
HTTP M. Bishop
Internet-Draft Akamai
Intended status: Standards Track N. Sullivan
Expires: November 29, 2018 Cloudflare
 M. Thomson
 Mozilla
 May 28, 2018

Secondary Certificate Authentication in HTTP/2
draft-ietf-httpbis-http2-secondary-certs-01

Abstract

 A use of TLS Exported Authenticators is described which enables
 HTTP/2 clients and servers to offer additional certificate-based
 credentials after the connection is established. The means by which
 these credentials are used with requests is defined.

Note to Readers

 Discussion of this draft takes place on the HTTP working group
 mailing list (ietf-http-wg@w3.org), which is archived at

https://lists.w3.org/Archives/Public/ietf-http-wg/ [1].

 Working Group information can be found at http://httpwg.github.io/
 [2]; source code and issues list for this draft can be found at

https://github.com/httpwg/http-extensions/labels/secondary-certs [3].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 29, 2018.

Bishop, et al. Expires November 29, 2018 [Page 1]

https://lists.w3.org/Archives/Public/ietf-http-wg/
http://httpwg.github.io/
https://github.com/httpwg/http-extensions/labels/secondary-certs
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Server Certificate Authentication 3
1.2. Client Certificate Authentication 4
1.2.1. HTTP/1.1 using TLS 1.2 and previous 5
1.2.2. HTTP/1.1 using TLS 1.3 6
1.2.3. HTTP/2 . 6

1.3. HTTP-Layer Certificate Authentication 7
1.4. Terminology . 8

2. Discovering Additional Certificates at the HTTP/2 Layer . . . 8
 2.1. Indicating support for HTTP-layer certificate
 authentication . 8

2.2. Making certificates or requests available 9
2.3. Requiring certificate authentication 9
2.3.1. Requiring additional server certificates 9

3. Certificates Frames for HTTP/2 11
3.1. The CERTIFICATE_NEEDED frame 11
3.2. The USE_CERTIFICATE Frame 12
3.3. The CERTIFICATE_REQUEST Frame 14
3.3.1. Exported Authenticator Request Characteristics . . . 15

3.4. The CERTIFICATE Frame 15
3.4.1. Exported Authenticator Characteristics 16

 4. Indicating failures during HTTP-Layer Certificate
 Authentication . 16

5. Security Considerations 17
5.1. Impersonation . 17
5.2. Fingerprinting . 18
5.3. Denial of Service . 18
5.4. Confusion About State 18

6. IANA Considerations . 19
6.1. HTTP/2 SETTINGS_HTTP_CERT_AUTH Setting 19
6.2. New HTTP/2 Frames . 19

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Bishop, et al. Expires November 29, 2018 [Page 2]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

6.3. New HTTP/2 Error Codes 20
7. References . 20
7.1. Normative References 20
7.2. Informative References 21
7.3. URIs . 21

Appendix A. Change Log . 21
A.1. Since draft-ietf-httpbis-http2-secondary-certs-00: . . . 21
A.2. Since draft-bishop-httpbis-http2-additional-certs-05: . . 22

 Acknowledgements . 22
 Authors' Addresses . 22

1. Introduction

 HTTP clients need to know that the content they receive on a
 connection comes from the origin that they intended to retrieve in
 from. The traditional form of server authentication in HTTP has been
 in the form of a single X.509 certificate provided during the TLS

RFC5246 [I-D.ietf-tls-tls13] handshake.

 Many existing HTTP [RFC7230] servers also have authentication
 requirements for the resources they serve. Of the bountiful
 authentication options available for authenticating HTTP requests,
 client certificates present a unique challenge for resource-specific
 authentication requirements because of the interaction with the
 underlying TLS layer.

 TLS 1.2 [RFC5246] supports one server and one client certificate on a
 connection. These certificates may contain multiple identities, but
 only one certificate may be provided.

 Many HTTP servers host content from several origins. HTTP/2 permits
 clients to reuse an existing HTTP connection to a server provided
 that the secondary origin is also in the certificate provided during
 the TLS handshake. In many cases, servers choose to maintain
 separate certificates for different origins but still desire the
 benefits of a shared HTTP connection.

1.1. Server Certificate Authentication

Section 9.1.1 of [RFC7540] describes how connections may be used to
 make requests from multiple origins as long as the server is
 authoritative for both. A server is considered authoritative for an
 origin if DNS resolves the origin to the IP address of the server and
 (for TLS) if the certificate presented by the server contains the
 origin in the Subject Alternative Names field.

 [RFC7838] enables a step of abstraction from the DNS resolution. If
 both hosts have provided an Alternative Service at hostnames which

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-secondary-certs-00
https://datatracker.ietf.org/doc/html/draft-bishop-httpbis-http2-additional-certs-05
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7540#section-9.1.1

Bishop, et al. Expires November 29, 2018 [Page 3]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

 resolve to the IP address of the server, they are considered
 authoritative just as if DNS resolved the origin itself to that
 address. However, the server's one TLS certificate is still required
 to contain the name of each origin in question.

 [RFC8336] relaxes the requirement to perform the DNS lookup if
 already connected to a server with an appropriate certificate which
 claims support for a particular origin.

 Servers which host many origins often would prefer to have separate
 certificates for some sets of origins. This may be for ease of
 certificate management (the ability to separately revoke or renew
 them), due to different sources of certificates (a CDN acting on
 behalf of multiple origins), or other factors which might drive this
 administrative decision. Clients connecting to such origins cannot
 currently reuse connections, even if both client and server would
 prefer to do so.

 Because the TLS SNI extension is exchanged in the clear, clients
 might also prefer to retrieve certificates inside the encrypted
 context. When this information is sensitive, it might be
 advantageous to request a general-purpose certificate or anonymous
 ciphersuite at the TLS layer, while acquiring the "real" certificate
 in HTTP after the connection is established.

1.2. Client Certificate Authentication

 For servers that wish to use client certificates to authenticate
 users, they might request client authentication during or immediately
 after the TLS handshake. However, if not all users or resources need
 certificate-based authentication, a request for a certificate has the
 unfortunate consequence of triggering the client to seek a
 certificate, possibly requiring user interaction, network traffic, or
 other time-consuming activities. During this time, the connection is
 stalled in many implementations. Such a request can result in a poor
 experience, particularly when sent to a client that does not expect
 the request.

 The TLS 1.3 CertificateRequest can be used by servers to give clients
 hints about which certificate to offer. Servers that rely on
 certificate-based authentication might request different certificates
 for different resources. Such a server cannot use contextual
 information about the resource to construct an appropriate TLS
 CertificateRequest message during the initial handshake.

 Consequently, client certificates are requested at connection
 establishment time only in cases where all clients are expected or
 required to have a single certificate that is used for all resources.

Bishop, et al. Expires November 29, 2018 [Page 4]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

 Many other uses for client certificates are reactive, that is,
 certificates are requested in response to the client making a
 request.

1.2.1. HTTP/1.1 using TLS 1.2 and previous

 In HTTP/1.1, a server that relies on client authentication for a
 subset of users or resources does not request a certificate when the
 connection is established. Instead, it only requests a client
 certificate when a request is made to a resource that requires a
 certificate. TLS 1.2 [RFC5246] accomodates this by permitting the
 server to request a new TLS handshake, in which the server will
 request the client's certificate.

 Figure 1 shows the server initiating a TLS-layer renegotiation in
 response to receiving an HTTP/1.1 request to a protected resource.

 Client Server
 -- (HTTP) GET /protected -------------------> *1
 <---------------------- (TLS) HelloRequest -- *2
 -- (TLS) ClientHello ----------------------->
 <------------------ (TLS) ServerHello, ... --
 <---------------- (TLS) CertificateRequest -- *3
 -- (TLS) ..., Certificate ------------------> *4
 -- (TLS) Finished -------------------------->
 <-------------------------- (TLS) Finished --
 <--------------------------- (HTTP) 200 OK -- *5

 Figure 1: HTTP/1.1 Reactive Certificate Authentication with TLS 1.2

 In this example, the server receives a request for a protected
 resource (at *1 on Figure 1). Upon performing an authorization
 check, the server determines that the request requires authentication
 using a client certificate and that no such certificate has been
 provided.

 The server initiates TLS renegotiation by sending a TLS HelloRequest
 (at *2). The client then initiates a TLS handshake. Note that some
 TLS messages are elided from the figure for the sake of brevity.

 The critical messages for this example are the server requesting a
 certificate with a TLS CertificateRequest (*3); this request might
 use information about the request or resource. The client then
 provides a certificate and proof of possession of the private key in
 Certificate and CertificateVerify messages (*4).

https://datatracker.ietf.org/doc/html/rfc5246

Bishop, et al. Expires November 29, 2018 [Page 5]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

 When the handshake completes, the server performs any authorization
 checks a second time. With the client certificate available, it then
 authorizes the request and provides a response (*5).

1.2.2. HTTP/1.1 using TLS 1.3

 TLS 1.3 [I-D.ietf-tls-tls13] introduces a new client authentication
 mechanism that allows for clients to authenticate after the handshake
 has been completed. For the purposes of authenticating an HTTP
 request, this is functionally equivalent to renegotiation. Figure 2
 shows the simpler exchange this enables.

 Client Server
 -- (HTTP) GET /protected ------------------->
 <---------------- (TLS) CertificateRequest --
 -- (TLS) Certificate, CertificateVerify,
 Finished ----------------------->
 <--------------------------- (HTTP) 200 OK --

 Figure 2: HTTP/1.1 Reactive Certificate Authentication with TLS 1.3

 TLS 1.3 does not support renegotiation, instead supporting direct
 client authentication. In contrast to the TLS 1.2 example, in TLS
 1.3, a server can simply request a certificate.

1.2.3. HTTP/2

 An important part of the HTTP/1.1 exchange is that the client is able
 to easily identify the request that caused the TLS renegotiation.
 The client is able to assume that the next unanswered request on the
 connection is responsible. The HTTP stack in the client is then able
 to direct the certificate request to the application or component
 that initiated that request. This ensures that the application has
 the right contextual information for processing the request.

 In HTTP/2, a client can have multiple outstanding requests. Without
 some sort of correlation information, a client is unable to identify
 which request caused the server to request a certificate.

 Thus, the minimum necessary mechanism to support reactive certificate
 authentication in HTTP/2 is an identifier that can be use to
 correlate an HTTP request with a request for a certificate. Since
 streams are used for individual requests, correlation with a stream
 is sufficient.

 [RFC7540] prohibits renegotiation after any application data has been
 sent. This completely blocks reactive certificate authentication in
 HTTP/2 using TLS 1.2. If this restriction were relaxed by an

Bishop, et al. Expires November 29, 2018 [Page 6]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

 extension or update to HTTP/2, such an identifier could be added to
 TLS 1.2 by means of an extension to TLS. Unfortunately, many TLS 1.2
 implementations do not permit application data to continue during a
 renegotiation. This is problematic for a multiplexed protocol like
 HTTP/2.

1.3. HTTP-Layer Certificate Authentication

 This draft defines HTTP/2 frames to carry the relevant certificate
 messages, enabling certificate-based authentication of both clients
 and servers independent of TLS version. This mechanism can be
 implemented at the HTTP layer without breaking the existing interface
 between HTTP and applications above it.

 This could be done in a naive manner by replicating the TLS messages
 as HTTP/2 frames on each stream. However, this would create needless
 redundancy between streams and require frequent expensive signing
 operations. Instead, TLS Exported Authenticators
 [I-D.ietf-tls-exported-authenticator] are exchanged on stream zero
 and other frames incorporate them to particular requests by reference
 as needed.

 TLS Exported Authenticators are structured messages that can be
 exported by either party of a TLS connection and validated by the
 other party. Given an established TLS connection, a request can be
 constructed which describes the desired certificate and an
 authenticator message can be constructed proving possession of a
 certificate and a corresponding private key. Both requests and
 authenticators can be generated by either the client or the server.
 Exported Authenticators use the message structures from sections
 4.3.2 and 4.4 of [I-D.ietf-tls-tls13], but different parameters.

 Each Authenticator is computed using a Handshake Context and Finished
 MAC Key derived from the TLS session. The Handshake Context is
 identical for both parties of the TLS connection, while the Finished
 MAC Key is dependent on whether the Authenticator is created by the
 client or the server.

 Successfully verified Authenticators result in certificate chains,
 with verified possession of the corresponding private key, which can
 be supplied into a collection of available certificates. Likewise,
 descriptions of desired certificates can be supplied into these
 collections.

Section 2 describes how the feature is employed, defining means to
 detect support in peers (Section 2.1), make certificates and requests
 available (Section 2.2), and indicate when streams are blocked
 waiting on an appropriate certificate (Section 2.3). Section 3

Bishop, et al. Expires November 29, 2018 [Page 7]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

 defines the required frame types, which parallel the TLS 1.3 message
 exchange. Finally, Section 4 defines new error types which can be
 used to notify peers when the exchange has not been successful.

1.4. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Discovering Additional Certificates at the HTTP/2 Layer

 A certificate chain with proof of possession of the private key
 corresponding to the end-entity certificate is sent as a sequence of
 "CERTIFICATE" frames (see Section 3.4) on stream zero. Once the
 holder of a certificate has sent the chain and proof, this
 certificate chain is cached by the recipient and available for future
 use. Clients can proactively indicate the certificate they intend to
 use on each request using an unsolicited "USE_CERTIFICATE" frame, if
 desired. The previously-supplied certificates are available for
 reference without having to resend them.

 Otherwise, the server uses a "CERTIFICATE_REQUEST" frame to describe
 a class of certificates on stream zero, then uses
 "CERTIFICATE_NEEDED" frames to associate these with individual
 requests. The client responds with a "USE_CERTIFICATE" frame
 indicating the certificate which should be used to satisfy the
 request.

 Data sent by each peer is correlated by the ID given in each frame.
 This ID is unrelated to values used by the other peer, even if each
 uses the same ID in certain cases. "USE_CERTIFICATE" frames indicate
 whether they are sent proactively or are in response to a
 "CERTIFICATE_NEEDED" frame.

2.1. Indicating support for HTTP-layer certificate authentication

 Clients and servers that will accept requests for HTTP-layer
 certificate authentication indicate this using the HTTP/2
 "SETTINGS_HTTP_CERT_AUTH" (0xSETTING-TBD) setting.

 The initial value for the "SETTINGS_HTTP_CERT_AUTH" setting is 0,
 indicating that the peer does not support HTTP-layer certificate
 authentication. If a peer does support HTTP-layer certificate
 authentication, the value is 1.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Bishop, et al. Expires November 29, 2018 [Page 8]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

2.2. Making certificates or requests available

 When both peers have advertised support for HTTP-layer certificates
 as in Section 2.1, either party can supply additional certificates
 into the connection at any time. This means that clients or servers
 which predict a certificate will be required could supply the
 certificate before being asked. These certificates are available for
 reference by future "USE_CERTIFICATE" frames.

 Certificates supplied by servers can be considered by clients without
 further action by the server. A server SHOULD NOT send certificates
 which do not cover origins which it is prepared to service on the
 current connection, but MAY use the ORIGIN frame [RFC8336] to
 indicate that not all covered origins will be served.

 Client Server
 <------------------ (stream 0) CERTIFICATE --
 ...
 -- (stream N) GET /from-new-origin --------->
 <----------------------- (stream N) 200 OK --

 Figure 3: Proactive Server Certificate

 Client Server
 -- (stream 0) CERTIFICATE ------------------>
 -- (stream 0) USE_CERTIFICATE (S=1) -------->
 -- (stream 0) USE_CERTIFICATE (S=3) -------->
 -- (streams 1,3) GET /protected ------------>
 <-------------------- (streams 1,3) 200 OK --

 Figure 4: Proactive Client Certificate

 Likewise, either party can supply a "CERTIFICATE_REQUEST" that
 outlines parameters of a certificate they might request in the
 future. Upon receipt of a "CERTIFICATE_REQUEST", servers SHOULD
 provide a corresponding certificate. Clients MAY wait for a
 "CERTIFICATE_NEEDED" frame to assist in associating the certificate
 request with a particular HTTP transition.

2.3. Requiring certificate authentication

2.3.1. Requiring additional server certificates

 As defined in [RFC7540], when a client finds that a https:// origin
 (or Alternative Service [RFC7838]) to which it needs to make a
 request has the same IP address as a server to which it is already

https://datatracker.ietf.org/doc/html/rfc8336
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7838

Bishop, et al. Expires November 29, 2018 [Page 9]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

 connected, it MAY check whether the TLS certificate provided contains
 the new origin as well, and if so, reuse the connection.

 If the TLS certificate does not contain the new origin, but the
 server has claimed support for that origin (with an ORIGIN frame, see
 [RFC8336]) and advertised support for HTTP-layer certificates (see

Section 2.1), the client MAY send a "CERTIFICATE_REQUEST" frame
 describing the desired origin. Servers SHOULD provide a
 corresponding certificate if one is available.

 If the server does not have the desired certificate, it MUST [see
 issue #564]. In this case, or if the server has not advertised
 support for HTTP-layer certificates, the client MUST NOT send any
 requests for resources in that origin on the current connection.

 Client Server
 <----------------------- (stream 0) ORIGIN --
 -- (stream 0) CERTIFICATE_REQUEST ---------->
 <------------------ (stream 0) CERTIFICATE --
 -- (stream N) GET /from-new-origin --------->
 <----------------------- (stream N) 200 OK --

 Figure 5: Client-Requested Certificate

 Likewise, the server sends a "CERTIFICATE_NEEDED" frame for each
 stream where certificate authentication is required. The client
 answers with a "USE_CERTIFICATE" frame indicating the certificate to
 use on that stream. If the request parameters or the responding
 certificate are not already available, they will need to be sent as
 described in Section 2.2 as part of this exchange.

 Client Server
 <---------- (stream 0) CERTIFICATE_REQUEST --
 ...
 -- (stream N) GET /protected --------------->
 <----- (stream 0) CERTIFICATE_NEEDED (S=N) --
 -- (stream 0) CERTIFICATE ------------------>
 -- (stream 0) USE_CERTIFICATE (S=N) -------->
 <----------------------- (stream N) 200 OK --

 Figure 6: Reactive Certificate Authentication

 If a client receives a "PUSH_PROMISE" referencing an origin for which
 it has not yet received the server's certificate, this is a fatal
 connection error (see section 8.2 of [RFC7540]). To avoid this,
 servers MUST supply the associated certificates before pushing
 resources from a different origin.

https://datatracker.ietf.org/doc/html/rfc8336
https://datatracker.ietf.org/doc/html/rfc7540#section-8.2

Bishop, et al. Expires November 29, 2018 [Page 10]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

3. Certificates Frames for HTTP/2

 The "CERTIFICATE_REQUEST" and "CERTIFICATE_NEEDED" frames are
 correlated by their "Request-ID" field. Subsequent
 "CERTIFICATE_NEEDED" frames with the same "Request-ID" value MAY be
 sent for other streams where the sender is expecting a certificate
 with the same parameters.

 The "CERTIFICATE", and "USE_CERTIFICATE" frames are correlated by
 their "Cert-ID" field. Subsequent "USE_CERTIFICATE" frames with the
 same "Cert-ID" MAY be sent in response to other "CERTIFICATE_NEEDED"
 frames and refer to the same certificate.

 "CERTIFICATE_NEEDED" and "USE_CERTIFICATE" frames are correlated by
 the Stream ID they reference. Unsolicited "USE_CERTIFICATE" frames
 are not responses to "CERTIFICATE_NEEDED" frames; otherwise, each
 "USE_CERTIFICATE" frame for a stream is considered to respond to a
 "CERTIFICATE_NEEDED" frame for the same stream in sequence.

 +---------+ +---------+
 | REQUEST | | CERT |
 +---------+ +---------+
 | |
 | Request-ID | Cert-ID
 | |
 v v
 +---------+ Stream ID +---------+
 | NEEDED |---------->| USE |
 +---------+ +---------+

 Figure 7: Frame correlation

 "Request-ID" and "Cert-ID" are independent and sender-local. The use
 of the same value by the other peer or in the other context does not
 imply any correlation between these frames. These values MUST be
 unique per sender for each space over the lifetime of the connection.

3.1. The CERTIFICATE_NEEDED frame

 The "CERTIFICATE_NEEDED" frame (0xFRAME-TBD1) is sent on stream zero
 to indicate that the HTTP request on the indicated stream is blocked
 pending certificate authentication. The frame includes stream ID and
 a request identifier which can be used to correlate the stream with a
 previous "CERTIFICATE_REQUEST" frame sent on stream zero. The
 "CERTIFICATE_REQUEST" describes the certificate the sender requires
 to make progress on the stream in question.

Bishop, et al. Expires November 29, 2018 [Page 11]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 |R| Stream ID (31) |
 +-------------------------------+-------------------------------+
 | Request-ID (16) |
 +-------------------------------+

 Figure 8: CERTIFICATE_NEEDED frame payload

 The "CERTIFICATE_NEEDED" frame contains 6 octets. The first four
 octets indicate the Stream ID of the affected stream. The following
 two octets are the authentication request identifier, "Request-ID".
 A peer that receives a "CERTIFICATE_NEEDED" of any other length MUST
 treat this as a stream error of type "PROTOCOL_ERROR". Frames with
 identical request identifiers refer to the same
 "CERTIFICATE_REQUEST".

 A server MAY send multiple "CERTIFICATE_NEEDED" frames for the same
 stream. If a server requires that a client provide multiple
 certificates before authorizing a single request, each required
 certificate MUST be indicated with a separate "CERTIFICATE_NEEDED"
 frame, each of which MUST have a different request identifier
 (referencing different "CERTIFICATE_REQUEST" frames describing each
 required certificate). To reduce the risk of client confusion,
 servers SHOULD NOT have multiple outstanding "CERTIFICATE_NEEDED"
 frames for the same stream at any given time.

 Clients MUST NOT send multiple "CERTIFICATE_NEEDED" frames for the
 same stream.

 The "CERTIFICATE_NEEDED" frame MUST NOT be sent to a peer which has
 not advertised support for HTTP-layer certificate authentication.

 The "CERTIFICATE_NEEDED" frame MUST NOT reference a stream in the
 "half-closed (local)" or "closed" states [RFC7540]. A client that
 receives a "CERTIFICATE_NEEDED" frame for a stream which is not in a
 valid state SHOULD treat this as a stream error of type
 "PROTOCOL_ERROR".

3.2. The USE_CERTIFICATE Frame

 The "USE_CERTIFICATE" frame (0xFRAME-TBD4) is sent on stream zero to
 indicate which certificate is being used on a particular request
 stream.

 The "USE_CERTIFICATE" frame defines a single flag:

https://datatracker.ietf.org/doc/html/rfc7540

Bishop, et al. Expires November 29, 2018 [Page 12]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

 UNSOLICITED (0x01): Indicates that no "CERTIFICATE_NEEDED" frame has
 yet been received for this stream.

 The payload of the "USE_CERTIFICATE" frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 |R| Stream ID (31) |
 +-------------------------------+-------------------------------+
 | [Cert-ID (16)] |
 +-------------------------------+

 Figure 9: USE_CERTIFICATE frame payload

 The first four octets indicate the Stream ID of the affected stream.
 The following two octets, if present, contain the two-octet "Cert-ID"
 of the certificate the sender wishes to use. This MUST be the ID of
 a certificate for which proof of possession has been presented in a
 "CERTIFICATE" frame. Recipients of a "USE_CERTIFICATE" frame of any
 other length MUST treat this as a stream error of type
 "PROTOCOL_ERROR". Frames with identical certificate identifiers
 refer to the same certificate chain.

 A "USE_CERTIFICATE" frame which omits the Cert-ID refers to the
 certificate provided at the TLS layer, if any. If no certificate was
 provided at the TLS layer, the stream should be processed with no
 authentication, likely returning an authentication-related error at
 the HTTP level (e.g. 403) for servers or routing the request to a new
 connection for clients.

 The "UNSOLICITED" flag MAY be set by clients on the first
 "USE_CERTIFICATE" frame referring to a given stream. This permits a
 client to proactively indicate which certificate should be used when
 processing a new request. When such an unsolicited indication refers
 to a request that has not yet been received, servers SHOULD cache the
 indication briefly in anticipation of the request.

 Receipt of more than one unsolicited "USE_CERTIFICATE" frames or an
 unsolicited "USE_CERTIFICATE" frame which is not the first in
 reference to a given stream MUST be treated as a stream error of type
 "CERTIFICATE_OVERUSED".

 Each "USE_CERTIFICATE" frame which is not marked as unsolicited is
 considered to respond in order to the "CERTIFICATE_NEEDED" frames for
 the same stream. If a "USE_CERTIFICATE" frame is received for which
 a "CERTIFICATE_NEEDED" frame has not been sent, this MUST be treated
 as a stream error of type "CERTIFICATE_OVERUSED".

Bishop, et al. Expires November 29, 2018 [Page 13]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

 Receipt of a "USE_CERTIFICATE" frame with an unknown "Cert-ID" MUST
 result in a stream error of type "PROTOCOL_ERROR".

 The referenced certificate chain needs to conform to the requirements
 expressed in the "CERTIFICATE_REQUEST" to the best of the sender's
 ability, or the recipient is likely to reject it as unsuitable
 despite properly validating the authenticator. If the recipient
 considers the certificate unsuitable, it MAY at its discretion either
 return an error at the HTTP semantic layer, or respond with a stream
 error [RFC7540] on any stream where the certificate is used.

Section 4 defines certificate-related error codes which might be
 applicable.

3.3. The CERTIFICATE_REQUEST Frame

 The "CERTIFICATE_REQUEST" frame (id=0xFRAME-TBD2) provides a exported
 authenticator request message from the TLS layer that specifies a
 desired certificate. This describes the certificate the sender
 wishes to have presented.

 The "CERTIFICATE_REQUEST" frame SHOULD NOT be sent to a peer which
 has not advertised support for HTTP-layer certificate authentication.

 The "CERTIFICATE_REQUEST" frame MUST be sent on stream zero. A
 "CERTIFICATE_REQUEST" frame received on any other stream MUST be
 rejected with a stream error of type "PROTOCOL_ERROR".

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-------------------------------+-------------------------------+
 | Request-ID (16) | Request (?) ...
 +---+

 Figure 10: CERTIFICATE_REQUEST frame payload

 The frame contains the following fields:

 Request-ID: "Request-ID" is a 16-bit opaque identifier used to
 correlate subsequent certificate-related frames with this request.
 The identifier MUST be unique in the session for the sender.

 Request: An exported authenticator request, generated using the
 "request" API described in [I-D.ietf-tls-exported-authenticator].
 See Section 3.4.1 for more details on the input to this API.

https://datatracker.ietf.org/doc/html/rfc7540

Bishop, et al. Expires November 29, 2018 [Page 14]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

3.3.1. Exported Authenticator Request Characteristics

 The Exported Authenticator "request" API defined in
 [I-D.ietf-tls-exported-authenticator] takes as input a set of desired
 certificate characteristics and a "certificate_request_context",
 which needs to be unpredictable. When generating exported
 authenticators for use with this extension, the
 "certificate_request_context" MUST contain both the two-octet
 Request-ID as well as at least 96 bits of additional entropy.

 The TLS library on the authenticating peer will provide mechanisms to
 select an appropriate certificate to respond to the transported
 request. TLS libraries on servers MUST be able to recognize the
 "server_name" extension ([RFC6066]) at a minimum. Clients MUST
 always specify the desired origin using this extension, though other
 extensions MAY also be included.

3.4. The CERTIFICATE Frame

 The "CERTIFICATE" frame (id=0xFRAME-TBD3) provides a exported
 authenticator message from the TLS layer that provides a chain of
 certificates, associated extensions and proves possession of the
 private key corresponding to the end-entity certificate.

 The "CERTIFICATE" frame defines two flags:

 TO_BE_CONTINUED (0x01): Indicates that the exported authenticator
 spans more than one frame.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-------------------------------+-------------------------------+
 | Cert-ID (16) | Authenticator Fragment (*)...
 +---+

 Figure 11: CERTIFICATE frame payload

 The "Exported Authenticator Fragment" field contains a portion of the
 opaque data returned from the TLS connection exported authenticator
 "authenticate" API. See Section 3.4.1 for more details on the input
 to this API.

 This opaque data is transported in zero or more "CERTIFICATE" frames
 with the "TO_BE_CONTINUED" flag set, followed by one "CERTIFICATE"
 frame with the "TO_BE_CONTINUED" flag unset. Each of these frames
 contains the same "Cert-ID" field, permitting them to be associated
 with each other. Receipt of any "CERTIFICATE" frame with the same
 "Cert-ID" following the receipt of a "CERTIFICATE" frame with

https://datatracker.ietf.org/doc/html/rfc6066

Bishop, et al. Expires November 29, 2018 [Page 15]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

 "TO_BE_CONTINUED" unset MUST be treated as a connection error of type
 "PROTOCOL_ERROR".

 Upon receiving a complete series of "CERTIFICATE" frames, the
 receiver may validate the Exported Authenticator value by using the
 exported authenticator API. This returns either an error indicating
 that the message was invalid, or the certificate chain and extensions
 used to create the message.

 The "CERTIFICATE" frame MUST be sent on stream zero. A "CERTIFICATE"
 frame received on any other stream MUST be rejected with a stream
 error of type "PROTOCOL_ERROR".

3.4.1. Exported Authenticator Characteristics

 The Exported Authenticator API defined in
 [I-D.ietf-tls-exported-authenticator] takes as input a request, a set
 of certificates, and supporting information about the certificate
 (OCSP, SCT, etc.). The result is an opaque token which is used when
 generating the "CERTIFICATE" frame.

 Upon receipt of a "CERTIFICATE" frame, an endpoint MUST perform the
 following steps to validate the token it contains: - Using the "get
 context" API, retrieve the "certificate_request_context" used to
 generate the authenticator, if any. - Verify that the
 "certificate_request_context" is either empty (clients only) or
 contains the Request-ID of a previously-sent "CERTIFICATE_REQUEST"
 frame. - Use the "validate" API to confirm the validity of the
 authenticator with regard to the generated request (if any).

 Once the authenticator is accepted, the endpoint can perform any
 other checks for the acceptability of the certificate itself.

4. Indicating failures during HTTP-Layer Certificate Authentication

 Because this draft permits certificates to be exchanged at the HTTP
 framing layer instead of the TLS layer, several certificate-related
 errors which are defined at the TLS layer might now occur at the HTTP
 framing layer. In this section, those errors are restated and added
 to the HTTP/2 error code registry.

 BAD_CERTIFICATE (0xERROR-TBD1): A certificate was corrupt, contained
 signatures that did not verify correctly, etc.

 UNSUPPORTED_CERTIFICATE (0xERROR-TBD2): A certificate was of an
 unsupported type or did not contain required extensions

Bishop, et al. Expires November 29, 2018 [Page 16]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

 CERTIFICATE_REVOKED (0xERROR-TBD3): A certificate was revoked by its
 signer

 CERTIFICATE_EXPIRED (0xERROR-TBD4): A certificate has expired or is
 not currently valid

 CERTIFICATE_GENERAL (0xERROR-TBD5): Any other certificate-related
 error

 CERTIFICATE_OVERUSED (0xERROR-TBD6): More certificates were used on
 a request than were requested

 As described in [RFC7540], implementations MAY choose to treat a
 stream error as a connection error at any time. Of particular note,
 a stream error cannot occur on stream 0, which means that
 implementations cannot send non-session errors in response to
 "CERTIFICATE_REQUEST", and "CERTIFICATE" frames. Implementations
 which do not wish to terminate the connection MAY either send
 relevant errors on any stream which references the failing
 certificate in question or process the requests as unauthenticated
 and provide error information at the HTTP semantic layer.

5. Security Considerations

 This mechanism defines an alternate way to obtain server and client
 certificates other than in the initial TLS handshake. While the
 signature of exported authenticator values is expected to be equally
 secure, it is important to recognize that a vulnerability in this
 code path is at least equal to a vulnerability in the TLS handshake.

5.1. Impersonation

 This mechanism could increase the impact of a key compromise. Rather
 than needing to subvert DNS or IP routing in order to use a
 compromised certificate, a malicious server now only needs a client
 to connect to _some_ HTTPS site under its control in order to present
 the compromised certificate. As recommended in [RFC8336], clients
 opting not to consult DNS ought to employ some alternative means to
 increase confidence that the certificate is legitimate.

 As noted in the Security Considerations of
 [I-D.ietf-tls-exported-authenticator], it difficult to formally prove
 that an endpoint is jointly authoritative over multiple certificates,
 rather than individually authoritative on each certificate. As a
 result, clients MUST NOT assume that because one origin was
 previously colocated with another, those origins will be reachable
 via the same endpoints in the future. Clients MUST NOT consider
 previous secondary certificates to be validated after TLS session

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc8336

Bishop, et al. Expires November 29, 2018 [Page 17]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

 resumption. However, clients MAY proactively query for previously-
 presented secondary certificates.

5.2. Fingerprinting

 This draft defines a mechanism which could be used to probe servers
 for origins they support, but opens no new attack versus making
 repeat TLS connections with different SNI values. Servers SHOULD
 impose similar denial-of-service mitigations (e.g. request rate
 limits) to "CERTIFICATE_REQUEST" frames as to new TLS connections.

 While the extensions in the "CERTIFICATE_REQUEST" frame permit the
 sender to enumerate the acceptable Certificate Authorities for the
 requested certificate, it might not be prudent (either for security
 or data consumption) to include the full list of trusted Certificate
 Authorities in every request. Senders, particularly clients, SHOULD
 send only the extensions that narrowly specify which certificates
 would be acceptable.

5.3. Denial of Service

 Failure to provide a certificate on a stream after receiving
 "CERTIFICATE_NEEDED" blocks processing, and SHOULD be subject to
 standard timeouts used to guard against unresponsive peers.

 Validating a multitude of signatures can be computationally
 expensive, while generating an invalid signature is computationally
 cheap. Implementations will require checks for attacks from this
 direction. Invalid exported authenticators SHOULD be treated as a
 session error, to avoid further attacks from the peer, though an
 implementation MAY instead disable HTTP-layer certificates for the
 current connection instead.

5.4. Confusion About State

 Implementations need to be aware of the potential for confusion about
 the state of a connection. The presence or absence of a validated
 certificate can change during the processing of a request,
 potentially multiple times, as "USE_CERTIFICATE" frames are received.
 A server that uses certificate authentication needs to be prepared to
 reevaluate the authorization state of a request as the set of
 certificates changes.

 Client implementations need to carefully consider the impact of
 setting the "AUTOMATIC_USE" flag. This flag is a performance
 optimization, permitting the client to avoid a round-trip on each
 request where the server checks for certificate authentication.
 However, once this flag has been sent, the client has zero knowledge

Bishop, et al. Expires November 29, 2018 [Page 18]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

 about whether the server will use the referenced cert for any future
 request, or even for an existing request which has not yet completed.
 Clients MUST NOT set this flag on any certificate which is not
 appropriate for currently-in-flight requests, and MUST NOT make any
 future requests on the same connection which they are not willing to
 have associated with the provided certificate.

6. IANA Considerations

 This draft adds entries in three registries.

 The HTTP/2 "SETTINGS_HTTP_CERT_AUTH" setting is registered in
Section 6.1. Four frame types are registered in Section 6.2. Six

 error codes are registered in Section 6.3.

6.1. HTTP/2 SETTINGS_HTTP_CERT_AUTH Setting

 The SETTINGS_HTTP_CERT_AUTH setting is registered in the "HTTP/2
 Settings" registry established in [RFC7540].

 Name: SETTINGS_HTTP_CERT_AUTH

 Code: 0xSETTING-TBD

 Initial Value: 0

 Specification: This document.

6.2. New HTTP/2 Frames

 Four new frame types are registered in the "HTTP/2 Frame Types"
 registry established in [RFC7540]. The entries in the following
 table are registered by this document.

 +---------------------+--------------+---------------+
 | Frame Type | Code | Specification |
 +---------------------+--------------+---------------+
 | CERTIFICATE_NEEDED | 0xFRAME-TBD1 | Section 3.1 |
 | | | |
 | CERTIFICATE_REQUEST | 0xFRAME-TBD2 | Section 3.3 |
 | | | |
 | CERTIFICATE | 0xFRAME-TBD3 | Section 3.4 |
 | | | |
 | USE_CERTIFICATE | 0xFRAME-TBD4 | Section 3.2 |
 +---------------------+--------------+---------------+

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540

Bishop, et al. Expires November 29, 2018 [Page 19]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

6.3. New HTTP/2 Error Codes

 Six new error codes are registered in the "HTTP/2 Error Code"
 registry established in [RFC7540]. The entries in the following
 table are registered by this document.

 +-------------------------+--------------+---------------+
 | Name | Code | Specification |
 +-------------------------+--------------+---------------+
 | BAD_CERTIFICATE | 0xERROR-TBD1 | Section 4 |
 | | | |
 | UNSUPPORTED_CERTIFICATE | 0xERROR-TBD2 | Section 4 |
 | | | |
 | CERTIFICATE_REVOKED | 0xERROR-TBD3 | Section 4 |
 | | | |
 | CERTIFICATE_EXPIRED | 0xERROR-TBD4 | Section 4 |
 | | | |
 | CERTIFICATE_GENERAL | 0xERROR-TBD5 | Section 4 |
 | | | |
 | CERTIFICATE_OVERUSED | 0xERROR-TBD6 | Section 4 |
 +-------------------------+--------------+---------------+

7. References

7.1. Normative References

 [I-D.ietf-tls-exported-authenticator]
 Sullivan, N., "Exported Authenticators in TLS", draft-

ietf-tls-exported-authenticator-04 (work in progress),
 October 2017.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-22 (work in progress),
 November 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/draft-ietf-tls-exported-authenticator-04
https://datatracker.ietf.org/doc/html/draft-ietf-tls-exported-authenticator-04
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-22
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246

Bishop, et al. Expires November 29, 2018 [Page 20]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [RFC7838] Nottingham, M., McManus, P., and J. Reschke, "HTTP
 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,
 April 2016, <https://www.rfc-editor.org/info/rfc7838>.

 [RFC8336] Nottingham, M. and E. Nygren, "The ORIGIN HTTP/2 Frame",
RFC 8336, DOI 10.17487/RFC8336, March 2018,

 <https://www.rfc-editor.org/info/rfc8336>.

7.3. URIs

 [1] https://lists.w3.org/Archives/Public/ietf-http-wg/

 [2] http://httpwg.github.io/

 [3] https://github.com/httpwg/http-extensions/labels/secondary-certs

Appendix A. Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

A.1. Since draft-ietf-httpbis-http2-secondary-certs-00:

 o All frames sent on stream zero; replaced "AUTOMATIC_USE" on
 "CERTIFICATE" with "UNSOLICITED" on "USE_CERTIFICATE". (#482,#566)

https://datatracker.ietf.org/doc/html/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc7838
https://www.rfc-editor.org/info/rfc7838
https://datatracker.ietf.org/doc/html/rfc8336
https://www.rfc-editor.org/info/rfc8336
https://lists.w3.org/Archives/Public/ietf-http-wg/
http://httpwg.github.io/
https://github.com/httpwg/http-extensions/labels/secondary-certs
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-secondary-certs-00

Bishop, et al. Expires November 29, 2018 [Page 21]

Internet-Draft Secondary Cert Auth in HTTP/2 May 2018

A.2. Since draft-bishop-httpbis-http2-additional-certs-05:

 o Adopted as draft-ietf-httpbis-http2-secondary-certs

Acknowledgements

 Eric Rescorla pointed out several failings in an earlier revision.
 Andrei Popov contributed to the TLS considerations.

 A substantial portion of Mike's work on this draft was supported by
 Microsoft during his employment there.

Authors' Addresses

 Mike Bishop
 Akamai

 Email: mbishop@evequefou.be

 Nick Sullivan
 Cloudflare

 Email: nick@cloudflare.com

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

https://datatracker.ietf.org/doc/html/draft-bishop-httpbis-http2-additional-certs-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-secondary-certs

Bishop, et al. Expires November 29, 2018 [Page 22]

