
 Endpoints SHOULD send a GOAWAY frame when ending a connection,
 providing that circumstances permit it.

Belshe, et al. Expires December 19, 2014 [Page 27]

Internet-Draft HTTP/2 June 2014

5.4.2. Stream Error Handling

 A stream error is an error related to a specific stream that does not
 affect processing of other streams.

 An endpoint that detects a stream error sends a RST_STREAM frame
 (Section 6.4) that contains the stream identifier of the stream where
 the error occurred. The RST_STREAM frame includes an error code that
 indicates the type of error.

 A RST_STREAM is the last frame that an endpoint can send on a stream.
 The peer that sends the RST_STREAM frame MUST be prepared to receive
 any frames that were sent or enqueued for sending by the remote peer.
 These frames can be ignored, except where they modify connection
 state (such as the state maintained for header compression
 (Section 4.3), or flow control).

 Normally, an endpoint SHOULD NOT send more than one RST_STREAM frame
 for any stream. However, an endpoint MAY send additional RST_STREAM
 frames if it receives frames on a closed stream after more than a
 round-trip time. This behavior is permitted to deal with misbehaving
 implementations.

 An endpoint MUST NOT send a RST_STREAM in response to an RST_STREAM
 frame, to avoid looping.

5.4.3. Connection Termination

 If the TCP connection is torn down while streams remain in open or
 half closed states, then the endpoint MUST assume that those streams
 were abnormally interrupted and could be incomplete.

5.5. Extending HTTP/2

 HTTP/2 permits extension of the protocol. Protocol extensions can be
 used to provide additional services or alter any aspect of the
 protocol, within the limitations described in this section.
 Extensions are effective only within the scope of a single HTTP/2
 connection.

 Extensions are permitted to use new frame types (Section 4.1), new
 settings (Section 6.5.2), new error codes (Section 7), or new header
 fields that start with a colon (:). Of these, registries are
 established for frame types (Section 11.2), settings (Section 11.3)
 and error codes (Section 11.4).

 Implementations MUST ignore unknown or unsupported values in all
 extensible protocol elements. Implementations MUST discard frames

Belshe, et al. Expires December 19, 2014 [Page 28]

Internet-Draft HTTP/2 June 2014

 that have unknown or unsupported types. This means that any of these
 extension points can be safely used by extensions without prior
 arrangement or negotiation.

 However, extensions that could change the semantics of existing
 protocol components MUST be negotiated before being used. For
 example, an extension that changes the layout of the HEADERS frame
 cannot be used until the peer has given a positive signal that this
 is acceptable. In this case, it could also be necessary to
 coordinate when the revised layout comes into effect. Note that
 treating any frame other than DATA frames as flow controlled is such
 a change in semantics, and can only be done through negotiation.

 This document doesn't mandate a specific method for negotiating the
 use of an extension, but notes that a setting (Section 6.5.2) could
 be used for that purpose. If both peers set a value that indicates
 willingness to use the extension, then the extension can be used. If
 a setting is used for extension negotiation, the initial value MUST
 be defined so that the extension is initially disabled.

6. Frame Definitions

 This specification defines a number of frame types, each identified
 by a unique 8-bit type code. Each frame type serves a distinct
 purpose either in the establishment and management of the connection
 as a whole, or of individual streams.

 The transmission of specific frame types can alter the state of a
 connection. If endpoints fail to maintain a synchronized view of the
 connection state, successful communication within the connection will
 no longer be possible. Therefore, it is important that endpoints
 have a shared comprehension of how the state is affected by the use
 any given frame.

6.1. DATA

 DATA frames (type=0x0) convey arbitrary, variable-length sequences of
 octets associated with a stream. One or more DATA frames are used,
 for instance, to carry HTTP request or response payloads.

 DATA frames MAY also contain arbitrary padding. Padding can be added
 to DATA frames to obscure the size of messages.

Belshe, et al. Expires December 19, 2014 [Page 29]

Internet-Draft HTTP/2 June 2014

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Pad Length? (8)|
 +---------------+---+
 | Data (*) ...
 +---+
 | Padding (*) ...
 +---+

 DATA Frame Payload

 The DATA frame contains the following fields:

 Pad Length: An 8-bit field containing the length of the frame
 padding in units of octets. This field is optional and is only
 present if the PADDED flag is set.

 Data: Application data. The amount of data is the remainder of the
 frame payload after subtracting the length of the other fields
 that are present.

 Padding: Padding octets that contain no application semantic value.
 Padding octets MUST be set to zero when sending and ignored when
 receiving.

 The DATA frame defines the following flags:

 END_STREAM (0x1): Bit 1 being set indicates that this frame is the
 last that the endpoint will send for the identified stream.
 Setting this flag causes the stream to enter one of the "half
 closed" states or the "closed" state (Section 5.1).

 END_SEGMENT (0x2): Bit 2 being set indicates that this frame is the
 last for the current segment. Intermediaries MUST NOT coalesce
 frames across a segment boundary and MUST preserve segment
 boundaries when forwarding frames.

 PADDED (0x8): Bit 4 being set indicates that the Pad Length field is
 present.

 DATA frames MUST be associated with a stream. If a DATA frame is
 received whose stream identifier field is 0x0, the recipient MUST
 respond with a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 DATA frames are subject to flow control and can only be sent when a
 stream is in the "open" or "half closed (remote)" states. The entire

Belshe, et al. Expires December 19, 2014 [Page 30]

Internet-Draft HTTP/2 June 2014

 DATA frame payload is included in flow control, including Pad Length
 and Padding fields if present. If a DATA frame is received whose
 stream is not in "open" or "half closed (local)" state, the recipient
 MUST respond with a stream error (Section 5.4.2) of type
 STREAM_CLOSED.

 The total number of padding octets is determined by the value of the
 Pad Length field. If the length of the padding is greater than the
 length of the remainder of the frame payload, the recipient MUST
 treat this as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 Note: A frame can be increased in size by one octet by including a
 Pad Length field with a value of zero.

 Use of padding is a security feature; as such, its use demands some
 care, see Section 10.7.

6.2. HEADERS

 The HEADERS frame (type=0x1) carries name-value pairs. It is used to
 open a stream (Section 5.1). HEADERS frames can be sent on a stream
 in the "open" or "half closed (remote)" states.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Pad Length? (8)|
 +-+-------------+---+
 |E| Stream Dependency? (31) |
 +-+-------------+---+
 | Weight? (8) |
 +-+-------------+---+
 | Header Block Fragment (*) ...
 +---+
 | Padding (*) ...
 +---+

 HEADERS Frame Payload

 The HEADERS frame payload has the following fields:

 Pad Length: An 8-bit field containing the length of the frame
 padding in units of octets. This field is optional and is only
 present if the PADDED flag is set.

Belshe, et al. Expires December 19, 2014 [Page 31]

Internet-Draft HTTP/2 June 2014

 E: A single bit flag indicates that the stream dependency is
 exclusive, see Section 5.3. This field is optional and is only
 present if the PRIORITY flag is set.

 Stream Dependency: A 31-bit stream identifier for the stream that
 this stream depends on, see Section 5.3. This field is optional
 and is only present if the PRIORITY flag is set.

 Weight: An 8-bit weight for the stream, see Section 5.3. Add one to
 the value to obtain a weight between 1 and 256. This field is
 optional and is only present if the PRIORITY flag is set.

 Header Block Fragment: A header block fragment (Section 4.3).

 Padding: Padding octets.

 The HEADERS frame defines the following flags:

 END_STREAM (0x1): Bit 1 being set indicates that the header block
 (Section 4.3) is the last that the endpoint will send for the
 identified stream. Setting this flag causes the stream to enter
 one of "half closed" states (Section 5.1).

 A HEADERS frame that is followed by CONTINUATION frames carries
 the END_STREAM flag that signals the end of a stream. A
 CONTINUATION frame cannot be used to terminate a stream.

 END_SEGMENT (0x2): Bit 2 being set indicates that this frame is the
 last for the current segment. Intermediaries MUST NOT coalesce
 frames across a segment boundary and MUST preserve segment
 boundaries when forwarding frames.

 END_HEADERS (0x4): Bit 3 being set indicates that this frame
 contains an entire header block (Section 4.3) and is not followed
 by any CONTINUATION frames.

 A HEADERS frame without the END_HEADERS flag set MUST be followed
 by a CONTINUATION frame for the same stream. A receiver MUST
 treat the receipt of any other type of frame or a frame on a
 different stream as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 PADDED (0x8): Bit 4 being set indicates that the Pad Length field is
 present.

 PRIORITY (0x20): Bit 6 being set indicates that the Exclusive Flag
 (E), Stream Dependency, and Weight fields are present; see

Section 5.3.

Belshe, et al. Expires December 19, 2014 [Page 32]

Internet-Draft HTTP/2 June 2014

 The payload of a HEADERS frame contains a header block fragment
 (Section 4.3). A header block that does not fit within a HEADERS
 frame is continued in a CONTINUATION frame (Section 6.10).

 HEADERS frames MUST be associated with a stream. If a HEADERS frame
 is received whose stream identifier field is 0x0, the recipient MUST
 respond with a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 The HEADERS frame changes the connection state as described in
Section 4.3.

 The HEADERS frame includes optional padding. Padding fields and
 flags are identical to those defined for DATA frames (Section 6.1).

6.3. PRIORITY

 The PRIORITY frame (type=0x2) specifies the sender-advised priority
 of a stream (Section 5.3). It can be sent at any time for an
 existing stream, including closed streams. This enables
 reprioritization of existing streams.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |E| Stream Dependency (31) |
 +-+-------------+---+
 | Weight (8) |
 +-+-------------+

 PRIORITY Frame Payload

 The payload of a PRIORITY frame contains the following fields:

 E: A single bit flag indicates that the stream dependency is
 exclusive, see Section 5.3.

 Stream Dependency: A 31-bit stream identifier for the stream that
 this stream depends on, see Section 5.3.

 Weight: An 8-bit weight for the identified stream dependency, see
Section 5.3. Add one to the value to obtain a weight between 1

 and 256.

 The PRIORITY frame does not define any flags.

 The PRIORITY frame is associated with an existing stream. If a
 PRIORITY frame is received with a stream identifier of 0x0, the

Belshe, et al. Expires December 19, 2014 [Page 33]

Internet-Draft HTTP/2 June 2014

 recipient MUST respond with a connection error (Section 5.4.1) of
 type PROTOCOL_ERROR.

 The PRIORITY frame can be sent on a stream in any of the "reserved
 (remote)", "open", "half closed (local)", "half closed (remote)", or
 "closed" states, though it cannot be sent between consecutive frames
 that comprise a single header block (Section 4.3). Note that this
 frame could arrive after processing or frame sending has completed,
 which would cause it to have no effect on the current stream. For a
 stream that is in the "half closed (remote)" or "closed" - state,
 this frame can only affect processing of the current stream and not
 frame transmission.

 The PRIORITY frame is the only frame that can be sent for a stream in
 the "closed" state. This allows for the reprioritization of a group
 of dependent streams by altering the priority of a parent stream,
 which might be closed. However, a PRIORITY frame sent on a closed
 stream risks being ignored due to the peer having discarded priority
 state information for that stream.

6.4. RST_STREAM

 The RST_STREAM frame (type=0x3) allows for abnormal termination of a
 stream. When sent by the initiator of a stream, it indicates that
 they wish to cancel the stream or that an error condition has
 occurred. When sent by the receiver of a stream, it indicates that
 either the receiver is rejecting the stream, requesting that the
 stream be cancelled, or that an error condition has occurred.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Error Code (32) |
 +---+

 RST_STREAM Frame Payload

 The RST_STREAM frame contains a single unsigned, 32-bit integer
 identifying the error code (Section 7). The error code indicates why
 the stream is being terminated.

 The RST_STREAM frame does not define any flags.

 The RST_STREAM frame fully terminates the referenced stream and
 causes it to enter the closed state. After receiving a RST_STREAM on
 a stream, the receiver MUST NOT send additional frames for that
 stream. However, after sending the RST_STREAM, the sending endpoint
 MUST be prepared to receive and process additional frames sent on the

Belshe, et al. Expires December 19, 2014 [Page 34]

Internet-Draft HTTP/2 June 2014

 stream that might have been sent by the peer prior to the arrival of
 the RST_STREAM.

 RST_STREAM frames MUST be associated with a stream. If a RST_STREAM
 frame is received with a stream identifier of 0x0, the recipient MUST
 treat this as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 RST_STREAM frames MUST NOT be sent for a stream in the "idle" state.
 If a RST_STREAM frame identifying an idle stream is received, the
 recipient MUST treat this as a connection error (Section 5.4.1) of
 type PROTOCOL_ERROR.

6.5. SETTINGS

 The SETTINGS frame (type=0x4) conveys configuration parameters that
 affect how endpoints communicate, such as preferences and constraints
 on peer behavior. The SETTINGS frame is also used to acknowledge the
 receipt of those parameters. Individually, a SETTINGS parameter can
 also be referred to as a "setting".

 SETTINGS parameters are not negotiated; they describe characteristics
 of the sending peer, which are used by the receiving peer. Different
 values for the same parameter can be advertised by each peer. For
 example, a client might set a high initial flow control window,
 whereas a server might set a lower value to conserve resources.

 A SETTINGS frame MUST be sent by both endpoints at the start of a
 connection, and MAY be sent at any other time by either endpoint over
 the lifetime of the connection. Implementations MUST support all of
 the parameters defined by this specification.

 Each parameter in a SETTINGS frame replaces any existing value for
 that parameter. Parameters are processed in the order in which they
 appear, and a receiver of a SETTINGS frame does not need to maintain
 any state other than the current value of its parameters. Therefore,
 the value of a SETTINGS parameter is the last value that is seen by a
 receiver.

 SETTINGS parameters are acknowledged by the receiving peer. To
 enable this, the SETTINGS frame defines the following flag:

 ACK (0x1): Bit 1 being set indicates that this frame acknowledges
 receipt and application of the peer's SETTINGS frame. When this
 bit is set, the payload of the SETTINGS frame MUST be empty.
 Receipt of a SETTINGS frame with the ACK flag set and a length
 field value other than 0 MUST be treated as a connection error

Belshe, et al. Expires December 19, 2014 [Page 35]

Internet-Draft HTTP/2 June 2014

 (Section 5.4.1) of type FRAME_SIZE_ERROR. For more info, see
 Settings Synchronization (Section 6.5.3).

 SETTINGS frames always apply to a connection, never a single stream.
 The stream identifier for a SETTINGS frame MUST be zero (0x0). If an
 endpoint receives a SETTINGS frame whose stream identifier field is
 anything other than 0x0, the endpoint MUST respond with a connection
 error (Section 5.4.1) of type PROTOCOL_ERROR.

 The SETTINGS frame affects connection state. A badly formed or
 incomplete SETTINGS frame MUST be treated as a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR.

6.5.1. SETTINGS Format

 The payload of a SETTINGS frame consists of zero or more parameters,
 each consisting of an unsigned 16-bit setting identifier and an
 unsigned 32-bit value.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Identifier (16) |
 +-------------------------------+-------------------------------+
 | Value (32) |
 +---+

 Setting Format

6.5.2. Defined SETTINGS Parameters

 The following parameters are defined:

 SETTINGS_HEADER_TABLE_SIZE (0x1): Allows the sender to inform the
 remote endpoint of the maximum size of the header compression
 table used to decode header blocks. The encoder can select any
 size equal to or less than this value by using signaling specific
 to the header compression format inside a header block. The
 initial value is 4,096 bytes.

 SETTINGS_ENABLE_PUSH (0x2): This setting can be use to disable
 server push (Section 8.2). An endpoint MUST NOT send a
 PUSH_PROMISE frame if it receives this parameter set to a value of
 0. An endpoint that has both set this parameter to 0 and had it
 acknowledged MUST treat the receipt of a PUSH_PROMISE frame as a
 connection error (Section 5.4.1) of type PROTOCOL_ERROR.

Belshe, et al. Expires December 19, 2014 [Page 36]

Internet-Draft HTTP/2 June 2014

 The initial value is 1, which indicates that server push is
 permitted. Any value other than 0 or 1 MUST be treated as a
 connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 SETTINGS_MAX_CONCURRENT_STREAMS (0x3): Indicates the maximum number
 of concurrent streams that the sender will allow. This limit is
 directional: it applies to the number of streams that the sender
 permits the receiver to create. Initially there is no limit to
 this value. It is recommended that this value be no smaller than
 100, so as to not unnecessarily limit parallelism.

 A value of 0 for SETTINGS_MAX_CONCURRENT_STREAMS SHOULD NOT be
 treated as special by endpoints. A zero value does prevent the
 creation of new streams, however this can also happen for any
 limit that is exhausted with active streams. Servers SHOULD only
 set a zero value for short durations; if a server does not wish to
 accept requests, closing the connection could be preferable.

 SETTINGS_INITIAL_WINDOW_SIZE (0x4): Indicates the sender's initial
 window size (in bytes) for stream level flow control. The initial
 value is 65,535.

 This setting affects the window size of all streams, including
 existing streams, see Section 6.9.2.

 Values above the maximum flow control window size of 2^31 - 1 MUST
 be treated as a connection error (Section 5.4.1) of type
 FLOW_CONTROL_ERROR.

 An endpoint that receives a SETTINGS frame with any unknown or
 unsupported identifier MUST ignore that setting.

6.5.3. Settings Synchronization

 Most values in SETTINGS benefit from or require an understanding of
 when the peer has received and applied the changed the communicated
 parameter values. In order to provide such synchronization
 timepoints, the recipient of a SETTINGS frame in which the ACK flag
 is not set MUST apply the updated parameters as soon as possible upon
 receipt.

 The values in the SETTINGS frame MUST be applied in the order they
 appear, with no other frame processing between values. Once all
 values have been applied, the recipient MUST immediately emit a
 SETTINGS frame with the ACK flag set. Upon receiving a SETTINGS
 frame with the ACK flag set, the sender of the altered parameters can
 rely upon their application.

Belshe, et al. Expires December 19, 2014 [Page 37]

Internet-Draft HTTP/2 June 2014

 If the sender of a SETTINGS frame does not receive an acknowledgement
 within a reasonable amount of time, it MAY issue a connection error
 (Section 5.4.1) of type SETTINGS_TIMEOUT.

6.6. PUSH_PROMISE

 The PUSH_PROMISE frame (type=0x5) is used to notify the peer endpoint
 in advance of streams the sender intends to initiate. The
 PUSH_PROMISE frame includes the unsigned 31-bit identifier of the
 stream the endpoint plans to create along with a set of headers that
 provide additional context for the stream. Section 8.2 contains a
 thorough description of the use of PUSH_PROMISE frames.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Pad Length? (8)|
 +-+-------------+---+
 |R| Promised Stream ID (31) |
 +-+-----------------------------+-------------------------------+
 | Header Block Fragment (*) ...
 +---+
 | Padding (*) ...
 +---+

 PUSH_PROMISE Payload Format

 The PUSH_PROMISE frame payload has the following fields:

 Pad Length: An 8-bit field containing the length of the frame
 padding in units of octets. This field is optional and is only
 present if the PADDED flag is set.

 R: A single reserved bit.

 Promised Stream ID: This unsigned 31-bit integer identifies the
 stream the endpoint intends to start sending frames for. The
 promised stream identifier MUST be a valid choice for the next
 stream sent by the sender (see new stream identifier
 (Section 5.1.1)).

 Header Block Fragment: A header block fragment (Section 4.3)
 containing request header fields.

 Padding: Padding octets.

 The PUSH_PROMISE frame defines the following flags:

Belshe, et al. Expires December 19, 2014 [Page 38]

Internet-Draft HTTP/2 June 2014

 END_HEADERS (0x4): Bit 3 being set indicates that this frame
 contains an entire header block (Section 4.3) and is not followed
 by any CONTINUATION frames.

 A PUSH_PROMISE frame without the END_HEADERS flag set MUST be
 followed by a CONTINUATION frame for the same stream. A receiver
 MUST treat the receipt of any other type of frame or a frame on a
 different stream as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 PADDED (0x8): Bit 4 being set indicates that the Pad Length field is
 present.

 PUSH_PROMISE frames MUST be associated with an existing, peer-
 initiated stream. The stream identifier of a PUSH_PROMISE frame
 indicates the stream it is associated with. If the stream identifier
 field specifies the value 0x0, a recipient MUST respond with a
 connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 Promised streams are not required to be used in the order they are
 promised. The PUSH_PROMISE only reserves stream identifiers for
 later use.

 PUSH_PROMISE MUST NOT be sent if the SETTINGS_ENABLE_PUSH setting of
 the peer endpoint is set to 0. An endpoint that has set this setting
 and has received acknowledgement MUST treat the receipt of a
 PUSH_PROMISE frame as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 Recipients of PUSH_PROMISE frames can choose to reject promised
 streams by returning a RST_STREAM referencing the promised stream
 identifier back to the sender of the PUSH_PROMISE.

 A PUSH_PROMISE frame modifies the connection state in two ways. The
 inclusion of a header block (Section 4.3) potentially modifies the
 state maintained for header compression. PUSH_PROMISE also reserves
 a stream for later use, causing the promised stream to enter the
 "reserved" state. A sender MUST NOT send a PUSH_PROMISE on a stream
 unless that stream is either "open" or "half closed (remote)"; the
 sender MUST ensure that the promised stream is a valid choice for a
 new stream identifier (Section 5.1.1) (that is, the promised stream
 MUST be in the "idle" state).

 Since PUSH_PROMISE reserves a stream, ignoring a PUSH_PROMISE frame
 causes the stream state to become indeterminate. A receiver MUST
 treat the receipt of a PUSH_PROMISE on a stream that is neither
 "open" nor "half closed (local)" as a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR. Similarly, a receiver MUST

Belshe, et al. Expires December 19, 2014 [Page 39]

Internet-Draft HTTP/2 June 2014

 treat the receipt of a PUSH_PROMISE that promises an illegal stream
 identifier (Section 5.1.1) (that is, an identifier for a stream that
 is not currently in the "idle" state) as a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR.

 The PUSH_PROMISE frame includes optional padding. Padding fields and
 flags are identical to those defined for DATA frames (Section 6.1).

6.7. PING

 The PING frame (type=0x6) is a mechanism for measuring a minimal
 round trip time from the sender, as well as determining whether an
 idle connection is still functional. PING frames can be sent from
 any endpoint.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 | Opaque Data (64) |
 | |
 +---+

 PING Payload Format

 In addition to the frame header, PING frames MUST contain 8 octets of
 data in the payload. A sender can include any value it chooses and
 use those bytes in any fashion.

 Receivers of a PING frame that does not include an ACK flag MUST send
 a PING frame with the ACK flag set in response, with an identical
 payload. PING responses SHOULD be given higher priority than any
 other frame.

 The PING frame defines the following flags:

 ACK (0x1): Bit 1 being set indicates that this PING frame is a PING
 response. An endpoint MUST set this flag in PING responses. An
 endpoint MUST NOT respond to PING frames containing this flag.

 PING frames are not associated with any individual stream. If a PING
 frame is received with a stream identifier field value other than
 0x0, the recipient MUST respond with a connection error
 (Section 5.4.1) of type PROTOCOL_ERROR.

 Receipt of a PING frame with a length field value other than 8 MUST
 be treated as a connection error (Section 5.4.1) of type
 FRAME_SIZE_ERROR.

Belshe, et al. Expires December 19, 2014 [Page 40]

Internet-Draft HTTP/2 June 2014

6.8. GOAWAY

 The GOAWAY frame (type=0x7) informs the remote peer to stop creating
 streams on this connection. GOAWAY can be sent by either the client
 or the server. Once sent, the sender will ignore frames sent on any
 new streams with identifiers higher than the included last stream
 identifier. Receivers of a GOAWAY frame MUST NOT open additional
 streams on the connection, although a new connection can be
 established for new streams.

 The purpose of this frame is to allow an endpoint to gracefully stop
 accepting new streams, while still finishing processing of previously
 established streams. This enables administrative actions, like
 server maintainence.

 There is an inherent race condition between an endpoint starting new
 streams and the remote sending a GOAWAY frame. To deal with this
 case, the GOAWAY contains the stream identifier of the last stream
 which was or might be processed on the sending endpoint in this
 connection. If the receiver of the GOAWAY has sent data on streams
 with a higher stream identifier than what is indicated in the GOAWAY
 frame, those streams are not or will not be processed. The receiver
 of the GOAWAY frame can treat the streams as though they had never
 been created at all, thereby allowing those streams to be retried
 later on a new connection.

 Endpoints SHOULD always send a GOAWAY frame before closing a
 connection so that the remote can know whether a stream has been
 partially processed or not. For example, if an HTTP client sends a
 POST at the same time that a server closes a connection, the client
 cannot know if the server started to process that POST request if the
 server does not send a GOAWAY frame to indicate what streams it might
 have acted on.

 An endpoint might choose to close a connection without sending GOAWAY
 for misbehaving peers.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |R| Last-Stream-ID (31) |
 +-+---+
 | Error Code (32) |
 +---+
 | Additional Debug Data (*) |
 +---+

 GOAWAY Payload Format

Belshe, et al. Expires December 19, 2014 [Page 41]

Internet-Draft HTTP/2 June 2014

 The GOAWAY frame does not define any flags.

 The GOAWAY frame applies to the connection, not a specific stream.
 An endpoint MUST treat a GOAWAY frame with a stream identifier other
 than 0x0 as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR.

 The last stream identifier in the GOAWAY frame contains the highest
 numbered stream identifier for which the sender of the GOAWAY frame
 might have taken some action on, or might yet take action on. All
 streams up to and including the identified stream might have been
 processed in some way. The last stream identifier can be set to 0 if
 no streams were processed.

 Note: In this context, "processed" means that some data from the
 stream was passed to some higher layer of software that might have
 taken some action as a result.

 If a connection terminates without a GOAWAY frame, the last stream
 identifier is effectively the highest possible stream identifier.

 On streams with lower or equal numbered identifiers that were not
 closed completely prior to the connection being closed, re-attempting
 requests, transactions, or any protocol activity is not possible,
 with the exception of idempotent actions like HTTP GET, PUT, or
 DELETE. Any protocol activity that uses higher numbered streams can
 be safely retried using a new connection.

 Activity on streams numbered lower or equal to the last stream
 identifier might still complete successfully. The sender of a GOAWAY
 frame might gracefully shut down a connection by sending a GOAWAY
 frame, maintaining the connection in an open state until all in-
 progress streams complete.

 An endpoint MAY send multiple GOAWAY frames if circumstances change.
 For instance, an endpoint that sends GOAWAY with NO_ERROR during
 graceful shutdown could subsequently encounter an condition that
 requires immediate termination of the connection. The last stream
 identifier from the last GOAWAY frame received indicates which
 streams could have been acted upon. Endpoints MUST NOT increase the
 value they send in the last stream identifier, since the peers might
 already have retried unprocessed requests on another connection.

 A client that is unable to retry requests loses all requests that are
 in flight when the server closes the connection. This is especially
 true for intermediaries that might not be serving clients using
 HTTP/2. A server that is attempting to gracefully shut down a
 connection SHOULD send an initial GOAWAY frame with the last stream

Belshe, et al. Expires December 19, 2014 [Page 42]

Internet-Draft HTTP/2 June 2014

 identifier set to 2^31-1 and a NO_ERROR code. This signals to the
 client that a shutdown is imminent and that no further requests can
 be initiated. After waiting at least one round trip time, the server
 can send another GOAWAY frame with an updated last stream identifier.
 This ensures that a connection can be cleanly shut down without
 losing requests.

 After sending a GOAWAY frame, the sender can discard frames for
 streams with identifiers higher than the identified last stream.
 However, any frames that alter connection state cannot be completely
 ignored. For instance, HEADERS, PUSH_PROMISE and CONTINUATION frames
 MUST be minimally processed to ensure the state maintained for header
 compression is consistent (see Section 4.3); similarly DATA frames
 MUST be counted toward the connection flow control window. Failure
 to process these frames can cause flow control or header compression
 state to become unsynchronized.

 The GOAWAY frame also contains a 32-bit error code (Section 7) that
 contains the reason for closing the connection.

 Endpoints MAY append opaque data to the payload of any GOAWAY frame.
 Additional debug data is intended for diagnostic purposes only and
 carries no semantic value. Debug information could contain security-
 or privacy-sensitive data. Logged or otherwise persistently stored
 debug data MUST have adequate safeguards to prevent unauthorized
 access.

6.9. WINDOW_UPDATE

 The WINDOW_UPDATE frame (type=0x8) is used to implement flow control;
 see Section 5.2 for an overview.

 Flow control operates at two levels: on each individual stream and on
 the entire connection.

 Both types of flow control are hop-by-hop; that is, only between the
 two endpoints. Intermediaries do not forward WINDOW_UPDATE frames
 between dependent connections. However, throttling of data transfer
 by any receiver can indirectly cause the propagation of flow control
 information toward the original sender.

 Flow control only applies to frames that are identified as being
 subject to flow control. Of the frame types defined in this
 document, this includes only DATA frames. Frames that are exempt
 from flow control MUST be accepted and processed, unless the receiver
 is unable to assign resources to handling the frame. A receiver MAY
 respond with a stream error (Section 5.4.2) or connection error

Belshe, et al. Expires December 19, 2014 [Page 43]

Internet-Draft HTTP/2 June 2014

 (Section 5.4.1) of type FLOW_CONTROL_ERROR if it is unable to accept
 a frame.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |R| Window Size Increment (31) |
 +-+---+

 WINDOW_UPDATE Payload Format

 The payload of a WINDOW_UPDATE frame is one reserved bit, plus an
 unsigned 31-bit integer indicating the number of bytes that the
 sender can transmit in addition to the existing flow control window.
 The legal range for the increment to the flow control window is 1 to
 2^31 - 1 (0x7fffffff) bytes.

 The WINDOW_UPDATE frame does not define any flags.

 The WINDOW_UPDATE frame can be specific to a stream or to the entire
 connection. In the former case, the frame's stream identifier
 indicates the affected stream; in the latter, the value "0" indicates
 that the entire connection is the subject of the frame.

 WINDOW_UPDATE can be sent by a peer that has sent a frame bearing the
 END_STREAM flag. This means that a receiver could receive a
 WINDOW_UPDATE frame on a "half closed (remote)" or "closed" stream.
 A receiver MUST NOT treat this as an error, see Section 5.1.

 A receiver that receives a flow controlled frame MUST always account
 for its contribution against the connection flow control window,
 unless the receiver treats this as a connection error
 (Section 5.4.1). This is necessary even if the frame is in error.
 Since the sender counts the frame toward the flow control window, if
 the receiver does not, the flow control window at sender and receiver
 can become different.

6.9.1. The Flow Control Window

 Flow control in HTTP/2 is implemented using a window kept by each
 sender on every stream. The flow control window is a simple integer
 value that indicates how many bytes of data the sender is permitted
 to transmit; as such, its size is a measure of the buffering capacity
 of the receiver.

 Two flow control windows are applicable: the stream flow control
 window and the connection flow control window. The sender MUST NOT
 send a flow controlled frame with a length that exceeds the space

Belshe, et al. Expires December 19, 2014 [Page 44]

Internet-Draft HTTP/2 June 2014

 available in either of the flow control windows advertised by the
 receiver. Frames with zero length with the END_STREAM flag set (that
 is, an empty DATA frame) MAY be sent if there is no available space
 in either flow control window.

 For flow control calculations, the 8 byte frame header is not
 counted.

 After sending a flow controlled frame, the sender reduces the space
 available in both windows by the length of the transmitted frame.

 The receiver of a frame sends a WINDOW_UPDATE frame as it consumes
 data and frees up space in flow control windows. Separate
 WINDOW_UPDATE frames are sent for the stream and connection level
 flow control windows.

 A sender that receives a WINDOW_UPDATE frame updates the
 corresponding window by the amount specified in the frame.

 A sender MUST NOT allow a flow control window to exceed 2^31 - 1
 bytes. If a sender receives a WINDOW_UPDATE that causes a flow
 control window to exceed this maximum it MUST terminate either the
 stream or the connection, as appropriate. For streams, the sender
 sends a RST_STREAM with the error code of FLOW_CONTROL_ERROR code;
 for the connection, a GOAWAY frame with a FLOW_CONTROL_ERROR code.

 Flow controlled frames from the sender and WINDOW_UPDATE frames from
 the receiver are completely asynchronous with respect to each other.
 This property allows a receiver to aggressively update the window
 size kept by the sender to prevent streams from stalling.

6.9.2. Initial Flow Control Window Size

 When an HTTP/2 connection is first established, new streams are
 created with an initial flow control window size of 65,535 bytes.
 The connection flow control window is 65,535 bytes. Both endpoints
 can adjust the initial window size for new streams by including a
 value for SETTINGS_INITIAL_WINDOW_SIZE in the SETTINGS frame that
 forms part of the connection preface. The connection flow control
 window can only be changed using WINDOW_UPDATE frames.

 Prior to receiving a SETTINGS frame that sets a value for
 SETTINGS_INITIAL_WINDOW_SIZE, an endpoint can only use the default
 initial window size when sending flow controlled frames. Similarly,
 the connection flow control window is set to the default initial
 window size until a WINDOW_UPDATE frame is received.

Belshe, et al. Expires December 19, 2014 [Page 45]

Internet-Draft HTTP/2 June 2014

 A SETTINGS frame can alter the initial flow control window size for
 all current streams. When the value of SETTINGS_INITIAL_WINDOW_SIZE
 changes, a receiver MUST adjust the size of all stream flow control
 windows that it maintains by the difference between the new value and
 the old value.

 A change to SETTINGS_INITIAL_WINDOW_SIZE can cause the available
 space in a flow control window to become negative. A sender MUST
 track the negative flow control window, and MUST NOT send new flow
 controlled frames until it receives WINDOW_UPDATE frames that cause
 the flow control window to become positive.

 For example, if the client sends 60KB immediately on connection
 establishment, and the server sets the initial window size to be
 16KB, the client will recalculate the available flow control window
 to be -44KB on receipt of the SETTINGS frame. The client retains a
 negative flow control window until WINDOW_UPDATE frames restore the
 window to being positive, after which the client can resume sending.

 A SETTINGS frame cannot alter the connection flow control window.

 An endpoint MUST treat a change to SETTINGS_INITIAL_WINDOW_SIZE that
 causes any flow control window to exceed the maximum size as a
 connection error (Section 5.4.1) of type FLOW_CONTROL_ERROR.

6.9.3. Reducing the Stream Window Size

 A receiver that wishes to use a smaller flow control window than the
 current size can send a new SETTINGS frame. However, the receiver
 MUST be prepared to receive data that exceeds this window size, since
 the sender might send data that exceeds the lower limit prior to
 processing the SETTINGS frame.

 After sending a SETTINGS frame that reduces the initial flow control
 window size, a receiver has two options for handling streams that
 exceed flow control limits:

 1. The receiver can immediately send RST_STREAM with
 FLOW_CONTROL_ERROR error code for the affected streams.

 2. The receiver can accept the streams and tolerate the resulting
 head of line blocking, sending WINDOW_UPDATE frames as it
 consumes data.

Belshe, et al. Expires December 19, 2014 [Page 46]

Internet-Draft HTTP/2 June 2014

6.10. CONTINUATION

 The CONTINUATION frame (type=0x9) is used to continue a sequence of
 header block fragments (Section 4.3). Any number of CONTINUATION
 frames can be sent on an existing stream, as long as the preceding
 frame is on the same stream and is a HEADERS, PUSH_PROMISE or
 CONTINUATION frame without the END_HEADERS flag set.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Header Block Fragment (*) ...
 +---+

 CONTINUATION Frame Payload

 The CONTINUATION frame payload contains a header block fragment
 (Section 4.3).

 The CONTINUATION frame defines the following flag:

 END_HEADERS (0x4): Bit 3 being set indicates that this frame ends a
 header block (Section 4.3).

 If the END_HEADERS bit is not set, this frame MUST be followed by
 another CONTINUATION frame. A receiver MUST treat the receipt of
 any other type of frame or a frame on a different stream as a
 connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 The CONTINUATION frame changes the connection state as defined in
Section 4.3.

 CONTINUATION frames MUST be associated with a stream. If a
 CONTINUATION frame is received whose stream identifier field is 0x0,
 the recipient MUST respond with a connection error (Section 5.4.1) of
 type PROTOCOL_ERROR.

 A CONTINUATION frame MUST be preceded by a HEADERS, PUSH_PROMISE or
 CONTINUATION frame without the END_HEADERS flag set. A recipient
 that observes violation of this rule MUST respond with a connection
 error (Section 5.4.1) of type PROTOCOL_ERROR.

7. Error Codes

 Error codes are 32-bit fields that are used in RST_STREAM and GOAWAY
 frames to convey the reasons for the stream or connection error.

Belshe, et al. Expires December 19, 2014 [Page 47]

Internet-Draft HTTP/2 June 2014

 Error codes share a common code space. Some error codes apply only
 to either streams or the entire connection and have no defined
 semantics in the other context.

 The following error codes are defined:

 NO_ERROR (0x0): The associated condition is not as a result of an
 error. For example, a GOAWAY might include this code to indicate
 graceful shutdown of a connection.

 PROTOCOL_ERROR (0x1): The endpoint detected an unspecific protocol
 error. This error is for use when a more specific error code is
 not available.

 INTERNAL_ERROR (0x2): The endpoint encountered an unexpected
 internal error.

 FLOW_CONTROL_ERROR (0x3): The endpoint detected that its peer
 violated the flow control protocol.

 SETTINGS_TIMEOUT (0x4): The endpoint sent a SETTINGS frame, but did
 not receive a response in a timely manner. See Settings
 Synchronization (Section 6.5.3).

 STREAM_CLOSED (0x5): The endpoint received a frame after a stream
 was half closed.

 FRAME_SIZE_ERROR (0x6): The endpoint received a frame that was
 larger than the maximum size that it supports.

 REFUSED_STREAM (0x7): The endpoint refuses the stream prior to
 performing any application processing, see Section 8.1.4 for
 details.

 CANCEL (0x8): Used by the endpoint to indicate that the stream is no
 longer needed.

 COMPRESSION_ERROR (0x9): The endpoint is unable to maintain the
 header compression context for the connection.

 CONNECT_ERROR (0xa): The connection established in response to a
 CONNECT request (Section 8.3) was reset or abnormally closed.

 ENHANCE_YOUR_CALM (0xb): The endpoint detected that its peer is
 exhibiting a behavior that might be generating excessive load.

 INADEQUATE_SECURITY (0xc): The underlying transport has properties
 that do not meet minimum security requirements (see Section 9.2).

Belshe, et al. Expires December 19, 2014 [Page 48]

Internet-Draft HTTP/2 June 2014

 Unknown or unsupported error codes MUST NOT trigger any special
 behavior. These MAY be treated by an implementation as being
 equivalent to INTERNAL_ERROR.

8. HTTP Message Exchanges

 HTTP/2 is intended to be as compatible as possible with current uses
 of HTTP. This means that, from the application perspective, the
 features of the protocol are largely unchanged. To achieve this, all
 request and response semantics are preserved, although the syntax of
 conveying those semantics has changed.

 Thus, the specification and requirements of HTTP/1.1 Semantics and
 Content [RFC7231], Conditional Requests [RFC7232], Range Requests
 [RFC7233], Caching [RFC7234] and Authentication [RFC7235] are
 applicable to HTTP/2. Selected portions of HTTP/1.1 Message Syntax
 and Routing [RFC7230], such as the HTTP and HTTPS URI schemes, are
 also applicable in HTTP/2, but the expression of those semantics for
 this protocol are defined in the sections below.

8.1. HTTP Request/Response Exchange

 A client sends an HTTP request on a new stream, using a previously
 unused stream identifier (Section 5.1.1). A server sends an HTTP
 response on the same stream as the request.

 An HTTP message (request or response) consists of:

 1. one HEADERS frame (followed by zero or more CONTINUATION frames)
 containing the message headers (see [RFC7230], Section 3.2), and

 2. zero or more DATA frames containing the message payload (see
[RFC7230], Section 3.3), and

 3. optionally, one HEADERS frame, followed by zero or more
 CONTINUATION frames containing the trailer-part, if present (see

[RFC7230], Section 4.1.2).

 The last frame in the sequence bears an END_STREAM flag, noting that
 a HEADERS frame bearing the END_STREAM flag can be followed by
 CONTINUATION frames that carry any remaining portions of the header
 block.

 Other frames (from any stream) MUST NOT occur between either HEADERS
 frame and any CONTINUATION frames that might follow.

 Otherwise, frames MAY be interspersed on the stream between these
 frames, but those frames do not carry HTTP semantics. In particular,

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
https://datatracker.ietf.org/doc/html/rfc7233
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2
https://datatracker.ietf.org/doc/html/rfc7230#section-3.3
https://datatracker.ietf.org/doc/html/rfc7230#section-4.1.2

Belshe, et al. Expires December 19, 2014 [Page 49]

Internet-Draft HTTP/2 June 2014

 HEADERS frames (and any CONTINUATION frames that follow) other than
 the first and optional last frames in this sequence do not carry HTTP
 semantics.

 Trailing header fields are carried in a header block that also
 terminates the stream. That is, a sequence starting with a HEADERS
 frame, followed by zero or more CONTINUATION frames, where the
 HEADERS frame bears an END_STREAM flag. Header blocks after the
 first that do not terminate the stream are not part of an HTTP
 request or response.

 An HTTP request/response exchange fully consumes a single stream. A
 request starts with the HEADERS frame that puts the stream into an
 "open" state and ends with a frame bearing END_STREAM, which causes
 the stream to become "half closed" for the client. A response starts
 with a HEADERS frame and ends with a frame bearing END_STREAM,
 optionally followed by CONTINUATION frames, which places the stream
 in the "closed" state.

8.1.1. Informational Responses

 The 1xx series of HTTP response status codes ([RFC7231], Section 6.2)
 are not supported in HTTP/2.

 The most common use case for 1xx is using an Expect header field with
 a "100-continue" token (colloquially, "Expect/continue") to indicate
 that the client expects a 100 (Continue) non-final response status
 code, receipt of which indicates that the client should continue
 sending the request body if it has not already done so.

 Typically, Expect/continue is used by clients wishing to avoid
 sending a large amount of data in a request body, only to have the
 request rejected by the origin server, thereby leaving the connection
 potentially unusable.

 HTTP/2 does not enable the Expect/continue mechanism; if the server
 sends a final status code to reject the request, it can do so without
 making the underlying connection unusable.

 Note that this means HTTP/2 clients sending requests with bodies may
 waste at least one round trip of sent data when the request is
 rejected. This can be mitigated by restricting the amount of data
 sent for the first round trip by bandwidth-constrained clients, in
 anticipation of a final status code.

 Other defined 1xx status codes are not applicable to HTTP/2. For
 example, the semantics of 101 (Switching Protocols) aren't suitable
 to a multiplexed protocol. Likewise, 102 (Processing) [RFC2518] is

https://datatracker.ietf.org/doc/html/rfc7231#section-6.2
https://datatracker.ietf.org/doc/html/rfc2518

Belshe, et al. Expires December 19, 2014 [Page 50]

Internet-Draft HTTP/2 June 2014

 no longer necessary to ensure connection liveness, because HTTP/2 has
 a separate means of keeping the connection alive. The use of the 102
 (Processing) status code for progress reporting has since been
 deprecated and is not retained.

 This difference between protocol versions necessitates special
 handling by intermediaries that translate between them:

 o An intermediary that translates HTTP/1.1 requests to HTTP/2 MUST
 generate a 100 (Continue) response if a received request includes
 and Expect header field with a "100-continue" token ([RFC7231],
 Section 5.1.1), unless it can immediately generate a final status
 code. It MUST NOT forward the "100-continue" expectation in the
 request header fields.

 o An intermediary that translates HTTP/2 to HTTP/1.1 MAY add an
 Expect header field with a "100-continue" expectation when
 forwarding a request that has a body; see [RFC7231], Section 5.1.1
 for specific requirements.

 o An intermediary that gateways HTTP/2 to HTTP/1.1 MUST discard all
 other 1xx informational responses.

8.1.2. HTTP Header Fields

 HTTP header fields carry information as a series of key-value pairs.
 For a listing of registered HTTP headers, see the Message Header
 Field Registry maintained at [4].

 While HTTP/1.x used the message start-line (see [RFC7230],
 Section 3.1) to convey the target URI and method of the request, and
 the status code for the response, HTTP/2 uses special pseudo-headers
 beginning with ':' character (ASCII 0x3a) for this purpose.

 Just as in HTTP/1.x, header field names are strings of ASCII
 characters that are compared in a case-insensitive fashion. However,
 header field names MUST be converted to lowercase prior to their
 encoding in HTTP/2. A request or response containing uppercase
 header field names MUST be treated as malformed (Section 8.1.2.5).

 HTTP/2 does not use the Connection header field to indicate "hop-by-
 hop" header fields; in this protocol, connection-specific metadata is
 conveyed by other means. As such, a HTTP/2 message containing
 Connection MUST be treated as malformed (Section 8.1.2.5).

 This means that an intermediary transforming an HTTP/1.x message to
 HTTP/2 will need to remove any header fields nominated by the
 Connection header field, along with the Connection header field

https://datatracker.ietf.org/doc/html/rfc7231#section-5.1.1
https://datatracker.ietf.org/doc/html/rfc7231#section-5.1.1
https://datatracker.ietf.org/doc/html/rfc7231#section-5.1.1
https://datatracker.ietf.org/doc/html/rfc7230#section-3.1
https://datatracker.ietf.org/doc/html/rfc7230#section-3.1

Belshe, et al. Expires December 19, 2014 [Page 51]

Internet-Draft HTTP/2 June 2014

 itself. Such intermediaries SHOULD also remove other connection-
 specific header fields, such as Keep-Alive, Proxy-Connection,
 Transfer-Encoding and Upgrade, even if they are not nominated by
 Connection.

 One exception to this is the TE header field, which MAY be present in
 an HTTP/2 request, but when it is MUST NOT contain any value other
 than "trailers".

 Note: HTTP/2 purposefully does not support upgrade to another
 protocol. The handshake methods described in Section 3 are
 believed sufficient to negotiate the use of alternative protocols.

8.1.2.1. Request Header Fields

 HTTP/2 defines a number of pseudo header fields starting with a colon
 ':' character that carry information about the request target:

 o The ":method" header field includes the HTTP method ([RFC7231],
 Section 4).

 o The ":scheme" header field includes the scheme portion of the
 target URI ([RFC3986], Section 3.1).

 ":scheme" is not restricted to "http" and "https" schemed URIs. A
 proxy or gateway can translate requests for non-HTTP schemes,
 enabling the use of HTTP to interact with non-HTTP services.

 o The ":authority" header field includes the authority portion of
 the target URI ([RFC3986], Section 3.2). The authority MUST NOT
 include the deprecated "userinfo" subcomponent for "http" or
 "https" schemed URIs.

 To ensure that the HTTP/1.1 request line can be reproduced
 accurately, this header field MUST be omitted when translating
 from an HTTP/1.1 request that has a request target in origin or
 asterisk form (see [RFC7230], Section 5.3). Clients that generate
 HTTP/2 requests directly SHOULD instead omit the "Host" header
 field. An intermediary that converts an HTTP/2 request to
 HTTP/1.1 MUST create a "Host" header field if one is not present
 in a request by copying the value of the ":authority" header
 field.

 o The ":path" header field includes the path and query parts of the
 target URI (the "path-absolute" production from [RFC3986] and
 optionally a '?' character followed by the "query" production, see

[RFC3986], Section 3.3 and [RFC3986], Section 3.4). This field
 MUST NOT be empty; URIs that do not contain a path component MUST

https://datatracker.ietf.org/doc/html/rfc7231#section-4
https://datatracker.ietf.org/doc/html/rfc7231#section-4
https://datatracker.ietf.org/doc/html/rfc3986#section-3.1
https://datatracker.ietf.org/doc/html/rfc3986#section-3.2
https://datatracker.ietf.org/doc/html/rfc7230#section-5.3
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986#section-3.3
https://datatracker.ietf.org/doc/html/rfc3986#section-3.4

Belshe, et al. Expires December 19, 2014 [Page 52]

Internet-Draft HTTP/2 June 2014

 include a value of '/', unless the request is an OPTIONS request
 in asterisk form, in which case the ":path" header field MUST
 include '*'.

 All HTTP/2 requests MUST include exactly one valid value for the
 ":method", ":scheme", and ":path" header fields, unless this is a
 CONNECT request (Section 8.3). An HTTP request that omits mandatory
 header fields is malformed (Section 8.1.2.5).

 Header field names that start with a colon are only valid in the
 HTTP/2 context. These are not HTTP header fields. Implementations
 MUST NOT generate header fields that start with a colon, and they
 MUST ignore and discard any header field that starts with a colon.
 In particular, header fields with names starting with a colon MUST
 NOT be exposed as HTTP header fields.

 HTTP/2 does not define a way to carry the version identifier that is
 included in the HTTP/1.1 request line.

8.1.2.2. Response Header Fields

 A single ":status" header field is defined that carries the HTTP
 status code field (see [RFC7231], Section 6). This header field MUST
 be included in all responses, otherwise the response is malformed
 (Section 8.1.2.5).

 HTTP/2 does not define a way to carry the version or reason phrase
 that is included in an HTTP/1.1 status line.

8.1.2.3. Header Field Ordering

 HTTP Header Compression [COMPRESSION] does not preserve the order of
 header fields, because the relative order of header fields with
 different names is not important. However, the same header field can
 be repeated to form a list (see [RFC7230], Section 3.2.2), where the
 relative order of header field values is significant. This
 repetition can occur either as a single header field with a comma-
 separated list of values, or as several header fields with a single
 value, or any combination thereof. Therefore, in the latter case,
 ordering needs to be preserved before compression takes place.

 To preserve the order of multiple occurrences of a header field with
 the same name, its ordered values are concatenated into a single
 value using a zero-valued octet (0x0) to delimit them.

 After decompression, header fields that have values containing zero
 octets (0x0) MUST be split into multiple header fields before being
 processed.

https://datatracker.ietf.org/doc/html/rfc7231#section-6
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.2

Belshe, et al. Expires December 19, 2014 [Page 53]

Internet-Draft HTTP/2 June 2014

 For example, the following HTTP/1.x header block:

 Content-Type: text/html
 Cache-Control: max-age=60, private
 Cache-Control: must-revalidate

 contains three Cache-Control directives; two directives in the first
 Cache-Control header field, and the third directive in the second
 Cache-Control field. Before compression, they would need to be
 converted to a form similar to this (with 0x0 represented as '\0'):

 cache-control = max-age=60, private\0must-revalidate
 content-type = text/html

 Note here that the ordering between Content-Type and Cache-Control is
 not preserved, but the relative ordering of the Cache-Control
 directives - as well as the fact that the first two were comma-
 separated, while the last was on a different line - is.

 Header fields containing multiple values MUST be concatenated into a
 single value unless the ordering of that header field is known to be
 not significant.

 The special case of "set-cookie" - which does not form a comma-
 separated list, but can have multiple values - does not depend on
 ordering. The "set-cookie" header field MAY be encoded as multiple
 header field values, or as a single concatenated value.

8.1.2.4. Compressing the Cookie Header Field

 The Cookie header field [COOKIE] can carry a significant amount of
 redundant data.

 The Cookie header field uses a semi-colon (";") to delimit cookie-
 pairs (or "crumbs"). This header field doesn't follow the list
 construction rules in HTTP (see [RFC7230], Section 3.2.2), which
 prevents cookie-pairs from being separated into different name-value
 pairs. This can significantly reduce compression efficiency as
 individual cookie-pairs are updated.

 To allow for better compression efficiency, the Cookie header field
 MAY be split into separate header fields, each with one or more
 cookie-pairs. If there are multiple Cookie header fields after
 decompression, these MUST be concatenated into a single octet string
 using the two octet delimiter of 0x3B, 0x20 (the ASCII string "; ").

https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.2

Belshe, et al. Expires December 19, 2014 [Page 54]

Internet-Draft HTTP/2 June 2014

 The Cookie header field MAY be split using a zero octet (0x0), as
 defined in Section 8.1.2.3. When decoding, zero octets MUST be
 replaced with the cookie delimiter ("; ").

 Therefore, the following sets of Cookie header fields are
 semantically equivalent, though the final form might appear in a
 different order after compression and decompression.

 cookie: a=b; c=d; e=f

 cookie: a=b\0c=d; e=f

 cookie: a=b
 cookie: c=d
 cookie: e=f

8.1.2.5. Malformed Messages

 A malformed request or response is one that uses a valid sequence of
 HTTP/2 frames, but is otherwise invalid due to the presence of
 prohibited header fields, the absence of mandatory header fields, or
 the inclusion of uppercase header field names.

 A request or response that includes an entity body can include a
 "content-length" header field. A request or response is also
 malformed if the value of a "content-length" header field does not
 equal the sum of the DATA frame payload lengths that form the body.

 Intermediaries that process HTTP requests or responses (i.e., any
 intermediary not acting as a tunnel) MUST NOT forward a malformed
 request or response.

 Implementations that detect malformed requests or responses need to
 ensure that the stream ends. For malformed requests, a server MAY
 send an HTTP response prior to closing or resetting the stream.
 Clients MUST NOT accept a malformed response. Note that these
 requirements are intended to protect against several types of common
 attacks against HTTP; they are deliberately strict, because being
 permissive can expose implementations to these vulnerabilities.

8.1.3. Examples

 This section shows HTTP/1.1 requests and responses, with
 illustrations of equivalent HTTP/2 requests and responses.

 An HTTP GET request includes request header fields and no body and is
 therefore transmitted as a single HEADERS frame, followed by zero or
 more CONTINUATION frames containing the serialized block of request

Belshe, et al. Expires December 19, 2014 [Page 55]

Internet-Draft HTTP/2 June 2014

 header fields. The HEADERS frame in the following has both the
 END_HEADERS and END_STREAM flags set; no CONTINUATION frames are
 sent:

 GET /resource HTTP/1.1 HEADERS
 Host: example.org ==> + END_STREAM
 Accept: image/jpeg + END_HEADERS
 :method = GET
 :scheme = https
 :path = /resource
 host = example.org
 accept = image/jpeg

 Similarly, a response that includes only response header fields is
 transmitted as a HEADERS frame (again, followed by zero or more
 CONTINUATION frames) containing the serialized block of response
 header fields.

 HTTP/1.1 304 Not Modified HEADERS
 ETag: "xyzzy" ==> + END_STREAM
 Expires: Thu, 23 Jan ... + END_HEADERS
 :status = 304
 etag = "xyzzy"
 expires = Thu, 23 Jan ...

 An HTTP POST request that includes request header fields and payload
 data is transmitted as one HEADERS frame, followed by zero or more
 CONTINUATION frames containing the request header fields, followed by
 one or more DATA frames, with the last CONTINUATION (or HEADERS)
 frame having the END_HEADERS flag set and the final DATA frame having
 the END_STREAM flag set:

Belshe, et al. Expires December 19, 2014 [Page 56]

Internet-Draft HTTP/2 June 2014

 POST /resource HTTP/1.1 HEADERS
 Host: example.org ==> - END_STREAM
 Content-Type: image/jpeg - END_HEADERS
 Content-Length: 123 :method = POST
 :path = /resource
 {binary data} content-type = image/jpeg

 CONTINUATION
 + END_HEADERS
 host = example.org
 :scheme = https
 content-length = 123

 DATA
 + END_STREAM
 {binary data}

 Note that data contributing to any given header field could be spread
 between header block fragments. The allocation of header fields to
 frames in this example is illustrative only.

 A response that includes header fields and payload data is
 transmitted as a HEADERS frame, followed by zero or more CONTINUATION
 frames, followed by one or more DATA frames, with the last DATA frame
 in the sequence having the END_STREAM flag set:

 HTTP/1.1 200 OK HEADERS
 Content-Type: image/jpeg ==> - END_STREAM
 Content-Length: 123 + END_HEADERS
 :status = 200
 {binary data} content-type = image/jpeg
 content-length = 123

 DATA
 + END_STREAM
 {binary data}

 Trailing header fields are sent as a header block after both the
 request or response header block and all the DATA frames have been
 sent. The HEADERS frame starting the trailers header block has the
 END_STREAM flag set.

Belshe, et al. Expires December 19, 2014 [Page 57]

Internet-Draft HTTP/2 June 2014

 HTTP/1.1 200 OK HEADERS
 Content-Type: image/jpeg ==> - END_STREAM
 Transfer-Encoding: chunked + END_HEADERS
 Trailer: Foo :status = 200
 content-length = 123
 123 content-type = image/jpeg
 {binary data} trailer = Foo
 0
 Foo: bar DATA
 - END_STREAM
 {binary data}

 HEADERS
 + END_STREAM
 + END_HEADERS
 foo = bar

8.1.4. Request Reliability Mechanisms in HTTP/2

 In HTTP/1.1, an HTTP client is unable to retry a non-idempotent
 request when an error occurs, because there is no means to determine
 the nature of the error. It is possible that some server processing
 occurred prior to the error, which could result in undesirable
 effects if the request were reattempted.

 HTTP/2 provides two mechanisms for providing a guarantee to a client
 that a request has not been processed:

 o The GOAWAY frame indicates the highest stream number that might
 have been processed. Requests on streams with higher numbers are
 therefore guaranteed to be safe to retry.

 o The REFUSED_STREAM error code can be included in a RST_STREAM
 frame to indicate that the stream is being closed prior to any
 processing having occurred. Any request that was sent on the
 reset stream can be safely retried.

 Requests that have not been processed have not failed; clients MAY
 automatically retry them, even those with non-idempotent methods.

 A server MUST NOT indicate that a stream has not been processed
 unless it can guarantee that fact. If frames that are on a stream
 are passed to the application layer for any stream, then
 REFUSED_STREAM MUST NOT be used for that stream, and a GOAWAY frame
 MUST include a stream identifier that is greater than or equal to the
 given stream identifier.

Belshe, et al. Expires December 19, 2014 [Page 58]

Internet-Draft HTTP/2 June 2014

 In addition to these mechanisms, the PING frame provides a way for a
 client to easily test a connection. Connections that remain idle can
 become broken as some middleboxes (for instance, network address
 translators, or load balancers) silently discard connection bindings.
 The PING frame allows a client to safely test whether a connection is
 still active without sending a request.

8.2. Server Push

 HTTP/2 enables a server to pre-emptively send (or "push") one or more
 associated responses to a client in response to a single request.
 This feature becomes particularly helpful when the server knows the
 client will need to have those responses available in order to fully
 process the response to the original request.

 Pushing additional responses is optional, and is negotiated between
 individual endpoints. The SETTINGS_ENABLE_PUSH setting can be set to
 0 to indicate that server push is disabled.

 Because pushing responses is effectively hop-by-hop, an intermediary
 could receive pushed responses from the server and choose not to
 forward those on to the client. In other words, how to make use of
 the pushed responses is up to that intermediary. Equally, the
 intermediary might choose to push additional responses to the client,
 without any action taken by the server.

 A client cannot push. Thus, servers MUST treat the receipt of a
 PUSH_PROMISE frame as a connection error (Section 5.4.1) of type
 PROTOCOL_ERROR. Clients MUST reject any attempt to change the
 SETTINGS_ENABLE_PUSH setting to a value other than 0 by treating the
 message as a connection error (Section 5.4.1) of type PROTOCOL_ERROR.

 A server can only push responses that are cacheable (see [RFC7234],
 Section 3); promised requests MUST be safe (see [RFC7231],
 Section 4.2.1) and MUST NOT include a request body.

8.2.1. Push Requests

 Server push is semantically equivalent to a server responding to a
 request; however, in this case that request is also sent by the
 server, as a PUSH_PROMISE frame.

 The PUSH_PROMISE frame includes a header block that contains a
 complete set of request header fields that the server attributes to
 the request. It is not possible to push a response to a request that
 includes a request body.

https://datatracker.ietf.org/doc/html/rfc7234#section-3
https://datatracker.ietf.org/doc/html/rfc7234#section-3
https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.1
https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.1

Belshe, et al. Expires December 19, 2014 [Page 59]

Internet-Draft HTTP/2 June 2014

 Pushed responses are always associated with an explicit request from
 the client. The PUSH_PROMISE frames sent by the server are sent on
 that explicit request's stream. The PUSH_PROMISE frame also includes
 a promised stream identifier, chosen from the stream identifiers
 available to the server (see Section 5.1.1).

 The header fields in PUSH_PROMISE and any subsequent CONTINUATION
 frames MUST be a valid and complete set of request header fields
 (Section 8.1.2.1). The server MUST include a method in the ":method"
 header field that is safe and cacheable. If a client receives a
 PUSH_PROMISE that does not include a complete and valid set of header
 fields, or the ":method" header field identifies a method that is not
 safe, it MUST respond with a stream error (Section 5.4.2) of type
 PROTOCOL_ERROR.

 The server SHOULD send PUSH_PROMISE (Section 6.6) frames prior to
 sending any frames that reference the promised responses. This
 avoids a race where clients issue requests prior to receiving any
 PUSH_PROMISE frames.

 For example, if the server receives a request for a document
 containing embedded links to multiple image files, and the server
 chooses to push those additional images to the client, sending push
 promises before the DATA frames that contain the image links ensures
 that the client is able to see the promises before discovering
 embedded links. Similarly, if the server pushes responses referenced
 by the header block (for instance, in Link header fields), sending
 the push promises before sending the header block ensures that
 clients do not request them.

 PUSH_PROMISE frames MUST NOT be sent by the client. PUSH_PROMISE
 frames can be sent by the server on any stream that was opened by the
 client. They MUST be sent on a stream that is in either the "open"
 or "half closed (remote)" state to the server. PUSH_PROMISE frames
 are interspersed with the frames that comprise a response, though
 they cannot be interspersed with HEADERS and CONTINUATION frames that
 comprise a single header block.

8.2.2. Push Responses

 After sending the PUSH_PROMISE frame, the server can begin delivering
 the pushed response as a response (Section 8.1.2.2) on a server-
 initiated stream that uses the promised stream identifier. The
 server uses this stream to transmit an HTTP response, using the same
 sequence of frames as defined in Section 8.1. This stream becomes
 "half closed" to the client (Section 5.1) after the initial HEADERS
 frame is sent.

Belshe, et al. Expires December 19, 2014 [Page 60]

Internet-Draft HTTP/2 June 2014

 Once a client receives a PUSH_PROMISE frame and chooses to accept the
 pushed response, the client SHOULD NOT issue any requests for the
 promised response until after the promised stream has closed.

 If the client determines, for any reason, that it does not wish to
 receive the pushed response from the server, or if the server takes
 too long to begin sending the promised response, the client can send
 an RST_STREAM frame, using either the CANCEL or REFUSED_STREAM codes,
 and referencing the pushed stream's identifier.

 A client can use the SETTINGS_MAX_CONCURRENT_STREAMS setting to limit
 the number of responses that can be concurrently pushed by a server.
 Advertising a SETTINGS_MAX_CONCURRENT_STREAMS value of zero disables
 server push by preventing the server from creating the necessary
 streams. This does not prohibit a server from sending PUSH_PROMISE
 frames; clients need to reset any promised streams that are not
 wanted.

 Clients receiving a pushed response MUST validate that the server is
 authorized to provide the response, see Section 10.1. For example, a
 server that offers a certificate for only the "example.com" DNS-ID or
 Common Name is not permitted to push a response for
 "https://www.example.org/doc".

8.3. The CONNECT Method

 In HTTP/1.x, the pseudo-method CONNECT ([RFC7231], Section 4.3.6) is
 used to convert an HTTP connection into a tunnel to a remote host.
 CONNECT is primarily used with HTTP proxies to establish a TLS
 session with an origin server for the purposes of interacting with
 "https" resources.

 In HTTP/2, the CONNECT method is used to establish a tunnel over a
 single HTTP/2 stream to a remote host, for similar purposes. The
 HTTP header field mapping works as mostly as defined in Request
 Header Fields (Section 8.1.2.1), with a few differences.
 Specifically:

 o The ":method" header field is set to "CONNECT".

 o The ":scheme" and ":path" header fields MUST be omitted.

 o The ":authority" header field contains the host and port to
 connect to (equivalent to the authority-form of the request-target
 of CONNECT requests, see [RFC7230], Section 5.3).

 A proxy that supports CONNECT establishes a TCP connection [TCP] to
 the server identified in the ":authority" header field. Once this

https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.6
https://datatracker.ietf.org/doc/html/rfc7230#section-5.3

Belshe, et al. Expires December 19, 2014 [Page 61]

Internet-Draft HTTP/2 June 2014

 connection is successfully established, the proxy sends a HEADERS
 frame containing a 2xx series status code to the client, as defined
 in [RFC7231], Section 4.3.6.

 After the initial HEADERS frame sent by each peer, all subsequent
 DATA frames correspond to data sent on the TCP connection. The
 payload of any DATA frames sent by the client are transmitted by the
 proxy to the TCP server; data received from the TCP server is
 assembled into DATA frames by the proxy. Frame types other than DATA
 or stream management frames (RST_STREAM, WINDOW_UPDATE, and PRIORITY)
 MUST NOT be sent on a connected stream, and MUST be treated as a
 stream error (Section 5.4.2) if received.

 The TCP connection can be closed by either peer. The END_STREAM flag
 on a DATA frame is treated as being equivalent to the TCP FIN bit. A
 client is expected to send a DATA frame with the END_STREAM flag set
 after receiving a frame bearing the END_STREAM flag. A proxy that
 receives a DATA frame with the END_STREAM flag set sends the attached
 data with the FIN bit set on the last TCP segment. A proxy that
 receives a TCP segment with the FIN bit set sends a DATA frame with
 the END_STREAM flag set. Note that the final TCP segment or DATA
 frame could be empty.

 A TCP connection error is signaled with RST_STREAM. A proxy treats
 any error in the TCP connection, which includes receiving a TCP
 segment with the RST bit set, as a stream error (Section 5.4.2) of
 type CONNECT_ERROR. Correspondingly, a proxy MUST send a TCP segment
 with the RST bit set if it detects an error with the stream or the
 HTTP/2 connection.

9. Additional HTTP Requirements/Considerations

 This section outlines attributes of the HTTP protocol that improve
 interoperability, reduce exposure to known security vulnerabilities,
 or reduce the potential for implementation variation.

9.1. Connection Management

 HTTP/2 connections are persistent. For best performance, it is
 expected clients will not close connections until it is determined
 that no further communication with a server is necessary (for
 example, when a user navigates away from a particular web page), or
 until the server closes the connection.

 Clients SHOULD NOT open more than one HTTP/2 connection to a given
 host and port pair, where host is derived from a URI, a selected
 alternative service [ALT-SVC], or a configured proxy.

https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.6

Belshe, et al. Expires December 19, 2014 [Page 62]

Internet-Draft HTTP/2 June 2014

 A client can create additional connections as replacements, either to
 replace connections that are near to exhausting the available stream
 identifier space (Section 5.1.1), to refresh the keying material for
 a TLS connection, or to replace connections that have encountered
 errors (Section 5.4.1).

 A client MAY open multiple connections to the same IP address and TCP
 port using different Server Name Indication [TLS-EXT] values or to
 provide different TLS client certificates, but SHOULD avoid creating
 multiple connections with the same configuration.

 Servers are encouraged to maintain open connections for as long as
 possible, but are permitted to terminate idle connections if
 necessary. When either endpoint chooses to close the transport-level
 TCP connection, the terminating endpoint SHOULD first send a GOAWAY
 (Section 6.8) frame so that both endpoints can reliably determine
 whether previously sent frames have been processed and gracefully
 complete or terminate any necessary remaining tasks.

9.1.1. Connection Reuse

 Clients MAY use a single server connection to send requests for URIs
 with multiple different authority components as long as the server is
 authoritative (Section 10.1). For "http" resources, this depends on
 the host having resolved to the same IP address.

 For "https" resources, connection reuse additionally depends on
 having a certificate that is valid for the host in the URI. That is
 the use of server certificate with multiple "subjectAltName"
 attributes, or names with wildcards. For example, a certificate with
 a "subjectAltName" of "*.example.com" might permit the use of the
 same connection for "a.example.com" and "b.example.com".

 In some deployments, reusing a connection for multiple origins can
 result in requests being directed to the wrong origin server. For
 example, TLS termination might be performed by a middlebox that uses
 the TLS Server Name Indication (SNI) [TLS-EXT] extension to select
 the an origin server. This means that it is possible for clients to
 send confidential information to servers that might not be the
 intended target for the request, even though the server has valid
 authentication credentials.

 A server that does not wish clients to reuse connections can indicate
 that it is not authoritative for a request by sending a 421 (Not
 Authoritative) status code in response to request (see

Section 9.1.2).

Belshe, et al. Expires December 19, 2014 [Page 63]

Internet-Draft HTTP/2 June 2014

9.1.2. The 421 (Not Authoritative) Status Code

 The 421 (Not Authoritative) status code indicates that the current
 origin server is not authoritative for the requested resource, in the
 sense of [RFC7230], Section 9.1 (see also Section 10.1).

 Clients receiving a 421 (Not Authoritative) response from a server
 MAY retry the request - whether the request method is idempotent or
 not - over a different connection. This is possible if a connection
 is reused (Section 9.1.1) or if an alternative service is selected
 ([ALT-SVC]).

 This status code MUST NOT be generated by proxies.

 A 421 response is cacheable by default; i.e., unless otherwise
 indicated by the method definition or explicit cache controls (see

Section 4.2.2 of [RFC7234]).

9.2. Use of TLS Features

 Implementations of HTTP/2 MUST support TLS 1.2 [TLS12] for HTTP/2
 over TLS. The general TLS usage guidance in [TLSBCP] SHOULD be
 followed, with some additional restrictions that are specific to
 HTTP/2.

9.2.1. TLS Features

 The TLS implementation MUST support the Server Name Indication (SNI)
 [TLS-EXT] extension to TLS. HTTP/2 clients MUST indicate the target
 domain name when negotiating TLS.

 The TLS implementation MUST disable compression. TLS compression can
 lead to the exposure of information that would not otherwise be
 revealed [RFC3749]. Generic compression is unnecessary since HTTP/2
 provides compression features that are more aware of context and
 therefore likely to be more appropriate for use for performance,
 security or other reasons.

 The TLS implementation MUST disable renegotiation. An endpoint MUST
 treat a TLS renegotiation as a connection error (Section 5.4.1) of
 type PROTOCOL_ERROR. Note that disabling renegotiation can result in
 long-lived connections becoming unusable due to limits on the number
 of messages the underlying cipher suite can encipher.

 A client MAY use renegotiation to provide confidentiality protection
 for client credentials offered in the handshake, but any
 renegotiation MUST occur prior to sending the connection preface. A

https://datatracker.ietf.org/doc/html/rfc7230#section-9.1
https://datatracker.ietf.org/doc/html/rfc7234#section-4.2.2
https://datatracker.ietf.org/doc/html/rfc3749

Belshe, et al. Expires December 19, 2014 [Page 64]

Internet-Draft HTTP/2 June 2014

 server SHOULD request a client certificate if it sees a renegotiation
 request immediately after establishing a connection.

 This effectively prevents the use of renegotiation in response to a
 request for a specific protected resource. A future specification
 might provide a way to support this use case.

9.2.2. TLS Cipher Suites

 The set of TLS cipher suites that are permitted in HTTP/2 is
 restricted. HTTP/2 MUST only be used with cipher suites that have
 ephemeral key exchange, such as the ephemeral Diffie-Hellman (DHE)
 [TLS12] or the elliptic curve variant (ECDHE) [RFC4492]. Ephemeral
 key exchange MUST have a minimum size of 2048 bits for DHE or
 security level of 128 bits for ECDHE. Clients MUST accept DHE sizes
 of up to 4096 bits. HTTP MUST NOT be used with cipher suites that
 use stream or block ciphers. Authenticated Encryption with
 Additional Data (AEAD) modes, such as the Galois Counter Model (GCM)
 mode for AES [RFC5288] are acceptable.

 Clients MAY advertise support of other cipher suites in order to
 allow for connection to servers that do not support HTTP/2 to
 complete without the additional latency imposed by using a separate
 connection for fallback.

 An implementation SHOULD NOT negotiate a TLS connection for HTTP/2
 without also negotiating a cipher suite that meets these
 requirements. Due to implementation limitations, it might not be
 possible to fail TLS negotiation. An endpoint MUST immediately
 terminate an HTTP/2 connection that does not meet these minimum
 requirements with a connection error (Section 5.4.1) of type
 INADEQUATE_SECURITY.

10. Security Considerations

10.1. Server Authority

 A client is only able to accept HTTP/2 responses from servers that
 are authoritative for those resources. This is particularly
 important for server push (Section 8.2), where the client validates
 the PUSH_PROMISE before accepting the response.

 HTTP/2 relies on the HTTP/1.1 definition of authority for determining
 whether a server is authoritative in providing a given response, see

[RFC7230], Section 9.1. This relies on local name resolution for the
 "http" URI scheme, and the authenticated server identity for the
 "https" scheme (see [RFC2818], Section 3).

https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc5288
https://datatracker.ietf.org/doc/html/rfc7230#section-9.1
https://datatracker.ietf.org/doc/html/rfc2818#section-3

Belshe, et al. Expires December 19, 2014 [Page 65]

Internet-Draft HTTP/2 June 2014

 A client MUST discard responses provided by a server that is not
 authoritative for those resources.

10.2. Cross-Protocol Attacks

 In a cross-protocol attack, an attacker causes a client to initiate a
 transaction in one protocol toward a server that understands a
 different protocol. An attacker might be able to cause the
 transaction to appear as valid transaction in the second protocol.
 In combination with the capabilities of the web context, this can be
 used to interact with poorly protected servers in private networks.

 Completing a TLS handshake with an ALPN identifier for HTTP/2 can be
 considered sufficient protection against cross protocol attacks.
 ALPN provides a positive indication that a server is willing to
 proceed with HTTP/2, which prevents attacks on other TLS-based
 protocols.

 The encryption in TLS makes it difficult for attackers to control the
 data which could be used in a cross-protocol attack on a cleartext
 protocol.

 The cleartext version of HTTP/2 has minimal protection against cross-
 protocol attacks. The connection preface (Section 3.5) contains a
 string that is designed to confuse HTTP/1.1 servers, but no special
 protection is offered for other protocols. A server that is willing
 to ignore parts of an HTTP/1.1 request containing an Upgrade header
 field in addition to the client connection preface could be exposed
 to a cross-protocol attack.

10.3. Intermediary Encapsulation Attacks

 HTTP/2 header field names and values are encoded as sequences of
 octets with a length prefix. This enables HTTP/2 to carry any string
 of octets as the name or value of a header field. An intermediary
 that translates HTTP/2 requests or responses into HTTP/1.1 directly
 could permit the creation of corrupted HTTP/1.1 messages. An
 attacker might exploit this behavior to cause the intermediary to
 create HTTP/1.1 messages with illegal header fields, extra header
 fields, or even new messages that are entirely falsified.

 Header field names or values that contain characters not permitted by
 HTTP/1.1, including carriage return (ASCII 0xd) or line feed (ASCII
 0xa) MUST NOT be translated verbatim by an intermediary, as
 stipulated in [RFC7230], Section 3.2.4.

 Translation from HTTP/1.x to HTTP/2 does not produce the same
 opportunity to an attacker. Intermediaries that perform translation

https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.4

Belshe, et al. Expires December 19, 2014 [Page 66]

Internet-Draft HTTP/2 June 2014

 to HTTP/2 MUST remove any instances of the "obs-fold" production from
 header field values.

10.4. Cacheability of Pushed Responses

 Pushed responses do not have an explicit request from the client; the
 request is provided by the server in the PUSH_PROMISE frame.

 Caching responses that are pushed is possible based on the guidance
 provided by the origin server in the Cache-Control header field.
 However, this can cause issues if a single server hosts more than one
 tenant. For example, a server might offer multiple users each a
 small portion of its URI space.

 Where multiple tenants share space on the same server, that server
 MUST ensure that tenants are not able to push representations of
 resources that they do not have authority over. Failure to enforce
 this would allow a tenant to provide a representation that would be
 served out of cache, overriding the actual representation that the
 authoritative tenant provides.

 Pushed responses for which an origin server is not authoritative (see
Section 10.1) are never cached or used.

10.5. Denial of Service Considerations

 An HTTP/2 connection can demand a greater commitment of resources to
 operate than a HTTP/1.1 connection. The use of header compression
 and flow control depend on a commitment of resources for storing a
 greater amount of state. Settings for these features ensure that
 memory commitments for these features are strictly bounded.

 The number of PUSH_PROMISE frames is not constrained in the same
 fashion. A client that accepts server push SHOULD limit the number
 of streams it allows to be in the "reserved (remote)" state.
 Excessive number of server push streams can be treated as a stream
 error (Section 5.4.2) of type ENHANCE_YOUR_CALM.

 Processing capacity cannot be guarded as effectively as state
 capacity.

 The SETTINGS frame can be abused to cause a peer to expend additional
 processing time. This might be done by pointlessly changing SETTINGS
 parameters, setting multiple undefined parameters, or changing the
 same setting multiple times in the same frame. WINDOW_UPDATE or
 PRIORITY frames can be abused to cause an unnecessary waste of
 resources.

Belshe, et al. Expires December 19, 2014 [Page 67]

Internet-Draft HTTP/2 June 2014

 Large numbers of small or empty frames can be abused to cause a peer
 to expend time processing frame headers. Note however that some uses
 are entirely legitimate, such as the sending of an empty DATA frame
 to end a stream.

 Header compression also offers some opportunities to waste processing
 resources; see Section 8 of [COMPRESSION] for more details on
 potential abuses.

 Limits in SETTINGS parameters cannot be reduced instantaneously,
 which leaves an endpoint exposed to behavior from a peer that could
 exceed the new limits. In particular, immediately after establishing
 a connection, limits set by a server are not known to clients and
 could be exceeded without being an obvious protocol violation.

 All these features - i.e., SETTINGS changes, small frames, header
 compression - have legitimate uses. These features become a burden
 only when they are used unnecessarily or to excess.

 An endpoint that doesn't monitor this behavior exposes itself to a
 risk of denial of service attack. Implementations SHOULD track the
 use of these features and set limits on their use. An endpoint MAY
 treat activity that is suspicious as a connection error
 (Section 5.4.1) of type ENHANCE_YOUR_CALM.

10.5.1. Limits on Header Block Size

 A large header block (Section 4.3) can cause an implementation to
 commit a large amount of state. In servers and intermediaries,
 header fields that are critical to routing, such as ":authority",
 ":path", and ":scheme" are not guaranteed to be present early in the
 header block. In particular, values that are in the reference set
 cannot be emitted until the header block ends.

 This can prevent streaming of the header fields to their ultimate
 destination, and forces the endpoint to buffer the entire header
 block. Since there is no hard limit to the size of a header block,
 an endpoint could be forced to exhaust available memory.

 A server that receives a larger header block than it is willing to
 handle can send an HTTP 431 (Request Header Fields Too Large) status
 code [RFC6585]. A client can discard responses that it cannot
 process. The header block MUST be processed to ensure a consistent
 connection state, unless the connection is closed.

https://datatracker.ietf.org/doc/html/rfc6585

Belshe, et al. Expires December 19, 2014 [Page 68]

Internet-Draft HTTP/2 June 2014

10.6. Use of Compression

 HTTP/2 enables greater use of compression for both header fields
 (Section 4.3) and entity bodies. Compression can allow an attacker
 to recover secret data when it is compressed in the same context as
 data under attacker control.

 There are demonstrable attacks on compression that exploit the
 characteristics of the web (e.g., [BREACH]). The attacker induces
 multiple requests containing varying plaintext, observing the length
 of the resulting ciphertext in each, which reveals a shorter length
 when a guess about the secret is correct.

 Implementations communicating on a secure channel MUST NOT compress
 content that includes both confidential and attacker-controlled data
 unless separate compression dictionaries are used for each source of
 data. Compression MUST NOT be used if the source of data cannot be
 reliably determined.

 Further considerations regarding the compression of header fields are
 described in [COMPRESSION].

10.7. Use of Padding

 Padding within HTTP/2 is not intended as a replacement for general
 purpose padding, such as might be provided by TLS [TLS12]. Redundant
 padding could even be counterproductive. Correct application can
 depend on having specific knowledge of the data that is being padded.

 To mitigate attacks that rely on compression, disabling or limiting
 compression might be preferable to padding as a countermeasure.

 Padding can be used to obscure the exact size of frame content, and
 is provided to mitigate specific attacks within HTTP. For example,
 attacks where compressed content includes both attacker-controlled
 plaintext and secret data (see for example, [BREACH]).

 Use of padding can result in less protection than might seem
 immediately obvious. At best, padding only makes it more difficult
 for an attacker to infer length information by increasing the number
 of frames an attacker has to observe. Incorrectly implemented
 padding schemes can be easily defeated. In particular, randomized
 padding with a predictable distribution provides very little
 protection; similarly, padding payloads to a fixed size exposes
 information as payload sizes cross the fixed size boundary, which
 could be possible if an attacker can control plaintext.

Belshe, et al. Expires December 19, 2014 [Page 69]

Internet-Draft HTTP/2 June 2014

 Intermediaries SHOULD retain padding for DATA frames, but MAY drop
 padding for HEADERS and PUSH_PROMISE frames. A valid reason for an
 intermediary to change the amount of padding of frames is to improve
 the protections that padding provides.

10.8. Privacy Considerations

 Several characteristics of HTTP/2 provide an observer an opportunity
 to correlate actions of a single client or server over time. This
 includes the value of settings, the manner in which flow control
 windows are managed, the way priorities are allocated to streams,
 timing of reactions to stimulus, and handling of any optional
 features.

 As far as this creates observable differences in behavior, they could
 be used as a basis for fingerprinting a specific client, as defined
 in Section 1.8 of [HTML5].

11. IANA Considerations

 A string for identifying HTTP/2 is entered into the "Application
 Layer Protocol Negotiation (ALPN) Protocol IDs" registry established
 in [TLSALPN].

 This document establishes a registry for frame types, settings, and
 error codes. These new registries are entered into a new "Hypertext
 Transfer Protocol (HTTP) 2 Parameters" section.

 This document registers the "HTTP2-Settings" header field for use in
 HTTP; and the 421 (Not Authoritative) status code.

 This document registers the "PRI" method for use in HTTP, to avoid
 collisions with the connection preface (Section 3.5).

11.1. Registration of HTTP/2 Identification Strings

 This document creates two registrations for the identification of
 HTTP/2 in the "Application Layer Protocol Negotiation (ALPN) Protocol
 IDs" registry established in [TLSALPN].

 The "h2" string identifies HTTP/2 when used over TLS:

 Protocol: HTTP/2 over TLS

 Identification Sequence: 0x68 0x32 ("h2")

 Specification: This document

Belshe, et al. Expires December 19, 2014 [Page 70]

Internet-Draft HTTP/2 June 2014

 The "h2c" string identifies HTTP/2 when used over cleartext TCP:

 Protocol: HTTP/2 over TCP

 Identification Sequence: 0x68 0x32 0x63 ("h2c")

 Specification: This document

11.2. Frame Type Registry

 This document establishes a registry for HTTP/2 frame types codes.
 The "HTTP/2 Frame Type" registry manages an 8-bit space. The "HTTP/2
 Frame Type" registry operates under either of the "IETF Review" or
 "IESG Approval" policies [RFC5226] for values between 0x00 and 0xef,
 with values between 0xf0 and 0xff being reserved for experimental
 use.

 New entries in this registry require the following information:

 Frame Type: A name or label for the frame type.

 Code: The 8-bit code assigned to the frame type.

 Specification: A reference to a specification that includes a
 description of the frame layout, it's semantics and flags that the
 frame type uses, including any parts of the frame that are
 conditionally present based on the value of flags.

 The entries in the following table are registered by this document.

 +---------------+------+--------------+
 | Frame Type | Code | Section |
 +---------------+------+--------------+
DATA	0x0	Section 6.1
HEADERS	0x1	Section 6.2
PRIORITY	0x2	Section 6.3
RST_STREAM	0x3	Section 6.4
SETTINGS	0x4	Section 6.5
PUSH_PROMISE	0x5	Section 6.6
PING	0x6	Section 6.7
GOAWAY	0x7	Section 6.8
WINDOW_UPDATE	0x8	Section 6.9
CONTINUATION	0x9	Section 6.10
 +---------------+------+--------------+

https://datatracker.ietf.org/doc/html/rfc5226

Belshe, et al. Expires December 19, 2014 [Page 71]

Internet-Draft HTTP/2 June 2014

11.3. Settings Registry

 This document establishes a registry for HTTP/2 settings. The
 "HTTP/2 Settings" registry manages a 16-bit space. The "HTTP/2
 Settings" registry operates under the "Expert Review" policy
 [RFC5226] for values in the range from 0x0000 to 0xefff, with values
 between and 0xf000 and 0xffff being reserved for experimental use.

 New registrations are advised to provide the following information:

 Name: A symbolic name for the setting. Specifying a setting name is
 optional.

 Code: The 16-bit code assigned to the setting.

 Initial Value: An initial value for the setting.

 Specification: A stable reference to a specification that describes
 the use of the setting.

 An initial set of setting registrations can be found in
Section 6.5.2.

 +------------------------+------+---------------+---------------+
 | Name | Code | Initial Value | Specification |
 +------------------------+------+---------------+---------------+
HEADER_TABLE_SIZE	0x1	4096	Section 6.5.2
ENABLE_PUSH	0x2	1	Section 6.5.2
MAX_CONCURRENT_STREAMS	0x3	(infinite)	Section 6.5.2
INITIAL_WINDOW_SIZE	0x4	65535	Section 6.5.2
 +------------------------+------+---------------+---------------+

11.4. Error Code Registry

 This document establishes a registry for HTTP/2 error codes. The
 "HTTP/2 Error Code" registry manages a 32-bit space. The "HTTP/2
 Error Code" registry operates under the "Expert Review" policy
 [RFC5226].

 Registrations for error codes are required to include a description
 of the error code. An expert reviewer is advised to examine new
 registrations for possible duplication with existing error codes.
 Use of existing registrations is to be encouraged, but not mandated.

 New registrations are advised to provide the following information:

 Name: A name for the error code. Specifying an error code name is
 optional.

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Belshe, et al. Expires December 19, 2014 [Page 72]

Internet-Draft HTTP/2 June 2014

 Code: The 32-bit error code value.

 Description: A brief description of the error code semantics, longer
 if no detailed specification is provided.

 Specification: An optional reference for a specification that
 defines the error code.

 The entries in the following table are registered by this document.

 +---------------------+------+----------------------+---------------+
 | Name | Code | Description | Specification |
 +---------------------+------+----------------------+---------------+
NO_ERROR	0x0	Graceful shutdown	Section 7
PROTOCOL_ERROR	0x1	Protocol error	Section 7
		detected	
INTERNAL_ERROR	0x2	Implementation fault	Section 7
FLOW_CONTROL_ERROR	0x3	Flow control limits	Section 7
		exceeded	
SETTINGS_TIMEOUT	0x4	Settings not	Section 7
		acknowledged	
STREAM_CLOSED	0x5	Frame received for	Section 7
		closed stream	
FRAME_SIZE_ERROR	0x6	Frame size incorrect	Section 7
REFUSED_STREAM	0x7	Stream not processed	Section 7
CANCEL	0x8	Stream cancelled	Section 7
COMPRESSION_ERROR	0x9	Compression state	Section 7
		not updated	
CONNECT_ERROR	0xa	TCP connection error	Section 7
		for CONNECT method	
ENHANCE_YOUR_CALM	0xb	Processing capacity	Section 7
		exceeded	
INADEQUATE_SECURITY	0xc	Negotiated TLS	Section 7
		parameters not	
		acceptable	
 +---------------------+------+----------------------+---------------+

11.5. HTTP2-Settings Header Field Registration

 This section registers the "HTTP2-Settings" header field in the
 Permanent Message Header Field Registry [BCP90].

 Header field name: HTTP2-Settings

 Applicable protocol: http

 Status: standard

Belshe, et al. Expires December 19, 2014 [Page 73]

Internet-Draft HTTP/2 June 2014

 Author/Change controller: IETF

 Specification document(s): Section 3.2.1 of this document

 Related information: This header field is only used by an HTTP/2
 client for Upgrade-based negotiation.

11.6. PRI Method Registration

 This section registers the "PRI" method in the HTTP Method Registry
 ([RFC7231], Section 8.1).

 Method Name: PRI

 Safe No

 Idempotent No

 Specification document(s) Section 3.5 of this document

 Related information: This method is never used by an actual client.
 This method will appear to be used when an HTTP/1.1 server or
 intermediary attempts to parse an HTTP/2 connection preface.

11.7. The 421 Not Authoritative HTTP Status Code

 This document registers the 421 (Not Authoritative) HTTP Status code
 in the Hypertext Transfer Protocol (HTTP) Status Code Registry
 ([RFC7231], Section 8.2).

 Status Code: 421

 Short Description: Not Authoritative

 Specification: Section 9.1.2 of this document

12. Acknowledgements

 This document includes substantial input from the following
 individuals:

 o Adam Langley, Wan-Teh Chang, Jim Morrison, Mark Nottingham, Alyssa
 Wilk, Costin Manolache, William Chan, Vitaliy Lvin, Joe Chan, Adam
 Barth, Ryan Hamilton, Gavin Peters, Kent Alstad, Kevin Lindsay,
 Paul Amer, Fan Yang, Jonathan Leighton (SPDY contributors).

 o Gabriel Montenegro and Willy Tarreau (Upgrade mechanism).

https://datatracker.ietf.org/doc/html/rfc7231#section-8.1
https://datatracker.ietf.org/doc/html/rfc7231#section-8.2

Belshe, et al. Expires December 19, 2014 [Page 74]

Internet-Draft HTTP/2 June 2014

 o William Chan, Salvatore Loreto, Osama Mazahir, Gabriel Montenegro,
 Jitu Padhye, Roberto Peon, Rob Trace (Flow control).

 o Mike Bishop (Extensibility).

 o Mark Nottingham, Julian Reschke, James Snell, Jeff Pinner, Mike
 Bishop, Herve Ruellan (Substantial editorial contributions).

 o Alexey Melnikov was an editor of this document during 2013.

 o A substantial proportion of Martin's contribution was supported by
 Microsoft during his employment there.

13. References

13.1. Normative References

 [COMPRESSION]
 Ruellan, H. and R. Peon, "HPACK - Header Compression for
 HTTP/2", draft-ietf-httpbis-header-compression-08 (work in
 progress), June 2014.

 [COOKIE] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 April 2011.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing", RFC

7230, June 2014.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-compression-08
https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230

Belshe, et al. Expires December 19, 2014 [Page 75]

Internet-Draft HTTP/2 June 2014

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 June 2014.

 [RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests", RFC 7232, June
 2014.

 [RFC7233] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "Hypertext Transfer Protocol (HTTP/1.1): Range Requests",

RFC 7233, June 2014.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, June 2014.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235, June 2014.

 [TCP] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [TLS-EXT] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

 [TLS12] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [TLSALPN] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application Layer Protocol
 Negotiation Extension", draft-ietf-tls-applayerprotoneg-05
 (work in progress), March 2014.

13.2. Informative References

 [ALT-SVC] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", draft-ietf-httpbis-alt-svc-01 (work
 in progress), April 2014.

 [BCP90] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 September 2004.

 [BREACH] Gluck, Y., Harris, N., and A. Prado, "BREACH: Reviving the
 CRIME Attack", July 2013, <http://breachattack.com/
 resources/
 BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf>.

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
https://datatracker.ietf.org/doc/html/rfc7233
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/draft-ietf-tls-applayerprotoneg-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-alt-svc-01
https://datatracker.ietf.org/doc/html/bcp90
https://datatracker.ietf.org/doc/html/rfc3864
http://breachattack.com/

Belshe, et al. Expires December 19, 2014 [Page 76]

Internet-Draft HTTP/2 June 2014

 [HTML5] Berjon, R., Faulkner, S., Leithead, T., Doyle Navara, E.,
 O'Connor, E., and S. Pfeiffer, "HTML5", W3C Candidate
 Recommendation CR-html5-20140204, Febuary 2014,
 <http://www.w3.org/TR/2014/CR-html5-20140204/>.

 Latest version available at [5].

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2518] Goland, Y., Whitehead, E., Faizi, A., Carter, S., and D.
 Jensen, "HTTP Extensions for Distributed Authoring --
 WEBDAV", RFC 2518, February 1999.

 [RFC3749] Hollenbeck, S., "Transport Layer Security Protocol
 Compression Methods", RFC 3749, May 2004.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492, May 2006.

 [RFC5288] Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
 Counter Mode (GCM) Cipher Suites for TLS", RFC 5288,
 August 2008.

 [RFC6585] Nottingham, N. and R. Fielding, "Additional HTTP Status
 Codes", RFC 6585, April 2012.

 [TALKING] Huang, L-S., Chen, E., Barth, A., Rescorla, E., and C.
 Jackson, "Talking to Yourself for Fun and Profit", 2011,
 <http://w2spconf.com/2011/papers/websocket.pdf>.

 [TLSBCP] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of TLS and DTLS", draft-

sheffer-tls-bcp-02 (work in progress), February 2014.

13.3. URIs

 [1] https://www.iana.org/assignments/message-headers

 [2] https://groups.google.com/forum/?fromgroups#!topic/spdy-dev/
 cfUef2gL3iU

 [3] https://tools.ietf.org/html/draft-montenegro-httpbis-http2-fc-
principles-01

http://www.w3.org/TR/2014/CR-html5-20140204/
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2518
https://datatracker.ietf.org/doc/html/rfc3749
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc5288
https://datatracker.ietf.org/doc/html/rfc6585
http://w2spconf.com/2011/papers/websocket.pdf
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-bcp-02
https://datatracker.ietf.org/doc/html/draft-sheffer-tls-bcp-02
https://www.iana.org/assignments/message-headers
https://groups.google
https://tools.ietf.org/html/draft-montenegro-httpbis-http2-fc-principles-01
https://tools.ietf.org/html/draft-montenegro-httpbis-http2-fc-principles-01

Belshe, et al. Expires December 19, 2014 [Page 77]

Internet-Draft HTTP/2 June 2014

Appendix A. Change Log (to be removed by RFC Editor before publication)

A.1. Since draft-ietf-httpbis-http2-12

 Restored extensibility options.

 Restricting TLS cipher suites to AEAD only.

 Removing Content-Encoding requirements.

 Permitting the use of PRIORITY after stream close.

 Removed ALTSVC frame.

 Removed BLOCKED frame.

 Reducing the maximum padding size to 256 octets; removing padding
 from CONTINUATION frames.

 Removed per-frame GZIP compression.

A.2. Since draft-ietf-httpbis-http2-11

 Added BLOCKED frame (at risk).

 Simplified priority scheme.

 Added DATA per-frame GZIP compression.

A.3. Since draft-ietf-httpbis-http2-10

 Changed "connection header" to "connection preface" to avoid
 confusion.

 Added dependency-based stream prioritization.

 Added "h2c" identifier to distinguish between cleartext and secured
 HTTP/2.

 Adding missing padding to PUSH_PROMISE.

 Integrate ALTSVC frame and supporting text.

 Dropping requirement on "deflate" Content-Encoding.

 Improving security considerations around use of compression.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-12
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-11
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-10

Belshe, et al. Expires December 19, 2014 [Page 78]

Internet-Draft HTTP/2 June 2014

A.4. Since draft-ietf-httpbis-http2-09

 Adding padding for data frames.

 Renumbering frame types, error codes, and settings.

 Adding INADEQUATE_SECURITY error code.

 Updating TLS usage requirements to 1.2; forbidding TLS compression.

 Removing extensibility for frames and settings.

 Changing setting identifier size.

 Removing the ability to disable flow control.

 Changing the protocol identification token to "h2".

 Changing the use of :authority to make it optional and to allow
 userinfo in non-HTTP cases.

 Allowing split on 0x0 for Cookie.

 Reserved PRI method in HTTP/1.1 to avoid possible future collisions.

A.5. Since draft-ietf-httpbis-http2-08

 Added cookie crumbling for more efficient header compression.

 Added header field ordering with the value-concatenation mechanism.

A.6. Since draft-ietf-httpbis-http2-07

 Marked draft for implementation.

A.7. Since draft-ietf-httpbis-http2-06

 Adding definition for CONNECT method.

 Constraining the use of push to safe, cacheable methods with no
 request body.

 Changing from :host to :authority to remove any potential confusion.

 Adding setting for header compression table size.

 Adding settings acknowledgement.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-09
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-08
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-07
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-06

Belshe, et al. Expires December 19, 2014 [Page 79]

Internet-Draft HTTP/2 June 2014

 Removing unnecessary and potentially problematic flags from
 CONTINUATION.

 Added denial of service considerations.

A.8. Since draft-ietf-httpbis-http2-05

 Marking the draft ready for implementation.

 Renumbering END_PUSH_PROMISE flag.

 Editorial clarifications and changes.

A.9. Since draft-ietf-httpbis-http2-04

 Added CONTINUATION frame for HEADERS and PUSH_PROMISE.

 PUSH_PROMISE is no longer implicitly prohibited if
 SETTINGS_MAX_CONCURRENT_STREAMS is zero.

 Push expanded to allow all safe methods without a request body.

 Clarified the use of HTTP header fields in requests and responses.
 Prohibited HTTP/1.1 hop-by-hop header fields.

 Requiring that intermediaries not forward requests with missing or
 illegal routing :-headers.

 Clarified requirements around handling different frames after stream
 close, stream reset and GOAWAY.

 Added more specific prohibitions for sending of different frame types
 in various stream states.

 Making the last received setting value the effective value.

 Clarified requirements on TLS version, extension and ciphers.

A.10. Since draft-ietf-httpbis-http2-03

 Committed major restructuring atrocities.

 Added reference to first header compression draft.

 Added more formal description of frame lifecycle.

 Moved END_STREAM (renamed from FINAL) back to HEADERS/DATA.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-03

Belshe, et al. Expires December 19, 2014 [Page 80]

Internet-Draft HTTP/2 June 2014

 Removed HEADERS+PRIORITY, added optional priority to HEADERS frame.

 Added PRIORITY frame.

A.11. Since draft-ietf-httpbis-http2-02

 Added continuations to frames carrying header blocks.

 Replaced use of "session" with "connection" to avoid confusion with
 other HTTP stateful concepts, like cookies.

 Removed "message".

 Switched to TLS ALPN from NPN.

 Editorial changes.

A.12. Since draft-ietf-httpbis-http2-01

 Added IANA considerations section for frame types, error codes and
 settings.

 Removed data frame compression.

 Added PUSH_PROMISE.

 Added globally applicable flags to framing.

 Removed zlib-based header compression mechanism.

 Updated references.

 Clarified stream identifier reuse.

 Removed CREDENTIALS frame and associated mechanisms.

 Added advice against naive implementation of flow control.

 Added session header section.

 Restructured frame header. Removed distinction between data and
 control frames.

 Altered flow control properties to include session-level limits.

 Added note on cacheability of pushed resources and multiple tenant
 servers.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-01

Belshe, et al. Expires December 19, 2014 [Page 81]

Internet-Draft HTTP/2 June 2014

 Changed protocol label form based on discussions.

A.13. Since draft-ietf-httpbis-http2-00

 Changed title throughout.

 Removed section on Incompatibilities with SPDY draft#2.

 Changed INTERNAL_ERROR on GOAWAY to have a value of 2 [6].

 Replaced abstract and introduction.

 Added section on starting HTTP/2.0, including upgrade mechanism.

 Removed unused references.

 Added flow control principles (Section 5.2.1) based on [7].

A.14. Since draft-mbelshe-httpbis-spdy-00

 Adopted as base for draft-ietf-httpbis-http2.

 Updated authors/editors list.

 Added status note.

Authors' Addresses

 Mike Belshe
 Twist

 EMail: mbelshe@chromium.org

 Roberto Peon
 Google, Inc

 EMail: fenix@google.com

 Martin Thomson (editor)
 Mozilla
 331 E Evelyn Street
 Mountain View, CA 94041
 US

 EMail: martin.thomson@gmail.com

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-00
https://datatracker.ietf.org/doc/html/draft-mbelshe-httpbis-spdy-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2

Belshe, et al. Expires December 19, 2014 [Page 82]

