
Workgroup: HTTP

Internet-Draft:

draft-ietf-httpbis-message-signatures-06

Published: 13 August 2021

Intended Status: Standards Track

Expires: 14 February 2022

Authors: A. Backman, Ed.

Amazon

J. Richer

Bespoke Engineering

M. Sporny

Digital Bazaar

HTTP Message Signatures

Abstract

This document describes a mechanism for creating, encoding, and

verifying digital signatures or message authentication codes over

components of an HTTP message. This mechanism supports use cases

where the full HTTP message may not be known to the signer, and

where the message may be transformed (e.g., by intermediaries)

before reaching the verifier. This document also describes a means

for requesting that a signature be applied to a subsequent HTTP

message in an ongoing HTTP exchange.

Note to Readers

RFC EDITOR: please remove this section before publication

Discussion of this draft takes place on the HTTP working group

mailing list (ietf-http-wg@w3.org), which is archived at https://

lists.w3.org/Archives/Public/ietf-http-wg/.

Working Group information can be found at https://httpwg.org/;

source code and issues list for this draft can be found at https://

github.com/httpwg/http-extensions/labels/signatures.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 February 2022.

¶

¶

¶

¶

¶

¶

¶

¶

https://lists.w3.org/Archives/Public/ietf-http-wg/
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.org/
https://github.com/httpwg/http-extensions/labels/signatures
https://github.com/httpwg/http-extensions/labels/signatures
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Requirements Discussion

1.2. HTTP Message Transformations

1.3. Safe Transformations

1.4. Conventions and Terminology

1.5. Application of HTTP Message Signatures

2. HTTP Message Components

2.1. HTTP Fields

2.1.1. Canonicalized Structured HTTP Fields

2.1.2. Canonicalization Examples

2.2. Dictionary Structured Field Members

2.2.1. Canonicalization Examples

2.3. Specialty Components

2.3.1. Signature Parameters

2.3.2. Method

2.3.3. Target URI

2.3.4. Authority

2.3.5. Scheme

2.3.6. Request Target

2.3.7. Path

2.3.8. Query

2.3.9. Query Parameters

2.3.10. Status Code

2.3.11. Request-Response Signature Binding

2.4. Creating the Signature Input String

3. HTTP Message Signatures

3.1. Creating a Signature

3.2. Verifying a Signature

3.2.1. Enforcing Application Requirements

3.3. Signature Algorithm Methods

3.3.1. RSASSA-PSS using SHA-512

3.3.2. RSASSA-PKCS1-v1_5 using SHA-256

¶

¶

https://trustee.ietf.org/license-info

3.3.3. HMAC using SHA-256

3.3.4. ECDSA using curve P-256 DSS and SHA-256

3.3.5. JSON Web Signature (JWS) algorithms

4. Including a Message Signature in a Message

4.1. The 'Signature-Input' HTTP Field

4.2. The 'Signature' HTTP Field

4.3. Multiple Signatures

5. Requesting Signatures

5.1. The Accept-Signature Field

5.2. Processing an Accept-Signature

6. IANA Considerations

6.1. HTTP Signature Algorithms Registry

6.1.1. Registration Template

6.1.2. Initial Contents

6.2. HTTP Signature Metadata Parameters Registry

6.2.1. Registration Template

6.2.2. Initial Contents

6.3. HTTP Signature Specialty Component Identifiers Registry

6.3.1. Registration Template

6.3.2. Initial Contents

7. Security Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Detecting HTTP Message Signatures

Appendix B. Examples

B.1. Example Keys

B.1.1. Example Key RSA test

B.1.2. Example RSA PSS Key

B.1.3. Example ECC P-256 Test Key

B.1.4. Example Shared Secret

B.2. Test Cases

B.2.1. Minimal Signature Using rsa-pss-sha512

B.2.2. Selective Covered Components using rsa-pss-sha512

B.2.3. Full Coverage using rsa-pss-sha512

B.2.4. Signing a Response using ecdsa-p256-sha256

B.2.5. Signing a Request using hmac-sha256

B.3. TLS-Terminating Proxies

Acknowledgements

Document History

Authors' Addresses

1. Introduction

Message integrity and authenticity are important security properties

that are critical to the secure operation of many HTTP applications.

Application developers typically rely on the transport layer to

provide these properties, by operating their application over [TLS].

However, TLS only guarantees these properties over a single TLS

connection, and the path between client and application may be

composed of multiple independent TLS connections (for example, if

the application is hosted behind a TLS-terminating gateway or if the

client is behind a TLS Inspection appliance). In such cases, TLS

cannot guarantee end-to-end message integrity or authenticity

between the client and application. Additionally, some operating

environments present obstacles that make it impractical to use TLS,

or to use features necessary to provide message authenticity.

Furthermore, some applications require the binding of an

application-level key to the HTTP message, separate from any TLS

certificates in use. Consequently, while TLS can meet message

integrity and authenticity needs for many HTTP-based applications,

it is not a universal solution.

This document defines a mechanism for providing end-to-end integrity

and authenticity for components of an HTTP message. The mechanism

allows applications to create digital signatures or message

authentication codes (MACs) over only the components of the message

that are meaningful and appropriate for the application. Strict

canonicalization rules ensure that the verifier can verify the

signature even if the message has been transformed in any of the

many ways permitted by HTTP.

The signing mechanism described in this document consists of three

parts:

A common nomenclature and canonicalization rule set for the

different protocol elements and other components of HTTP

messages.

Algorithms for generating and verifying signatures over HTTP

message components using this nomenclature and rule set.

A mechanism for attaching a signature and related metadata to an

HTTP message.

This document also provides a mechanism for one party to signal to

another party that a signature is desired in one or more subsequent

messages. This optional negotiation mechanism can be used along with

opportunistic or application-driven message signatures by either

party.

1.1. Requirements Discussion

HTTP permits and sometimes requires intermediaries to transform

messages in a variety of ways. This may result in a recipient

receiving a message that is not bitwise equivalent to the message

that was originally sent. In such a case, the recipient will be

unable to verify a signature over the raw bytes of the sender's HTTP

message, as verifying digital signatures or MACs requires both

¶

¶

¶

*

¶

*

¶

*

¶

¶

signer and verifier to have the exact same signature input. Since

the exact raw bytes of the message cannot be relied upon as a

reliable source of signature input, the signer and verifier must

derive the signature input from their respective versions of the

message, via a mechanism that is resilient to safe changes that do

not alter the meaning of the message.

For a variety of reasons, it is impractical to strictly define what

constitutes a safe change versus an unsafe one. Applications use

HTTP in a wide variety of ways, and may disagree on whether a

particular piece of information in a message (e.g., the body, or the

Date header field) is relevant. Thus a general purpose solution must

provide signers with some degree of control over which message

components are signed.

HTTP applications may be running in environments that do not provide

complete access to or control over HTTP messages (such as a web

browser's JavaScript environment), or may be using libraries that

abstract away the details of the protocol (such as the Java

HTTPClient library). These applications need to be able to generate

and verify signatures despite incomplete knowledge of the HTTP

message.

1.2. HTTP Message Transformations

As mentioned earlier, HTTP explicitly permits and in some cases

requires implementations to transform messages in a variety of ways.

Implementations are required to tolerate many of these

transformations. What follows is a non-normative and non-exhaustive

list of transformations that may occur under HTTP, provided as

context:

Re-ordering of header fields with different header field names

([MESSAGING], Section 3.2.2).

Combination of header fields with the same field name

([MESSAGING], Section 3.2.2).

Removal of header fields listed in the Connection header field

([MESSAGING], Section 6.1).

Addition of header fields that indicate control options

([MESSAGING], Section 6.1).

Addition or removal of a transfer coding ([MESSAGING], Section

5.7.2).

Addition of header fields such as Via ([MESSAGING], Section

5.7.1) and Forwarded ([RFC7239], Section 4).

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://openjdk.java.net/groups/net/httpclient/intro.html
https://openjdk.java.net/groups/net/httpclient/intro.html

1.3. Safe Transformations

Based on the definition of HTTP and the requirements described

above, we can identify certain types of transformations that should

not prevent signature verification, even when performed on message

components covered by the signature. The following list describes

those transformations:

Combination of header fields with the same field name.

Reordering of header fields with different names.

Conversion between different versions of the HTTP protocol (e.g.,

HTTP/1.x to HTTP/2, or vice-versa).

Changes in casing (e.g., "Origin" to "origin") of any case-

insensitive components such as header field names, request URI

scheme, or host.

Addition or removal of leading or trailing whitespace to a header

field value.

Addition or removal of obs-folds.

Changes to the request-target and Host header field that when

applied together do not result in a change to the message's

effective request URI, as defined in Section 5.5 of [MESSAGING].

Additionally, all changes to components not covered by the signature

are considered safe.

1.4. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The terms "HTTP message", "HTTP request", "HTTP response", absolute-

form, absolute-path, "effective request URI", "gateway", "header

field", "intermediary", request-target, "sender", and "recipient"

are used as defined in [MESSAGING].

The term "method" is to be interpreted as defined in Section 4 of

[SEMANTICS].

For brevity, the term "signature" on its own is used in this

document to refer to both digital signatures and keyed MACs.

Similarly, the verb "sign" refers to the generation of either a

¶

* ¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

¶

¶

¶

¶

HTTP Message Signature:

Signer:

Verifier:

HTTP Message Component:

HTTP Message Component Identifier:

HTTP Message Component Value:

Covered Components:

Signature Input:

digital signature or keyed MAC over a given input string. The

qualified term "digital signature" refers specifically to the output

of an asymmetric cryptographic signing operation.

In addition to those listed above, this document uses the following

terms:

A digital signature or keyed MAC that covers one or more portions

of an HTTP message. Note that a given HTTP Message can contain

multiple HTTP Message Signatures.

The entity that is generating or has generated an HTTP Message

Signature. Note that multiple entities can act as signers and

apply separate HTTP Message Signatures to a given HTTP Message.

An entity that is verifying or has verified an HTTP Message

Signature against an HTTP Message. Note that an HTTP Message

Signature may be verified multiple times, potentially by

different entities.

A portion of an HTTP message that is capable of being covered by

an HTTP Message Signature.

A value that uniquely identifies a specific HTTP Message

Component in respect to a particular HTTP Message Signature and

the HTTP Message it applies to.

The value associated with a given component identifier within the

context of a particular HTTP Message. Component values are

derived from the HTTP Message and are usually subject to a

canonicalization process.

An ordered set of HTTP message component identifiers for fields

(Section 2.1) and specialty components (Section 2.3) that

indicates the set of message components covered by the signature,

not including the @signature-params specialty identifier itself.

The order of this set is preserved and communicated between the

signer and verifier to facilitate reconstruction of the signature

input.

The sequence of bytes processed by the HTTP Message Signature

algorithm to produce the HTTP Message Signature. The signature

¶

¶

¶

¶

¶

¶

¶

¶

¶

HTTP Message Signature Algorithm:

Key Material:

Creation Time:

Expiration Time:

input is generated by the signer and verifier using the covered

components set and the HTTP Message.

A cryptographic algorithm that describes the signing and

verification process for the signature. When expressed

explicitly, the value maps to a string defined in the HTTP

Signature Algorithms Registry defined in this document.

The key material required to create or verify the signature. The

key material is often identified with an explicit key identifier,

allowing the signer to indicate to the verifier which key was

used.

A timestamp representing the point in time that the signature was

generated, as asserted by the signer.

A timestamp representing the point in time at which the signature

expires, as asserted by the signer. A signature's expiration time

could be undefined, indicating that the signature does not expire

from the perspective of the signer.

The term "Unix time" is defined by [POSIX.1], Section 4.16.

This document contains non-normative examples of partial and

complete HTTP messages. Some examples use a single trailing

backslash '' to indicate line wrapping for long values, as per

[RFC8792]. The \ character and leading spaces on wrapped lines are

not part of the value.

1.5. Application of HTTP Message Signatures

HTTP Message Signatures are designed to be a general-purpose

security mechanism applicable in a wide variety of circumstances and

applications. In order to properly and safely apply HTTP Message

Signatures, an application or profile of this specification MUST

specify all of the following items:

The set of component identifiers (Section 2) that are expected

and required. For example, an authorization protocol could

mandate that the Authorization header be covered to protect the

authorization credentials and mandate the signature parameters

contain a created parameter, while an API expecting HTTP message

bodies could require the Digest header to be present and covered.

A means of retrieving the key material used to verify the

signature. An application will usually use the keyid parameter of

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16

the signature parameters (Section 2.3.1) and define rules for

resolving a key from there, though the appropriate key could be

known from other means.

A means of determining the signature algorithm used to verify the

signature is appropriate for the key material. For example, the

process could use the alg parameter of the signature parameters

(Section 2.3.1) to state the algorithm explicitly, derive the

algorithm from the key material, or use some pre-configured

algorithm agreed upon by the signer and verifier.

A means of determining that a given key and algorithm presented

in the request are appropriate for the request being made. For

example, a server expecting only ECDSA signatures should know to

reject any RSA signatures, or a server expecting asymmetric

cryptography should know to reject any symmetric cryptography.

An application using signatures also has to ensure that the verifier

will have access to all required information to re-create the

signature input string. For example, a server behind a reverse proxy

would need to know the original request URI to make use of

identifiers like @target-uri. Additionally, an application using

signatures in responses would need to ensure that clients receiving

signed responses have access to all the signed portions, including

any portions of the request that were signed by the server.

The details of this kind of profiling are the purview of the

application and outside the scope of this specification.

2. HTTP Message Components

In order to allow signers and verifiers to establish which

components are covered by a signature, this document defines

component identifiers for components covered by an HTTP Message

Signature, a set of rules for deriving and canonicalizing the values

associated with these component identifiers from the HTTP Message,

and the means for combining these canonicalized values into a

signature input string. The values for these items MUST be

accessible to both the signer and the verifier of the message, which

means these are usually derived from aspects of the HTTP message or

signature itself.

Some HTTP message components can undergo transformations that change

the bitwise value without altering meaning of the component's value

(for example, the merging together of header fields with the same

name). Message component values must therefore be canonicalized

before it is signed, to ensure that a signature can be verified

despite such intermediary transformations. This document defines

¶

*

¶

*

¶

¶

¶

¶

rules for each component identifier that transform the identifier's

associated component value into such a canonical form.

Component identifiers are serialized using the production grammar

defined by RFC8941, Section 4 [RFC8941]. The component identifier

itself is an sf-string value and MAY define parameters which are

included using the parameters rule.

component-identifier = sf-string parameters

Note that this means the value of the component identifier itself is

encased in double quotes, with parameters following as a semicolon-

separated list, such as "cache-control", "date", or "@signature-

params".

The following sections define component identifier types, their

parameters, their associated values, and the canonicalization rules

for their values. The method for combining component identifiers

into the signature input is defined in Section 2.4.

2.1. HTTP Fields

The component identifier for an HTTP field is the lowercased form of

its field name. While HTTP field names are case-insensitive,

implementations MUST use lowercased field names (e.g., content-type,

date, etag) when using them as component identifiers.

Unless overridden by additional parameters and rules, the HTTP field

value MUST be canonicalized with the following steps:

Create an ordered list of the field values of each instance of

the field in the message, in the order that they occur (or will

occur) in the message.

Strip leading and trailing whitespace from each item in the

list.

Concatenate the list items together, with a comma "," and space

" " between each item.

The resulting string is the canonicalized component value.

2.1.1. Canonicalized Structured HTTP Fields

If value of the the HTTP field in question is a structured field

([RFC8941]), the component identifier MAY include the sf parameter.

If this parameter is included, the HTTP field value MUST be

canonicalized using the rules specified in Section 4 of RFC8941

¶

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

¶

[RFC8941]. For example, this process will replace any optional

internal whitespace with a single space character.

The resulting string is used as the component value in Section 2.1.

2.1.2. Canonicalization Examples

This section contains non-normative examples of canonicalized values

for header fields, given the following example HTTP message:

Host: www.example.com

Date: Tue, 07 Jun 2014 20:51:35 GMT

X-OWS-Header: Leading and trailing whitespace.

X-Obs-Fold-Header: Obsolete

 line folding.

X-Empty-Header:

Cache-Control: max-age=60

Cache-Control: must-revalidate

X-Dictionary: a=1, b=2;x=1;y=2, c=(a b c)

The following table shows example canonicalized values for header

fields, given that message:

Header Field Canonicalized Value

"cache-control" max-age=60, must-revalidate

"date" Tue, 07 Jun 2014 20:51:35 GMT

"host" www.example.com

"x-empty-header"

"x-obs-fold-header" Obsolete line folding.

"x-ows-header" Leading and trailing whitespace.

"x-dictionary" a=1, b=2;x=1;y=2, c=(a b c)

"x-dictionary";sf a=1, b=2;x=1;y=2, c=(a b c)

Table 1: Non-normative examples of header field

canonicalization.

2.2. Dictionary Structured Field Members

An individual member in the value of a Dictionary Structured Field

is identified by using the parameter key on the component identifier

for the field. The value of this parameter is a the key being

identified, without any parameters present on that key in the

original dictionary.

An individual member in the value of a Dictionary Structured Field

is canonicalized by applying the serialization algorithm described

¶

¶

¶

¶

¶

¶

in Section 4.1.2 of RFC8941 [RFC8941] on a Dictionary containing

only that item.

2.2.1. Canonicalization Examples

This section contains non-normative examples of canonicalized values

for Dictionary Structured Field Members given the following example

header field, whose value is known to be a Dictionary:

X-Dictionary: a=1, b=2;x=1;y=2, c=(a b c)

The following table shows example canonicalized values for different

component identifiers, given that field:

Component Identifier Component Value

"x-dictionary";key=a 1

"x-dictionary";key=b 2;x=1;y=2

"x-dictionary";key=c (a, b, c)

Table 2: Non-normative examples of

Dictionary member canonicalization.

2.3. Specialty Components

Message components not found in an HTTP field can be included in the

signature input by defining a component identifier and the

canonicalization method for its component value.

To differentiate specialty component identifiers from HTTP fields,

specialty component identifiers MUST start with the "at" @

character. This specification defines the following specialty

component identifiers:

¶

¶

¶

¶

¶

¶

@signature-params

@method

@target-uri

@authority

@scheme

@request-target

@path

@query

@query-params

@status

@request-response

The signature metadata parameters for this

signature. (Section 2.3.1)

The method used for a request. (Section 2.3.2)

The full target URI for a request. (Section 2.3.3)

The authority of the target URI for a request. (Section

2.3.4)

The scheme of the target URI for a request. (Section 2.3.5)

The request target. (Section 2.3.6)

The absolute path portion of the target URI for a request.

(Section 2.3.7)

The query portion of the target URI for a request. (Section

2.3.8)

The parsed query parameters of the target URI for a

request. (Section 2.3.9)

The status code for a response. (Section 2.3.10).

A signature from a request message that resulted

in this response message. (Section 2.3.11)

Additional specialty component identifiers MAY be defined and

registered in the HTTP Signatures Specialty Component Identifier

Registry. (Section 6.3)

2.3.1. Signature Parameters

HTTP Message Signatures have metadata properties that provide

information regarding the signature's generation and verification,

such as the set of covered components, a timestamp, identifiers for

verification key material, and other utilities.

The signature parameters component identifier is @signature-params.

The signature parameters component value is the serialization of the

signature parameters for this signature, including the covered

components set with all associated parameters. These parameters

include any of the following:

created: Creation time as an sf-integer UNIX timestamp value.

Sub-second precision is not supported. Inclusion of this

parameter is RECOMMENDED.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

expires: Expiration time as an sf-integer UNIX timestamp value.

Sub-second precision is not supported.

nonce: A random unique value generated for this signature.

alg: The HTTP message signature algorithm from the HTTP Message

Signature Algorithm Registry, as an sf-string value.

keyid: The identifier for the key material as an sf-string value.

Additional parameters can be defined in the HTTP Signature

Parameters Registry (Section 6.2.2).

The signature parameters component value is serialized as a

parameterized inner list using the rules in Section 4 of RFC8941

[RFC8941] as follows:

Let the output be an empty string.

Determine an order for the component identifiers of the covered

components. Once this order is chosen, it cannot be changed.

This order MUST be the same order as used in creating the

signature input (Section 2.4).

Serialize the component identifiers of the covered components,

including all parameters, as an ordered inner-list according to

Section 4.1.1.1 of RFC8941 [RFC8941] and append this to the

output.

Determine an order for any signature parameters. Once this

order is chosen, it cannot be changed.

Append the parameters to the inner-list in the chosen order

according to Section 4.1.1.2 of RFC8941 [RFC8941], skipping

parameters that are not available or not used for this message

signature.

The output contains the signature parameters component value.

Note that the inner-list serialization is used for the covered

component value instead of the sf-list serialization in order to

facilitate this value's inclusion in message fields such as the

Signature-Input field's dictionary, as discussed in Section 4.1.

This example shows a canonicalized value for the parameters of a

given signature:

*

¶

* ¶

*

¶

* ¶

¶

¶

1. ¶

2.

¶

3.

¶

4.

¶

5.

¶

6. ¶

¶

¶

Note that an HTTP message could contain multiple signatures, but

only the signature parameters used for the current signature are

included in the entry.

2.3.2. Method

The @method component identifier refers to the HTTP method of a

request message. The component value of is canonicalized by taking

the value of the method as a string. Note that the method name is

case-sensitive as per [SEMANTICS] Section 9.1, and conventionally

standardized method names are uppercase US-ASCII. If used, the

@method component identifier MUST occur only once in the covered

components.

For example, the following request message:

POST /path?param=value HTTP/1.1

Host: www.example.com

Would result in the following @method value:

If used in a response message, the @method component identifier

refers to the associated component value of the request that

triggered the response message being signed.

2.3.3. Target URI

The @target-uri component identifier refers to the target URI of a

request message. The component value is the full absolute target URI

of the request, potentially assembled from all available parts

including the authority and request target as described in

[SEMANTICS] Section 7.1. If used, the @target-uri component

identifier MUST occur only once in the covered components.

For example, the following message sent over HTTPS:

POST /path?param=value HTTP/1.1

Host: www.example.com

NOTE: '\' line wrapping per RFC 8792

("@target-uri" "@authority" "date" "cache-control" "x-empty-header" \

 "x-example");keyid="test-key-rsa-pss";alg="rsa-pss-sha512";\

 created=1618884475;expires=1618884775

¶

¶

¶

¶

¶

¶

"@method": POST¶

¶

¶

¶

¶

Would result in the following @target-uri value:

If used in a response message, the @target-uri component identifier

refers to the associated component value of the request that

triggered the response message being signed.

2.3.4. Authority

The @authority component identifier refers to the authority

component of the target URI of the HTTP request message, as defined

in [SEMANTICS] Section 7.2. In HTTP 1.1, this is usually conveyed

using the Host header, while in HTTP 2 and HTTP 3 it is conveyed

using the :authority pseudo-header. The value is the fully-qualified

authority component of the request, comprised of the host and,

optionally, port of the request target, as a string. The component

value MUST be normalized according to the rules in [SEMANTICS]

Section 4.2.3. Namely, the host name is normalized to lowercase and

the default port is omitted. If used, the @authority component

identifier MUST occur only once in the covered components.

For example, the following request message:

POST /path?param=value HTTP/1.1

Host: www.example.com

Would result in the following @authority component value:

If used in a response message, the @authority component identifier

refers to the associated component value of the request that

triggered the response message being signed.

2.3.5. Scheme

The @scheme component identifier refers to the scheme of the target

URL of the HTTP request message. The component value is the scheme

as a string as defined in [SEMANTICS] Section 4.2. While the scheme

itself is case-insensitive, it MUST be normalized to lowercase for

inclusion in the signature input string. If used, the @scheme

component identifier MUST occur only once in the covered components.

For example, the following request message requested over plain

HTTP:

¶

"@target-uri": https://www.example.com/path?param=value¶

¶

¶

¶

¶

¶

"@authority": www.example.com¶

¶

¶

¶

POST /path?param=value HTTP/1.1

Host: www.example.com

Would result in the following @scheme value:

If used in a response message, the @scheme component identifier

refers to the associated component value of the request that

triggered the response message being signed.

2.3.6. Request Target

The @request-target component identifier refers to the full request

target of the HTTP request message, as defined in [SEMANTICS]

Section 7.1. The component value of the request target can take

different forms, depending on the type of request, as described

below. If used, the @request-target component identifier MUST occur

only once in the covered components.

For HTTP 1.1, the component value is equivalent to the request

target portion of the request line. However, this value is more

difficult to reliably construct in other versions of HTTP.

Therefore, it is NOT RECOMMENDED that this identifier be used when

versions of HTTP other than 1.1 might be in use.

The origin form value is combination of the absolute path and query

components of the request URL. For example, the following request

message:

POST /path?param=value HTTP/1.1

Host: www.example.com

Would result in the following @request-target component value:

The following request to an HTTP proxy with the absolute-form value,

containing the fully qualified target URI:

GET https://www.example.com/path?param=value HTTP/1.1

Would result in the following @request-target component value:

¶

¶

"@scheme": http¶

¶

¶

¶

¶

¶

¶

"@request-target": /path?param=value¶

¶

¶

¶

The following CONNECT request with an authority-form value,

containing the host and port of the target:

CONNECT www.example.com:80 HTTP/1.1

Host: www.example.com

Would result in the following @request-target component value:

The following OPTIONS request message with the asterisk-form value,

containing a single asterisk * character:

OPTIONS * HTTP/1.1

Host: www.example.com

Would result in the following @request-target component value:

If used in a response message, the @request-target component

identifier refers to the associated component value of the request

that triggered the response message being signed.

2.3.7. Path

The @path component identifier refers to the target path of the HTTP

request message. The component value is the absolute path of the

request target defined by [RFC3986], with no query component and no

trailing ? character. The value is normalized according to the rules

in [SEMANTICS] Section 4.2.3. Namely, an empty path string is

normalized as a single slash / character, and path components are

represented by their values after decoding any percent-encoded

octets. If used, the @path component identifier MUST occur only once

in the covered components.

For example, the following request message:

POST /path?param=value HTTP/1.1

Host: www.example.com

Would result in the following @path value:

"@request-target": https://www.example.com/path?param=value¶

¶

¶

¶

"@request-target": www.example.com:80¶

¶

¶

¶

"@request-target": *¶

¶

¶

¶

¶

¶

If used in a response message, the @path identifier refers to the

associated component value of the request that triggered the

response message being signed.

2.3.8. Query

The @query component identifier refers to the query component of the

HTTP request message. The component value is the entire normalized

query string defined by [RFC3986], including the leading ?

character. The value is normalized according to the rules in

[SEMANTICS] Section 4.2.3. Namely, percent-encoded octets are

decoded. If used, the @query component identifier MUST occur only

once in the covered components.

For example, the following request message:

POST /path?param=value&foo=bar&baz=batman HTTP/1.1

Host: www.example.com

Would result in the following @query value:

The following request message:

POST /path?queryString HTTP/1.1

Host: www.example.com

Would result in the following @query value:

If used in a response message, the @query component identifier

refers to the associated component value of the request that

triggered the response message being signed.

2.3.9. Query Parameters

If a request target URI uses HTML form parameters in the query

string as defined in [HTMLURL] Section 5, the @query-params

component identifier allows addressing of individual query

parameters. The query parameters MUST be parsed according to

[HTMLURL] Section 5.1, resulting in a list of (nameString,

valueString) tuples. The REQUIRED name parameter of each input

"@path": /path¶

¶

¶

¶

¶

¶

"@query": ?param=value&foo=bar&baz=batman¶

¶

¶

¶

"@query": ?queryString¶

¶

identifier contains the nameString of a single query parameter.

Several different named query parameters MAY be included in the

covered components. Single named parameters MAY occur in any order

in the covered components.

The component value of a single named parameter is the the

valueString of the named query parameter defined by [HTMLURL]

Section 5.1, which is the value after percent-encoded octets are

decoded. Note that this value does not include any leading ?

characters, equals sign =, or separating & characters. Named query

parameters with an empty valueString are included with an empty

string as the component value.

If a parameter name occurs multiple times in a request, all

parameter values of that name MUST be included in separate signature

input lines in the order in which the parameters occur in the target

URI.

For example for the following request:

POST /path?param=value&foo=bar&baz=batman&qux= HTTP/1.1

Host: www.example.com

Indicating the baz, qux and param named query parameters in would

result in the following @query-param value:

If used in a response message, the @query-params component

identifier refers to the associated component value of the request

that triggered the response message being signed.

2.3.10. Status Code

The @status component identifier refers to the three-digit numeric

HTTP status code of a response message as defined in [SEMANTICS]

Section 15. The component value is the serialized three-digit

integer of the HTTP response code, with no descriptive text. If

used, the @status component identifier MUST occur only once in the

covered components.

For example, the following response message:

HTTP/1.1 200 OK

Date: Fri, 26 Mar 2010 00:05:00 GMT

¶

¶

¶

¶

¶

¶

"@query-params";name="baz": batman

"@query-params";name="qux":

"@query-params";name="param": value

¶

¶

¶

¶

key

Would result in the following @status value:

The @status component identifier MUST NOT be used in a request

message.

2.3.11. Request-Response Signature Binding

When a signed request message results in a signed response message,

the @request-response component identifier can be used to

cryptographically link the request and the response to each other by

including the identified request signature value in the response's

signature input without copying the value of the request's signature

to the response directly. This component identifier has a single

REQUIRED parameter:

Identifies which signature from the response to sign.

The component value is the sf-binary representation of the signature

value of the referenced request identified by the key parameter.

For example, when serving this signed request:

NOTE: '\' line wrapping per RFC 8792

POST /foo?param=value&pet=dog HTTP/1.1

Host: example.com

Date: Tue, 20 Apr 2021 02:07:55 GMT

Content-Type: application/json

Content-Length: 18

Signature-Input: sig1=("@authority" "content-type")\

 ;created=1618884475;keyid="test-key-rsa-pss"

Signature: sig1=:KuhJjsOKCiISnKHh2rln5ZNIrkRvue0DSu5rif3g7ckTbbX7C4\

 Jp3bcGmi8zZsFRURSQTcjbHdJtN8ZXlRptLOPGHkUa/3Qov79gBeqvHNUO4bhI27p\

 4WzD1bJDG9+6ml3gkrs7rOvMtROObPuc78A95fa4+skS/t2T7OjkfsHAm/enxf1fA\

 wkk15xj0n6kmriwZfgUlOqyff0XLwuH4XFvZ+ZTyxYNoo2+EfFg4NVfqtSJch2WDY\

 7n/qmhZOzMfyHlggWYFnDpyP27VrzQCQg8rM1Crp6MrwGLa94v6qP8pq0sQVq2DLt\

 4NJSoRRqXTvqlWIRnexmcKXjQFVz6YSA==:

{"hello": "world"}

This would result in the following unsigned response message:

¶

¶

"@status": 200¶

¶

¶

¶

¶

¶

¶

¶

HTTP/1.1 200 OK

Date: Tue, 20 Apr 2021 02:07:56 GMT

Content-Type: application/json

Content-Length: 62

{"busy": true, "message": "Your call is very important to us"}

The server signs the response with its own key and includes the

signature of sig1 from the request in the covered components of the

response. The signature input string for this example is:

The signed response message is:

NOTE: '\' line wrapping per RFC 8792

HTTP/1.1 200 OK

Date: Tue, 20 Apr 2021 02:07:56 GMT

Content-Type: application/json

Content-Length: 62

Signature-Input: sig1=("content-type" "content-length" "@status" \

 "@request-response";key="sig1");created=1618884475\

 ;keyid="test-key-ecc-p256"

Signature: sig1=:crVqK54rxvdx0j7qnt2RL1oQSf+o21S/6Uk2hyFpoIfOT0q+Hv\

 msYAXUXzo0Wn8NFWh/OjWQOXHAQdVnTk87Pw==:

{"busy": true, "message": "Your call is very important to us"}

Since the request's signature value itself is not repeated in the

response, the requester MUST keep the original signature value

around long enough to validate the signature of the response.

¶

¶

NOTE: '\' line wrapping per RFC 8792

"content-type": application/json

"content-length": 62

"@status": 200

"@request-response";key="sig1": :KuhJjsOKCiISnKHh2rln5ZNIrkRvue0DSu\

 5rif3g7ckTbbX7C4Jp3bcGmi8zZsFRURSQTcjbHdJtN8ZXlRptLOPGHkUa/3Qov79\

 gBeqvHNUO4bhI27p4WzD1bJDG9+6ml3gkrs7rOvMtROObPuc78A95fa4+skS/t2T7\

 OjkfsHAm/enxf1fAwkk15xj0n6kmriwZfgUlOqyff0XLwuH4XFvZ+ZTyxYNoo2+Ef\

 Fg4NVfqtSJch2WDY7n/qmhZOzMfyHlggWYFnDpyP27VrzQCQg8rM1Crp6MrwGLa94\

 v6qP8pq0sQVq2DLt4NJSoRRqXTvqlWIRnexmcKXjQFVz6YSA==:

"@signature-params": ("content-type" "content-length" "@status" \

 "@request-response";key="sig1");created=1618884475\

 ;keyid="test-key-ecc-p256"

¶

¶

¶

¶

The @request-response component identifier MUST NOT be used in a

request message.

2.4. Creating the Signature Input String

The signature input is a US-ASCII string containing the

canonicalized HTTP message components covered by the signature. To

create the signature input string, the signer or verifier

concatenates together entries for each identifier in the signature's

covered components (including their parameters) using the following

algorithm:

Let the output be an empty string.

For each message component item in the covered components set

(in order):

Append the component identifier for the covered component

serialized according to the component-identifier rule.

Append a single colon ":"

Append a single space " "

Append the covered component's canonicalized component

value, as defined by the HTTP message component type.

(Section 2.1 and Section 2.3)

Append a single newline "\\n"

Append the signature parameters component (Section 2.3.1) as

follows:

Append the component identifier for the signature

parameters serialized according to the component-

identifier rule, i.e. "@signature-params"

Append a single colon ":"

Append a single space " "

Append the signature parameters' canonicalized component

value as defined in Section 2.3.1

Return the output string.

If covered components reference a component identifier that cannot

be resolved to a component value in the message, the implementation

¶

¶

1. ¶

2.

¶

1.

¶

2. ¶

3. ¶

4.

¶

5. ¶

3.

¶

1.

¶

2. ¶

3. ¶

4.

¶

4. ¶

MUST produce an error. Such situations are included but not limited

to:

The signer or verifier does not understand the component

identifier.

The component identifier identifies a field that is not present

in the message or whose value is malformed.

The component identifier is a Dictionary member identifier that

references a field that is not present in the message, is not a

Dictionary Structured Field, or whose value is malformed.

The component identifier is a Dictionary member identifier that

references a member that is not present in the field value, or

whose value is malformed. E.g., the identifier is "x-

dictionary";key="c" and the value of the x-dictionary header

field is a=1, b=2

In the following non-normative example, the HTTP message being

signed is the following request:

GET /foo HTTP/1.1

Host: example.org

Date: Tue, 20 Apr 2021 02:07:55 GMT

X-Example: Example header

 with some whitespace.

X-Empty-Header:

Cache-Control: max-age=60

Cache-Control: must-revalidate

The covered components consist of the @method, @path, and @authority

specialty component identifiers followed by the Cache-Control, X-

Empty-Header, X-Example HTTP headers, in order. The signature

parameters consist of a creation timestamp is 1618884475 and the key

identifier is test-key-rsa-pss. The signature input string for this

message with these parameters is:

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

Figure 1: Non-normative example Signature Input

3. HTTP Message Signatures

An HTTP Message Signature is a signature over a string generated

from a subset of the components of an HTTP message in addition to

metadata about the signature itself. When successfully verified

against an HTTP message, an HTTP Message Signature provides

cryptographic proof that the message is semantically equivalent to

the message for which the signature was generated, with respect to

the subset of message components that was signed.

3.1. Creating a Signature

In order to create a signature, a signer MUST follow the following

algorithm:

The signer chooses an HTTP signature algorithm and key material

for signing. The signer MUST choose key material that is

appropriate for the signature's algorithm, and that conforms to

any requirements defined by the algorithm, such as key size or

format. The mechanism by which the signer chooses the algorithm

and key material is out of scope for this document.

The signer sets the signature's creation time to the current

time.

If applicable, the signer sets the signature's expiration time

property to the time at which the signature is to expire.

The signer creates an ordered set of component identifiers

representing the message components to be covered by the

signature, and attaches signature metadata parameters to this

set. The serialized value of this is later used as the value of

the Signature-Input field as described in Section 4.1.

Once an order of covered components is chosen, the order

MUST NOT change for the life of the signature.

NOTE: '\' line wrapping per RFC 8792

"@method": GET

"@path": /foo

"@authority": example.org

"cache-control": max-age=60, must-revalidate

"x-empty-header":

"x-example": Example header with some whitespace.

"@signature-params": ("@method" "@path" "@authority" \

 "cache-control" "x-empty-header" "x-example");created=1618884475\

 ;keyid="test-key-rsa-pss"

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

*

¶

Each covered component identifier MUST be either an HTTP

field in the message Section 2.1 or a specialty component

identifier listed in Section 2.3 or its associated registry.

Signers of a request SHOULD include some or all of the

message control data in the covered components, such as the

@method, @authority, @target-uri, or some combination

thereof.

Signers SHOULD include the created signature metadata

parameter to indicate when the signature was created.

The @signature-params specialty component identifier is not

explicitly listed in the list of covered component

identifiers, because it is required to always be present as

the last line in the signature input. This ensures that a

signature always covers its own metadata.

Further guidance on what to include in this set and in what

order is out of scope for this document.

The signer creates the signature input string based on these

signature parameters. (Section 2.4)

The signer signs the signature input with the chosen signing

algorithm using the key material chosen by the signer. Several

signing algorithms are defined in in Section 3.3.

The byte array output of the signature function is the HTTP

message signature output value to be included in the Signature

field as defined in Section 4.2.

For example, given the HTTP message and signature parameters in the

example in Section 2.4, the example signature input string when

signed with the test-key-rsa-pss key in Appendix B.1.2 gives the

following message signature output value, encoded in Base64:

Figure 2: Non-normative example signature value

*

¶

*

¶

*

¶

*

¶

*

¶

5.

¶

6.

¶

7.

¶

¶

NOTE: '\' line wrapping per RFC 8792

P0wLUszWQjoi54udOtydf9IWTfNhy+r53jGFj9XZuP4uKwxyJo1RSHi+oEF1FuX6O29\

d+lbxwwBao1BAgadijW+7O/PyezlTnqAOVPWx9GlyntiCiHzC87qmSQjvu1CFyFuWSj\

dGa3qLYYlNm7pVaJFalQiKWnUaqfT4LyttaXyoyZW84jS8gyarxAiWI97mPXU+OVM64\

+HVBHmnEsS+lTeIsEQo36T3NFf2CujWARPQg53r58RmpZ+J9eKR2CD6IJQvacn5A4Ix\

5BUAVGqlyp8JYm+S/CWJi31PNUjRRCusCVRj05NrxABNFv3r5S9IXf2fYJK+eyW4AiG\

VMvMcOg==

3.2. Verifying a Signature

A verifier processes a signature and its associated signature input

parameters in concert with each other.

In order to verify a signature, a verifier MUST follow the following

algorithm:

Parse the Signature and Signature-Input fields and extract the

signatures to be verified.

If there is more than one signature value present,

determine which signature should be processed for this

message. If an applicable signature is not found, produce

an error.

If the chosen Signature value does not have a

corresponding Signature-Input value, produce an error.

Parse the values of the chosen Signature-Input field to get the

parameters for the signature to be verified.

Parse the value of the corresponding Signature field to get the

byte array value of the signature to be verified.

Examine the signature parameters to confirm that the signature

meets the requirements described in this document, as well as

any additional requirements defined by the application such as

which message components are required to be covered by the

signature. (Section 3.2.1)

Determine the verification key material for this signature. If

the key material is known through external means such as static

configuration or external protocol negotiation, the verifier

will use that. If the key is identified in the signature

parameters, the verifier will dereference this to appropriate

key material to use with the signature. The verifier has to

determine the trustworthiness of the key material for the

context in which the signature is presented. If a key is

identified that the verifier does not know, does not trust for

this request, or does not match something preconfigured, the

verification MUST fail.

Determine the algorithm to apply for verification:

If the algorithm is known through external means such as

static configuration or external protocol negotiation, the

verifier will use this algorithm.

¶

¶

1.

¶

1.

¶

2.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6. ¶

1.

¶

If the algorithm is explicitly stated in the signature

parameters using a value from the HTTP Message Signatures

registry, the verifier will use the referenced algorithm.

If the algorithm can be determined from the keying

material, such as through an algorithm field on the key

value itself, the verifier will use this algorithm.

If the algorithm is specified in more that one location,

such as through static configuration and the algorithm

signature parameter, or the algorithm signature parameter

and from the key material itself, the resolved algorithms

MUST be the same. If the algorithms are not the same, the

verifier MUST vail the verification.

Use the received HTTP message and the signature's metadata to

recreate the signature input, using the process described in

Section 2.4. The value of the @signature-params input is the

value of the SignatureInput field for this signature serialized

according to the rules described in Section 2.3.1, not

including the signature's label from the Signature-Input field.

If the key material is appropriate for the algorithm, apply the

verification algorithm to the signature, recalculated signature

input, signature parameters, key material, and algorithm.

Several algorithms are defined in Section 3.3.

The results of the verification algorithm function are the

final results of the signature verification.

If any of the above steps fail or produce an error, the signature

validation fails.

3.2.1. Enforcing Application Requirements

The verification requirements specified in this document are

intended as a baseline set of restrictions that are generally

applicable to all use cases. Applications using HTTP Message

Signatures MAY impose requirements above and beyond those specified

by this document, as appropriate for their use case.

Some non-normative examples of additional requirements an

application might define are:

Requiring a specific set of header fields to be signed (e.g.,

Authorization, Digest).

Enforcing a maximum signature age.

2.

¶

3.

¶

4.

¶

7.

¶

8.

¶

9.

¶

¶

¶

¶

*

¶

* ¶

Prohibition of signature metadata parameters, such as runtime

algorithm signaling with the alg parameter.

Prohibiting the use of certain algorithms, or mandating the use

of a specific algorithm.

Requiring keys to be of a certain size (e.g., 2048 bits vs. 1024

bits).

Enforcing uniqueness of a nonce value.

Application-specific requirements are expected and encouraged. When

an application defines additional requirements, it MUST enforce them

during the signature verification process, and signature

verification MUST fail if the signature does not conform to the

application's requirements.

Applications MUST enforce the requirements defined in this document.

Regardless of use case, applications MUST NOT accept signatures that

do not conform to these requirements.

3.3. Signature Algorithm Methods

HTTP Message signatures MAY use any cryptographic digital signature

or MAC method that is appropriate for the key material, environment,

and needs of the signer and verifier. All signatures are generated

from and verified against the byte values of the signature input

string defined in Section 2.4.

Each signature algorithm method takes as its input the signature

input string as a set of byte values (I), the signing key material

(Ks), and outputs the signature output as a set of byte values (S):

Each verification algorithm method takes as its input the

recalculated signature input string as a set of byte values (I), the

verification key material (Kv), and the presented signature to be

verified as a set of byte values (S) and outputs the verification

result (V) as a boolean:

This section contains several common algorithm methods. The method

to use can be communicated through the algorithm signature parameter

defined in Section 2.3.1, by reference to the key material, or

through mutual agreement between the signer and verifier.

*

¶

*

¶

*

¶

* ¶

¶

¶

¶

¶

HTTP_SIGN (I, Ks) -> S¶

¶

HTTP_VERIFY (I, Kv, S) -> V¶

¶

3.3.1. RSASSA-PSS using SHA-512

To sign using this algorithm, the signer applies the RSASSA-PSS-SIGN

(K, M) function [RFC8017] with the signer's private signing key (K)

and the signature input string (M) (Section 2.4). The mask

generation function is MGF1 as specified in [RFC8017] with a hash

function of SHA-512 [RFC6234]. The salt length (sLen) is 64 bytes.

The hash function (Hash) SHA-512 [RFC6234] is applied to the

signature input string to create the digest content to which the

digital signature is applied. The resulting signed content byte

array (S) is the HTTP message signature output used in Section 3.1.

To verify using this algorithm, the verifier applies the RSASSA-PSS-

VERIFY ((n, e), M, S) function [RFC8017] using the public key

portion of the verification key material ((n, e)) and the signature

input string (M) re-created as described in Section 3.2. The mask

generation function is MGF1 as specified in [RFC8017] with a hash

function of SHA-512 [RFC6234]. The salt length (sLen) is 64 bytes.

The hash function (Hash) SHA-512 [RFC6234] is applied to the

signature input string to create the digest content to which the

verification function is applied. The verifier extracts the HTTP

message signature to be verified (S) as described in Section 3.2.

The results of the verification function are compared to the http

message signature to determine if the signature presented is valid.

3.3.2. RSASSA-PKCS1-v1_5 using SHA-256

To sign using this algorithm, the signer applies the RSASSA-PKCS1-

V1_5-SIGN (K, M) function [RFC8017] with the signer's private

signing key (K) and the signature input string (M) (Section 2.4).

The hash SHA-256 [RFC6234] is applied to the signature input string

to create the digest content to which the digital signature is

applied. The resulting signed content byte array (S) is the HTTP

message signature output used in Section 3.1.

To verify using this algorithm, the verifier applies the RSASSA-

PKCS1-V1_5-VERIFY ((n, e), M, S) function [RFC8017] using the public

key portion of the verification key material ((n, e)) and the

signature input string (M) re-created as described in Section 3.2.

The hash function SHA-256 [RFC6234] is applied to the signature

input string to create the digest content to which the verification

function is applied. The verifier extracts the HTTP message

signature to be verified (S) as described in Section 3.2. The

results of the verification function are compared to the http

message signature to determine if the signature presented is valid.

¶

¶

¶

¶

3.3.3. HMAC using SHA-256

To sign and verify using this algorithm, the signer applies the HMAC

function [RFC2104] with the shared signing key (K) and the signature

input string (text) (Section 2.4). The hash function SHA-256

[RFC6234] is applied to the signature input string to create the

digest content to which the HMAC is applied, giving the signature

result.

For signing, the resulting value is the HTTP message signature

output used in Section 3.1.

For verification, the verifier extracts the HTTP message signature

to be verified (S) as described in Section 3.2. The output of the

HMAC function is compared to the value of the HTTP message

signature, and the results of the comparison determine the validity

of the signature presented.

3.3.4. ECDSA using curve P-256 DSS and SHA-256

To sign using this algorithm, the signer applies the ECDSA algorithm

[FIPS186-4] using curve P-256 with the signer's private signing key

and the signature input string (Section 2.4). The hash SHA-256

[RFC6234] is applied to the signature input string to create the

digest content to which the digital signature is applied. The

resulting signed content byte array is the HTTP message signature

output used in Section 3.1.

To verify using this algorithm, the verifier applies the ECDSA

algorithm [FIPS186-4] using the public key portion of the

verification key material and the signature input string re-created

as described in Section 3.2. The hash function SHA-256 [RFC6234] is

applied to the signature input string to create the digest content

to which the verification function is applied. The verifier extracts

the HTTP message signature to be verified (S) as described in

Section 3.2. The results of the verification function are compared

to the http message signature to determine if the signature

presented is valid.

3.3.5. JSON Web Signature (JWS) algorithms

If the signing algorithm is a JOSE signing algorithm from the JSON

Web Signature and Encryption Algorithms Registry established by

[RFC7518], the JWS algorithm definition determines the signature and

hashing algorithms to apply for both signing and verification. There

is no use of the explicit alg signature parameter when using JOSE

signing algorithms.

For both signing and verification, the HTTP messages signature input

string (Section 2.4) is used as the entire "JWS Signing Input". The

¶

¶

¶

¶

¶

¶

JOSE Header defined in [RFC7517] is not used, and the signature

input string is not first encoded in Base64 before applying the

algorithm. The output of the JWS signature is taken as a byte array

prior to the Base64url encoding used in JOSE.

The JWS algorithm MUST NOT be none and MUST NOT be any algorithm

with a JOSE Implementation Requirement of Prohibited.

4. Including a Message Signature in a Message

Message signatures can be included within an HTTP message via the

Signature-Input and Signature HTTP fields, both defined within this

specification. When attached to a message, an HTTP message signature

is identified by a label. This label MUST be unique within a given

HTTP message and MUST be used in both the Signature-Input and

Signature. The label is chosen by the signer, except where a

specific label is dictated by protocol negotiations.

An HTTP message signature MUST use both fields containing the same

labels: the Signature HTTP field contains the signature value, while

the Signature-Input HTTP field identifies the covered components and

parameters that describe how the signature was generated. Each field

contains labeled values and MAY contain multiple labeled values,

where the labels determine the correlation between the Signature and

Signature-Input fields.

4.1. The 'Signature-Input' HTTP Field

The Signature-Input HTTP field is a Dictionary Structured Field

[RFC8941] containing the metadata for one or more message signatures

generated from components within the HTTP message. Each member

describes a single message signature. The member's name is an

identifier that uniquely identifies the message signature within the

context of the HTTP message. The member's value is the serialization

of the covered components including all signature metadata

parameters, using the serialization process defined in Section

2.3.1.

NOTE: '\' line wrapping per RFC 8792

Signature-Input: sig1=("@method" "@target-uri" "host" "date" \

 "cache-control" "x-empty-header" "x-example");created=1618884475\

 ;keyid="test-key-rsa-pss"

To facilitate signature validation, the Signature-Input field value

MUST contain the same serialized value used in generating the

signature input string's @signature-params value.

¶

¶

¶

¶

¶

¶

¶

The signer MAY include the Signature-Input field as a trailer to

facilitate signing a message after its content has been processed by

the signer. However, since intermediaries are allowed to drop

trailers as per [SEMANTICS], it is RECOMMENDED that the Signature-

Input HTTP field be included only as a header to avoid signatures

being inadvertently stripped from a message.

Multiple Signature-Input fields MAY be included in a single HTTP

message. The signature labels MUST be unique across all field

values.

4.2. The 'Signature' HTTP Field

The Signature HTTP field is a Dictionary Structured field [RFC8941]

containing one or more message signatures generated from components

within the HTTP message. Each member's name is a signature

identifier that is present as a member name in the Signature-Input

Structured field within the HTTP message. Each member's value is a

Byte Sequence containing the signature value for the message

signature identified by the member name. Any member in the Signature

HTTP field that does not have a corresponding member in the HTTP

message's Signature-Input HTTP field MUST be ignored.

NOTE: '\' line wrapping per RFC 8792

Signature: sig1=:P0wLUszWQjoi54udOtydf9IWTfNhy+r53jGFj9XZuP4uKwxyJo\

 1RSHi+oEF1FuX6O29d+lbxwwBao1BAgadijW+7O/PyezlTnqAOVPWx9GlyntiCiHz\

 C87qmSQjvu1CFyFuWSjdGa3qLYYlNm7pVaJFalQiKWnUaqfT4LyttaXyoyZW84jS8\

 gyarxAiWI97mPXU+OVM64+HVBHmnEsS+lTeIsEQo36T3NFf2CujWARPQg53r58Rmp\

 Z+J9eKR2CD6IJQvacn5A4Ix5BUAVGqlyp8JYm+S/CWJi31PNUjRRCusCVRj05NrxA\

 BNFv3r5S9IXf2fYJK+eyW4AiGVMvMcOg==:

The signer MAY include the Signature field as a trailer to

facilitate signing a message after its content has been processed by

the signer. However, since intermediaries are allowed to drop

trailers as per [SEMANTICS], it is RECOMMENDED that the Signature-

Input HTTP field be included only as a header to avoid signatures

being inadvertently stripped from a message.

Multiple Signature fields MAY be included in a single HTTP message.

The signature labels MUST be unique across all field values.

4.3. Multiple Signatures

Multiple distinct signatures MAY be included in a single message.

Since Signature-Input and Signature are both defined as Dictionary

Structured fields, they can be used to include multiple signatures

within the same HTTP message by using distinct signature labels. For

¶

¶

¶

¶

¶

¶

example, a signer may include multiple signatures signing the same

message components with different keys or algorithms to support

verifiers with different capabilities, or a reverse proxy may

include information about the client in fields when forwarding the

request to a service host, including a signature over the client's

original signature values.

The following is a non-normative example of header fields a reverse

proxy sets in addition to the examples in the previous sections.

NOTE: '\' line wrapping per RFC 8792

Forwarded: for=192.0.2.123

Signature-Input: sig1=("@method" "@path" "@authority" \

 "cache-control" "x-empty-header" "x-example")\

 ;created=1618884475;keyid="test-key-rsa-pss"

Signature: sig1=:P0wLUszWQjoi54udOtydf9IWTfNhy+r53jGFj9XZuP4uKwxyJo\

 1RSHi+oEF1FuX6O29d+lbxwwBao1BAgadijW+7O/PyezlTnqAOVPWx9GlyntiCi\

 HzC87qmSQjvu1CFyFuWSjdGa3qLYYlNm7pVaJFalQiKWnUaqfT4LyttaXyoyZW8\

 4jS8gyarxAiWI97mPXU+OVM64+HVBHmnEsS+lTeIsEQo36T3NFf2CujWARPQg53\

 r58RmpZ+J9eKR2CD6IJQvacn5A4Ix5BUAVGqlyp8JYm+S/CWJi31PNUjRRCusCV\

 Rj05NrxABNFv3r5S9IXf2fYJK+eyW4AiGVMvMcOg==:

The client's request includes a signature value under the label

sig1, which the proxy signs in addition to the Forwarded header

defined in [RFC7239]. Note that since the client's signature already

covers the client's Signature-Input value for sig1, this value is

transitively covered by the proxy's signature and need not be added

explicitly. This results in a signature input string of:

And a signature output value of:

¶

¶

¶

¶

NOTE: '\' line wrapping per RFC 8792

"signature";key="sig1": :P0wLUszWQjoi54udOtydf9IWTfNhy+r53jGFj9XZuP\

 4uKwxyJo1RSHi+oEF1FuX6O29d+lbxwwBao1BAgadijW+7O/PyezlTnqAOVPWx9Gl\

 yntiCiHzC87qmSQjvu1CFyFuWSjdGa3qLYYlNm7pVaJFalQiKWnUaqfT4LyttaXyo\

 yZW84jS8gyarxAiWI97mPXU+OVM64+HVBHmnEsS+lTeIsEQo36T3NFf2CujWARPQg\

 53r58RmpZ+J9eKR2CD6IJQvacn5A4Ix5BUAVGqlyp8JYm+S/CWJi31PNUjRRCusCV\

 Rj05NrxABNFv3r5S9IXf2fYJK+eyW4AiGVMvMcOg==:

"forwarded": for=192.0.2.123

"@signature-params": ("signature";key="sig1" "forwarded")\

 ;created=1618884480;keyid="test-key-rsa";alg="rsa-v1_5-sha256"

¶

¶

These values are added to the HTTP request message by the proxy. The

original signature is included under the identifier sig1, and the

reverse proxy's signature is included under the label proxy_sig. The

proxy uses the key test-key-rsa to create its signature using the

rsa-v1_5-sha256 signature algorithm, while the client's original

signature was made using the key id of test-key-rsa-pss and an RSA

PSS signature algorithm.

NOTE: '\' line wrapping per RFC 8792

Forwarded: for=192.0.2.123

Signature-Input: sig1=("@method" "@path" "@authority" \

 "cache-control" "x-empty-header" "x-example")\

 ;created=1618884475;keyid="test-key-rsa-pss", \

 proxy_sig=("signature";key="sig1" "forwarded")\

 ;created=1618884480;keyid="test-key-rsa";alg="rsa-v1_5-sha256"

Signature: sig1=:P0wLUszWQjoi54udOtydf9IWTfNhy+r53jGFj9XZuP4uKwxyJo\

 1RSHi+oEF1FuX6O29d+lbxwwBao1BAgadijW+7O/PyezlTnqAOVPWx9GlyntiCi\

 HzC87qmSQjvu1CFyFuWSjdGa3qLYYlNm7pVaJFalQiKWnUaqfT4LyttaXyoyZW8\

 4jS8gyarxAiWI97mPXU+OVM64+HVBHmnEsS+lTeIsEQo36T3NFf2CujWARPQg53\

 r58RmpZ+J9eKR2CD6IJQvacn5A4Ix5BUAVGqlyp8JYm+S/CWJi31PNUjRRCusCV\

 Rj05NrxABNFv3r5S9IXf2fYJK+eyW4AiGVMvMcOg==:, \

 proxy_sig=:cjGvZwbsq9JwexP9TIvdLiivxqLINwp/ybAc19KOSQuLvtmMt3EnZx\

 NiE+797dXK2cjPPUFqoZxO8WWx1SnKhAU9SiXBr99NTXRmA1qGBjqus/1Yxwr8k\

 eB8xzFt4inv3J3zP0k6TlLkRJstkVnNjuhRIUA/ZQCo8jDYAl4zWJJjppy6Gd1X\

 Sg03iUa0sju1yj6rcKbMABBuzhUz4G0u1hZkIGbQprCnk/FOsqZHpwaWvY8P3hm\

 cDHkNaavcokmq+3EBDCQTzgwLqfDmV0vLCXtDda6CNO2Zyum/pMGboCnQn/VkQ+\

 j8kSydKoFg6EbVuGbrQijth6I0dDX2/HYcJg==:

The proxy's signature and the client's original signature can be

verified independently for the same message, based on the needs of

the application. Since the proxy's signature covers the client

signature, the backend service fronted by the proxy can trust that

the proxy has validated the incoming signature.

5. Requesting Signatures

While a signer is free to attach a signature to a request or

response without prompting, it is often desirable for a potential

NOTE: '\' line wrapping per RFC 8792

cjGvZwbsq9JwexP9TIvdLiivxqLINwp/ybAc19KOSQuLvtmMt3EnZxNiE+797dXK2cj\

PPUFqoZxO8WWx1SnKhAU9SiXBr99NTXRmA1qGBjqus/1Yxwr8keB8xzFt4inv3J3zP0\

k6TlLkRJstkVnNjuhRIUA/ZQCo8jDYAl4zWJJjppy6Gd1XSg03iUa0sju1yj6rcKbMA\

BBuzhUz4G0u1hZkIGbQprCnk/FOsqZHpwaWvY8P3hmcDHkNaavcokmq+3EBDCQTzgwL\

qfDmV0vLCXtDda6CNO2Zyum/pMGboCnQn/VkQ+j8kSydKoFg6EbVuGbrQijth6I0dDX\

2/HYcJg==

¶

¶

¶

¶

verifier to signal that it expects a signature from a potential

signer using the Accept-Signature field.

The message to which the requested signature is applied is known as

the "target message". When the Accept-Signature field is sent in an

HTTP Request message, the field indicates that the client desires

the server to sign the response using the identified parameters and

the target message is the response to this request. All responses

from resources that support such signature negotiation SHOULD either

be uncacheable or contain a Vary header field that lists Accept-

Signature, in order to prevent a cache from returning a response

with a signature intended for a different request.

When the Accept-Signature field is used in an HTTP Response message,

the field indicates that the server desires the client to sign its

next request to the server with the identified parameters, and the

target message is the client's next request. The client can choose

to also continue signing future requests to the same server in the

same way.

The target message of an Accept-Signature field MUST include all

labeled signatures indicated in the Accept-Header signature, each

covering the same identified components of the Accept-Signature

field.

The sender of an Accept-Signature field MUST include identifiers

that are appropriate for the type of the target message. For

example, if the target message is a response, the identifiers can

not include the @status identifier.

5.1. The Accept-Signature Field

The Accept-Signature HTTP header field is a Dictionary Structured

field [RFC8941] containing the metadata for one or more requested

message signatures to be generated from message components of the

target HTTP message. Each member describes a single message

signature. The member's name is an identifier that uniquely

identifies the requested message signature within the context of the

target HTTP message. The member's value is the serialization of the

desired covered components of the target message, including any

allowed signature metadata parameters, using the serialization

process defined in Section 2.3.1.

NOTE: '\' line wrapping per RFC 8792

Accept-Signature: sig1=("@method" "@target-uri" "host" "date" \

 "cache-control" "x-empty-header" "x-example")\

 ;keyid="test-key-rsa-pss"

¶

¶

¶

¶

¶

¶

¶

The requested signature MAY include parameters, such as a desired

algorithm or key identifier. These parameters MUST NOT include

parameters that the signer is expected to generate, including the

created and nonce parameters.

5.2. Processing an Accept-Signature

The receiver of an Accept-Signature field fulfills that header as

follows:

Parse the field value as a Dictionary

For each member of the dictionary:

The name of the member is the label of the output

signature as specified in Section 4.1

Parse the value of the member to obtain the set of covered

component identifiers

Process the requested parameters, such as the signing

algorithm and key material. If any requested parameters

cannot be fulfilled, or if the requested parameters

conflict with those deemed appropriate to the target

message, the process fails and returns an error.

Select any additional parameters necessary for completing

the signature

Create the Signature-Input and Signature header values and

associate them with the label

Optionally create any additional Signature-Input and Signature

values, with unique labels not found in the Accept-Signature

field

Combine all labeled Signature-Input and Signature values and

attach both headers to the target message

Note that by this process, a signature applied to a target message

MUST have the same label, MUST have the same set of covered

component, and MAY have additional parameters. Also note that the

target message MAY include additional signatures not specified by

the Accept-Signature field.

¶

¶

1. ¶

2. ¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

3.

¶

4.

¶

¶

Algorithm Name:

Status:

Description:

Specification document(s):

6. IANA Considerations

6.1. HTTP Signature Algorithms Registry

This document defines HTTP Signature Algorithms, for which IANA is

asked to create and maintain a new registry titled "HTTP Signature

Algorithms". Initial values for this registry are given in Section

6.1.2. Future assignments and modifications to existing assignment

are to be made through the Expert Review registration policy

[RFC8126] and shall follow the template presented in Section 6.1.1.

Algorithms referenced by algorithm identifiers have to be fully

defined with all parameters fixed. Algorithm identifiers in this

registry are to be interpreted as whole string values and not as a

combination of parts. That is to say, it is expected that

implementors understand rsa-pss-sha512 as referring to one specific

algorithm with its hash, mask, and salt values set as defined here.

Implementors do not parse out the rsa, pss, and sha512 portions of

the identifier to determine parameters of the signing algorithm from

the string.

6.1.1. Registration Template

An identifier for the HTTP Signature Algorithm. The name MUST be

an ASCII string consisting only of lower-case characters ("a" -

"z"), digits ("0" - "9"), and hyphens ("-"), and SHOULD NOT

exceed 20 characters in length. The identifier MUST be unique

within the context of the registry.

A brief text description of the status of the algorithm. The

description MUST begin with one of "Active" or "Deprecated", and

MAY provide further context or explanation as to the reason for

the status.

A brief description of the algorithm used to sign the signature

input string.

Reference to the document(s) that specify the token endpoint

authorization method, preferably including a URI that can be used

to retrieve a copy of the document(s). An indication of the

relevant sections may also be included but is not required.

6.1.2. Initial Contents

6.1.2.1. rsa-pss-sha512

¶

¶

¶

¶

¶

¶

Algorithm Name:

Status:

Definition:

Specification document(s):

Algorithm Name:

Status:

Description:

Specification document(s):

Algorithm Name:

Status:

Description:

Specification document(s):

Algorithm Name:

Status:

Description:

rsa-pss-sha512

Active

RSASSA-PSS using SHA-256

[[This document]], Section 3.3.1

6.1.2.2. rsa-v1_5-sha256

rsa-v1_5-sha256

Active

RSASSA-PKCS1-v1_5 using SHA-256

[[This document]], Section 3.3.2

6.1.2.3. hmac-sha256

hmac-sha256

Active

HMAC using SHA-256

[[This document]], Section 3.3.3

6.1.2.4. ecdsa-p256-sha256

ecdsa-p256-sha256

Active

ECDSA using curve P-256 DSS and SHA-256

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Specification document(s):

[[This document]], Section 3.3.4

6.2. HTTP Signature Metadata Parameters Registry

This document defines the signature parameters structure, the values

of which may have parameters containing metadata about a message

signature. IANA is asked to create and maintain a new registry

titled "HTTP Signature Metadata Parameters" to record and maintain

the set of parameters defined for use with member values in the

signature parameters structure. Initial values for this registry are

given in Section 6.2.2. Future assignments and modifications to

existing assignments are to be made through the Expert Review

registration policy [RFC8126] and shall follow the template

presented in Section 6.2.1.

6.2.1. Registration Template

6.2.2. Initial Contents

The table below contains the initial contents of the HTTP Signature

Metadata Parameters Registry. Each row in the table represents a

distinct entry in the registry.

Name Status Reference(s)

alg Active Section 2.3.1 of this document

created Active Section 2.3.1 of this document

expires Active Section 2.3.1 of this document

keyid Active Section 2.3.1 of this document

nonce Active Section 2.3.1 of this document

Table 3: Initial contents of the HTTP Signature

Metadata Parameters Registry.

6.3. HTTP Signature Specialty Component Identifiers Registry

This document defines a method for canonicalizing HTTP message

components, including components that can be generated from the

context of the HTTP message outside of the HTTP fields. These

components are identified by a unique string, known as the component

identifier. IANA is asked to create and maintain a new registry

typed "HTTP Signature Specialty Component Identifiers" to record and

maintain the set of non-field component identifiers and the methods

to produce their associated component values. Initial values for

this registry are given in Section 6.3.2. Future assignments and

modifications to existing assignments are to be made through the

Expert Review registration policy [RFC8126] and shall follow the

template presented in Section 6.3.1.

¶

¶

¶

¶

6.3.1. Registration Template

6.3.2. Initial Contents

The table below contains the initial contents of the HTTP Signature

Specialty Component Identifiers Registry.

Name Status Target Reference

@signature-

params
Active Request, Response

Section 2.3.1 of this

document

@method Active
Request, Related-

Response

Section 2.3.2 of this

document

@authority Active
Request, Related-

Response

Section 2.3.4 of this

document

@scheme Active
Request, Related-

Response

Section 2.3.5 of this

document

@target-uri Active
Request, Related-

Response

Section 2.3.3 of this

document

@request-

target
Active

Request, Related-

Response

Section 2.3.6 of this

document

@path Active
Request, Related-

Response

Section 2.3.7 of this

document

@query Active
Request, Related-

Response

Section 2.3.8 of this

document

@query-params Active
Request, Related-

Response

Section 2.3.9 of this

document

@status Active Response
Section 2.3.10 of

this document

@request-

response
Active

Section 2.3.11 of

this document

Table 4: Initial contents of the HTTP Signature Specialty Component

Identifiers Registry.

7. Security Considerations

((TODO: need to dive deeper on this section; not sure how much of

what's referenced below is actually applicable, or if it covers

everything we need to worry about.))

((TODO: Should provide some recommendations on how to determine

what components need to be signed for a given use case.))

There are a number of security considerations to take into account

when implementing or utilizing this specification. A thorough

security analysis of this protocol, including its strengths and

weaknesses, can be found in [WP-HTTP-Sig-Audit].

¶

¶

¶

¶

[FIPS186-4]

[HTMLURL]

[MESSAGING]

[POSIX.1]

[RFC2104]

[RFC2119]

[RFC3986]

[RFC8174]

[RFC8792]

[RFC8941]

[SEMANTICS]

8. References

8.1. Normative References

"Digital Signature Standard (DSS)", 2013, <https://

csrc.nist.gov/publications/detail/fips/186/4/final>.

"URL (Living Standard)", 2021, <https://

url.spec.whatwg.org/>.

Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP/

1.1", Work in Progress, Internet-Draft, draft-ietf-

httpbis-messaging-17, 25 July 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

messaging-17>.

"The Open Group Base Specifications Issue 7, 2018

edition", 2018, <https://pubs.opengroup.org/onlinepubs/

9699919799/>.

Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC 2104, DOI

10.17487/RFC2104, February 1997, <https://www.rfc-

editor.org/rfc/rfc2104>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,

"Handling Long Lines in Content of Internet-Drafts and

RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,

<https://www.rfc-editor.org/rfc/rfc8792>.

Nottingham, M. and P-H. Kamp, "Structured Field Values

for HTTP", RFC 8941, DOI 10.17487/RFC8941, February 2021,

<https://www.rfc-editor.org/rfc/rfc8941>.

Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP

Semantics", Work in Progress, Internet-Draft, draft-ietf-

https://csrc.nist.gov/publications/detail/fips/186/4/final
https://csrc.nist.gov/publications/detail/fips/186/4/final
https://url.spec.whatwg.org/
https://url.spec.whatwg.org/
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-17
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-17
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-messaging-17
https://pubs.opengroup.org/onlinepubs/9699919799/
https://pubs.opengroup.org/onlinepubs/9699919799/
https://www.rfc-editor.org/rfc/rfc2104
https://www.rfc-editor.org/rfc/rfc2104
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8792
https://www.rfc-editor.org/rfc/rfc8941

[I-D.ietf-httpbis-client-cert-field]

[RFC6234]

[RFC7239]

[RFC7517]

[RFC7518]

[RFC8017]

[RFC8126]

[TLS]

[WP-HTTP-Sig-Audit]

httpbis-semantics-17, 25 July 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

semantics-17>.

8.2. Informative References

Campbell, B. and M. Bishop,

"Client-Cert HTTP Header Field: Conveying Client

Certificate Information from TLS Terminating Reverse

Proxies to Origin Server Applications", Work in Progress,

Internet-Draft, draft-ietf-httpbis-client-cert-field-00,

8 June 2021, <https://datatracker.ietf.org/doc/html/

draft-ietf-httpbis-client-cert-field-00>.

Eastlake 3rd, D. and T. Hansen, "US Secure Hash

Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234,

DOI 10.17487/RFC6234, May 2011, <https://www.rfc-

editor.org/rfc/rfc6234>.

Petersson, A. and M. Nilsson, "Forwarded HTTP Extension",

RFC 7239, DOI 10.17487/RFC7239, June 2014, <https://

www.rfc-editor.org/rfc/rfc7239>.

Jones, M., "JSON Web Key (JWK)", RFC 7517, DOI 10.17487/

RFC7517, May 2015, <https://www.rfc-editor.org/rfc/

rfc7517>.

Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, DOI

10.17487/RFC7518, May 2015, <https://www.rfc-editor.org/

rfc/rfc7518>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A.

Rusch, "PKCS #1: RSA Cryptography Specifications Version

2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016,

<https://www.rfc-editor.org/rfc/rfc8017>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

"Security Considerations for HTTP Signatures",

2013, <https://web-payments.org/specs/source/http-

signatures-audit/>.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-17
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-17
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-17
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-client-cert-field-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-client-cert-field-00
https://www.rfc-editor.org/rfc/rfc6234
https://www.rfc-editor.org/rfc/rfc6234
https://www.rfc-editor.org/rfc/rfc7239
https://www.rfc-editor.org/rfc/rfc7239
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7517
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc7518
https://www.rfc-editor.org/rfc/rfc8017
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8446
https://web-payments.org/specs/source/http-signatures-audit/
https://web-payments.org/specs/source/http-signatures-audit/

Appendix A. Detecting HTTP Message Signatures

There have been many attempts to create signed HTTP messages in the

past, including other non-standard definitions of the Signature

field used within this specification. It is recommended that

developers wishing to support both this specification and other

historical drafts do so carefully and deliberately, as

incompatibilities between this specification and various versions of

other drafts could lead to unexpected problems.

It is recommended that implementers first detect and validate the

Signature-Input field defined in this specification to detect that

this standard is in use and not an alternative. If the Signature-

Input field is present, all Signature fields can be parsed and

interpreted in the context of this draft.

Appendix B. Examples

B.1. Example Keys

This section provides cryptographic keys that are referenced in

example signatures throughout this document. These keys MUST NOT be

used for any purpose other than testing.

The key identifiers for each key are used throughout the examples in

this specification. It is assumed for these examples that the signer

and verifier can unambiguously dereference all key identifiers used

here, and that the keys and algorithms used are appropriate for the

context in which the signature is presented.

B.1.1. Example Key RSA test

The following key is a 2048-bit RSA public and private key pair,

referred to in this document as test-key-rsa:

¶

¶

¶

¶

¶

B.1.2. Example RSA PSS Key

The following key is a 2048-bit RSA public and private key pair,

referred to in this document as test-key-rsa-pss:

-----BEGIN RSA PUBLIC KEY-----

MIIBCgKCAQEAhAKYdtoeoy8zcAcR874L8cnZxKzAGwd7v36APp7Pv6Q2jdsPBRrw

WEBnez6d0UDKDwGbc6nxfEXAy5mbhgajzrw3MOEt8uA5txSKobBpKDeBLOsdJKFq

MGmXCQvEG7YemcxDTRPxAleIAgYYRjTSd/QBwVW9OwNFhekro3RtlinV0a75jfZg

kne/YiktSvLG34lw2zqXBDTC5NHROUqGTlML4PlNZS5Ri2U4aCNx2rUPRcKIlE0P

uKxI4T+HIaFpv8+rdV6eUgOrB2xeI1dSFFn/nnv5OoZJEIB+VmuKn3DCUcCZSFlQ

PSXSfBDiUGhwOw76WuSSsf1D4b/vLoJ10wIDAQAB

-----END RSA PUBLIC KEY-----

-----BEGIN RSA PRIVATE KEY-----

MIIEqAIBAAKCAQEAhAKYdtoeoy8zcAcR874L8cnZxKzAGwd7v36APp7Pv6Q2jdsP

BRrwWEBnez6d0UDKDwGbc6nxfEXAy5mbhgajzrw3MOEt8uA5txSKobBpKDeBLOsd

JKFqMGmXCQvEG7YemcxDTRPxAleIAgYYRjTSd/QBwVW9OwNFhekro3RtlinV0a75

jfZgkne/YiktSvLG34lw2zqXBDTC5NHROUqGTlML4PlNZS5Ri2U4aCNx2rUPRcKI

lE0PuKxI4T+HIaFpv8+rdV6eUgOrB2xeI1dSFFn/nnv5OoZJEIB+VmuKn3DCUcCZ

SFlQPSXSfBDiUGhwOw76WuSSsf1D4b/vLoJ10wIDAQABAoIBAG/JZuSWdoVHbi56

vjgCgkjg3lkO1KrO3nrdm6nrgA9P9qaPjxuKoWaKO1cBQlE1pSWp/cKncYgD5WxE

CpAnRUXG2pG4zdkzCYzAh1i+c34L6oZoHsirK6oNcEnHveydfzJL5934egm6p8DW

+m1RQ70yUt4uRc0YSor+q1LGJvGQHReF0WmJBZHrhz5e63Pq7lE0gIwuBqL8SMaA

yRXtK+JGxZpImTq+NHvEWWCu09SCq0r838ceQI55SvzmTkwqtC+8AT2zFviMZkKR

Qo6SPsrqItxZWRty2izawTF0Bf5S2VAx7O+6t3wBsQ1sLptoSgX3QblELY5asI0J

YFz7LJECgYkAsqeUJmqXE3LP8tYoIjMIAKiTm9o6psPlc8CrLI9CH0UbuaA2JCOM

cCNq8SyYbTqgnWlB9ZfcAm/cFpA8tYci9m5vYK8HNxQr+8FS3Qo8N9RJ8d0U5Csw

DzMYfRghAfUGwmlWj5hp1pQzAuhwbOXFtxKHVsMPhz1IBtF9Y8jvgqgYHLbmyiu1

mwJ5AL0pYF0G7x81prlARURwHo0Yf52kEw1dxpx+JXER7hQRWQki5/NsUEtv+8RT

qn2m6qte5DXLyn83b1qRscSdnCCwKtKWUug5q2ZbwVOCJCtmRwmnP131lWRYfj67

B/xJ1ZA6X3GEf4sNReNAtaucPEelgR2nsN0gKQKBiGoqHWbK1qYvBxX2X3kbPDkv

9C+celgZd2PW7aGYLCHq7nPbmfDV0yHcWjOhXZ8jRMjmANVR/eLQ2EfsRLdW69bn

f3ZD7JS1fwGnO3exGmHO3HZG+6AvberKYVYNHahNFEw5TsAcQWDLRpkGybBcxqZo

81YCqlqidwfeO5YtlO7etx1xLyqa2NsCeG9A86UjG+aeNnXEIDk1PDK+EuiThIUa

/2IxKzJKWl1BKr2d4xAfR0ZnEYuRrbeDQYgTImOlfW6/GuYIxKYgEKCFHFqJATAG

IxHrq1PDOiSwXd2GmVVYyEmhZnbcp8CxaEMQoevxAta0ssMK3w6UsDtvUvYvF22m

qQKBiD5GwESzsFPy3Ga0MvZpn3D6EJQLgsnrtUPZx+z2Ep2x0xc5orneB5fGyF1P

WtP+fG5Q6Dpdz3LRfm+KwBCWFKQjg7uTxcjerhBWEYPmEMKYwTJF5PBG9/ddvHLQ

EQeNC8fHGg4UXU8mhHnSBt3EA10qQJfRDs15M38eG2cYwB1PZpDHScDnDA0=

-----END RSA PRIVATE KEY-----

¶

¶

B.1.3. Example ECC P-256 Test Key

The following key is an elliptical curve key over the curve P-256,

referred to in this document as test-key-ecc-p256.

-----BEGIN PUBLIC KEY-----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr4tmm3r20Wd/PbqvP1s2

+QEtvpuRaV8Yq40gjUR8y2Rjxa6dpG2GXHbPfvMs8ct+Lh1GH45x28Rw3Ry53mm+

oAXjyQ86OnDkZ5N8lYbggD4O3w6M6pAvLkhk95AndTrifbIFPNU8PPMO7OyrFAHq

gDsznjPFmTOtCEcN2Z1FpWgchwuYLPL+Wokqltd11nqqzi+bJ9cvSKADYdUAAN5W

Utzdpiy6LbTgSxP7ociU4Tn0g5I6aDZJ7A8Lzo0KSyZYoA485mqcO0GVAdVw9lq4

aOT9v6d+nb4bnNkQVklLQ3fVAvJm+xdDOp9LCNCN48V2pnDOkFV6+U9nV5oyc6XI

2wIDAQAB

-----END PUBLIC KEY-----

-----BEGIN PRIVATE KEY-----

MIIEvgIBADALBgkqhkiG9w0BAQoEggSqMIIEpgIBAAKCAQEAr4tmm3r20Wd/Pbqv

P1s2+QEtvpuRaV8Yq40gjUR8y2Rjxa6dpG2GXHbPfvMs8ct+Lh1GH45x28Rw3Ry5

3mm+oAXjyQ86OnDkZ5N8lYbggD4O3w6M6pAvLkhk95AndTrifbIFPNU8PPMO7Oyr

FAHqgDsznjPFmTOtCEcN2Z1FpWgchwuYLPL+Wokqltd11nqqzi+bJ9cvSKADYdUA

AN5WUtzdpiy6LbTgSxP7ociU4Tn0g5I6aDZJ7A8Lzo0KSyZYoA485mqcO0GVAdVw

9lq4aOT9v6d+nb4bnNkQVklLQ3fVAvJm+xdDOp9LCNCN48V2pnDOkFV6+U9nV5oy

c6XI2wIDAQABAoIBAQCUB8ip+kJiiZVKF8AqfB/aUP0jTAqOQewK1kKJ/iQCXBCq

pbo360gvdt05H5VZ/RDVkEgO2k73VSsbulqezKs8RFs2tEmU+JgTI9MeQJPWcP6X

aKy6LIYs0E2cWgp8GADgoBs8llBq0UhX0KffglIeek3n7Z6Gt4YFge2TAcW2WbN4

XfK7lupFyo6HHyWRiYHMMARQXLJeOSdTn5aMBP0PO4bQyk5ORxTUSeOciPJUFktQ

HkvGbym7KryEfwH8Tks0L7WhzyP60PL3xS9FNOJi9m+zztwYIXGDQuKM2GDsITeD

2mI2oHoPMyAD0wdI7BwSVW18p1h+jgfc4dlexKYRAoGBAOVfuiEiOchGghV5vn5N

RDNscAFnpHj1QgMr6/UG05RTgmcLfVsI1I4bSkbrIuVKviGGf7atlkROALOG/xRx

DLadgBEeNyHL5lz6ihQaFJLVQ0u3U4SB67J0YtVO3R6lXcIjBDHuY8SjYJ7Ci6Z6

vuDcoaEujnlrtUhaMxvSfcUJAoGBAMPsCHXte1uWNAqYad2WdLjPDlKtQJK1diCm

rqmB2g8QE99hDOHItjDBEdpyFBKOIP+NpVtM2KLhRajjcL9Ph8jrID6XUqikQuVi

4J9FV2m42jXMuioTT13idAILanYg8D3idvy/3isDVkON0X3UAVKrgMEne0hJpkPL

FYqgetvDAoGBAKLQ6JZMbSe0pPIJkSamQhsehgL5Rs51iX4m1z7+sYFAJfhvN3Q/

OGIHDRp6HjMUcxHpHw7U+S1TETxePwKLnLKj6hw8jnX2/nZRgWHzgVcY+sPsReRx

NJVf+Cfh6yOtznfX00p+JWOXdSY8glSSHJwRAMog+hFGW1AYdt7w80XBAoGBAImR

NUugqapgaEA8TrFxkJmngXYaAqpA0iYRA7kv3S4QavPBUGtFJHBNULzitydkNtVZ

3w6hgce0h9YThTo/nKc+OZDZbgfN9s7cQ75x0PQCAO4fx2P91Q+mDzDUVTeG30mE

t2m3S0dGe47JiJxifV9P3wNBNrZGSIF3mrORBVNDAoGBAI0QKn2Iv7Sgo4T/XjND

dl2kZTXqGAk8dOhpUiw/HdM3OGWbhHj2NdCzBliOmPyQtAr770GITWvbAI+IRYyF

S7Fnk6ZVVVHsxjtaHy1uJGFlaZzKR4AGNaUTOJMs6NadzCmGPAxNQQOCqoUjn4XR

rOjr9w349JooGXhOxbu8nOxX

-----END PRIVATE KEY-----

¶

¶

-----BEGIN EC PRIVATE KEY-----

MHcCAQEEIFKbhfNZfpDsW43+0+JjUr9K+bTeuxopu653+hBaXGA7oAoGCCqGSM49

AwEHoUQDQgAEqIVYZVLCrPZHGHjP17CTW0/+D9Lfw0EkjqF7xB4FivAxzic30tMM

4GF+hR6Dxh71Z50VGGdldkkDXZCnTNnoXQ==

-----END EC PRIVATE KEY-----

¶

B.1.4. Example Shared Secret

The following shared secret is 64 randomly-generated bytes encoded

in Base64, referred to in this document as test-shared-secret.

B.2. Test Cases

This section provides non-normative examples that may be used as

test cases to validate implementation correctness. These examples

are based on the following HTTP messages:

For requests, this test-request message is used:

POST /foo?param=value&pet=dog HTTP/1.1

Host: example.com

Date: Tue, 20 Apr 2021 02:07:55 GMT

Content-Type: application/json

Digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

Content-Length: 18

{"hello": "world"}

For responses, this test-response message is used:

HTTP/1.1 200 OK

Date: Tue, 20 Apr 2021 02:07:56 GMT

Content-Type: application/json

Digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

Content-Length: 18

{"hello": "world"}

B.2.1. Minimal Signature Using rsa-pss-sha512

This example presents a minimal Signature-Input and Signature header

for a signature using the rsa-pss-sha512 algorithm over test-

-----BEGIN PUBLIC KEY-----

MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEqIVYZVLCrPZHGHjP17CTW0/+D9Lf

w0EkjqF7xB4FivAxzic30tMM4GF+hR6Dxh71Z50VGGdldkkDXZCnTNnoXQ==

-----END PUBLIC KEY-----

¶

¶

NOTE: '\' line wrapping per RFC 8792

uzvJfB4u3N0Jy4T7NZ75MDVcr8zSTInedJtkgcu46YW4XByzNJjxBdtjUkdJPBt\

 bmHhIDi6pcl8jsasjlTMtDQ==

¶

¶

¶

¶

¶

¶

request, covering none of the components of the HTTP message request

but providing a timestamped signature proof of possession of the

key.

The corresponding signature input is:

This results in the following Signature-Input and Signature headers

being added to the message:

NOTE: '\' line wrapping per RFC 8792

Signature-Input: sig1=();created=1618884475\

 ;keyid="test-key-rsa-pss";alg="rsa-pss-sha512"

Signature: sig1=:HWP69ZNiom9Obu1KIdqPPcu/C1a5ZUMBbqS/xwJECV8bhIQVmE\

 AAAzz8LQPvtP1iFSxxluDO1KE9b8L+O64LEOvhwYdDctV5+E39Jy1eJiD7nYREBgx\

 TpdUfzTO+Trath0vZdTylFlxK4H3l3s/cuFhnOCxmFYgEa+cw+StBRgY1JtafSFwN\

 cZgLxVwialuH5VnqJS4JN8PHD91XLfkjMscTo4jmVMpFd3iLVe0hqVFl7MDt6TMkw\

 IyVFnEZ7B/VIQofdShO+C/7MuupCSLVjQz5xA+Zs6Hw+W9ESD/6BuGs6LF1TcKLxW\

 +5K+2zvDY/Cia34HNpRW5io7Iv9/b7iQ==:

Note that since the covered components list is empty, this signature

could be applied by an attacker to an unrelated HTTP message.

Therefore, use of an empty covered components set is discouraged.

B.2.2. Selective Covered Components using rsa-pss-sha512

This example covers additional components in test-request using the

rsa-pss-sha512 algorithm.

The corresponding signature input is:

This results in the following Signature-Input and Signature headers

being added to the message:

¶

¶

NOTE: '\' line wrapping per RFC 8792

"@signature-params": ();created=1618884475\

 ;keyid="test-key-rsa-pss";alg="rsa-pss-sha512"

¶

¶

¶

¶

¶

¶

NOTE: '\' line wrapping per RFC 8792

"@authority": example.com

"content-type": application/json

"@signature-params": ("@authority" "content-type")\

 ;created=1618884475;keyid="test-key-rsa-pss"

¶

¶

NOTE: '\' line wrapping per RFC 8792

Signature-Input: sig1=("@authority" "content-type")\

 ;created=1618884475;keyid="test-key-rsa-pss"

Signature: sig1=:ik+OtGmM/kFqENDf9Plm8AmPtqtC7C9a+zYSaxr58b/E6h81gh\

 JS3PcH+m1asiMp8yvccnO/RfaexnqanVB3C72WRNZN7skPTJmUVmoIeqZncdP2mlf\

 xlLP6UbkrgYsk91NS6nwkKC6RRgLhBFqzP42oq8D2336OiQPDAo/04SxZt4Wx9nDG\

 uy2SfZJUhsJqZyEWRk4204x7YEB3VxDAAlVgGt8ewilWbIKKTOKp3ymUeQIwptqYw\

 v0l8mN404PPzRBTpB7+HpClyK4CNp+SVv46+6sHMfJU4taz10s/NoYRmYCGXyadzY\

 YDj0BYnFdERB6NblI/AOWFGl5Axhhmjg==:

B.2.3. Full Coverage using rsa-pss-sha512

This example covers all headers in test-request (including the

message body Digest) plus various elements of the control data,

using the rsa-pss-sha512 algorithm.

The corresponding signature input is:

This results in the following Signature-Input and Signature headers

being added to the message:

NOTE: '\' line wrapping per RFC 8792

Signature-Input: sig1=("date" "@method" "@path" "@query" \

 "@authority" "content-type" "digest" "content-length")\

 ;created=1618884475;keyid="test-key-rsa-pss"

Signature: sig1=:JuJnJMFGD4HMysAGsfOY6N5ZTZUknsQUdClNG51VezDgPUOW03\

 QMe74vbIdndKwW1BBrHOHR3NzKGYZJ7X3ur23FMCdANe4VmKb3Rc1Q/5YxOO8p7Ko\

 yfVa4uUcMk5jB9KAn1M1MbgBnqwZkRWsbv8ocCqrnD85Kavr73lx51k1/gU8w673W\

 T/oBtxPtAn1eFjUyIKyA+XD7kYph82I+ahvm0pSgDPagu917SlqUjeaQaNnlZzO03\

 Iy1RZ5XpgbNeDLCqSLuZFVID80EohC2CQ1cL5svjslrlCNstd2JCLmhjL7xV3NYXe\

 rLim4bqUQGRgDwNJRnqobpS6C1NBns/Q==:

¶

¶

¶

NOTE: '\' line wrapping per RFC 8792

"date": Tue, 20 Apr 2021 02:07:56 GMT

"@method": POST

"@path": /foo

"@query": ?param=value&pet=dog

"@authority": example.com

"content-type": application/json

"digest": SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

"content-length": 18

"@signature-params": ("date" "@method" "@path" "@query" \

 "@authority" "content-type" "digest" "content-length")\

 ;created=1618884475;keyid="test-key-rsa-pss"

¶

¶

Note in this example that the value of the Date header and the value

of the created signature parameter need not be the same. This is due

to the fact that the Date header is added when creating the HTTP

Message and the created parameter is populated when creating the

signature over that message, and these two times could vary. If the

Date header is covered by the signature, it is up to the verifier to

determine whether its value has to match that of the created

parameter or not.

B.2.4. Signing a Response using ecdsa-p256-sha256

This example covers portions of the test-response response message

using the ecdsa-p256-sha256 algorithm and the key test-key-ecc-p256.

The corresponding signature input is:

This results in the following Signature-Input and Signature headers

being added to the message:

NOTE: '\' line wrapping per RFC 8792

Signature-Input: sig1=("content-type" "digest" "content-length")\

 ;created=1618884475;keyid="test-key-ecc-p256"

Signature: sig1=:n8RKXkj0iseWDmC6PNSQ1GX2R9650v+lhbb6rTGoSrSSx18zmn\

 6fPOtBx48/WffYLO0n1RHHf9scvNGAgGq52Q==:

B.2.5. Signing a Request using hmac-sha256

This example covers portions of the test-request using the hmac-

sha256 algorithm and the secret test-shared-secret.

The corresponding signature input is:

¶

¶

¶

¶

NOTE: '\' line wrapping per RFC 8792

"content-type": application/json

"digest": SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=

"content-length": 18

"@signature-params": ("content-type" "digest" "content-length")\

 ;created=1618884475;keyid="test-key-ecc-p256"

¶

¶

¶

¶

¶

This results in the following Signature-Input and Signature headers

being added to the message:

NOTE: '\' line wrapping per RFC 8792

Signature-Input: sig1=("@authority" "date" "content-type")\

 ;created=1618884475;keyid="test-shared-secret"

Signature: sig1=:fN3AMNGbx0V/cIEKkZOvLOoC3InI+lM2+gTv22x3ia8=:

B.3. TLS-Terminating Proxies

In this example, there is a TLS-terminating reverse proxy sitting in

front of the resource. The client does not sign the request but

instead uses mutual TLS to make its call. The terminating proxy

validates the TLS stream and injects a Client-Cert header according

to [I-D.ietf-httpbis-client-cert-field]. By signing this header

field, a reverse proxy can not only attest to its own validation of

the initial request but also authenticate itself to the backend

system independently of the client's actions. The client makes the

following request to the TLS terminating proxy using mutual TLS:

POST /foo?Param=value&pet=Dog HTTP/1.1

Host: example.com

Date: Tue, 20 Apr 2021 02:07:55 GMT

Content-Type: application/json

Content-Length: 18

{"hello": "world"}

The proxy processes the TLS connection and extracts the client's TLS

certificate to a Client-Cert header field and passes it along to the

internal service hosted at service.internal.example. This results in

the following unsigned request:

NOTE: '\' line wrapping per RFC 8792

"@authority": example.com

"date": Tue, 20 Apr 2021 02:07:55 GMT

"content-type": application/json

"@signature-params": ("@authority" "date" "content-type")\

 ;created=1618884475;keyid="test-shared-secret"

¶

¶

¶

¶

¶

¶

NOTE: '\' line wrapping per RFC 8792

POST /foo?Param=value&pet=Dog HTTP/1.1

Host: service.internal.example

Date: Tue, 20 Apr 2021 02:07:55 GMT

Content-Type: application/json

Content-Length: 18

Client-Cert: :MIIBqDCCAU6gAwIBAgIBBzAKBggqhkjOPQQDAjA6MRswGQYDVQQKD\

 BJMZXQncyBBdXRoZW50aWNhdGUxGzAZBgNVBAMMEkxBIEludGVybWVkaWF0ZSBDQT\

 AeFw0yMDAxMTQyMjU1MzNaFw0yMTAxMjMyMjU1MzNaMA0xCzAJBgNVBAMMAkJDMFk\

 wEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE8YnXXfaUgmnMtOXU/IncWalRhebrXmck\

 C8vdgJ1p5Be5F/3YC8OthxM4+k1M6aEAEFcGzkJiNy6J84y7uzo9M6NyMHAwCQYDV\

 R0TBAIwADAfBgNVHSMEGDAWgBRm3WjLa38lbEYCuiCPct0ZaSED2DAOBgNVHQ8BAf\

 8EBAMCBsAwEwYDVR0lBAwwCgYIKwYBBQUHAwIwHQYDVR0RAQH/BBMwEYEPYmRjQGV\

 4YW1wbGUuY29tMAoGCCqGSM49BAMCA0gAMEUCIBHda/r1vaL6G3VliL4/Di6YK0Q6\

 bMjeSkC3dFCOOB8TAiEAx/kHSB4urmiZ0NX5r5XarmPk0wmuydBVoU4hBVZ1yhk=:

{"hello": "world"}

Without a signature, the internal service would need to trust that

the incoming connection has the right information. By signing the

Client-Cert header and other portions of the internal request, the

internal service can be assured that the correct party, the trusted

proxy, has processed the request and presented it to the correct

service. The proxy's signature input consists of the following:

This results in the following signature:

¶

¶

NOTE: '\' line wrapping per RFC 8792

"@path": /foo

"@query": Param=value&pet=Dog

"@method": POST

"@authority": service.internal.example

"client-cert": :MIIBqDCCAU6gAwIBAgIBBzAKBggqhkjOPQQDAjA6MRswGQYDVQQ\

 KDBJMZXQncyBBdXRoZW50aWNhdGUxGzAZBgNVBAMMEkxBIEludGVybWVkaWF0ZSBD\

 QTAeFw0yMDAxMTQyMjU1MzNaFw0yMTAxMjMyMjU1MzNaMA0xCzAJBgNVBAMMAkJDM\

 FkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE8YnXXfaUgmnMtOXU/IncWalRhebrXm\

 ckC8vdgJ1p5Be5F/3YC8OthxM4+k1M6aEAEFcGzkJiNy6J84y7uzo9M6NyMHAwCQY\

 DVR0TBAIwADAfBgNVHSMEGDAWgBRm3WjLa38lbEYCuiCPct0ZaSED2DAOBgNVHQ8B\

 Af8EBAMCBsAwEwYDVR0lBAwwCgYIKwYBBQUHAwIwHQYDVR0RAQH/BBMwEYEPYmRjQ\

 GV4YW1wbGUuY29tMAoGCCqGSM49BAMCA0gAMEUCIBHda/r1vaL6G3VliL4/Di6YK0\

 Q6bMjeSkC3dFCOOB8TAiEAx/kHSB4urmiZ0NX5r5XarmPk0wmuydBVoU4hBVZ1yhk=:

"@signature-params": ("@path" "@query" "@method" "@authority" \

 "client-cert");created=1618884475;keyid="test-key-ecc-p256"

¶

¶

Which results in the following signed request sent from the proxy to

the internal service:

The internal service can validate the proxy's signature and

therefore be able to trust that the client's certificate has been

appropriately processed.

Acknowledgements

This specification was initially based on the draft-cavage-http-

signatures internet draft. The editors would like to thank the

authors of that draft, Mark Cavage and Manu Sporny, for their work

on that draft and their continuing contributions.

The editors would also like to thank the following individuals for

feedback, insight, and implementation of this draft and its

predecessors (in alphabetical order): Mark Adamcin, Mark Allen, Paul

Annesley, Karl Boehlmark, Stephane Bortzmeyer, Sarven Capadisli,

Liam Dennehy, ductm54, Stephen Farrell, Phillip Hallam-Baker, Eric

Holmes, Andrey Kislyuk, Adam Knight, Dave Lehn, Dave Longley, Ilari

Liusvaara, James H. Manger, Kathleen Moriarty, Mark Nottingham, Yoav

Nir, Adrian Palmer, Lucas Pardue, Roberto Polli, Julian Reschke,

NOTE: '\' line wrapping per RFC 8792

5gudRjXaHrAYbEaQUOoY9TuvqWOdPcspkp7YyKCB0XhyAG9cB715hucPPanEK0OVyiN\

LJqcoq2Yn1DPWQcnbog==

¶

¶

NOTE: '\' line wrapping per RFC 8792

POST /foo?Param=value&pet=Dog HTTP/1.1

Host: service.internal.example

Date: Tue, 20 Apr 2021 02:07:55 GMT

Content-Type: application/json

Content-Length: 18

Client-Cert: :MIIBqDCCAU6gAwIBAgIBBzAKBggqhkjOPQQDAjA6MRswGQYDVQQKD\

 BJMZXQncyBBdXRoZW50aWNhdGUxGzAZBgNVBAMMEkxBIEludGVybWVkaWF0ZSBDQT\

 AeFw0yMDAxMTQyMjU1MzNaFw0yMTAxMjMyMjU1MzNaMA0xCzAJBgNVBAMMAkJDMFk\

 wEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE8YnXXfaUgmnMtOXU/IncWalRhebrXmck\

 C8vdgJ1p5Be5F/3YC8OthxM4+k1M6aEAEFcGzkJiNy6J84y7uzo9M6NyMHAwCQYDV\

 R0TBAIwADAfBgNVHSMEGDAWgBRm3WjLa38lbEYCuiCPct0ZaSED2DAOBgNVHQ8BAf\

 8EBAMCBsAwEwYDVR0lBAwwCgYIKwYBBQUHAwIwHQYDVR0RAQH/BBMwEYEPYmRjQGV\

 4YW1wbGUuY29tMAoGCCqGSM49BAMCA0gAMEUCIBHda/r1vaL6G3VliL4/Di6YK0Q6\

 bMjeSkC3dFCOOB8TAiEAx/kHSB4urmiZ0NX5r5XarmPk0wmuydBVoU4hBVZ1yhk=:

Signature-Input: ttrp=("@path" "@query" "@method" "@authority" \

 "client-cert");created=1618884475;keyid="test-key-ecc-p256"

Signature: ttrp=:5gudRjXaHrAYbEaQUOoY9TuvqWOdPcspkp7YyKCB0XhyAG9cB7\

 15hucPPanEK0OVyiNLJqcoq2Yn1DPWQcnbog==:

{"hello": "world"}

¶

¶

¶

Michael Richardson, Wojciech Rygielski, Adam Scarr, Cory J. Slep,

Dirk Stein, Henry Story, Lukasz Szewc, Chris Webber, and Jeffrey

Yasskin.

Document History

RFC EDITOR: please remove this section before publication

draft-ietf-httpbis-message-signatures

-06

Updated language for message components, including

identifiers and values.

Clarified that Signature-Input and Signature are fields

which can be used as headers or trailers.

Add "Accept-Signature" field and semantics for signature

negotiation.

Define new specialty content identifiers, re-defined

request-target identifier.

Added request-response binding.

-05

Remove list prefixes.

Clarify signature algorithm parameters.

Update and fix examples.

Add examples for ECC and HMAC.

-04

Moved signature component definitions up to intro.

Created formal function definitions for algorithms to

fulfill.

Updated all examples.

Added nonce parameter field.

-03

Clarified signing and verification processes.

¶

¶

* ¶

- ¶

o

¶

o

¶

o

¶

o

¶

o ¶

- ¶

o ¶

o ¶

o ¶

o ¶

- ¶

o ¶

o

¶

o ¶

o ¶

- ¶

o ¶

Updated algorithm and key selection method.

Clearly defined core algorithm set.

Defined JOSE signature mapping process.

Removed legacy signature methods.

Define signature parameters separately from "signature"

object model.

Define serialization values for signature-input header

based on signature input.

-02

Removed editorial comments on document sources.

Removed in-document issues list in favor of tracked issues.

Replaced unstructured Signature header with Signature-Input

and Signature Dictionary Structured Header Fields.

Defined content identifiers for individual Dictionary

members, e.g., "x-dictionary-field";key=member-name.

Defined content identifiers for first N members of a List,

e.g., "x-list-field":prefix=4.

Fixed up examples.

Updated introduction now that it's adopted.

Defined specialty content identifiers and a means to extend

them.

Required signature parameters to be included in signature.

Added guidance on backwards compatibility, detection, and

use of signature methods.

-01

Strengthened requirement for content identifiers for header

fields to be lower-case (changed from SHOULD to MUST).

Added real example values for Creation Time and Expiration

Time.

Minor editorial corrections and readability improvements.

o ¶

o ¶

o ¶

o ¶

o

¶

o

¶

- ¶

o ¶

o ¶

o

¶

o

¶

o

¶

o ¶

o ¶

o

¶

o ¶

o

¶

- ¶

o

¶

o

¶

o ¶

-00

Initialized from draft-richanna-http-message-signatures-00,

following adoption by the working group.

draft-richanna-http-message-signatures

-00

Converted to xml2rfc v3 and reformatted to comply with RFC

style guides.

Removed Signature auth-scheme definition and related

content.

Removed conflicting normative requirements for use of

algorithm parameter. Now MUST NOT be relied upon.

Removed Extensions appendix.

Rewrote abstract and introduction to explain context and

need, and challenges inherent in signing HTTP messages.

Rewrote and heavily expanded algorithm definition,

retaining normative requirements.

Added definitions for key terms, referenced RFC 7230 for

HTTP terms.

Added examples for canonicalization and signature

generation steps.

Rewrote Signature header definition, retaining normative

requirements.

Added default values for algorithm and expires parameters.

Rewrote HTTP Signature Algorithms registry definition.

Added change control policy and registry template. Removed

suggested URI.

Added IANA HTTP Signature Parameter registry.

Added additional normative and informative references.

Added Topics for Working Group Discussion section, to be

removed prior to publication as an RFC.

- ¶

o

¶

* ¶

- ¶

o

¶

o

¶

o

¶

o ¶

o

¶

o

¶

o

¶

o

¶

o

¶

o ¶

o

¶

o ¶

o ¶

o

¶

Authors' Addresses

Annabelle Backman (editor)

Amazon

P.O. Box 81226

Seattle, WA 98108-1226

United States of America

Email: richanna@amazon.com

URI: https://www.amazon.com/

Justin Richer

Bespoke Engineering

Email: ietf@justin.richer.org

URI: https://bspk.io/

Manu Sporny

Digital Bazaar

203 Roanoke Street W.

Blacksburg, VA 24060

United States of America

Email: msporny@digitalbazaar.com

URI: https://manu.sporny.org/

mailto:richanna@amazon.com
https://www.amazon.com/
mailto:ietf@justin.richer.org
https://bspk.io/
mailto:msporny@digitalbazaar.com
https://manu.sporny.org/

	HTTP Message Signatures
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Discussion
	1.2. HTTP Message Transformations
	1.3. Safe Transformations
	1.4. Conventions and Terminology
	1.5. Application of HTTP Message Signatures

	2. HTTP Message Components
	2.1. HTTP Fields
	2.1.1. Canonicalized Structured HTTP Fields
	2.1.2. Canonicalization Examples

	2.2. Dictionary Structured Field Members
	2.2.1. Canonicalization Examples

	2.3. Specialty Components
	2.3.1. Signature Parameters
	2.3.2. Method
	2.3.3. Target URI
	2.3.4. Authority
	2.3.5. Scheme
	2.3.6. Request Target
	2.3.7. Path
	2.3.8. Query
	2.3.9. Query Parameters
	2.3.10. Status Code
	2.3.11. Request-Response Signature Binding

	2.4. Creating the Signature Input String

	3. HTTP Message Signatures
	3.1. Creating a Signature
	3.2. Verifying a Signature
	3.2.1. Enforcing Application Requirements

	3.3. Signature Algorithm Methods
	3.3.1. RSASSA-PSS using SHA-512
	3.3.2. RSASSA-PKCS1-v1_5 using SHA-256
	3.3.3. HMAC using SHA-256
	3.3.4. ECDSA using curve P-256 DSS and SHA-256
	3.3.5. JSON Web Signature (JWS) algorithms

	4. Including a Message Signature in a Message
	4.1. The 'Signature-Input' HTTP Field
	4.2. The 'Signature' HTTP Field
	4.3. Multiple Signatures

	5. Requesting Signatures
	5.1. The Accept-Signature Field
	5.2. Processing an Accept-Signature

	6. IANA Considerations
	6.1. HTTP Signature Algorithms Registry
	6.1.1. Registration Template
	6.1.2. Initial Contents
	6.1.2.1. rsa-pss-sha512
	6.1.2.2. rsa-v1_5-sha256
	6.1.2.3. hmac-sha256
	6.1.2.4. ecdsa-p256-sha256

	6.2. HTTP Signature Metadata Parameters Registry
	6.2.1. Registration Template
	6.2.2. Initial Contents

	6.3. HTTP Signature Specialty Component Identifiers Registry
	6.3.1. Registration Template
	6.3.2. Initial Contents

	7. Security Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Detecting HTTP Message Signatures
	Appendix B. Examples
	B.1. Example Keys
	B.1.1. Example Key RSA test
	B.1.2. Example RSA PSS Key
	B.1.3. Example ECC P-256 Test Key
	B.1.4. Example Shared Secret

	B.2. Test Cases
	B.2.1. Minimal Signature Using rsa-pss-sha512
	B.2.2. Selective Covered Components using rsa-pss-sha512
	B.2.3. Full Coverage using rsa-pss-sha512
	B.2.4. Signing a Response using ecdsa-p256-sha256
	B.2.5. Signing a Request using hmac-sha256

	B.3. TLS-Terminating Proxies

	Acknowledgements
	Document History
	Authors' Addresses

