workgroup: HTTP

Internet-Draft:

draft-ietf-httpbis-message-signatures-01

Published: 17 November 2020

Intended Status: Standards Track

Expires: 21 May 2021

Authors: A. Backman, Ed. J. Richer M. Sporny
Amazon Bespoke Engineering Digital Bazaar

Signing HTTP Messages

Abstract

This document describes a mechanism for creating, encoding, and
verifying digital signatures or message authentication codes over
content within an HTTP message. This mechanism supports use cases
where the full HTTP message may not be known to the signer, and
where the message may be transformed (e.g., by intermediaries)
before reaching the verifier.

Note to Readers
RFC EDITOR: please remove this section before publication

This work was originally based on draft-cavage-http-signatures-12,

but has since diverged from it, to reflect discussion since adoption

by the HTTP Working Group. In particular, it addresses issues that

have been identified, and adds features to support new use cases. It

is a work-in-progress and not yet suitable for deployment.
Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 21 May 2021.

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.jietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
1.1. Requirements Discussion
1.2. HTTP Message Transformations
1.3 Safe Transformations
1.4. Conventions and Terminology
2 Identifying and Canonicalizing Content
2.1 HTTP Header Fields
2.1.1. Canonicalization Examples
2.2. Dictionary Structured Field Members
2.2.1. Canonicalization Examples
2.3. List Prefixes
2.3.1. Canonicalization Examples
2.4. Signature Creation Time
2.5 Signature Expiration Time
2.6. Target Endpoint
2.6.1. Canonicalization Examples
3. HTTP Message Signatures
3.1. Signature Metadata
3.2. Creating a Signature

3.2.1. Choose and Set Signature Metadata Properties
3.2.2. Create the Signature Input
3.2.3. Sign the Signature Input
3.3. Verifying a Signature
3.3.1. Enforcing Application Requirements
Including a Message Signature in a Message
1. The 'Signature-Input' HTTP Header
4.1.1. Metadata Parameters
2. The 'Signature' HTTP Header
4.3. Examples
IANA Considerations
5.1. HTTP Signature Algorithms Registry
5.1.1. Registration Template

[
IN

N

lon

https://trustee.ietf.org/license-info

5.1.2. Initial Contents
5.2. HTTP Signature Metadata Parameters Registry
5.2.1. Registration Template
5.2.2. Initial Contents
Security Considerations
References
7.1. Normative References
7.2. Informative References
Appendix A. Examples
A.1. Example Keys
A.1.1. Example Key RSA test
2. Example keyId Values
Test Cases
A.3.1. Signature Generation
A.3.2. Signature Verification
Appendix B. Topics for Working Group Discussion
B.1. Issues
B.1.1. Confusing guidance on algorithm and key identification
B.1.2. Lack of definition of keyId hurts interoperability
B.1.3. Algorithm Registry duplicates work of JWA
B.1.4. Algorithm Registry should not be initialized with
deprecated entries
B.1.5. No percent-encoding normalization of path/query
B.1.6. Misleading name for headers parameter
B.1.7. Changes to whitespace in header field values break
verification
B.1.8. Multiple Set-Cookie headers are not well supported
B.1.9. Covered Content list is not signed
B.1.10. Algorithm is not signed
B
B

N o

e
w

.1.11. Verification key identifier is not signed

.1.12. Max values, precision for Integer String and Decimal
String not defined
B.1.13. keyId parameter value could break list syntax
B.1.14. Creation Time and Expiration Time do not allow for clock

skew
B.1.15. Should require lowercased header field names as
identifiers

B.1.16. Reconcile Date header and Creation Time
B.1.17. Remove algorithm-specific rules for content identifiers
B.1.18. Add guidance for signing compressed headers
B.1.19. Transformations to Via header field value break
verification
B.1.20. Case changes to case-insensitive header field values
break verification
B.1.21. Need more examples for Signature header
B.1.22. Expiration not needed
B.2. Features
B.2.1. Define more content identifiers
B.2.2. Multiple signature support

B.2.3. Support for incremental signing of header field value
list items
B.2.4. Support expected authority changes
B.2.5. Support for signing specific cookies
Acknowledgements
Document History
Authors' Addresses

Introduction

Message integrity and authenticity are important security properties
that are critical to the secure operation of many HTTP applications.
Application developers typically rely on the transport layer to
provide these properties, by operating their application over [TLS].
However, TLS only guarantees these properties over a single TLS
connection, and the path between client and application may be
composed of multiple independent TLS connections (for example, if
the application is hosted behind a TLS-terminating gateway or if the
client is behind a TLS Inspection appliance). In such cases, TLS
cannot guarantee end-to-end message integrity or authenticity
between the client and application. Additionally, some operating
environments present obstacles that make it impractical to use TLS,
or to use features necessary to provide message authenticity.
Furthermore, some applications require the binding of an
application-level key to the HTTP message, separate from any TLS
certificates in use. Consequently, while TLS can meet message
integrity and authenticity needs for many HTTP-based applications,
it is not a universal solution.

This document defines a mechanism for providing end-to-end integrity
and authenticity for content within an HTTP message. The mechanism
allows applications to create digital signatures or message
authentication codes (MACs) over only that content within the
message that is meaningful and appropriate for the application.
Strict canonicalization rules ensure that the verifier can verify
the signature even if the message has been transformed in any of the
many ways permitted by HTTP.

The mechanism described in this document consists of three parts:

*A common nomenclature and canonicalization rule set for the
different protocol elements and other content within HTTP
messages.

*Algorithms for generating and verifying signatures over HTTP
message content using this nomenclature and rule set.

*A mechanism for attaching a signature and related metadata to an
HTTP message.

1

1.

.1. Requirements Discussion

HTTP permits and sometimes requires intermediaries to transform
messages in a variety of ways. This may result in a recipient
receiving a message that is not bitwise equivalent to the message
that was oringally sent. In such a case, the recipient will be
unable to verify a signature over the raw bytes of the sender's HTTP
message, as verifying digital signatures or MACs requires both
signer and verifier to have the exact same signed content. Since the
raw bytes of the message cannot be relied upon as signed content,
the signer and verifier must derive the signed content from their
respective versions of the message, via a mechanism that is
resilient to safe changes that do not alter the meaning of the
message.

For a variety of reasons, it is impractical to strictly define what
constitutes a safe change versus an unsafe one. Applications use
HTTP in a wide variety of ways, and may disagree on whether a
particular piece of information in a message (e.g., the body, or the
Date header field) is relevant. Thus a general purpose solution must
provide signers with some degree of control over which message
content is signed.

HTTP applications may be running in environments that do not provide
complete access to or control over HTTP messages (such as a web
browser's JavaScript environment), or may be using libraries that
abstract away the details of the protocol (such as the Java
HTTPClient library). These applications need to be able to generate
and verify signatures despite incomplete knowledge of the HTTP
message.

2. HTTP Message Transformations

As mentioned earlier, HTTP explicitly permits and in some cases
requires implementations to transform messages in a variety of ways.
Implementations are required to tolerate many of these
transformations. What follows is a non-normative and non-exhaustive
list of transformations that may occur under HTTP, provided as
context:

*Re-ordering of header fields with different header field names
([MESSAGING], Section 3.2.2).

*Combination of header fields with the same field name
([MESSAGING], Section 3.2.2).

*Removal of header fields listed in the Connection header field
([MESSAGING], Section 6.1).

https://openjdk.java.net/groups/net/httpclient/intro.html
https://openjdk.java.net/groups/net/httpclient/intro.html

*Addition of header fields that indicate control options
([MESSAGING], Section 6.1).

*Addition or removal of a transfer coding ([MESSAGING], Section
5.7.2).

*Addition of header fields such as Via ([MESSAGING], Section
5.7.1) and Forwarded ([RFC7239], Section 4).

1.3. Safe Transformations

Based on the definition of HTTP and the requirements described
above, we can identify certain types of transformations that should
not prevent signature verification, even when performed on content
covered by the signature. The following list describes those
transformations:

*Combination of header fields with the same field name.
*Reordering of header fields with different names.

*Conversion between different versions of the HTTP protocol (e.g.,
HTTP/1.x to HTTP/2, or vice-versa).

*Changes in casing (e.g., "Origin" to "origin") of any case-
insensitive content such as header field names, request URI
scheme, or host.

*Addition or removal of leading or trailing whitespace to a header
field value.

*Addition or removal of obs-folds.

*Changes to the request-target and Host header field that when
applied together do not result in a change to the message's
effective request URI, as defined in Section 5.5 of [MESSAGING].

Additionally, all changes to content not covered by the signature
are considered safe.

1.4. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

The terms "HTTP message'", "HTTP request", "HTTP response", absolute-
form, absolute-path, "effective request URI", "gateway", "header

field", "intermediary", request-target, "sender", and "recipient"
are used as defined in [MESSAGING].

The term "method" is to be interpreted as defined in Section 4 of
[SEMANTICS].

For brevity, the term "signature" on its own is used in this
document to refer to both digital signatures and keyed MACs.
Similarly, the verb "sign" refers to the generation of either a
digital signature or keyed MAC over a given input string. The
qualified term "digital signature" refers specifically to the output
of an asymmetric cryptographic signing operation.

In addition to those listed above, this document uses the following
terms:

Decimal String An Integer String optionally concatenated with a
period "." followed by a second Integer String, representing a
positive real number expressed in base 10. The first Integer
String represents the integral portion of the number, while the
optional second Integer String represents the fractional portion
of the number. ((Editor's note: There's got to be a definition
for this that we can reference.))

Integer String A US-ASCII string of one or more digits "@-9",
representing a positive integer in base 10. ((Editor's note:
There's got to be a definition for this that we can reference.))

Signer The entity that is generating or has generated an HTTP
Message Signature.

Verifier An entity that is verifying or has verified an HTTP
Message Signature against an HTTP Message. Note that an HTTP
Message Signature may be verified multiple times, potentially by
different entities.

This document contains non-normative examples of partial and
complete HTTP messages. To improve readability, header fields may be
split into multiple lines, using the obs-fold syntax. This syntax is
deprecated in [MESSAGING], and senders MUST NOT generate messages
that include it.

Identifying and Canonicalizing Content

In order to allow signers and verifiers to establish which content
is covered by a signature, this document defines content identifiers
for signature metadata and discrete pieces of message content that
may be covered by an HTTP Message Signature.

Some content within HTTP messages may undergo transformations that
change the bitwise value without altering meaning of the content
(for example, the merging together of header fields with the same
name). Message content must therefore be canonicalized before it is
signed, to ensure that a signature can be verified despite such
innocuous transformations. This document defines rules for each
content identifier that transform the identifier's associated
content into such a canonical form.

The following sections define content identifiers, their associated
content, and their canonicalization rules.

2.1. HTTP Header Fields

An HTTP header field is identified by its header field name. While
HTTP header field names are case-insensitive, implementations MUST
use lowercased field names (e.g., content-type, date, etag) when
using them as content identifiers.

An HTTP header field value is canonicalized as follows:

1. Create an ordered list of the field values of each instance of
the header field in the message, in the order that they occur
(or will occur) in the message.

2. Strip leading and trailing whitespace from each item in the
list.

3. Concatenate the list items together, with a comma "," and space
" " between each item. The resulting string is the
canonicalized value.

2.1.1. Canonicalization Examples

This section contains non-normative examples of canonicalized values
for header fields, given the following example HTTP message:

HTTP/1.1 200 OK
Server: www.example.com
Date: Tue, 07 Jun 2014 20:51:35 GMT
X-0WS-Header: Leading and trailing whitespace.
X-Obs-Fold-Header: Obsolete
line folding.
X-Empty-Header:
Cache-Control: max-age=60
Cache-Control: must-revalidate

The following table shows example canonicalized values for header
fields, given that message:

Header Field Canonicalized Value

cache-control max-age=60, must-revalidate
date Tue, 07 Jun 2014 20:51:35 GMT
server www . example.com

x-empty-header
x-obs-fold-header Obsolete line folding.

X-ows-header Leading and trailing whitespace.
Table 1: Non-normative examples of header field
canonicalization.

2.2. Dictionary Structured Field Members

An individual member in the value of a Dictionary Structured Field
is identified by the lowercased field name, followed by a semicolon
":", followed by the member name. An individual member in the value
of a Dictionary Structured Field is canonicalized by applying the
serialization algorithm described in Section 4.1.2 of
[StructuredFields] on a Dictionary containing only that member.

2.2.1. Canonicalization Examples
This section contains non-normative examples of canonicalized values
for Dictionary Structured Field Members given the following example
header field, whose value is assumed to be a Dictionary:
X-Dictionary: a=1, b=2;x=1;y=2, c=(a, b, c)
The following table shows example canonicalized values for different

content identifiers, given that field:

Content Identifier Canonicalized Value

x-dictionary:a 1
x-dictionary:b 2,x=1,;y=2
x-dictionary:c (a, b, c)

Table 2: Non-normative examples of
Dictionary member canonicalization.

2.3. List Prefixes

A prefix of a List Structured Field consisting of the first N
members in the field's value (where N is an integer greater than 0
and less than or equal to the number of members in the List) is
identified by the lowercased field name, followed by a semicolon
":", followed by N expressed as an Integer String. A list prefix is
canonicalized by applying the serialization algorithm described in
Section 4.1.1 of [StructuredFields] on a List containing only the
first N members as specified in the list prefix, in the order they
appear in the original List.

2.3.1. Canonicalization Examples

This section contains non-normative examples of canonicalized values
for list prefixes given the following example header fields, whose
values are assumed to be Dictionaries:

X-List-A: (a, b, ¢, d, e, f)
X-List-B: ()

The following table shows example canonicalized values for different
content identifiers, given those fields:

Content Identifier Canonicalized Value

x-list-a:0)

x-list-a:1 (a)

x-list-a:3 (a, b, c)
x-list-a:6 (a, b, c, d, e,)
x-1list-b:0)

Table 3: Non-normative examples of list
prefix canonicalization.

2.4. Signature Creation Time

The signature's Creation Time (Section 3.1) is identified by the
*created identifier.

Its canonicalized value is an Integer String containing the
signature's Creation Time expressed as the number of seconds since
the Epoch, as defined in Section 4.16 of [POSIX.1].

The use of seconds since the Epoch to canonicalize a timestamp
simplifies processing and avoids timezone management required by
specifications such as [RFC3339].

2.5. Signature Expiration Time

The signature's Expiration Time (Section 3.1) is identified by the
*expires identifier.

Its canonicalized value is a Decimal String containing the
signature's Expiration Time expressed as the number of seconds since
the Epoch, as defined in Section 4.16 of [POSIX.1].

2.6. Target Endpoint

The request target endpoint, consisting of the request method and
the path and query of the effective request URI, is identified by
the *request-target identifier.

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16

Its value is canonicalized as follows:
1. Take the lowercased HTTP method of the message.
2. Append a space " ".

3. Append the path and query of the request target of the message,
formatted according to the rules defined for the :path pseudo-
header in [HTTP2], Section 8.1.2.3. The resulting string is the
canonicalized value.

.1. Canonicalization Examples
The following table contains non-normative example HTTP messages and
their canonicalized *request-target values.

HTTP Message *request-target

POST /?param=value HTTP/1.1

ost /?param=value
Host: www.example.com P P

POST /a/b HTTP/1.1
Host: www.example.com

post /a/b

GET http://www.example.com/a/ HTTP/1.1 get /a/

GET http://www.example.com HTTP/1.1 get /

CONNECT server.example.com:80 HTTP/1.1

connect /
Host: server.example.com

OPTIONS * HTTP/1.1 options *
Host: server.example.com

HTTP Message *request-target

Table 4: Non-normative examples of *request-target
canonicalization.

3. HTTP Message Signatures

An HTTP Message Signature is a signature over a string generated
from a subset of the content in an HTTP message and metadata about
the signature itself. When successfully verified against an HTTP
message, it provides cryptographic proof that with respect to the
subset of content that was signed, the message is semantically
equivalent to the message for which the signature was generated.

3.1. Signature Metadata

HTTP Message Signatures have metadata properties that provide
information regarding the signature's generation and/or
verification. The following metadata properties are defined:

Algorithm An HTTP Signature Algorithm defined in the HTTP Signature
Algorithms Registry defined in this document. It describes the
signing and verification algorithms for the signature.

Creation Time A timestamp representing the point in time that the
signature was generated. Sub-second precision is not supported. A
signature's Creation Time MAY be undefined, indicating that it is
unknown.

Covered Content An ordered list of content identifiers (Section 2)
that indicates the metadata and message content that is covered
by the signature. The order of identifiers in this list affects
signature generation and verification, and therefore MUST be
preserved.

Expiration Time A timestamp representing the point in time at which
the signature expires. An expired signature always fails
verification. A signature's Expiration Time MAY be undefined,
indicating that the signature does not expire.

Verification Key Material The key material required to verify the
signature.

3.2. Creating a Signature

In order to create a signature, a signer completes the following
process:

1. Choose key material and algorithm, and set metadata properties
Section 3.2.1

3.

2.

2. Create the Signature Input Section 3.2.2

3. Sign the Signature Input Section 3.2.3

The following sections describe each of these steps in detail.

1.

Choose and Set Signature Metadata Properties

The signer chooses an HTTP Signature Algorithm from those
registered in the HTTP Signature Algorithms Registry defined by
this document, and sets the signature's Algorithm property to
that value. The signer MUST NOT choose an algorithm marked
"Deprecated". The mechanism by which the signer chooses an
algorithm is out of scope for this document.

The signer chooses key material to use for signing and
verification, and sets the signature's Verification Key
Material property to the key material required for
verification. The signer MUST choose key material that is
appropriate for the signature's Algorithm, and that conforms to
any requirements defined by the Algorithm, such as key size or
format. The mechanism by which the signer chooses key material
is out of scope for this document.

The signer sets the signature's Creation Time property to the
current time.

The signer sets the signature's Expiration Time property to the
time at which the signature is to expire, or to undefined if
the signature will not expire.

The signer creates an ordered list of content identifiers
representing the message content and signature metadata to be
covered by the signature, and assigns this list as the
signature's Covered Content.

*Each identifier MUST be one of those defined in Section 2.

*This list MUST NOT be empty, as this would result in
creating a signature over the empty string.

*If the signature's Algorithm name does not start with rsa,
hmac, or ecdsa, signers SHOULD include *created and
*request-target in the list.

*If the signature's Algorithm starts with rsa, hmac, or
ecdsa, signers SHOULD include date and *request-target in
the list.

*Further guidance on what to include in this list and in what
order is out of scope for this document. However, the list
order is significant and once established for a given
signature it MUST be preserved for that signature.

For example, given the following HTTP message:

GET /foo HTTP/1.1
Host: example.org
Date: Sat, 07 Jun 2014 20:51:35 GMT
X-Example: Example header

with some whitespace.
X-EmptyHeader :
X-Dictionary: a=1, b=2
X-List: (a, b, c, d)
Cache-Control: max-age=60
Cache-Control: must-revalidate

The following table presents a non-normative example of metadata
values that a signer may choose:

Property Value
Algorithm hs2019
*request-target, *created, host, date, cache-contol,
Covered Content x-emptyheader, x-example, x-dictionary:b, x-
dictionary:a, x-1list:3
Creation Time 1402174295
Expiration Time 1402174595
Verification The public key provided in Appendix A.1.1 and
Key Material identified by the keyId value "test-key-a".
Table 5: Non-normative example metadata values

3.2.2. Create the Signature Input

The Signature Input is a US-ASCII string containing the content that
will be signed. To create it, the signer concatenates together
entries for each identifier in the signature's Covered Content in
the order it occurs in the list, with each entry separated by a
newline "\n". An identifier's entry 1is a US-ASCII string consisting
of the lowercased identifier followed with a colon ":", a space " "

and the identifier's canonicalized value (described below).

4

If Covered Content contains *created and the signature's Creation
Time is undefined or the signature's Algorithm name starts with rsa,
hmac, or ecdsa an implementation MUST produce an error.

If Covered Content contains *expires and the signature does not have
an Expiration Time or the signature's Algorithm name starts with
rsa, hmac, or ecdsa an implementation MUST produce an error.

If Covered Content contains an identifier for a header field that is
not present or malformed in the message, the implementation MUST
produce an error.

If Covered Content contains an identifier for a Dictionary member
that references a header field that is not present, is malformed in
the message, or is not a Dictionary Structured Field, the
implementation MUST produce an error. If the header field value does
not contain the specified member, the implementation MUST produce an
error.

If Covered Content contains an identifier for a List Prefix that
references a header field that is not present, is malformed in the
message, or is not a List Structured Field, the implementation MUST
produce an error. If the header field value contains fewer than the
specified number of members, the implementation MUST produce an
error.

For the non-normative example Signature metadata in Table 5, the
corresponding Signature Input is:

*request-target: get /foo

*created: 1402170695

host: example.org

date: Tue, 07 Jun 2014 20:51:35 GMT
cache-control: max-age=60, must-revalidate

X -
X-
X_
X -
X -

3.

emptyheader:

example: Example header with some whitespace.
dictionary: b=2

dictionary: a=1

list: (a, b, c)

Figure 1: Non-normative example Signature Input
2.3. Sign the Signature Input

The signer signs the Signature Input using the signing algorithm
described by the signature's Algorithm property, and the key
material chosen by the signer. The signer then encodes the result of
that operation as a base 64-encoded string [RFC4648]. This string is
the signature value.

For the non-normative example Signature metadata in Section 3.2.1
and Signature Input in Figure 1, the corresponding signature value
is:

K2qGT5srn20Gb0IDzQ6kYT+ruaycnDAAUpKv+ePFfDORAxXN/1BUeZx/Kdrq32DrfakQ6b
PsvB9aqgZqognNT6be401HROIkeV879RrsrObury8L9SCEibeoHyqU/yCjphSmEdd7WD+z
rchK57quskKwRefy2iEC5S2UAHOEPYOZKW1vbKmKu5q4CaB8X/I5/+HLZLGvDiezqi6/7
p2Gngf5hwzZ01Sdy39vyNMaaATOtKo6nuVwOS1IMVg1Q7MpWYZs0soHjttqOULIA3DIbQfL
1IvK6/10BdWTU7+2uQj71BkQASFZHOA96ZZgFquQrXR1mYOh+Hx5D9f JkXcXe5tmAg==

Figure 2: Non-normative example signature value
3.3. Verifying a Signature
In order to verify a signature, a verifier MUST:

1. Examine the signature's metadata to confirm that the signature
meets the requirements described in this document, as well as
any additional requirements defined by the application such as
which header fields or other content are required to be covered
by the signature.

2. Use the received HTTP message and the signature's metadata to
recreate the Signature Input, using the process described in
Section 3.2.2.

3. Use the signature's Algorithm and Verification Key Material
with the recreated Signing Input to verify the signature value.

A signature with a Creation Time that is in the future or an
Expiration Time that is in the past MUST NOT be processed.

The verifier MUST ensure that a signature's Algorithm is appropriate
for the key material the verifier will use to verify the signature.
If the Algorithm is not appropriate for the key material (for
example, if it is the wrong size, or in the wrong format), the
signature MUST NOT be processed.

3.3.1. Enforcing Application Requirements

The verification requirements specified in this document are
intended as a baseline set of restrictions that are generally
applicable to all use cases. Applications using HTTP Message
Signatures MAY impose requirements above and beyond those specified
by this document, as appropriate for their use case.

Some non-normative examples of additional requirements an
application might define are:

*Requiring a specific set of header fields to be signed (e.g.,
Authorization, Digest).

*Enforcing a maximum signature age.

*Prohibiting the use of certain algorithms, or mandating the use
of an algorithm.

*Requiring keys to be of a certain size (e.g., 2048 bits vs. 1024
bits).

Application-specific requirements are expected and encouraged. When
an application defines additional requirements, it MUST enforce them
during the signature verification process, and signature
verification MUST fail if the signature does not conform to the
application's requirements.

Applications MUST enforce the requirements defined in this document.
Regardless of use case, applications MUST NOT accept signatures that
do not conform to these requirements.

4. Including a Message Signature in a Message

Message signatures can be included within an HTTP message via the
Signature-Input and Signature HTTP header fields, both defined
within this specification. The Signature HTTP header field contains
signature values, while the Signature-Input HTTP header field
identifies the Covered Content and metadata that describe how each
signature was generated.

4.1. The 'Signature-Input' HTTP Header

The Signature-Input HTTP header field is a Dictionary Structured
Header [StructuredFields] containing the metadata for zero or more
message signatures generated from content within the HTTP message.
Each member describes a single message signature. The member's name
is an identifier that uniquely identifies the message signature
within the context of the HTTP message. The member's value is the
message signature's Covered Content, expressed as a List of Tokens.
Further signature metadata is expressed in parameters on the member
value, as described below.

4.1.1. Metadata Parameters

The parameters on each Signature-Input member value contain metadata
about the signature. Each parameter name MUST be a parameter name
registered in the IANA HTTP Signatures Metadata Parameters Registry
defined in Section 5.2 of this document. This document defines the
following parameters, and registers them as the initial contents of
the registry:

alg RECOMMENDED. The alg parameter is a Token containing the name
of the signature's Algorithm, as registered in the HTTP Signature
Algorithms Registry defined by this document. Verifiers MUST
determine the signature's Algorithm from the keyId parameter

rather than from alg. If alg is provided and differs from or is
incompatible with the algorithm or key material identified by
keyId (for example, alg has a value of rsa-sha256 but keyId
identifies an EdDSA key), then implementations MUST produce an
error.

created RECOMMENDED. The created parameter is a Decimal containing
the signature's Creation Time, expressed as the canonicalized
value of the *created content identifier, as defined in Section
2. If not specified, the signature's Creation Time is undefined.
This parameter is useful when signers are not capable of
controlling the Date HTTP Header such as when operating in
certain web browser environments.

expires OPTIONAL. The expires parameter is a Decimal containing the
signature's Expiration Time, expressed as the canonicalized value
of the *expires content identifier, as defined in Section 2. If
the signature does not have an Expiration Time, this parameter
MUST be omitted. If not specified, the signature's Expiration
Time is undefined.

keyId REQUIRED. The keyId parameter is a String whose value can be
used by a verifier to identify and/or obtain the signature's
Verification Key Material. Further format and semantics of this
value are out of scope for this document.

4.2. The 'Signature' HTTP Header

The Signature HTTP header field is a Dictionary Structured Header
[StructuredFields] containing zero or more message signatures
generated from content within the HTTP message. Each member's name
is a signature identifier that is present as a member name in the
Signature-Input Structured Header within the HTTP message. Each
member's value is a Byte Sequence containing the signature value for
the message signature identified by the member name. Any member in
the Signature HTTP header field that does not have a corresponding
member in the HTTP message's Signature-Input HTTP header field MUST
be ignored.

4.3. Examples

The following is a non-normative example of Signature-Input and
Signature HTTP header fields representing the signature in Figure 2:

Signature-Input: sigl=(*request-target, *created, host, date,
cache-control, x-empty-header, x-example); keyId="test-key-a";
alg=hs2019; created=1402170695; expires=1402170995

Signature: sigl=:K2gqGT5srn20Gb0IDzQ6KYT+ruaycnDAAUpKv+ePFfDORAXN/1BUe
Zx/Kdrq32DrfakQ6bPsvB9aqZqognNT6be401HROIkeV879RrsrObury8L9SCEibe
oHyquU/yCjphSmEdd7WD+zrchK57quskKwRefy2iEC5S2UAHOEPY0ZKW1vbKmKu5qg4
CaB8X/I5/+HLZLGvDiezqi6/7p2Gngf5hwz01Sdy39vyNMaaATOtKo6nuvVweS1MVg
1Q7MpWYZs0soHjttqOULIA3DIbQfLiIVKE/10BdWTU7+2uQj71BKQASFZHOA96ZZg
FQuQrXR1mYOh+Hx5D9fJkXcXe5tmAg==:

Since Signature-Input and Signature are both defined as Dictionary
Structured Headers, they can be used to easily include multiple
signatures within the same HTTP message. For example, a signer may
include multiple signatures signing the same content with different
keys and/or algorithms to support verifiers with different
capabilities, or a reverse proxy may include information about the
client in header fields when forwarding the request to a service
host, and may also include a signature over those fields and the
client's signature. The following is a non-normative example of
header fields a reverse proxy might add to a forwarded request that
contains the signature in the above example:

X-Forwarded-For: 192.0.2.123

Signature-Input: reverse_proxy_sig=(*created, host, date,
signature:sigl, x-forwarded-for); keyId="test-key-a";
alg=hs2019; created=1402170695; expires=1402170695.25

Signature: reverse_proxy_sig=:0N3HsnvuoT1lX41xfcGWaOEV01M3bJDRBOpOPC/0
JAOWKQNOVMYOSVMMWXS7XG+XYVal52rRVAo6nNMV7FS3rvOrR5MzXL8FCQ2A35DCEN
LOhEQ]j/S1IstEAEFSKME9Bs7McBsCt JwQ3hMqdtFenkDffSOHOZOInkTYGafkoy78
11vVZvmb3Y4yf7Mc IwAVKk2R3gwKRWiiRCw448Nt7JITWzhvEwbh7bN2swc/v3NJbg/w
JYyYVbelZx4IywuZnYFxgPl/qvqbAjeEVvaLKLgSMr11ly+uzxCHOMNDUNTYhMrmOT
4081BLfRFOcoJPKBdoKg9UBa96U2mUuglbFO0ZEVYFg==:

5. TIANA Considerations
5.1. HTTP Signature Algorithms Registry

This document defines HTTP Signature Algorithms, for which IANA is
asked to create and maintain a new registry titled "HTTP Signature
Algorithms". Initial values for this registry are given in Section
5.1.2. Future assignments and modifications to existing assignment
are to be made through the Expert Review registration policy

[REC8126] and shall follow the template presented in Section 5.1.1.

5.1.1. Registration Template

Algorithm Name An identifier for the HTTP Signature Algorithm. The
name MUST be an ASCII string consisting only of lower-case
characters ("a" - "z"), digits ("@" - "9"), and hyphens ("-"),

and SHOULD NOT exceed 20 characters in length. The identifier
MUST be unique within the context of the registry.

Status A brief text description of the status of the algorithm. The
description MUST begin with one of "Active" or "Deprecated", and
MAY provide further context or explanation as to the reason for
the status.

Description A description of the algorithm used to sign the signing
string when generating an HTTP Message Signature, or instructions
on how to determine that algorithm. When the description
specifies an algorithm, it MUST include a reference to the
document or documents that define the algorithm.

5.1.2. Initial Contents
((MS: The references in this section are problematic as many of the
specifications that they refer to are too implementation specific,
rather than just pointing to the proper signature and hashing
specifications. A better approach might be just specifying the
signature and hashing function specifications, leaving implementers
to connect the dots (which are not that hard to connect).))
5.1.2.1. hs2019
Algorithm Name hs2019

Status active

Description Derived from metadata associated with keyId. Recommend
support for:

*RSASSA-PSS [RFC8017] using SHA-512 [RFC6234]
*HMAC [RFC2104] using SHA-512 [RFC6234]

*ECDSA using curve P-256 DSS [FIPS186-4] and SHA-512
[RFC6234]

*Ed25519ph, Ed25519ctx, and Ed25519 [RFC8032]
5.1.2.2. rsa-shal
Algorithm Name rsa-shal
Status Deprecated; SHA-1 not secure.
Description RSASSA-PKCS1-v1_5 [RFC8017] using SHA-1 [RFC6234]

5.1.2.3. rsa-sha256

Algorithm Name
rsa-sha256

Status Deprecated; specifying signature algorithm enables attack
vector.

Description RSASSA-PKCS1-v1l_5 [RFC8017] using SHA-256 [RFC6234]
5.1.2.4. hmac-sha256
Algorithm Name hmac-sha256

Status Deprecated; specifying signature algorithm enables attack
vector.

Description HMAC [RFC2104] using SHA-256 [RFC6234]
5.1.2.5. ecdsa-sha256
Algorithm Name ecdsa-sha256

Status Deprecated; specifying signature algorithm enables attack
vector.

Description ECDSA using curve P-256 DSS [FIPS186-4] and SHA-256
[RFC6234]

5.2. HTTP Signature Metadata Parameters Registry

This document defines the Signature-Input Structured Header, whose
member values may have parameters containing metadata about a
message signature. IANA is asked to create and maintain a new
registry titled "HTTP Signature Metadata Parameters" to record and
maintain the set of parameters defined for use with member values in
the Signature-Input Structured Header. Initial values for this
registry are given in Section 5.2.2. Future assignments and
modifications to existing assignments are to be made through the
Expert Review registration policy [RFC8126] and shall follow the
template presented in Section 5.2.1.

5.2.1. Registration Template
5.2.2. 1Initial Contents
The table below contains the initial contents of the HTTP Signature

Metadata Parameters Registry. Each row in the table represents a
distinct entry in the registry.

6.

7.

7.

Name Status Reference(s)

alg Active Section 4.1.1 of this document

created Active Section 4.1.1 of this document

expires Active Section 4.1.1 of this document

keyId Active Section 4.1.1 of this document

Table 6: Initial contents of the HTTP Signature
Metadata Parameters Registry.

Security Considerations

((TODO: need to dive deeper on this section; not sure how much of
what's referenced below is actually applicable, or if it covers
everything we need to worry about.))

((TODO: Should provide some recommendations on how to determine
what content needs to be signed for a given use case.))

There are a number of security considerations to take into account
when implementing or utilizing this specification. A thorough
security analysis of this protocol, including its strengths and
weaknesses, can be found in [WP-HTTP-Sig-Audit].

References
1. Normative References

[FIPS186-4] "Digital Signature Standard (DSS)", 2013, <https://
csrc.nist.qgov/publications/detail/fips/186/4/final>.

[HTTP2] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI
10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/
info/rfc7540>.

[MESSAGING] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
Transfer Protocol (HTTP/1.1): Message Syntax and
Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,
<https://www.rfc-editor.org/info/rfc7230>.

[POSIX.1] "The Open Group Base Specifications Issue 7, 2018
edition", 2018, <https://pubs.opengroup.org/onlinepubs/
9699919799/>.

[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication", RFC 2104, DOI
10.17487/RFC2104, February 1997, <https://www.rfc-
editor.org/info/rfc2104>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

https://csrc.nist.gov/publications/detail/fips/186/4/final
https://csrc.nist.gov/publications/detail/fips/186/4/final
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7230
https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104

RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

[SEMANTICS] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
Transfer Protocol (HTTP/1.1): Semantics and Content", RFC
7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-
editor.org/info/rfc7231>.

[StructuredFields] "Structured Field Vaues for HTTP", 2020,
<https://datatracker.ietf.org/doc/draft-ietf-httpbis-
header-structure>.

7.2. Informative References

[RFC3230] Mogul, J. and A. Van Hoff, "Instance Digests in HTTP",
RFC 3230, DOI 10.17487/RFC3230, January 2002, <https://
www.rfc-editor.org/info/rfc3230>.

[RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
<https://www.rfc-editor.org/info/rfc3339>.

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66, RFC
3986, DOI 10.17487/RFC3986, January 2005, <https://
www.rfc-editor.org/info/rfc3986>.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
<https://www.rfc-editor.org/info/rfc4648>.

[RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash
Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234,

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/draft-ietf-httpbis-header-structure
https://datatracker.ietf.org/doc/draft-ietf-httpbis-header-structure
https://www.rfc-editor.org/info/rfc3230
https://www.rfc-editor.org/info/rfc3230
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4648

DOI 10.17487/RFC6234, May 2011, <https://www.rfc-
editor.org/info/rfc6234>.

[RFC7239] Petersson, A. and M. Nilsson, "Forwarded HTTP Extension",
RFC 7239, DOI 10.17487/RFC7239, June 2014, <https://
www.rfc-editor.org/info/rfc7239>.

[RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, DOI
10.17487/RFC7518, May 2015, <https://www.rfc-editor.org/
info/rfc7518>.

[RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
<https://www.rfc-editor.org/info/rfc7541>.

[RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A.
Rusch, "PKCS #1: RSA Cryptography Specifications Version
2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016,
<https://www.rfc-editor.org/info/rfc8017>.

[RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/
RFC8032, January 2017, <https://www.rfc-editor.org/info/
rfc8032>.

[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://
www.rfc-editor.org/info/rfc8126>.

[TLS] Rescorla, E., "The Transport Layer Security (TLS)
Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,
August 2018, <https://www.rfc-editor.org/info/rfc8446>.

[WP-HTTP-Sig-Audit] "Security Considerations for HTTP Signatures",
2013, <https://web-payments.org/specs/source/http-
signatures-audit/>.

Appendix A. Examples

A.1. Example Keys
This section provides cryptographic keys that are referenced in
example signatures throughout this document. These keys MUST NOT be
used for any purpose other than testing.

A.1.1. Example Key RSA test

The following key is a 2048-bit RSA public and private key pair:

https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc7239
https://www.rfc-editor.org/info/rfc7239
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7541
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8446
https://web-payments.org/specs/source/http-signatures-audit/
https://web-payments.org/specs/source/http-signatures-audit/

MIIBCgKCAQEAhAKYdtoeoy8zcAcR874L8cnZxKzAGwd7v36APp7Pv6Q2jdsPBRrw
WEBNez6dOUDKDwGbcenxfEXAy5mbhgajzrw3MOEt8uA5txSKobBpKDeBLOsdJKF(Q
MGMXCQVEG7YemcxDTRPxAleIAgYYRjTSd/QBwWVWIOWNFhekro3Rt1linvea75jfzg
kne/YiktSvLG341w2zgXBDTC5NHROUQGT1IML4P1NZS5Ri2U4aCNx2rUPRCKI1EQOP
UKxI4T+HIaFpv8+rdV6eUgOrB2xeI1dSFFn/nnv500ZJEIB+VmuKn3DCUCCZSF1Q
PSXSfBDiUGhwOw76WuSSsfi1D4b/vL0oJ10wIDAQAB

MIIEQAIBAAKCAQEAhAKYdtoeoy8zCACR874L8cnZxKzAGwd7v36APp7Pv6Q2jdsP
BRrwWEBnez6dOUDKDwWGhc6nxfFEXAy5Smbhgajzrw3MOEt8uA5txSKobBpKDeBLOsd
JKFgQMGMXCQVEG7YemcxDTRPxAleIAgYYR]jTSd/QBwWVWI0OwWNFhekro3Rt1invea75
jfzgkne/YiktSvLG341w2zgXBDTC5NHROUQGT1ML4P1NZS5Ri2U4aCNx2rUPRCKI
1EOPUKxI4T+HIaFpv8+rdv6eUg0OrB2xeI1dSFFn/nnv500ZJEIB+VmuKn3DCUcCZ
SF1QPSXSfBDiUGhwOw76WuSSsfi1D4b/vL0oJ10wIDAQABAOIBAG/JZuSWdoVHbi56
vjgCgkjg31lk01Kr03nrdménrgA9P9qaPjxuKoWaK01cBQlE1pSWp/cKncYgD5WXE
CpANRUXG2pG4zdkzCYzAh1i+c34L60ZoHsirK6oNCEnHveydfzJL5934egm6p8DW
+m1RQ70yUt4uRcOYSor+q1LGJVGQHReFOWMIBZHrhz5e63Pq71EQgIwuBgL8SMaA
YRXtK+JIGXZpImTq+NHVEWWCUB9SCqOr838ceQI55SvzmTkwqtC+8AT2zFviMZKKR
QO06SPsrqIltxZWRty2izawTFOBf5S2VAX70+6t3wBsQlsLptoSgX3QblELY5asI0O]
YFz7LJECgYkAsqeUJmgXE3LP8tYOIjMIAKiTm906psP1c8CrLI9CHOUbuaA2JCOM
CCNQg8SyYbTqgnwW1B9ZfcAm/cFpA8tYci9m5vYK8HNXQr+8FS3Q0o8N9RJI8AOUSCSswW
DzMYfRghAfUGWM1W]j5hp1pQzAuhwbOXFtxKHVSMPhz1IBtF9Y8jvgqgYHLbmyiul
mwJ5ALOPYFOG7x81pr1ARURWHOOYF52KEwldxpx+IXER7hQRWQKki5/NSUEtV+8RT
gn2mé6qte5DXLyn83b1qRscSANCCwKtKWUug5q2ZbwVOCICtmRwmnP1311WRYfj67
B/xJ1ZA6X3GEf4sNReNAtaucPEelgR2nsNOgKQKBiGoqHWbK1qYVvBxX2X3kbPDkv
9C+celgzd2PW7aGYLCHg7nPbmfDVOYHcWjOhXZ8jRMjmANVR/eLQ2EfsRLAW69bn
£3ZD7J3S1fwGn03exGmMHO3HZG+6Avber KYVYNHahNFEWSTSACcQWDLRpkGybBcxqZo
81YCqlgidwfeO5Yt107etx1xLyqa2NsCeG9A86U]jG+aeNnXEIDK1PDK+EuiThIUa
/2IxKzJKW11BKr2d4xAfROZNEYuRrbeDQYgTIMO1fW6/GuYIXKYgEKCFHFQJATAG
IXHrglPDOiSwXd2GmVVYyEmhZnbcp8CxaEMQoevxAtadssMK3weUsDtvUVYVF22m
gQKBiD5GWESZzSFPy3GaOMvZpn3D6EJQLgsnrtUPZXx+z2Ep2x0xc50rneB5FGyF1P
WtP+fG5Q6Dpdz3LRFm+KWBCWFKQjg7uTxcjerhBWEYPMEMKYWTJF5PBG9/ddVvHLQ
EQeNC8fHGg4UXU8mhHNSBt3EA10qQJfRDs15M38eG2cYwB1PZpDHSCcDNDAO=

A.2. Example keyId Values

The table below maps example keyId values to associated algorithms
and/or keys. These are example mappings that are valid only within
the context of examples in examples within this and future documents
that reference this section. Unless otherwise specified, within the
context of examples it should be assumed that the signer and
verifier understand these keyId mappings. These keyId values are not
reserved, and deployments are free to use them, with these
associations or others.

keyId Algorithm Verification Key

test- hs2019, using RSASSA-PSS The public key specified
key-a [REC8017] and SHA-512 [RFEC6234] in Appendix A.1.1
test- The public key specified
rsa-sha256 . P) y sp
key-b in Appendix A.1.1
Table 7

A.3. Test Cases

This section provides non-normative examples that may be used as
test cases to validate implementation correctness. These examples
are based on the following HTTP message:

POST /foo?param=value&pet=dog HTTP/1.1

Host: example.com

Date: Tue, 07 Jun 2014 20:51:35 GMT

Content-Type: application/json

Digest: SHA-256=X48E9qO0okqqrvdts8n0JRIN30OWDUoYWxBf7kbu9DBPE=
Content-Length: 18

{"hello": "world"}
A.3.1. Signature Generation
A.3.1.1. hs2019 signature over minimal recommended content

This presents metadata for a Signature using hs2019, over minimum
recommended data to sign:

Property Value

. hs2019, using RSASSA-PSS [RFC8017] using
Algorithm

SHA-512 [RFC6234]

Covered Content *created, *request-target
Creation Time 8:51:35 PM GMT, June 7th, 2014
Expiration Time Undefined
Verification Key

Material The public key specified in Appendix A.1.1.

Table 8
The Signature Input is:

*created: 1402170695
*request-target: post /foo?param=value&pet=dog

The signature value is:

QavawYfF2da6tG66XtdOGrVFChJOfOowWUe/C6kaYESPiYYwnMH9egOgyKqgLLYONQJIFk7b
QY834sHEUw]jS5BYEBaO3QNwIVQEY1qAAU/2MX14tc9Yn7ELBnaaNHaHkV3xVO9KIULT7V
6e40UuGblaxfbXpMgPEQl6CEFrn6K95CLUUKPS5/gOECBtmIp5L58gN4VvZrk20VA6U971
YiEDNuDa4CwMcQMvcGssbc/L30ULTUFfD/1VcPtdGImP2uvVvQntpT8b21BeBpfh8Muav2
vtzidyBYFtAUOYhRWO8+ntgqA1q20K4LMjM2XgDScSVWVGAVd459A0wWI91R1NPap3zg==

A possible Signature-Input and Signature header containing this
signature is:

Signature-Input: sigl=(*created, *request-target);
keyId="test-key-a"; created=1402170695

Signature: sigl=:QaVaWYfF2da6tG66Xtd0GrVFChJOfOwUe/C6kaYESPiYYwnMH9eg
0gyKqgLLY9NQJIFk7bQY834sHEUw]jS5BYEBaO3QNwIVQEY1qAAU/2MX14tc9YN7ELB
naaNHaHkV3xVO9KIuLT7V6e40UuGblaxfbXpMgPEql6CEFrn6K95CLUUKP5/g0ECB
tmJp5L58gN4VvZrk20VA6U971YiEDNuDa4CwMcQMvcGssbc/L30ULTUffD/1VePtd
GImP2uvVQntpT8b21BeBpfh8MuaVv2vtzidyBYFtAUOYhRWO8+ntqA1q20K4LMjM2X
gDScSVWvGdVd459A0wI91R1nPap3zg==:

A.3.1.2. hs2019 signature covering all header fields

This presents metadata for a Signature using hs2019 that covers all
header fields in the request:

Property Value
. hs2019, using RSASSA-PSS [RFC8017] using SHA-512
Algorithm
[REC6234]

*created, *request-target, host, date, content-

Covered Content .
type, digest, content-length

Creation Time 8:51:35 PM GMT, June 7th, 2014
Expiration Time Undefined
Verification Key

The public key specified in Appendix A.1.1.

Material
Table 9

The Signature Input is:

*created: 1402170695

*request-target: post /foo?param=value&pet=dog

host: example.com

date: Tue, 07 Jun 2014 20:51:35 GMT

content-type: application/json

digest: SHA-256=X48E9qO0okqgqrvdts8n0JRIN30OWDUOYWxBf7kbu9DBPE=
content-length: 18

The signature value is:

B24UG4FaiE2kSXBNKV4DA91J+mE1AhS3mncrgyteAyel1GKMpmzt8jkHNjoudtqw3GngGY
3nOmmwjdfnleA6nAjgeHwlowXced5tONCcCPNzLswqP0OiobGeA5y4WE81iBveel300KYVel
©1Z10nXOMN5TIEIIPOOLrE+LzZis6AOHALFRMtKgKGhT3N965pkqfhKbq/V48kpIKT8+c
ZsSOTON4HFMG+0Iy6c90fSBrXD68yxP6QYTz6XHOGMWawLyPLYR52j3I05FK1y1Ab6KOOX
PxzQ5nwrLD+mUVPZ9rDs1EN6TmOX9xFfkZTh1G/5D+s1fHHS9dDXCOVKT5dLS8DjdIA==

A possible Signature-Input and Signature header containing this
signature is:

Signature-Input: sigl=(*request-target, *created, host, date,
content-type, digest, content-length); keyId="test-key-a";

alg=hs2019; created=1402170695

Signature: sigl=:B24UG4FaiE2kSXBNKV4DA91J+mE1AhS3mncrgyteAyelGKMpmzt8
jKkHNjoudtgqw3GngGY3nemmwjdfnleA6nAjgeHwloOwWXced5tONCCPNzLswgPOiobGe
A5y4WEB8iBveel300KYVel01lZ10nXOMNSTIEIIPOOLrE+LzZis6AOHALIFRMtKgKGhT
3N965pkqfhKbq/V48kpIKT8+cZsOTON4HFMG+0Iy6c90fSBrXD68yxP6QYTz6XHOG
MWawLyPLYR52j3I05fK1y1Ab6KOOXPXxzQ5nwrLD+mUVPZOrDsS1EN6fmOX9xfkZThl
G/5D+s1fHHs9dDXCOVKT5dLS8DjdIA==:

A.3.2. Signature Verification
A.3.2.1. Minimal Required Signature Header

This presents a Signature-Input and Signature header containing only
the minimal required parameters:

Signature-Input: sigl=(); keyId="test-key-a"; created=1402170695

Signature: sigl=:cxieW5ZKV9R9A70+UalA/1FCvVayuE6Z77wDGNVFSiluSzRITYFV
vwUjeUBCTYUdbOBYGMCee5q1eWWUOMBBIHO4Si6VndEHjQVdHgshAtNIk2QuzsBWC
2DkVOVYsOhBSVFZuULZvtCmXRQfYGTGhZqGwq/AAmMFbt5WNLQtDrEe@ErveEKBfaz+
IJ35zhaj+dun71YZ82b/CRf06fSSt8VXeJuvdqUuVPWgjgJlD4n9mgZpZFGBaDdPiw
pfbVZHzcHrumFJeFHWXH64a+c5GN+TW1P8NPg2zFdEc/joMymBiRelq236WGM5VvV
9a22RW2/yLmauU/uwf9v40yGR/I1NRA==:

The corresponding signature metadata derived from this header field

is:
Property Value
Algorithm hs2019, using RSASSA-PSS using SHA-256
Covered Content *created
Creation Time 8:51:35 PM GMT, June 7th, 2014
Expiration Time Undefined
Verification Key The public key specified in Appendix A.
Material 1.1.

Table 10
The corresponding Signature Input is:

*created: 1402170695

A.3.2.2. Minimal Recommended Signature Header

This presents a Signature-Input and Signature header containing only
the minimal required and recommended parameters:

Signature-Input: sigl=(); alg=hs2019; keyId="test-key-a";
created=1402170695

Signature: sigl=:cxieW5ZKV9R9A70+UalA/1FCvVayuE6Z77wDGNVFSiluSzROTYFV
vwU3jeU6CTYUdbOBYGMCee5q1eWWUOM8BIHO4Si6VNdEH]QVdHgshAtNIk2Quzs6WC
2DkVOVYysOhBSVFZuLZvtCmXRQfYGTGhZqGwq/AAmMFbt5WNLQtDrEe@ErveEKBfaz+
IJ35zhaj+dun71YZ82b/CRf06fSSt8VXeJuvdqUuVPWgjgJlD4n9mgZpZFGBaDdPiw
pfbVZHzcHrumFJeFHWXH64a+c5GN+TW1P8NPg2zFdEc/joMymBiRe1lq236WGmM5VvV
9a22RW2/yLmau/uwf9v40yGR/I1NRA==:

The corresponding signature metadata derived from this header field

is:
Property Value
Algorithm hs2019, using RSASSA-PSS using SHA-512
Covered Content *created
Creation Time 8:51:35 PM GMT, June 7th, 2014
Expiration Time Undefined
Verification Key The public key specified in Appendix A.
Material 1.1.

Table 11
The corresponding Signature Input is:
*created: 1402170695
A.3.2.3. Minimal Signature Header using rsa-sha256

This presents a minimal Signature-Input and Signature header for a
signature using the rsa-sha256 algorithm:

Signature: sigl=(date); alg=rsa-sha256; keyId="test-key-b"

Signature: sigl=:HtXycCl97RBVkZi66ADKNC9c5eSS1b57GnQ4KFONZplOopNfxqgk62
JzZ484jXgLvoOTRaKfR4hwyxlcyb+BwWkVasApQovBSdit9M1/YmN2IvJIDPncr1hPD
VDv36Z9/DiS0+RNHD7iLXugdXo1+MGRimW1RmYdenl/ITeb7rjfLZ4bOVNNLFtVWw
rjhAiwIgeLjodVImzVc5srrk19HMZNuUejK6I3/MyN3+3UB8tIRWALWZzXx6ZgGZUaEE
POaBlBkt7FjOTt5/P5HNW/Sa/m8smxbOHNwzAJDal10PyjzdIbywlnWIIWtZKPPsoV
OKVOpUWEU3TNhpWmaVhFrUL/06SN3w==:

The corresponding signature metadata derived from this header field

is:
Property Value
Algorithm rsa-sha256

Covered Content date

Property Value

Creation Time Undefined
Expiration Time Undefined
Verification Key The public key specified in Appendix A.
Material 1.1.
Table 12

The corresponding Signature Input is:
date: Tue, 07 Jun 2014 20:51:35 GMT
Appendix B. Topics for Working Group Discussion
RFC EDITOR: please remove this section before publication

The draft has known issues that will need to be addressed during
development, and these issues have been enumerated but not addressed
in this version. Topics are not listed in any particular order.

B.1. Issues
B.1.1. Confusing guidance on algorithm and key identification

The current draft encourages determining the Algorithm metadata
property from the keyId field, both in the guidance for the use of
algorithm and keyId, and the definition for the hs2019 algorithm and
deprecation of the other algorithms in the registry. The current
state arose from concern that a malicious party could change the
value of the algorithm parameter, potentially tricking the verifier
into accepting a signature that would not have been verified under
the actual parameter.

Punting algorithm identification into keyId hurts interoperability,
since we aren't defining the syntax or semantics of keyId. It
actually goes against that claim, as we are dictating that the
signing algorithm must be specified by keyId or derivable from it.
It also renders the algorithm registry essentially useless. Instead
of this approach, we can protect against manipulation of the
Signature header field by adding support for (and possibly
mandating) including Signature metadata within the Signature Input.

B.1.2. Lack of definition of keyId hurts interoperability

The current text leaves the format and semantics of keyId completely
up to the implementation. This is primarily due to the fact that
most implementers of Cavage have extensive investment in key
distribution and management, and just need to plug an identifier
into the header. We should support those cases, but we also need to
provide guidance for the developer that doesn't have that and just

wants to know how to identify a key. It may be enough to punt this
to profiling specs, but this needs to be explored more.

B.1.3. Algorithm Registry duplicates work of JWA

[REC7518] already defines an IANA registry for cryptographic
algorithms. This wasn't used by Cavage out of concerns about
complexity of JOSE, and issues with JWE and JWS being too flexible,
leading to insecure combinations of options. Using JWA's definitions
does not need to mean we're using JOSE, however. We should look at
if/how we can leverage JWA's work without introducing too many sharp
edges for implementers.

In any use of JWS algorithms, this spec would define a way to create
the JWS Signing Input string to be applied to the algorithm. It
should be noted that this is incompatible with JWS itself, which
requires the inclusion of a structured header in the signature
input.

A possible approach is to incorporate all elements of the JWA
signature algorithm registry into this spec using a prefix or other
marker, such as jws-RS256 for the RSA 256 JSON Web Signature
algorithm.

B.1.4. Algorithm Registry should not be initialized with deprecated
entries

The initial entries in this document reflect those in Cavage. The
ones that are marked deprecated were done so because of the issue
explained in Appendix B.1.1, with the possible exception of rsa-
shal. We should probably just remove that one.

B.1.5. No percent-encoding normalization of path/query
See: issue #26

The canonicalization rules for *request-target do not perform handle
minor, semantically meaningless differences in percent-encoding,
such that verification could fail if an intermediary normalizes the
effective request URI prior to forwarding the message.

At a minimum, they should be case and percent-encoding normalized as
described in sections 6.2.2.1 and 6.2.2.2 of [REC3986].

B.1.6. Misleading name for headers parameter
The Covered Content list contains identifiers for more than just

headers, so the header parameter name is no longer appropriate. Some
alternatives: "content", "signed-content", "covered-content".

https://github.com/w3c-dvcg/http-signatures/issues/26

B.1.7. Changes to whitespace in header field values break verification

Some header field values contain RWS, OWS, and/or BWS. Since the
header field value canonicalization rules do not address whitespace,
changes to it (e.g., removing OWS or BWS or replacing strings of RWS
with a single space) can cause verification to fail.

B.1.8. Multiple Set-Cookie headers are not well supported
The Set-Cookie header can occur multiple times but does not adhere
to the list syntax, and thus is not well supported by the header
field value concatenation rules.

B.1.9. Covered Content list is not signed

The Covered Content list should be part of the Signature Input, to
protect against malicious changes.

B.1.10. Algorithm is not signed

The Algorithm should be part of the Signature Input, to protect
against malicious changes.

B.1.11. Verification key identifier is not signed

The Verification key identifier (e.g., the value used for the keyId
parameter) should be part of the Signature Input, to protect against
malicious changes.

B.1.12. Max values, precision for Integer String and Decimal String
not defined

The definitions for Integer String and Decimal String do not specify
a maximum value. The definition for Decimal String (used to provide
sub-second precision for Expiration Time) does not define minimum or
maximum precision requirements. It should set a sane requirement
here (e.g., MUST support up to 3 decimal places and no more).

B.1.13. KkeyId parameter value could break list syntax

The keyId parameter value needs to be constrained so as to not break
list syntax (e.g., by containing a comma).

B.1.14. Creation Time and Expiration Time do not allow for clock skew
The processing instructions for Creation Time and Expiration Time

imply that verifiers are not permitted to account for clock skew
during signature verification.

B.1.15. Should require lowercased header field names as identifiers

The current text allows mixed-case header field names when they are
being used as content identifiers. This is unnecessary, as header
field names are case-insensitive, and creates opportunity for
incompatibility. Instead, content identifiers should always be
lowercase.

B.1.16. Reconcile Date header and Creation Time

The draft is missing guidance on if/how the Date header relates to
signature Creation Time. There are cases where they may be
different, such as if a signature was pre-created. Should Creation
Time default to the value in the Date header if the created
parameter is not specified?

B.1.17. Remove algorithm-specific rules for content identifiers

The rules that restrict when the signer can or must include certain
identifiers appear to be related to the pseudo-revving of the Cavage
draft that happened when the hs2019 algorithm was introduced. We
should drop these rules, as it can be expected that anyone
implementing this draft will support all content identifiers.

B.1.18. Add guidance for signing compressed headers

The draft should provide guidance on how to sign headers when
[REC7541] is used. This guidance might be as simple as "sign the
uncompressed header field value."

B.1.19. Transformations to Via header field value break verification

Intermediaries are permitted to strip comments from the Via header
field value, and consolidate related sequences of entries. The
canonicalization rules do not account for these changes, and thus
they cause signature verification to fail if the Via header is
signed. At the very least, guidance on signing or not signing Via
headers needs to be included.

B.1.20. Case changes to case-insensitive header field values break
verification

Some header field values are case-insensitive, in whole or in part.
The canonicalization rules do not account for this, thus a case
change to a covered header field value causes verification to fail.

B.1.21. Need more examples for Signature header

Add more examples showing different cases e.g, where created or
expires are not present.

B.1.22. Expiration not needed
In many cases, putting the expiration of the signature into the
hands of the signer opens up more options for failures than
necessary. Instead of the expires, any verifier can use the created
field and an internal lifetime or offset to calculate expiration. We
should consider dropping the expires field.

B.2. Features

B.2.1. Define more content identifiers

It should be possible to independently include the following content
and metadata properties in Covered Content:

*The signature's Algorithm

*The signature's Covered Content

*The value used for the keyId parameter
*Request method

*Individual components of the effective request URI: scheme,
authority, path, query

*Status code
*Request body (currently supported via Digest header [RFC3230])
B.2.2. Multiple signature support

((Editor's note: I believe this use case is theoretical. Please let
me know if this is a use case you have.))

There may be scenarios where attaching multiple signatures to a
single message is useful:

*A gateway attaches a signature over headers it adds (e.g.,
Forwarded) to messages already signed by the user agent.

*A signer attaches two signatures signed by different keys, to be
verified by different entities.

This could be addressed by changing the Signature header syntax to
accept a list of parameter sets for a single signature, e.g., by
separating parameters with ";" instead of ",". It may also be
necessary to include a signature identifier parameter.

B.2.3. Support for incremental signing of header field value list
items

((Editor's note: I believe this use case is theoretical. Please let
me know if this is a use case you have.))

Currently, signing a header field value is all-or-nothing: either
the entire value is signed, or none of it is. For header fields that
use list syntax, it would be useful to be able to specify which
items in the list are signed.

A simple approach that allowed the signer to indicate the list size
at signing time would allow a signer to sign header fields that are
may be appended to by intermediaries as the message makes its way to
the recipient. Specifying list size in terms of number of items
could introduce risks of list syntax is not strictly adhered to
(e.g., a malicious party crafts a value that gets parsed by the
application as 5 items, but by the verifier as 4). Specifying list
size in number of octets might address this, but more exploration is
required.

B.2.4. Support expected authority changes

In some cases, the authority of the effective request URI may be
expected to change, for example from "public-service-
name.example.com" to "service-host-1.public-service-
name.example.com". This is commonly the case for services that are
hosted behind a load-balancing gateway, where the client sends
requests to a publicly known domain name for the service, and these
requests are transformed by the gateway into requests to specific
hosts in the service fleet.

One possible way to handle this would be to special-case the Host
header field to allow verifier to substitute a known expected value,
or a value provided in another header field (e.g., Via) when
generating the Signature Input, provided that the verifier also
recognizes the real value in the Host header. Alternatively, this
logic could apply to an (audience) content identifier.

B.2.5. Support for signing specific cookies

A signer may only wish to sign one or a few cookies, for example if
the website requires its authentication state cookie to be signed,
but also sets other cookies (e.g., for analytics, ad tracking, etc.)

Acknowledgements

This specification is based on the draft-cavage-http-signatures
draft. The editor would like to thank the authors of that draft,

Mark Cavage and Manu Sporny, for their work on that draft and their
continuing contributions.

The editor would also like to thank the following individuals for
feedback on and implementations of the draft-cavage-http-signatures
draft (in alphabetical order): Mark Adamcin, Mark Allen, Paul
Annesley, Karl Boehlmark, Stephane Bortzmeyer, Sarven Capadisli,
Liam Dennehy, ductm54, Stephen Farrell, Phillip Hallam-Baker, Eric
Holmes, Andrey Kislyuk, Adam Knight, Dave Lehn, Dave Longley, James
H. Manger, Ilari Liusvaara, Mark Nottingham, Yoav Nir, Adrian
Palmer, Lucas Pardue, Roberto Polli, Julian Reschke, Michael
Richardson, Wojciech Rygielski, Adam Scarr, Cory J. Slep, Dirk
Stein, Henry Story, Lukasz Szewc, Chris Webber, and Jeffrey Yasskin

Document History
RFC EDITOR: please remove this section before publication
*draft-ietf-httpbis-message-signatures
-Since -01

oReplaced unstructured Signature header with Signature-Input
and Signature Dictionary Structured Header Fields.

oDefined content identifiers for individual Dictionary
members, e.g., X-dictionary-field:member-name.

oDefined content identifiers for first N members of a List,
e.g., Xx-list-field:4.

oFixed up examples.
oUpdated introduction now that it's adopted.
--01

oStrengthened requirement for content identifiers for header
fields to be lower-case (changed from SHOULD to MUST).

oAdded real example values for Creation Time and Expiration
Time.

oMinor editorial corrections and readability improvements.
--00

oInitialized from draft-richanna-http-message-signatures-00,
following adoption by the working group.

*draft-richanna-http-message-signatures
--00

oConverted to xml2rfc v3 and reformatted to comply with RFC
style guides.

oRemoved Signature auth-scheme definition and related
content.

oRemoved conflicting normative requirements for use of
algorithm parameter. Now MUST NOT be relied upon.

oRemoved Extensions appendix.

oRewrote abstract and introduction to explain context and
need, and challenges inherent in signing HTTP messages.

oRewrote and heavily expanded algorithm definition,
retaining normative requirements.

oAdded definitions for key terms, referenced RFC 7230 for
HTTP terms.

oAdded examples for canonicalization and signature
generation steps.

oRewrote Signature header definition, retaining normative
requirements.

oAdded default values for algorithm and expires parameters.

oRewrote HTTP Signature Algorithms registry definition.
Added change control policy and registry template. Removed
suggested URI.

0oAdded IANA HTTP Signature Parameter registry.

oAdded additional normative and informative references.

oAdded Topics for Working Group Discussion section, to be
removed prior to publication as an RFC.

Authors' Addresses

Annabelle Backman (editor)
Amazon

P.0. Box 81226

Seattle, WA 98108-1226
United States of America

Email: richanna@amazon.com
URI: https://www.amazon.com/

Justin Richer
Bespoke Engineering

Email: ietf@justin.richer.org
URI: https://bspk.io/

Manu Sporny

Digital Bazaar

203 Roanoke Street W.
Blacksburg, VA 24060
United States of America

Email: msporny@digitalbazaar.com
URI: https://manu.sporny.org/

mailto:richanna@amazon.com
https://www.amazon.com/
mailto:ietf@justin.richer.org
https://bspk.io/
mailto:msporny@digitalbazaar.com
https://manu.sporny.org/

	Signing HTTP Messages
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Discussion
	1.2. HTTP Message Transformations
	1.3. Safe Transformations
	1.4. Conventions and Terminology

	2. Identifying and Canonicalizing Content
	2.1. HTTP Header Fields
	2.1.1. Canonicalization Examples

	2.2. Dictionary Structured Field Members
	2.2.1. Canonicalization Examples

	2.3. List Prefixes
	2.3.1. Canonicalization Examples

	2.4. Signature Creation Time
	2.5. Signature Expiration Time
	2.6. Target Endpoint
	2.6.1. Canonicalization Examples

	3. HTTP Message Signatures
	3.1. Signature Metadata
	3.2. Creating a Signature
	3.2.1. Choose and Set Signature Metadata Properties
	3.2.2. Create the Signature Input
	3.2.3. Sign the Signature Input

	3.3. Verifying a Signature
	3.3.1. Enforcing Application Requirements

	4. Including a Message Signature in a Message
	4.1. The 'Signature-Input' HTTP Header
	4.1.1. Metadata Parameters

	4.2. The 'Signature' HTTP Header
	4.3. Examples

	5. IANA Considerations
	5.1. HTTP Signature Algorithms Registry
	5.1.1. Registration Template
	5.1.2. Initial Contents
	5.1.2.1. hs2019
	5.1.2.2. rsa-sha1
	5.1.2.3. rsa-sha256
	5.1.2.4. hmac-sha256
	5.1.2.5. ecdsa-sha256

	5.2. HTTP Signature Metadata Parameters Registry
	5.2.1. Registration Template
	5.2.2. Initial Contents

	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Examples
	A.1. Example Keys
	A.1.1. Example Key RSA test

	A.2. Example keyId Values
	A.3. Test Cases
	A.3.1. Signature Generation
	A.3.1.1. hs2019 signature over minimal recommended content
	A.3.1.2. hs2019 signature covering all header fields

	A.3.2. Signature Verification
	A.3.2.1. Minimal Required Signature Header
	A.3.2.2. Minimal Recommended Signature Header
	A.3.2.3. Minimal Signature Header using rsa-sha256

	Appendix B. Topics for Working Group Discussion
	B.1. Issues
	B.1.1. Confusing guidance on algorithm and key identification
	B.1.2. Lack of definition of keyId hurts interoperability
	B.1.3. Algorithm Registry duplicates work of JWA
	B.1.4. Algorithm Registry should not be initialized with deprecated entries
	B.1.5. No percent-encoding normalization of path/query
	B.1.6. Misleading name for headers parameter
	B.1.7. Changes to whitespace in header field values break verification
	B.1.8. Multiple Set-Cookie headers are not well supported
	B.1.9. Covered Content list is not signed
	B.1.10. Algorithm is not signed
	B.1.11. Verification key identifier is not signed
	B.1.12. Max values, precision for Integer String and Decimal String not defined
	B.1.13. keyId parameter value could break list syntax
	B.1.14. Creation Time and Expiration Time do not allow for clock skew
	B.1.15. Should require lowercased header field names as identifiers
	B.1.16. Reconcile Date header and Creation Time
	B.1.17. Remove algorithm-specific rules for content identifiers
	B.1.18. Add guidance for signing compressed headers
	B.1.19. Transformations to Via header field value break verification
	B.1.20. Case changes to case-insensitive header field values break verification
	B.1.21. Need more examples for Signature header
	B.1.22. Expiration not needed

	B.2. Features
	B.2.1. Define more content identifiers
	B.2.2. Multiple signature support
	B.2.3. Support for incremental signing of header field value list items
	B.2.4. Support expected authority changes
	B.2.5. Support for signing specific cookies

	Acknowledgements
	Document History
	Authors' Addresses

