
Workgroup: HTTP Working Group

Obsoletes: 7230 (if approved)

Published: 12 July 2020

Intended Status: Standards Track

Expires: 13 January 2021

Authors: R. Fielding, Ed.

Adobe

M. Nottingham, Ed.

Fastly

J. F. Reschke, Ed.

greenbytes

HTTP/1.1 Messaging

Abstract

The Hypertext Transfer Protocol (HTTP) is a stateless application-

level protocol for distributed, collaborative, hypertext information

systems. This document specifies the HTTP/1.1 message syntax,

message parsing, connection management, and related security

concerns.

This document obsoletes portions of RFC 7230.

Editorial Note

This note is to be removed before publishing as an RFC.

Discussion of this draft takes place on the HTTP working group

mailing list (ietf-http-wg@w3.org), which is archived at <https://

lists.w3.org/Archives/Public/ietf-http-wg/>.

Working Group information can be found at <https://httpwg.org/>;

source code and issues list for this draft can be found at <https://

github.com/httpwg/http-core>.

The changes in this draft are summarized in Appendix D.11.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc7230
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.org/
https://github.com/httpwg/http-core
https://github.com/httpwg/http-core
https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 13 January 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November

10, 2008. The person(s) controlling the copyright in some of this

material may not have granted the IETF Trust the right to allow

modifications of such material outside the IETF Standards Process.

Without obtaining an adequate license from the person(s) controlling

the copyright in such materials, this document may not be modified

outside the IETF Standards Process, and derivative works of it may

not be created outside the IETF Standards Process, except to format

it for publication as an RFC or to translate it into languages other

than English.

Table of Contents

1. Introduction

1.1. Requirements Notation

1.2. Syntax Notation

2. Message

2.1. Message Format

2.2. Message Parsing

2.3. HTTP Version

3. Request Line

3.1. Method

3.2. Request Target

3.2.1. origin-form

3.2.2. absolute-form

3.2.3. authority-form

3.2.4. asterisk-form

3.3. Reconstructing the Target URI

4. Status Line

5. Field Syntax

5.1. Field Line Parsing

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

5.2. Obsolete Line Folding

6. Message Body

6.1. Transfer-Encoding

6.2. Content-Length

6.3. Message Body Length

7. Transfer Codings

7.1. Chunked Transfer Coding

7.1.1. Chunk Extensions

7.1.2. Chunked Trailer Section

7.1.3. Decoding Chunked

7.2. Transfer Codings for Compression

7.3. Transfer Coding Registry

7.4. TE

8. Handling Incomplete Messages

9. Connection Management

9.1. Connection

9.2. Establishment

9.3. Associating a Response to a Request

9.4. Persistence

9.4.1. Retrying Requests

9.4.2. Pipelining

9.5. Concurrency

9.6. Failures and Timeouts

9.7. Tear-down

9.8. TLS Connection Closure

9.9. Upgrade

9.9.1. Upgrade Protocol Names

9.9.2. Upgrade Token Registry

10. Enclosing Messages as Data

10.1. Media Type message/http

10.2. Media Type application/http

11. Security Considerations

11.1. Response Splitting

11.2. Request Smuggling

11.3. Message Integrity

11.4. Message Confidentiality

12. IANA Considerations

12.1. Field Name Registration

12.2. Media Type Registration

12.3. Transfer Coding Registration

12.4. Upgrade Token Registration

12.5. ALPN Protocol ID Registration

13. References

13.1. Normative References

13.2. Informative References

Appendix A. Collected ABNF

Appendix B. Differences between HTTP and MIME

B.1. MIME-Version

B.2. Conversion to Canonical Form

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

B.3. Conversion of Date Formats

B.4. Conversion of Content-Encoding

B.5. Conversion of Content-Transfer-Encoding

B.6. MHTML and Line Length Limitations

Appendix C. HTTP Version History

C.1. Changes from HTTP/1.0

C.1.1. Multihomed Web Servers

C.1.2. Keep-Alive Connections

C.1.3. Introduction of Transfer-Encoding

C.2. Changes from RFC 7230

Appendix D. Change Log

D.1. Between RFC7230 and draft 00

D.2. Since draft-ietf-httpbis-messaging-00

D.3. Since draft-ietf-httpbis-messaging-01

D.4. Since draft-ietf-httpbis-messaging-02

D.5. Since draft-ietf-httpbis-messaging-03

D.6. Since draft-ietf-httpbis-messaging-04

D.7. Since draft-ietf-httpbis-messaging-05

D.8. Since draft-ietf-httpbis-messaging-06

D.9. Since draft-ietf-httpbis-messaging-07

D.10. Since draft-ietf-httpbis-messaging-08

D.11. Since draft-ietf-httpbis-messaging-09

Acknowledgments

Authors' Addresses

1. Introduction

The Hypertext Transfer Protocol (HTTP) is a stateless application-

level request/response protocol that uses extensible semantics and

self-descriptive messages for flexible interaction with network-

based hypertext information systems. HTTP is defined by a series of

documents that collectively form the HTTP/1.1 specification:

"HTTP Semantics" [Semantics]

"HTTP Caching" [Caching]

"HTTP/1.1 Messaging" (this document)

This document defines HTTP/1.1 message syntax and framing

requirements and their associated connection management. Our goal is

to define all of the mechanisms necessary for HTTP/1.1 message

handling that are independent of message semantics, thereby defining

the complete set of requirements for message parsers and message-

forwarding intermediaries.

This document obsoletes the portions of RFC 7230 related to HTTP/1.1

messaging and connection management, with the changes being

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

summarized in Appendix C.2. The other parts of RFC 7230 are

obsoleted by "HTTP Semantics" [Semantics].

1.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Conformance criteria and considerations regarding error handling are

defined in Section 3 of [Semantics].

1.2. Syntax Notation

This specification uses the Augmented Backus-Naur Form (ABNF)

notation of [RFC5234], extended with the notation for case-

sensitivity in strings defined in [RFC7405].

It also uses a list extension, defined in Section 5.5 of

[Semantics], that allows for compact definition of comma-separated

lists using a '#' operator (similar to how the '*' operator

indicates repetition). Appendix A shows the collected grammar with

all list operators expanded to standard ABNF notation.

As a convention, ABNF rule names prefixed with "obs-" denote

"obsolete" grammar rules that appear for historical reasons.

The following core rules are included by reference, as defined in

[RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF

(CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double quote),

HEXDIG (hexadecimal 0-9/A-F/a-f), HTAB (horizontal tab), LF (line

feed), OCTET (any 8-bit sequence of data), SP (space), and VCHAR

(any visible [USASCII] character).

The rules below are defined in [Semantics]:

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#conformance
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#abnf.extension
https://rfc-editor.org/rfc/rfc5234#appendix-B.1

 BWS = <BWS, see [Semantics], Section 1.2.1>

 OWS = <OWS, see [Semantics], Section 1.2.1>

 RWS = <RWS, see [Semantics], Section 1.2.1>

 absolute-URI = <absolute-URI, see [RFC3986], Section 4.3>

 absolute-path = <absolute-path, see [Semantics], Section 2.4>

 authority = <authority, see [RFC3986], Section 3.2>

 comment = <comment, see [Semantics], Section 5.4.1.3>

 field-name = <field-name, see [Semantics], Section 5.3>

 field-value = <field-value, see [Semantics], Section 5.4>

 obs-text = <obs-text, see [Semantics], Section 5.4.1.2>

 port = <port, see [RFC3986], Section 3.2.3>

 query = <query, see [RFC3986], Section 3.4>

 quoted-string = <quoted-string, see [Semantics], Section 5.4.1.2>

 token = <token, see [Semantics], Section 5.4.1.1>

 uri-host = <host, see [RFC3986], Section 3.2.2>

2. Message

2.1. Message Format

An HTTP/1.1 message consists of a start-line followed by a CRLF and

a sequence of octets in a format similar to the Internet Message

Format [RFC5322]: zero or more header field lines (collectively

referred to as the "headers" or the "header section"), an empty line

indicating the end of the header section, and an optional message

body.

 HTTP-message = start-line CRLF

 *(field-line CRLF)

 CRLF

 [message-body]

A message can be either a request from client to server or a

response from server to client. Syntactically, the two types of

message differ only in the start-line, which is either a request-

line (for requests) or a status-line (for responses), and in the

algorithm for determining the length of the message body (Section

6).

 start-line = request-line / status-line

¶

¶

¶

¶

¶

In theory, a client could receive requests and a server could

receive responses, distinguishing them by their different start-line

formats. In practice, servers are implemented to only expect a

request (a response is interpreted as an unknown or invalid request

method) and clients are implemented to only expect a response.

Although HTTP makes use of some protocol elements similar to the

Multipurpose Internet Mail Extensions (MIME) [RFC2045], see Appendix

B for the differences between HTTP and MIME messages.

2.2. Message Parsing

The normal procedure for parsing an HTTP message is to read the

start-line into a structure, read each header field line into a hash

table by field name until the empty line, and then use the parsed

data to determine if a message body is expected. If a message body

has been indicated, then it is read as a stream until an amount of

octets equal to the message body length is read or the connection is

closed.

A recipient MUST parse an HTTP message as a sequence of octets in an

encoding that is a superset of US-ASCII [USASCII]. Parsing an HTTP

message as a stream of Unicode characters, without regard for the

specific encoding, creates security vulnerabilities due to the

varying ways that string processing libraries handle invalid

multibyte character sequences that contain the octet LF (%x0A).

String-based parsers can only be safely used within protocol

elements after the element has been extracted from the message, such

as within a header field line value after message parsing has

delineated the individual field lines.

Although the line terminator for the start-line and header fields is

the sequence CRLF, a recipient MAY recognize a single LF as a line

terminator and ignore any preceding CR.

A sender MUST NOT generate a bare CR (a CR character not immediately

followed by LF) within any protocol elements other than the payload

body. A recipient of such a bare CR MUST consider that element to be

invalid or replace each bare CR with SP before processing the

element or forwarding the message.

Older HTTP/1.0 user agent implementations might send an extra CRLF

after a POST request as a workaround for some early server

applications that failed to read message body content that was not

terminated by a line-ending. An HTTP/1.1 user agent MUST NOT preface

or follow a request with an extra CRLF. If terminating the request

message body with a line-ending is desired, then the user agent MUST

count the terminating CRLF octets as part of the message body

length.

¶

¶

¶

¶

¶

¶

¶

In the interest of robustness, a server that is expecting to receive

and parse a request-line SHOULD ignore at least one empty line

(CRLF) received prior to the request-line.

A sender MUST NOT send whitespace between the start-line and the

first header field. A recipient that receives whitespace between the

start-line and the first header field MUST either reject the message

as invalid or consume each whitespace-preceded line without further

processing of it (i.e., ignore the entire line, along with any

subsequent lines preceded by whitespace, until a properly formed

header field is received or the header section is terminated).

The presence of such whitespace in a request might be an attempt to

trick a server into ignoring that field line or processing the line

after it as a new request, either of which might result in a

security vulnerability if other implementations within the request

chain interpret the same message differently. Likewise, the presence

of such whitespace in a response might be ignored by some clients or

cause others to cease parsing.

When a server listening only for HTTP request messages, or

processing what appears from the start-line to be an HTTP request

message, receives a sequence of octets that does not match the HTTP-

message grammar aside from the robustness exceptions listed above,

the server SHOULD respond with a 400 (Bad Request) response.

2.3. HTTP Version

HTTP uses a "<major>.<minor>" numbering scheme to indicate versions

of the protocol. This specification defines version "1.1".

Section 4.2 of [Semantics] specifies the semantics of HTTP version

numbers.

The version of an HTTP/1.x message is indicated by an HTTP-version

field in the start-line. HTTP-version is case-sensitive.

 HTTP-version = HTTP-name "/" DIGIT "." DIGIT

 HTTP-name = %s"HTTP"

When an HTTP/1.1 message is sent to an HTTP/1.0 recipient [RFC1945]

or a recipient whose version is unknown, the HTTP/1.1 message is

constructed such that it can be interpreted as a valid HTTP/1.0

message if all of the newer features are ignored. This specification

places recipient-version requirements on some new features so that a

conformant sender will only use compatible features until it has

determined, through configuration or the receipt of a message, that

the recipient supports HTTP/1.1.

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#protocol.version

Intermediaries that process HTTP messages (i.e., all intermediaries

other than those acting as tunnels) MUST send their own HTTP-version

in forwarded messages. In other words, they are not allowed to

blindly forward the start-line without ensuring that the protocol

version in that message matches a version to which that intermediary

is conformant for both the receiving and sending of messages.

Forwarding an HTTP message without rewriting the HTTP-version might

result in communication errors when downstream recipients use the

message sender's version to determine what features are safe to use

for later communication with that sender.

A server MAY send an HTTP/1.0 response to an HTTP/1.1 request if it

is known or suspected that the client incorrectly implements the

HTTP specification and is incapable of correctly processing later

version responses, such as when a client fails to parse the version

number correctly or when an intermediary is known to blindly forward

the HTTP-version even when it doesn't conform to the given minor

version of the protocol. Such protocol downgrades SHOULD NOT be

performed unless triggered by specific client attributes, such as

when one or more of the request header fields (e.g., User-Agent)

uniquely match the values sent by a client known to be in error.

3. Request Line

A request-line begins with a method token, followed by a single

space (SP), the request-target, another single space (SP), and ends

with the protocol version.

 request-line = method SP request-target SP HTTP-version

Although the request-line grammar rule requires that each of the

component elements be separated by a single SP octet, recipients MAY

instead parse on whitespace-delimited word boundaries and, aside

from the CRLF terminator, treat any form of whitespace as the SP

separator while ignoring preceding or trailing whitespace; such

whitespace includes one or more of the following octets: SP, HTAB,

VT (%x0B), FF (%x0C), or bare CR. However, lenient parsing can

result in request smuggling security vulnerabilities if there are

multiple recipients of the message and each has its own unique

interpretation of robustness (see Section 11.2).

HTTP does not place a predefined limit on the length of a request-

line, as described in Section 3 of [Semantics]. A server that

receives a method longer than any that it implements SHOULD respond

with a 501 (Not Implemented) status code. A server that receives a

request-target longer than any URI it wishes to parse MUST respond

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#conformance

with a 414 (URI Too Long) status code (see Section 10.5.15 of

[Semantics]).

Various ad hoc limitations on request-line length are found in

practice. It is RECOMMENDED that all HTTP senders and recipients

support, at a minimum, request-line lengths of 8000 octets.

3.1. Method

The method token indicates the request method to be performed on the

target resource. The request method is case-sensitive.

 method = token

The request methods defined by this specification can be found in

Section 8 of [Semantics], along with information regarding the HTTP

method registry and considerations for defining new methods.

3.2. Request Target

The request-target identifies the target resource upon which to

apply the request. The client derives a request-target from its

desired target URI. There are four distinct formats for the request-

target, depending on both the method being requested and whether the

request is to a proxy.

 request-target = origin-form

 / absolute-form

 / authority-form

 / asterisk-form

No whitespace is allowed in the request-target. Unfortunately, some

user agents fail to properly encode or exclude whitespace found in

hypertext references, resulting in those disallowed characters being

sent as the request-target in a malformed request-line.

Recipients of an invalid request-line SHOULD respond with either a

400 (Bad Request) error or a 301 (Moved Permanently) redirect with

the request-target properly encoded. A recipient SHOULD NOT attempt

to autocorrect and then process the request without a redirect,

since the invalid request-line might be deliberately crafted to

bypass security filters along the request chain.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#status.414
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#methods

3.2.1. origin-form

The most common form of request-target is the origin-form.

 origin-form = absolute-path ["?" query]

When making a request directly to an origin server, other than a

CONNECT or server-wide OPTIONS request (as detailed below), a client

MUST send only the absolute path and query components of the target

URI as the request-target. If the target URI's path component is

empty, the client MUST send "/" as the path within the origin-form

of request-target. A Host header field is also sent, as defined in

Section 6.6 of [Semantics].

For example, a client wishing to retrieve a representation of the

resource identified as

directly from the origin server would open (or reuse) a TCP

connection to port 80 of the host "www.example.org" and send the

lines:

followed by the remainder of the request message.

3.2.2. absolute-form

When making a request to a proxy, other than a CONNECT or server-

wide OPTIONS request (as detailed below), a client MUST send the

target URI in absolute-form as the request-target.

 absolute-form = absolute-URI

The proxy is requested to either service that request from a valid

cache, if possible, or make the same request on the client's behalf

to either the next inbound proxy server or directly to the origin

server indicated by the request-target. Requirements on such

"forwarding" of messages are defined in Section 6.7 of [Semantics].

¶

¶

¶

¶

 http://www.example.org/where?q=now¶

¶

 GET /where?q=now HTTP/1.1

 Host: www.example.org

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.host
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#message.forwarding

An example absolute-form of request-line would be:

A client MUST send a Host header field in an HTTP/1.1 request even

if the request-target is in the absolute-form, since this allows the

Host information to be forwarded through ancient HTTP/1.0 proxies

that might not have implemented Host.

When a proxy receives a request with an absolute-form of request-

target, the proxy MUST ignore the received Host header field (if

any) and instead replace it with the host information of the

request-target. A proxy that forwards such a request MUST generate a

new Host field value based on the received request-target rather

than forward the received Host field value.

When an origin server receives a request with an absolute-form of

request-target, the origin server MUST ignore the received Host

header field (if any) and instead use the host information of the

request-target. Note that if the request-target does not have an

authority component, an empty Host header field will be sent in this

case.

To allow for transition to the absolute-form for all requests in

some future version of HTTP, a server MUST accept the absolute-form

in requests, even though HTTP/1.1 clients will only send them in

requests to proxies.

3.2.3. authority-form

The authority-form of request-target is only used for CONNECT

requests (Section 8.3.6 of [Semantics]).

 authority-form = authority

When making a CONNECT request to establish a tunnel through one or

more proxies, a client MUST send only the target URI's authority

component (excluding any userinfo and its "@" delimiter) as the

request-target. For example,

3.2.4. asterisk-form

¶

 GET http://www.example.org/pub/WWW/TheProject.html HTTP/1.1¶

¶

¶

¶

¶

¶

¶

¶

 CONNECT www.example.com:80 HTTP/1.1¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#CONNECT

The asterisk-form of request-target is only used for a server-wide

OPTIONS request (Section 8.3.7 of [Semantics]).

 asterisk-form = "*"

When a client wishes to request OPTIONS for the server as a whole,

as opposed to a specific named resource of that server, the client

MUST send only "*" (%x2A) as the request-target. For example,

If a proxy receives an OPTIONS request with an absolute-form of

request-target in which the URI has an empty path and no query

component, then the last proxy on the request chain MUST send a

request-target of "*" when it forwards the request to the indicated

origin server.

For example, the request

would be forwarded by the final proxy as

after connecting to port 8001 of host "www.example.org".

3.3. Reconstructing the Target URI

Since the request-target often contains only part of the user

agent's target URI, a server constructs its value to properly

service the request (Section 6.1 of [Semantics]).

If the request-target is in absolute-form, the target URI is the

same as the request-target. Otherwise, the target URI is constructed

as follows:

If the server's configuration (or outbound gateway) provides a

fixed URI scheme, that scheme is used for the target URI.

Otherwise, if the request is received over a TLS-secured TCP

connection, the target URI's scheme is "https"; if not, the

scheme is "http".

If the server's configuration (or outbound gateway) provides a

fixed URI authority component, that authority is used for the

target URI. If not, then if the request-target is in authority-

¶

¶

¶

 OPTIONS * HTTP/1.1¶

¶

¶

 OPTIONS http://www.example.org:8001 HTTP/1.1¶

¶

 OPTIONS * HTTP/1.1

 Host: www.example.org:8001

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#OPTIONS
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#target.resource

form, the target URI's authority component is the same as the

request-target. If not, then if a Host header field is supplied

with a non-empty field-value, the authority component is the same

as the Host field-value. Otherwise, the authority component is

assigned the default name configured for the server and, if the

connection's incoming TCP port number differs from the default

port for the target URI's scheme, then a colon (":") and the

incoming port number (in decimal form) are appended to the

authority component.

If the request-target is in authority-form or asterisk-form, the

target URI's combined path and query component is empty.

Otherwise, the combined path and query component is the same as

the request-target.

The components of the target URI, once determined as above, can

be combined into absolute-URI form by concatenating the scheme,

"://", authority, and combined path and query component.

Example 1: the following message received over an insecure TCP

connection

has a target URI of

Example 2: the following message received over a TLS-secured TCP

connection

has a target URI of

Recipients of an HTTP/1.0 request that lacks a Host header field

might need to use heuristics (e.g., examination of the URI path for

something unique to a particular host) in order to guess the target

URI's authority component.

4. Status Line

The first line of a response message is the status-line, consisting

of the protocol version, a space (SP), the status code, another

space, and ending with an OPTIONAL textual phrase describing the

status code.

¶

¶

¶

¶

 GET /pub/WWW/TheProject.html HTTP/1.1

 Host: www.example.org:8080

¶

¶

 http://www.example.org:8080/pub/WWW/TheProject.html¶

¶

 OPTIONS * HTTP/1.1

 Host: www.example.org

¶

¶

 https://www.example.org¶

¶

¶

 status-line = HTTP-version SP status-code SP [reason-phrase]

Although the status-line grammar rule requires that each of the

component elements be separated by a single SP octet, recipients MAY

instead parse on whitespace-delimited word boundaries and, aside

from the line terminator, treat any form of whitespace as the SP

separator while ignoring preceding or trailing whitespace; such

whitespace includes one or more of the following octets: SP, HTAB,

VT (%x0B), FF (%x0C), or bare CR. However, lenient parsing can

result in response splitting security vulnerabilities if there are

multiple recipients of the message and each has its own unique

interpretation of robustness (see Section 11.1).

The status-code element is a 3-digit integer code describing the

result of the server's attempt to understand and satisfy the

client's corresponding request. The rest of the response message is

to be interpreted in light of the semantics defined for that status

code. See Section 10 of [Semantics] for information about the

semantics of status codes, including the classes of status code

(indicated by the first digit), the status codes defined by this

specification, considerations for the definition of new status

codes, and the IANA registry.

 status-code = 3DIGIT

The reason-phrase element exists for the sole purpose of providing a

textual description associated with the numeric status code, mostly

out of deference to earlier Internet application protocols that were

more frequently used with interactive text clients.

 reason-phrase = 1*(HTAB / SP / VCHAR / obs-text)

A client SHOULD ignore the reason-phrase content because it is not a

reliable channel for information (it might be translated for a given

locale, overwritten by intermediaries, or discarded when the message

is forwarded via other versions of HTTP). A server MUST send the

space that separates status-code from the reason-phrase even when

the reason-phrase is absent (i.e., the status-line would end with

the three octets SP CR LF).

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#status.codes

5. Field Syntax

Each field line consists of a case-insensitive field name followed

by a colon (":"), optional leading whitespace, the field line value,

and optional trailing whitespace.

 field-line = field-name ":" OWS field-value OWS

Most HTTP field names and the rules for parsing within field values

are defined in Section 5 of [Semantics]. This section covers the

generic syntax for header field inclusion within, and extraction

from, HTTP/1.1 messages. In addition, the following header fields

are defined by this document because they are specific to HTTP/1.1

message processing:

Field Name Status Reference

Connection standard Section 9.1

MIME-Version standard Appendix B.1

TE standard Section 7.4

Transfer-Encoding standard Section 6.1

Upgrade standard Section 9.9

Table 1

Furthermore, the field name "Close" is reserved, since using that

name as an HTTP header field might conflict with the "close"

connection option of the Connection header field (Section 9.1).

Field Name Status Reference Comments

Close standard Section 5 (reserved)

Table 2

5.1. Field Line Parsing

Messages are parsed using a generic algorithm, independent of the

individual field names. The contents within a given field line value

are not parsed until a later stage of message interpretation

(usually after the message's entire header section has been

processed).

No whitespace is allowed between the field name and colon. In the

past, differences in the handling of such whitespace have led to

security vulnerabilities in request routing and response handling. A

server MUST reject any received request message that contains

whitespace between a header field name and colon with a response

status code of 400 (Bad Request). A proxy MUST remove any such

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#header.and.trailer.fields

whitespace from a response message before forwarding the message

downstream.

A field line value might be preceded and/or followed by optional

whitespace (OWS); a single SP preceding the field line value is

preferred for consistent readability by humans. The field line value

does not include any leading or trailing whitespace: OWS occurring

before the first non-whitespace octet of the field line value or

after the last non-whitespace octet of the field line value ought to

be excluded by parsers when extracting the field line value from a

header field line.

5.2. Obsolete Line Folding

Historically, HTTP header field line values could be extended over

multiple lines by preceding each extra line with at least one space

or horizontal tab (obs-fold). This specification deprecates such

line folding except within the message/http media type (Section

10.1).

 obs-fold = OWS CRLF RWS

 ; obsolete line folding

A sender MUST NOT generate a message that includes line folding

(i.e., that has any field line value that contains a match to the

obs-fold rule) unless the message is intended for packaging within

the message/http media type.

A server that receives an obs-fold in a request message that is not

within a message/http container MUST either reject the message by

sending a 400 (Bad Request), preferably with a representation

explaining that obsolete line folding is unacceptable, or replace

each received obs-fold with one or more SP octets prior to

interpreting the field value or forwarding the message downstream.

A proxy or gateway that receives an obs-fold in a response message

that is not within a message/http container MUST either discard the

message and replace it with a 502 (Bad Gateway) response, preferably

with a representation explaining that unacceptable line folding was

received, or replace each received obs-fold with one or more SP

octets prior to interpreting the field value or forwarding the

message downstream.

A user agent that receives an obs-fold in a response message that is

not within a message/http container MUST replace each received obs-

fold with one or more SP octets prior to interpreting the field

value.

¶

¶

¶

¶

¶

¶

¶

¶

6. Message Body

The message body (if any) of an HTTP message is used to carry the

payload body (Section 7.3.3 of [Semantics]) of that request or

response. The message body is identical to the payload body unless a

transfer coding has been applied, as described in Section 6.1.

 message-body = *OCTET

The rules for determining when a message body is present in an HTTP/

1.1 message differ for requests and responses.

The presence of a message body in a request is signaled by a

Content-Length or Transfer-Encoding header field. Request message

framing is independent of method semantics, even if the method does

not define any use for a message body.

The presence of a message body in a response depends on both the

request method to which it is responding and the response status

code (Section 4), and corresponds to when a payload body is allowed;

see Section 7.3.3 of [Semantics].

6.1. Transfer-Encoding

The Transfer-Encoding header field lists the transfer coding names

corresponding to the sequence of transfer codings that have been (or

will be) applied to the payload body in order to form the message

body. Transfer codings are defined in Section 7.

 Transfer-Encoding = 1#transfer-coding

Transfer-Encoding is analogous to the Content-Transfer-Encoding

field of MIME, which was designed to enable safe transport of binary

data over a 7-bit transport service ([RFC2045], Section 6). However,

safe transport has a different focus for an 8bit-clean transfer

protocol. In HTTP's case, Transfer-Encoding is primarily intended to

accurately delimit a dynamically generated payload and to

distinguish payload encodings that are only applied for transport

efficiency or security from those that are characteristics of the

selected resource.

A recipient MUST be able to parse the chunked transfer coding

(Section 7.1) because it plays a crucial role in framing messages

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#payload.body
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#payload.body
https://rfc-editor.org/rfc/rfc2045#section-6

when the payload body size is not known in advance. A sender MUST

NOT apply chunked more than once to a message body (i.e., chunking

an already chunked message is not allowed). If any transfer coding

other than chunked is applied to a request payload body, the sender

MUST apply chunked as the final transfer coding to ensure that the

message is properly framed. If any transfer coding other than

chunked is applied to a response payload body, the sender MUST

either apply chunked as the final transfer coding or terminate the

message by closing the connection.

For example,

indicates that the payload body has been compressed using the gzip

coding and then chunked using the chunked coding while forming the

message body.

Unlike Content-Encoding (Section 7.1.2 of [Semantics]), Transfer-

Encoding is a property of the message, not of the representation,

and any recipient along the request/response chain MAY decode the

received transfer coding(s) or apply additional transfer coding(s)

to the message body, assuming that corresponding changes are made to

the Transfer-Encoding field value. Additional information about the

encoding parameters can be provided by other header fields not

defined by this specification.

Transfer-Encoding MAY be sent in a response to a HEAD request or in

a 304 (Not Modified) response (Section 10.4.5 of [Semantics]) to a

GET request, neither of which includes a message body, to indicate

that the origin server would have applied a transfer coding to the

message body if the request had been an unconditional GET. This

indication is not required, however, because any recipient on the

response chain (including the origin server) can remove transfer

codings when they are not needed.

A server MUST NOT send a Transfer-Encoding header field in any

response with a status code of 1xx (Informational) or 204 (No

Content). A server MUST NOT send a Transfer-Encoding header field in

any 2xx (Successful) response to a CONNECT request (Section 8.3.6 of

[Semantics]).

Transfer-Encoding was added in HTTP/1.1. It is generally assumed

that implementations advertising only HTTP/1.0 support will not

understand how to process a transfer-encoded payload. A client MUST

NOT send a request containing Transfer-Encoding unless it knows the

server will handle HTTP/1.1 requests (or later minor revisions);

such knowledge might be in the form of specific user configuration

or by remembering the version of a prior received response. A server

¶

¶

 Transfer-Encoding: gzip, chunked¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#content.codings
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#status.304
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#CONNECT

MUST NOT send a response containing Transfer-Encoding unless the

corresponding request indicates HTTP/1.1 (or later minor revisions).

A server that receives a request message with a transfer coding it

does not understand SHOULD respond with 501 (Not Implemented).

6.2. Content-Length

When a message does not have a Transfer-Encoding header field, a

Content-Length header field can provide the anticipated size, as a

decimal number of octets, for a potential payload body. For messages

that do include a payload body, the Content-Length field value

provides the framing information necessary for determining where the

body (and message) ends. For messages that do not include a payload

body, the Content-Length indicates the size of the selected

representation (Section 7.2.4 of [Semantics]).

Note: HTTP's use of Content-Length for message framing differs

significantly from the same field's use in MIME, where it is an

optional field used only within the "message/external-body" media-

type.

6.3. Message Body Length

The length of a message body is determined by one of the following

(in order of precedence):

Any response to a HEAD request and any response with a 1xx

(Informational), 204 (No Content), or 304 (Not Modified) status

code is always terminated by the first empty line after the

header fields, regardless of the header fields present in the

message, and thus cannot contain a message body.

Any 2xx (Successful) response to a CONNECT request implies that

the connection will become a tunnel immediately after the empty

line that concludes the header fields. A client MUST ignore any

Content-Length or Transfer-Encoding header fields received in

such a message.

If a Transfer-Encoding header field is present and the chunked

transfer coding (Section 7.1) is the final encoding, the

message body length is determined by reading and decoding the

chunked data until the transfer coding indicates the data is

complete.

If a Transfer-Encoding header field is present in a response

and the chunked transfer coding is not the final encoding, the

message body length is determined by reading the connection

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.content-length

until it is closed by the server. If a Transfer-Encoding header

field is present in a request and the chunked transfer coding

is not the final encoding, the message body length cannot be

determined reliably; the server MUST respond with the 400 (Bad

Request) status code and then close the connection.

If a message is received with both a Transfer-Encoding and a

Content-Length header field, the Transfer-Encoding overrides

the Content-Length. Such a message might indicate an attempt to

perform request smuggling (Section 11.2) or response splitting

(Section 11.1) and ought to be handled as an error. A sender

MUST remove the received Content-Length field prior to

forwarding such a message downstream.

If a message is received without Transfer-Encoding and with an

invalid Content-Length header field, then the message framing

is invalid and the recipient MUST treat it as an unrecoverable

error, unless the field value can be successfully parsed as a

comma-separated list (Section 5.5 of [Semantics]), all values

in the list are valid, and all values in the list are the same.

If this is a request message, the server MUST respond with a

400 (Bad Request) status code and then close the connection. If

this is a response message received by a proxy, the proxy MUST

close the connection to the server, discard the received

response, and send a 502 (Bad Gateway) response to the client.

If this is a response message received by a user agent, the

user agent MUST close the connection to the server and discard

the received response.

If a valid Content-Length header field is present without

Transfer-Encoding, its decimal value defines the expected

message body length in octets. If the sender closes the

connection or the recipient times out before the indicated

number of octets are received, the recipient MUST consider the

message to be incomplete and close the connection.

If this is a request message and none of the above are true,

then the message body length is zero (no message body is

present).

Otherwise, this is a response message without a declared

message body length, so the message body length is determined

by the number of octets received prior to the server closing

the connection.

Since there is no way to distinguish a successfully completed,

close-delimited message from a partially received message

interrupted by network failure, a server SHOULD generate encoding or

¶

¶

4.

¶

5.

¶

6.

¶

7.

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#abnf.extension

length-delimited messages whenever possible. The close-delimiting

feature exists primarily for backwards compatibility with HTTP/1.0.

A server MAY reject a request that contains a message body but not a

Content-Length by responding with 411 (Length Required).

Unless a transfer coding other than chunked has been applied, a

client that sends a request containing a message body SHOULD use a

valid Content-Length header field if the message body length is

known in advance, rather than the chunked transfer coding, since

some existing services respond to chunked with a 411 (Length

Required) status code even though they understand the chunked

transfer coding. This is typically because such services are

implemented via a gateway that requires a content-length in advance

of being called and the server is unable or unwilling to buffer the

entire request before processing.

A user agent that sends a request containing a message body MUST

send a valid Content-Length header field if it does not know the

server will handle HTTP/1.1 (or later) requests; such knowledge can

be in the form of specific user configuration or by remembering the

version of a prior received response.

If the final response to the last request on a connection has been

completely received and there remains additional data to read, a

user agent MAY discard the remaining data or attempt to determine if

that data belongs as part of the prior response body, which might be

the case if the prior message's Content-Length value is incorrect. A

client MUST NOT process, cache, or forward such extra data as a

separate response, since such behavior would be vulnerable to cache

poisoning.

7. Transfer Codings

Transfer coding names are used to indicate an encoding

transformation that has been, can be, or might need to be applied to

a payload body in order to ensure "safe transport" through the

network. This differs from a content coding in that the transfer

coding is a property of the message rather than a property of the

representation that is being transferred.

 transfer-coding = token *(OWS ";" OWS transfer-parameter)

Parameters are in the form of a name=value pair.

 transfer-parameter = token BWS "=" BWS (token / quoted-string)

¶

¶

¶

¶

¶

¶

¶

¶

All transfer-coding names are case-insensitive and ought to be

registered within the HTTP Transfer Coding registry, as defined in

Section 7.3. They are used in the TE (Section 7.4) and Transfer-

Encoding (Section 6.1) header fields.

Name Description Reference

chunked Transfer in a series of chunks
Section

7.1

compress UNIX "compress" data format [Welch]
Section

7.2

deflate
"deflate" compressed data ([RFC1951])

inside the "zlib" data format ([RFC1950])

Section

7.2

gzip GZIP file format [RFC1952]
Section

7.2

trailers (reserved) Section 7

x-

compress
Deprecated (alias for compress)

Section

7.2

x-gzip Deprecated (alias for gzip)
Section

7.2

Table 3

Note: the coding name "trailers" is reserved because its use would

conflict with the keyword "trailers" in the TE header field (Section

7.4).

7.1. Chunked Transfer Coding

The chunked transfer coding wraps the payload body in order to

transfer it as a series of chunks, each with its own size indicator,

followed by an OPTIONAL trailer section containing trailer fields.

Chunked enables content streams of unknown size to be transferred as

a sequence of length-delimited buffers, which enables the sender to

retain connection persistence and the recipient to know when it has

received the entire message.

 chunked-body = *chunk

 last-chunk

 trailer-section

 CRLF

 chunk = chunk-size [chunk-ext] CRLF

 chunk-data CRLF

 chunk-size = 1*HEXDIG

 last-chunk = 1*("0") [chunk-ext] CRLF

 chunk-data = 1*OCTET ; a sequence of chunk-size octets

¶

¶

¶

¶

The chunk-size field is a string of hex digits indicating the size

of the chunk-data in octets. The chunked transfer coding is complete

when a chunk with a chunk-size of zero is received, possibly

followed by a trailer section, and finally terminated by an empty

line.

A recipient MUST be able to parse and decode the chunked transfer

coding.

Note that HTTP/1.1 does not define any means to limit the size of a

chunked response such that an intermediary can be assured of

buffering the entire response.

The chunked encoding does not define any parameters. Their presence

SHOULD be treated as an error.

7.1.1. Chunk Extensions

The chunked encoding allows each chunk to include zero or more chunk

extensions, immediately following the chunk-size, for the sake of

supplying per-chunk metadata (such as a signature or hash), mid-

message control information, or randomization of message body size.

 chunk-ext = *(BWS ";" BWS chunk-ext-name

 [BWS "=" BWS chunk-ext-val])

 chunk-ext-name = token

 chunk-ext-val = token / quoted-string

The chunked encoding is specific to each connection and is likely to

be removed or recoded by each recipient (including intermediaries)

before any higher-level application would have a chance to inspect

the extensions. Hence, use of chunk extensions is generally limited

to specialized HTTP services such as "long polling" (where client

and server can have shared expectations regarding the use of chunk

extensions) or for padding within an end-to-end secured connection.

A recipient MUST ignore unrecognized chunk extensions. A server

ought to limit the total length of chunk extensions received in a

request to an amount reasonable for the services provided, in the

same way that it applies length limitations and timeouts for other

parts of a message, and generate an appropriate 4xx (Client Error)

response if that amount is exceeded.

¶

¶

¶

¶

¶

¶

¶

¶

¶

7.1.2. Chunked Trailer Section

A trailer section allows the sender to include additional fields at

the end of a chunked message in order to supply metadata that might

be dynamically generated while the message body is sent, such as a

message integrity check, digital signature, or post-processing

status. The proper use and limitations of trailer fields are defined

in Section 5.6 of [Semantics].

 trailer-section = *(field-line CRLF)

A recipient that decodes and removes the chunked encoding from a

message (e.g., for storage or forwarding to a non-HTTP/1.1 peer)

MUST discard any received trailer fields, store/forward them

separately from the header fields, or selectively merge into the

header section only those trailer fields corresponding to header

field definitions that are understood by the recipient to explicitly

permit and define how their corresponding trailer field value can be

safely merged.

7.1.3. Decoding Chunked

A process for decoding the chunked transfer coding can be

represented in pseudo-code as:

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#trailer.fields

compress (and x-compress)

deflate

gzip (and x-gzip)

7.2. Transfer Codings for Compression

The following transfer coding names for compression are defined by

the same algorithm as their corresponding content coding:

See Section 7.1.2.1 of [Semantics].

See Section 7.1.2.2 of [Semantics].

See Section 7.1.2.3 of [Semantics].

The compression codings do not define any parameters. Their presence

SHOULD be treated as an error.

7.3. Transfer Coding Registry

The "HTTP Transfer Coding Registry" defines the namespace for

transfer coding names. It is maintained at <https://www.iana.org/

assignments/http-parameters>.

 length := 0

 read chunk-size, chunk-ext (if any), and CRLF

 while (chunk-size > 0) {

 read chunk-data and CRLF

 append chunk-data to decoded-body

 length := length + chunk-size

 read chunk-size, chunk-ext (if any), and CRLF

 }

 read trailer field

 while (trailer field is not empty) {

 if (trailer fields are stored/forwarded separately) {

 append trailer field to existing trailer fields

 }

 else if (trailer field is understood and defined as mergeable) {

 merge trailer field with existing header fields

 }

 else {

 discard trailer field

 }

 read trailer field

 }

 Content-Length := length

 Remove "chunked" from Transfer-Encoding

 Remove Trailer from existing header fields

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#compress.coding
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#deflate.coding
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#gzip.coding
https://www.iana.org/assignments/http-parameters
https://www.iana.org/assignments/http-parameters

Registrations MUST include the following fields:

Name

Description

Pointer to specification text

Names of transfer codings MUST NOT overlap with names of content

codings (Section 7.1.2 of [Semantics]) unless the encoding

transformation is identical, as is the case for the compression

codings defined in Section 7.2.

The TE header field (Section 7.4) uses a pseudo parameter named "q"

as rank value when multiple transfer codings are acceptable. Future

registrations of transfer codings SHOULD NOT define parameters

called "q" (case-insensitively) in order to avoid ambiguities.

Values to be added to this namespace require IETF Review (see

Section 4.8 of [RFC8126]), and MUST conform to the purpose of

transfer coding defined in this specification.

Use of program names for the identification of encoding formats is

not desirable and is discouraged for future encodings.

7.4. TE

The "TE" header field in a request indicates what transfer codings,

besides chunked, the client is willing to accept in response, and

whether or not the client is willing to accept trailer fields in a

chunked transfer coding.

The TE field-value consists of a list of transfer coding names, each

allowing for optional parameters (as described in Section 7), and/or

the keyword "trailers". A client MUST NOT send the chunked transfer

coding name in TE; chunked is always acceptable for HTTP/1.1

recipients.

 TE = #t-codings

 t-codings = "trailers" / (transfer-coding [t-ranking])

 t-ranking = OWS ";" OWS "q=" rank

 rank = ("0" ["." 0*3DIGIT])

 / ("1" ["." 0*3("0")])

Three examples of TE use are below.

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#content.codings
https://rfc-editor.org/rfc/rfc8126#section-4.8

When multiple transfer codings are acceptable, the client MAY rank

the codings by preference using a case-insensitive "q" parameter

(similar to the qvalues used in content negotiation fields,

Section 7.4.4 of [Semantics]). The rank value is a real number in

the range 0 through 1, where 0.001 is the least preferred and 1 is

the most preferred; a value of 0 means "not acceptable".

If the TE field value is empty or if no TE field is present, the

only acceptable transfer coding is chunked. A message with no

transfer coding is always acceptable.

The keyword "trailers" indicates that the sender will not discard

trailer fields, as described in Section 5.6 of [Semantics].

Since the TE header field only applies to the immediate connection,

a sender of TE MUST also send a "TE" connection option within the

Connection header field (Section 9.1) in order to prevent the TE

field from being forwarded by intermediaries that do not support its

semantics.

8. Handling Incomplete Messages

A server that receives an incomplete request message, usually due to

a canceled request or a triggered timeout exception, MAY send an

error response prior to closing the connection.

A client that receives an incomplete response message, which can

occur when a connection is closed prematurely or when decoding a

supposedly chunked transfer coding fails, MUST record the message as

incomplete. Cache requirements for incomplete responses are defined

in Section 3 of [Caching].

If a response terminates in the middle of the header section (before

the empty line is received) and the status code might rely on header

fields to convey the full meaning of the response, then the client

cannot assume that meaning has been conveyed; the client might need

to repeat the request in order to determine what action to take

next.

A message body that uses the chunked transfer coding is incomplete

if the zero-sized chunk that terminates the encoding has not been

received. A message that uses a valid Content-Length is incomplete

if the size of the message body received (in octets) is less than

the value given by Content-Length. A response that has neither

chunked transfer coding nor Content-Length is terminated by closure

of the connection and, thus, is considered complete regardless of

 TE: deflate

 TE:

 TE: trailers, deflate;q=0.5

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#quality.values
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#trailer.fields
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#response.cacheability

the number of message body octets received, provided that the header

section was received intact.

9. Connection Management

HTTP messaging is independent of the underlying transport- or

session-layer connection protocol(s). HTTP only presumes a reliable

transport with in-order delivery of requests and the corresponding

in-order delivery of responses. The mapping of HTTP request and

response structures onto the data units of an underlying transport

protocol is outside the scope of this specification.

As described in Section 6.3 of [Semantics], the specific connection

protocols to be used for an HTTP interaction are determined by

client configuration and the target URI. For example, the "http" URI

scheme (Section 2.5.1 of [Semantics]) indicates a default connection

of TCP over IP, with a default TCP port of 80, but the client might

be configured to use a proxy via some other connection, port, or

protocol.

HTTP implementations are expected to engage in connection

management, which includes maintaining the state of current

connections, establishing a new connection or reusing an existing

connection, processing messages received on a connection, detecting

connection failures, and closing each connection. Most clients

maintain multiple connections in parallel, including more than one

connection per server endpoint. Most servers are designed to

maintain thousands of concurrent connections, while controlling

request queues to enable fair use and detect denial-of-service

attacks.

9.1. Connection

The "Connection" header field allows the sender to list desired

control options for the current connection.

When a field aside from Connection is used to supply control

information for or about the current connection, the sender MUST

list the corresponding field name within the Connection header

field.

Intermediaries MUST parse a received Connection header field before

a message is forwarded and, for each connection-option in this

field, remove any header or trailer field(s) from the message with

the same name as the connection-option, and then remove the

Connection header field itself (or replace it with the

intermediary's own connection options for the forwarded message).

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#routing.inbound
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#http.uri

Hence, the Connection header field provides a declarative way of

distinguishing fields that are only intended for the immediate

recipient ("hop-by-hop") from those fields that are intended for all

recipients on the chain ("end-to-end"), enabling the message to be

self-descriptive and allowing future connection-specific extensions

to be deployed without fear that they will be blindly forwarded by

older intermediaries.

Furthermore, intermediaries SHOULD remove or replace field(s) whose

semantics are known to require removal before forwarding, whether or

not they appear as a Connection option, after applying those fields'

semantics. This includes but is not limited to:

Proxy-Connection (Appendix C.1.2)

Keep-Alive (Section 19.7.1 of [RFC2068])

TE (Section 7.4)

Trailer (Section 5.6.3 of [Semantics])

Transfer-Encoding (Section 6.1)

Upgrade (Section 9.9)

The Connection header field's value has the following grammar:

 Connection = 1#connection-option

 connection-option = token

Connection options are case-insensitive.

A sender MUST NOT send a connection option corresponding to a field

that is intended for all recipients of the payload. For example,

Cache-Control is never appropriate as a connection option

(Section 5.2 of [Caching]).

The connection options do not always correspond to a field present

in the message, since a connection-specific field might not be

needed if there are no parameters associated with a connection

option. In contrast, a connection-specific field that is received

without a corresponding connection option usually indicates that the

field has been improperly forwarded by an intermediary and ought to

be ignored by the recipient.

When defining new connection options, specification authors ought to

document it as reserved field name and register that definition in

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc2068#section-19.7.1
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.trailer
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#field.cache-control

the Hypertext Transfer Protocol (HTTP) Field Name Registry

(Section 5.3.2 of [Semantics]), to avoid collisions.

The "close" connection option is defined for a sender to signal that

this connection will be closed after completion of the response. For

example,

in either the request or the response header fields indicates that

the sender is going to close the connection after the current

request/response is complete (Section 9.7).

A client that does not support persistent connections MUST send the

"close" connection option in every request message.

A server that does not support persistent connections MUST send the

"close" connection option in every response message that does not

have a 1xx (Informational) status code.

9.2. Establishment

It is beyond the scope of this specification to describe how

connections are established via various transport- or session-layer

protocols. Each connection applies to only one transport link.

9.3. Associating a Response to a Request

HTTP/1.1 does not include a request identifier for associating a

given request message with its corresponding one or more response

messages. Hence, it relies on the order of response arrival to

correspond exactly to the order in which requests are made on the

same connection. More than one response message per request only

occurs when one or more informational responses (1xx, see

Section 10.2 of [Semantics]) precede a final response to the same

request.

A client that has more than one outstanding request on a connection

MUST maintain a list of outstanding requests in the order sent and

MUST associate each received response message on that connection to

the highest ordered request that has not yet received a final

(non-1xx) response.

If an HTTP/1.1 client receives data on a connection that doesn't

have any outstanding requests, it MUST NOT consider them to be a

response to a not-yet-issued request; it SHOULD close the

connection, since message delimitation is now ambiguous, unless the

data consists only of one or more CRLF (which can be discarded, as

per Section 2.2).

¶

¶

 Connection: close¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.name.registry
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#status.1xx

9.4. Persistence

HTTP/1.1 defaults to the use of "persistent connections", allowing

multiple requests and responses to be carried over a single

connection. The "close" connection option is used to signal that a

connection will not persist after the current request/response. HTTP

implementations SHOULD support persistent connections.

A recipient determines whether a connection is persistent or not

based on the most recently received message's protocol version and

Connection header field (if any):

If the "close" connection option is present, the connection will

not persist after the current response; else,

If the received protocol is HTTP/1.1 (or later), the connection

will persist after the current response; else,

If the received protocol is HTTP/1.0, the "keep-alive" connection

option is present, either the recipient is not a proxy or the

message is a response, and the recipient wishes to honor the

HTTP/1.0 "keep-alive" mechanism, the connection will persist

after the current response; otherwise,

The connection will close after the current response.

A client MAY send additional requests on a persistent connection

until it sends or receives a "close" connection option or receives

an HTTP/1.0 response without a "keep-alive" connection option.

In order to remain persistent, all messages on a connection need to

have a self-defined message length (i.e., one not defined by closure

of the connection), as described in Section 6. A server MUST read

the entire request message body or close the connection after

sending its response, since otherwise the remaining data on a

persistent connection would be misinterpreted as the next request.

Likewise, a client MUST read the entire response message body if it

intends to reuse the same connection for a subsequent request.

A proxy server MUST NOT maintain a persistent connection with an

HTTP/1.0 client (see Section 19.7.1 of [RFC2068] for information and

discussion of the problems with the Keep-Alive header field

implemented by many HTTP/1.0 clients).

See Appendix C.1.2 for more information on backwards compatibility

with HTTP/1.0 clients.

¶

¶

*

¶

*

¶

*

¶

* ¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc2068#section-19.7.1

9.4.1. Retrying Requests

Connections can be closed at any time, with or without intention.

Implementations ought to anticipate the need to recover from

asynchronous close events. The conditions under which a client can

automatically retry a sequence of outstanding requests are defined

in Section 8.2.2 of [Semantics].

9.4.2. Pipelining

A client that supports persistent connections MAY "pipeline" its

requests (i.e., send multiple requests without waiting for each

response). A server MAY process a sequence of pipelined requests in

parallel if they all have safe methods (Section 8.2.1 of

[Semantics]), but it MUST send the corresponding responses in the

same order that the requests were received.

A client that pipelines requests SHOULD retry unanswered requests if

the connection closes before it receives all of the corresponding

responses. When retrying pipelined requests after a failed

connection (a connection not explicitly closed by the server in its

last complete response), a client MUST NOT pipeline immediately

after connection establishment, since the first remaining request in

the prior pipeline might have caused an error response that can be

lost again if multiple requests are sent on a prematurely closed

connection (see the TCP reset problem described in Section 9.7).

Idempotent methods (Section 8.2.2 of [Semantics]) are significant to

pipelining because they can be automatically retried after a

connection failure. A user agent SHOULD NOT pipeline requests after

a non-idempotent method, until the final response status code for

that method has been received, unless the user agent has a means to

detect and recover from partial failure conditions involving the

pipelined sequence.

An intermediary that receives pipelined requests MAY pipeline those

requests when forwarding them inbound, since it can rely on the

outbound user agent(s) to determine what requests can be safely

pipelined. If the inbound connection fails before receiving a

response, the pipelining intermediary MAY attempt to retry a

sequence of requests that have yet to receive a response if the

requests all have idempotent methods; otherwise, the pipelining

intermediary SHOULD forward any received responses and then close

the corresponding outbound connection(s) so that the outbound user

agent(s) can recover accordingly.

9.5. Concurrency

A client ought to limit the number of simultaneous open connections

that it maintains to a given server.

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#idempotent.methods
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#safe.methods
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#idempotent.methods

Previous revisions of HTTP gave a specific number of connections as

a ceiling, but this was found to be impractical for many

applications. As a result, this specification does not mandate a

particular maximum number of connections but, instead, encourages

clients to be conservative when opening multiple connections.

Multiple connections are typically used to avoid the "head-of-line

blocking" problem, wherein a request that takes significant server-

side processing and/or has a large payload blocks subsequent

requests on the same connection. However, each connection consumes

server resources. Furthermore, using multiple connections can cause

undesirable side effects in congested networks.

Note that a server might reject traffic that it deems abusive or

characteristic of a denial-of-service attack, such as an excessive

number of open connections from a single client.

9.6. Failures and Timeouts

Servers will usually have some timeout value beyond which they will

no longer maintain an inactive connection. Proxy servers might make

this a higher value since it is likely that the client will be

making more connections through the same proxy server. The use of

persistent connections places no requirements on the length (or

existence) of this timeout for either the client or the server.

A client or server that wishes to time out SHOULD issue a graceful

close on the connection. Implementations SHOULD constantly monitor

open connections for a received closure signal and respond to it as

appropriate, since prompt closure of both sides of a connection

enables allocated system resources to be reclaimed.

A client, server, or proxy MAY close the transport connection at any

time. For example, a client might have started to send a new request

at the same time that the server has decided to close the "idle"

connection. From the server's point of view, the connection is being

closed while it was idle, but from the client's point of view, a

request is in progress.

A server SHOULD sustain persistent connections, when possible, and

allow the underlying transport's flow-control mechanisms to resolve

temporary overloads, rather than terminate connections with the

expectation that clients will retry. The latter technique can

exacerbate network congestion.

A client sending a message body SHOULD monitor the network

connection for an error response while it is transmitting the

request. If the client sees a response that indicates the server

does not wish to receive the message body and is closing the

¶

¶

¶

¶

¶

¶

¶

connection, the client SHOULD immediately cease transmitting the

body and close its side of the connection.

9.7. Tear-down

The Connection header field (Section 9.1) provides a "close"

connection option that a sender SHOULD send when it wishes to close

the connection after the current request/response pair.

A client that sends a "close" connection option MUST NOT send

further requests on that connection (after the one containing

"close") and MUST close the connection after reading the final

response message corresponding to this request.

A server that receives a "close" connection option MUST initiate a

close of the connection (see below) after it sends the final

response to the request that contained "close". The server SHOULD

send a "close" connection option in its final response on that

connection. The server MUST NOT process any further requests

received on that connection.

A server that sends a "close" connection option MUST initiate a

close of the connection (see below) after it sends the response

containing "close". The server MUST NOT process any further requests

received on that connection.

A client that receives a "close" connection option MUST cease

sending requests on that connection and close the connection after

reading the response message containing the "close"; if additional

pipelined requests had been sent on the connection, the client

SHOULD NOT assume that they will be processed by the server.

If a server performs an immediate close of a TCP connection, there

is a significant risk that the client will not be able to read the

last HTTP response. If the server receives additional data from the

client on a fully closed connection, such as another request that

was sent by the client before receiving the server's response, the

server's TCP stack will send a reset packet to the client;

unfortunately, the reset packet might erase the client's

unacknowledged input buffers before they can be read and interpreted

by the client's HTTP parser.

To avoid the TCP reset problem, servers typically close a connection

in stages. First, the server performs a half-close by closing only

the write side of the read/write connection. The server then

continues to read from the connection until it receives a

corresponding close by the client, or until the server is reasonably

certain that its own TCP stack has received the client's

¶

¶

¶

¶

¶

¶

¶

acknowledgement of the packet(s) containing the server's last

response. Finally, the server fully closes the connection.

It is unknown whether the reset problem is exclusive to TCP or might

also be found in other transport connection protocols.

9.8. TLS Connection Closure

TLS provides a facility for secure connection closure. When a valid

closure alert is received, an implementation can be assured that no

further data will be received on that connection. TLS

implementations MUST initiate an exchange of closure alerts before

closing a connection. A TLS implementation MAY, after sending a

closure alert, close the connection without waiting for the peer to

send its closure alert, generating an "incomplete close". Note that

an implementation which does this MAY choose to reuse the session.

This SHOULD only be done when the application knows (typically

through detecting HTTP message boundaries) that it has received all

the message data that it cares about.

As specified in [RFC8446], any implementation which receives a

connection close without first receiving a valid closure alert (a

"premature close") MUST NOT reuse that session. Note that a

premature close does not call into question the security of the data

already received, but simply indicates that subsequent data might

have been truncated. Because TLS is oblivious to HTTP request/

response boundaries, it is necessary to examine the HTTP data itself

(specifically the Content-Length header) to determine whether the

truncation occurred inside a message or between messages.

When encountering a premature close, a client SHOULD treat as

completed all requests for which it has received as much data as

specified in the Content-Length header.

A client detecting an incomplete close SHOULD recover gracefully. It

MAY resume a TLS session closed in this fashion.

Clients MUST send a closure alert before closing the connection.

Clients which are unprepared to receive any more data MAY choose not

to wait for the server's closure alert and simply close the

connection, thus generating an incomplete close on the server side.

Servers SHOULD be prepared to receive an incomplete close from the

client, since the client can often determine when the end of server

data is. Servers SHOULD be willing to resume TLS sessions closed in

this fashion.

Servers MUST attempt to initiate an exchange of closure alerts with

the client before closing the connection. Servers MAY close the

¶

¶

¶

¶

¶

¶

¶

¶

connection after sending the closure alert, thus generating an

incomplete close on the client side.

9.9. Upgrade

The "Upgrade" header field is intended to provide a simple mechanism

for transitioning from HTTP/1.1 to some other protocol on the same

connection.

A client MAY send a list of protocol names in the Upgrade header

field of a request to invite the server to switch to one or more of

the named protocols, in order of descending preference, before

sending the final response. A server MAY ignore a received Upgrade

header field if it wishes to continue using the current protocol on

that connection. Upgrade cannot be used to insist on a protocol

change.

 Upgrade = 1#protocol

 protocol = protocol-name ["/" protocol-version]

 protocol-name = token

 protocol-version = token

Although protocol names are registered with a preferred case,

recipients SHOULD use case-insensitive comparison when matching each

protocol-name to supported protocols.

A server that sends a 101 (Switching Protocols) response MUST send

an Upgrade header field to indicate the new protocol(s) to which the

connection is being switched; if multiple protocol layers are being

switched, the sender MUST list the protocols in layer-ascending

order. A server MUST NOT switch to a protocol that was not indicated

by the client in the corresponding request's Upgrade header field. A

server MAY choose to ignore the order of preference indicated by the

client and select the new protocol(s) based on other factors, such

as the nature of the request or the current load on the server.

A server that sends a 426 (Upgrade Required) response MUST send an

Upgrade header field to indicate the acceptable protocols, in order

of descending preference.

A server MAY send an Upgrade header field in any other response to

advertise that it implements support for upgrading to the listed

protocols, in order of descending preference, when appropriate for a

future request.

¶

¶

¶

¶

¶

¶

¶

¶

The following is a hypothetical example sent by a client:

The capabilities and nature of the application-level communication

after the protocol change is entirely dependent upon the new

protocol(s) chosen. However, immediately after sending the 101

(Switching Protocols) response, the server is expected to continue

responding to the original request as if it had received its

equivalent within the new protocol (i.e., the server still has an

outstanding request to satisfy after the protocol has been changed,

and is expected to do so without requiring the request to be

repeated).

For example, if the Upgrade header field is received in a GET

request and the server decides to switch protocols, it first

responds with a 101 (Switching Protocols) message in HTTP/1.1 and

then immediately follows that with the new protocol's equivalent of

a response to a GET on the target resource. This allows a connection

to be upgraded to protocols with the same semantics as HTTP without

the latency cost of an additional round trip. A server MUST NOT

switch protocols unless the received message semantics can be

honored by the new protocol; an OPTIONS request can be honored by

any protocol.

The following is an example response to the above hypothetical

request:

When Upgrade is sent, the sender MUST also send a Connection header

field (Section 9.1) that contains an "upgrade" connection option, in

order to prevent Upgrade from being accidentally forwarded by

intermediaries that might not implement the listed protocols. A

server MUST ignore an Upgrade header field that is received in an

HTTP/1.0 request.

A client cannot begin using an upgraded protocol on the connection

until it has completely sent the request message (i.e., the client

can't change the protocol it is sending in the middle of a message).

If a server receives both an Upgrade and an Expect header field with

¶

 GET /hello HTTP/1.1

 Host: www.example.com

 Connection: upgrade

 Upgrade: websocket, IRC/6.9, RTA/x11

¶

¶

¶

¶

 HTTP/1.1 101 Switching Protocols

 Connection: upgrade

 Upgrade: websocket

 [... data stream switches to websocket with an appropriate response

 (as defined by new protocol) to the "GET /hello" request ...]

¶

¶

the "100-continue" expectation (Section 9.1.1 of [Semantics]), the

server MUST send a 100 (Continue) response before sending a 101

(Switching Protocols) response.

The Upgrade header field only applies to switching protocols on top

of the existing connection; it cannot be used to switch the

underlying connection (transport) protocol, nor to switch the

existing communication to a different connection. For those

purposes, it is more appropriate to use a 3xx (Redirection) response

(Section 10.4 of [Semantics]).

9.9.1. Upgrade Protocol Names

This specification only defines the protocol name "HTTP" for use by

the family of Hypertext Transfer Protocols, as defined by the HTTP

version rules of Section 4.2 of [Semantics] and future updates to

this specification. Additional protocol names ought to be registered

using the registration procedure defined in Section 9.9.2.

Name Description
Expected Version

Tokens
Reference

HTTP
Hypertext Transfer

Protocol

any DIGIT.DIGIT

(e.g, "2.0")

Section 4.2 of

[Semantics]

Table 4

9.9.2. Upgrade Token Registry

The "Hypertext Transfer Protocol (HTTP) Upgrade Token Registry"

defines the namespace for protocol-name tokens used to identify

protocols in the Upgrade header field. The registry is maintained at

<https://www.iana.org/assignments/http-upgrade-tokens>.

Each registered protocol name is associated with contact information

and an optional set of specifications that details how the

connection will be processed after it has been upgraded.

Registrations happen on a "First Come First Served" basis (see

Section 4.4 of [RFC8126]) and are subject to the following rules:

A protocol-name token, once registered, stays registered

forever.

A protocol-name token is case-insensitive and registered with

the preferred case to be generated by senders.

The registration MUST name a responsible party for the

registration.

The registration MUST name a point of contact.

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4. ¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.expect
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#status.3xx
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#protocol.version
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#protocol.version
https://www.iana.org/assignments/http-upgrade-tokens
https://rfc-editor.org/rfc/rfc8126#section-4.4

Type name:

Subtype name:

Required parameters:

Optional parameters:

version:

msgtype:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

The registration MAY name a set of specifications associated

with that token. Such specifications need not be publicly

available.

The registration SHOULD name a set of expected "protocol-

version" tokens associated with that token at the time of

registration.

The responsible party MAY change the registration at any time.

The IANA will keep a record of all such changes, and make them

available upon request.

The IESG MAY reassign responsibility for a protocol token. This

will normally only be used in the case when a responsible party

cannot be contacted.

10. Enclosing Messages as Data

10.1. Media Type message/http

The message/http media type can be used to enclose a single HTTP

request or response message, provided that it obeys the MIME

restrictions for all "message" types regarding line length and

encodings.

message

http

N/A

version, msgtype

The HTTP-version number of the enclosed message (e.g.,

"1.1"). If not present, the version can be determined from the

first line of the body.

The message type - "request" or "response". If not

present, the type can be determined from the first line of the

body.

only "7bit", "8bit", or "binary" are

permitted

see Section 11

N/A

This specification (see Section 10.1).

5.

¶

6.

¶

7.

¶

8.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

version:

msgtype:

Encoding considerations:

N/A

N/A

N/A

N/A

N/A

N/A

See Authors' Addresses section.

COMMON

N/A

See Authors' Addresses section.

IESG

10.2. Media Type application/http

The application/http media type can be used to enclose a pipeline of

one or more HTTP request or response messages (not intermixed).

application

http

N/A

version, msgtype

The HTTP-version number of the enclosed messages (e.g.,

"1.1"). If not present, the version can be determined from the

first line of the body.

The message type - "request" or "response". If not

present, the type can be determined from the first line of the

body.

HTTP messages enclosed by this type are in

"binary" format; use of an appropriate Content-Transfer-Encoding

is required when transmitted via email.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:

Magic number(s):

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

see Section 11

N/A

This specification (see Section 10.2).

N/A

N/A

N/A

N/A

N/A

N/A

See Authors' Addresses section.

COMMON

N/A

See Authors' Addresses section.

IESG

11. Security Considerations

This section is meant to inform developers, information providers,

and users of known security considerations relevant to HTTP message

syntax, parsing, and routing. Security considerations about HTTP

semantics and payloads are addressed in [Semantics].

11.1. Response Splitting

Response splitting (a.k.a, CRLF injection) is a common technique,

used in various attacks on Web usage, that exploits the line-based

nature of HTTP message framing and the ordered association of

requests to responses on persistent connections [Klein]. This

technique can be particularly damaging when the requests pass

through a shared cache.

Response splitting exploits a vulnerability in servers (usually

within an application server) where an attacker can send encoded

data within some parameter of the request that is later decoded and

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

echoed within any of the response header fields of the response. If

the decoded data is crafted to look like the response has ended and

a subsequent response has begun, the response has been split and the

content within the apparent second response is controlled by the

attacker. The attacker can then make any other request on the same

persistent connection and trick the recipients (including

intermediaries) into believing that the second half of the split is

an authoritative answer to the second request.

For example, a parameter within the request-target might be read by

an application server and reused within a redirect, resulting in the

same parameter being echoed in the Location header field of the

response. If the parameter is decoded by the application and not

properly encoded when placed in the response field, the attacker can

send encoded CRLF octets and other content that will make the

application's single response look like two or more responses.

A common defense against response splitting is to filter requests

for data that looks like encoded CR and LF (e.g., "%0D" and "%0A").

However, that assumes the application server is only performing URI

decoding, rather than more obscure data transformations like charset

transcoding, XML entity translation, base64 decoding, sprintf

reformatting, etc. A more effective mitigation is to prevent

anything other than the server's core protocol libraries from

sending a CR or LF within the header section, which means

restricting the output of header fields to APIs that filter for bad

octets and not allowing application servers to write directly to the

protocol stream.

11.2. Request Smuggling

Request smuggling ([Linhart]) is a technique that exploits

differences in protocol parsing among various recipients to hide

additional requests (which might otherwise be blocked or disabled by

policy) within an apparently harmless request. Like response

splitting, request smuggling can lead to a variety of attacks on

HTTP usage.

This specification has introduced new requirements on request

parsing, particularly with regard to message framing in Section 6.3,

to reduce the effectiveness of request smuggling.

11.3. Message Integrity

HTTP does not define a specific mechanism for ensuring message

integrity, instead relying on the error-detection ability of

underlying transport protocols and the use of length or chunk-

delimited framing to detect completeness. Additional integrity

mechanisms, such as hash functions or digital signatures applied to

¶

¶

¶

¶

¶

the content, can be selectively added to messages via extensible

metadata fields. Historically, the lack of a single integrity

mechanism has been justified by the informal nature of most HTTP

communication. However, the prevalence of HTTP as an information

access mechanism has resulted in its increasing use within

environments where verification of message integrity is crucial.

User agents are encouraged to implement configurable means for

detecting and reporting failures of message integrity such that

those means can be enabled within environments for which integrity

is necessary. For example, a browser being used to view medical

history or drug interaction information needs to indicate to the

user when such information is detected by the protocol to be

incomplete, expired, or corrupted during transfer. Such mechanisms

might be selectively enabled via user agent extensions or the

presence of message integrity metadata in a response. At a minimum,

user agents ought to provide some indication that allows a user to

distinguish between a complete and incomplete response message

(Section 8) when such verification is desired.

11.4. Message Confidentiality

HTTP relies on underlying transport protocols to provide message

confidentiality when that is desired. HTTP has been specifically

designed to be independent of the transport protocol, such that it

can be used over many different forms of encrypted connection, with

the selection of such transports being identified by the choice of

URI scheme or within user agent configuration.

The "https" scheme can be used to identify resources that require a

confidential connection, as described in Section 2.5.2 of

[Semantics].

12. IANA Considerations

The change controller for the following registrations is: "IETF

(iesg@ietf.org) - Internet Engineering Task Force".

12.1. Field Name Registration

Please update the "Hypertext Transfer Protocol (HTTP) Field Name

Registry" at <https://www.iana.org/assignments/http-fields> with the

field names listed in the two tables of Section 5.

12.2. Media Type Registration

Please update the "Media Types" registry at <https://www.iana.org/

assignments/media-types> with the registration information in

Section 10.1 and Section 10.2 for the media types "message/http" and

"application/http", respectively.

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#https.uri
https://www.iana.org/assignments/http-fields
https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/media-types

[Caching]

[RFC1950]

[RFC1951]

[RFC1952]

12.3. Transfer Coding Registration

Please update the "HTTP Transfer Coding Registry" at <https://

www.iana.org/assignments/http-parameters/> with the registration

procedure of Section 7.3 and the content coding names summarized in

the table of Section 7.

12.4. Upgrade Token Registration

Please update the "Hypertext Transfer Protocol (HTTP) Upgrade Token

Registry" at <https://www.iana.org/assignments/http-upgrade-tokens>

with the registration procedure of Section 9.9.2 and the upgrade

token names summarized in the table of Section 9.9.1.

12.5. ALPN Protocol ID Registration

Please update the "TLS Application-Layer Protocol Negotiation (ALPN)

Protocol IDs" registry at <https://www.iana.org/assignments/tls-

extensiontype-values/tls-extensiontype-values.xhtml> with the

registration below:

Protocol Identification Sequence Reference

HTTP/1.1
0x68 0x74 0x74 0x70 0x2f 0x31 0x2e 0x31

("http/1.1")

(this

specification)

Table 5

13. References

13.1. Normative References

Fielding, R., Ed., Nottingham, M., Ed., and J. F.

Reschke, Ed., "HTTP Caching", Work in Progress, Internet-

Draft, draft-ietf-httpbis-cache-10, 12 July 2020,

<https://tools.ietf.org/html/draft-ietf-httpbis-

cache-10>.

Deutsch, L.P. and J-L. Gailly, "ZLIB Compressed Data

Format Specification version 3.3", RFC 1950, DOI

10.17487/RFC1950, May 1996, <https://www.rfc-editor.org/

info/rfc1950>.

Deutsch, P., "DEFLATE Compressed Data Format

Specification version 1.3", RFC 1951, DOI 10.17487/

RFC1951, May 1996, <https://www.rfc-editor.org/info/

rfc1951>.

Deutsch, P., Gailly, J-L., Adler, M., Deutsch, L.P., and

G. Randers-Pehrson, "GZIP file format specification

version 4.3", RFC 1952, DOI 10.17487/RFC1952, May 1996,

<https://www.rfc-editor.org/info/rfc1952>.

¶

¶

¶

https://www.iana.org/assignments/http-parameters/
https://www.iana.org/assignments/http-parameters/
https://www.iana.org/assignments/http-upgrade-tokens
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10
https://www.rfc-editor.org/info/rfc1950
https://www.rfc-editor.org/info/rfc1950
https://www.rfc-editor.org/info/rfc1951
https://www.rfc-editor.org/info/rfc1951
https://www.rfc-editor.org/info/rfc1952

[RFC2119]

[RFC3986]

[RFC5234]

[RFC7405]

[RFC8174]

[RFC8446]

[Semantics]

[USASCII]

[Welch]

[Err4667]

[Klein]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC

7405, DOI 10.17487/RFC7405, December 2014, <https://

www.rfc-editor.org/info/rfc7405>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Fielding, R., Ed., Nottingham, M., Ed., and J. F.

Reschke, Ed., "HTTP Semantics", Work in Progress,

Internet-Draft, draft-ietf-httpbis-semantics-10, 12 July

2020, <https://tools.ietf.org/html/draft-ietf-httpbis-

semantics-10>.

American National Standards Institute, "Coded Character

Set -- 7-bit American Standard Code for Information

Interchange", ANSI X3.4, 1986.

Welch, T. A., "A Technique for High-Performance Data

Compression", IEEE Computer 17(6), June 1984.

13.2. Informative References

RFC Errata, Erratum ID 4667, RFC 7230, , <https://

www.rfc-editor.org/errata/eid4667>.

Klein, A., "Divide and Conquer - HTTP Response Splitting,

Web Cache Poisoning Attacks, and Related Topics", March

2004, <http://packetstormsecurity.com/papers/general/

whitepaper_httpresponse.pdf>.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10
https://www.rfc-editor.org/errata/eid4667
https://www.rfc-editor.org/errata/eid4667
http://packetstormsecurity.com/papers/general/whitepaper_httpresponse.pdf
http://packetstormsecurity.com/papers/general/whitepaper_httpresponse.pdf

[Linhart]

[RFC1945]

[RFC2045]

[RFC2046]

[RFC2049]

[RFC2068]

[RFC2557]

[RFC5322]

[RFC7230]

[RFC7231]

Linhart, C., Klein, A., Heled, R., and S. Orrin, "HTTP

Request Smuggling", June 2005, <http://www.watchfire.com/

news/whitepapers.aspx>.

Berners-Lee, T., Fielding, R.T., and H.F. Nielsen,

"Hypertext Transfer Protocol -- HTTP/1.0", RFC 1945, DOI

10.17487/RFC1945, May 1996, <https://www.rfc-editor.org/

info/rfc1945>.

Freed, N. and N.S. Borenstein, "Multipurpose Internet

Mail Extensions (MIME) Part One: Format of Internet

Message Bodies", RFC 2045, DOI 10.17487/RFC2045, November

1996, <https://www.rfc-editor.org/info/rfc2045>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part Two: Media Types", RFC 2046, DOI

10.17487/RFC2046, November 1996, <https://www.rfc-

editor.org/info/rfc2046>.

Freed, N. and N.S. Borenstein, "Multipurpose Internet

Mail Extensions (MIME) Part Five: Conformance Criteria

and Examples", RFC 2049, DOI 10.17487/RFC2049, November

1996, <https://www.rfc-editor.org/info/rfc2049>.

Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and T.

Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1",

RFC 2068, DOI 10.17487/RFC2068, January 1997, <https://

www.rfc-editor.org/info/rfc2068>.

Palme, F., Hopmann, A., Shelness, N., and E. Stefferud,

"MIME Encapsulation of Aggregate Documents, such as HTML

(MHTML)", RFC 2557, DOI 10.17487/RFC2557, March 1999,

<https://www.rfc-editor.org/info/rfc2557>.

Resnick, P., "Internet Message Format", RFC 5322, DOI

10.17487/RFC5322, October 2008, <https://www.rfc-

editor.org/info/rfc5322>.

Fielding, R., Ed. and J. F. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Fielding, R., Ed. and J. F. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

http://www.watchfire.com/news/whitepapers.aspx
http://www.watchfire.com/news/whitepapers.aspx
https://www.rfc-editor.org/info/rfc1945
https://www.rfc-editor.org/info/rfc1945
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2049
https://www.rfc-editor.org/info/rfc2068
https://www.rfc-editor.org/info/rfc2068
https://www.rfc-editor.org/info/rfc2557
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc7230

[RFC8126]

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Appendix A. Collected ABNF

In the collected ABNF below, list rules are expanded as per

Section 5.5.1 of [Semantics].¶

https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#abnf.extension.sender

BWS = <BWS, see [Semantics], Section 1.2.1>

Connection = connection-option *(OWS "," OWS connection-option)

HTTP-message = start-line CRLF *(field-line CRLF) CRLF [

 message-body]

HTTP-name = %x48.54.54.50 ; HTTP

HTTP-version = HTTP-name "/" DIGIT "." DIGIT

OWS = <OWS, see [Semantics], Section 1.2.1>

RWS = <RWS, see [Semantics], Section 1.2.1>

TE = [t-codings *(OWS "," OWS t-codings)]

Transfer-Encoding = transfer-coding *(OWS "," OWS transfer-coding)

Upgrade = protocol *(OWS "," OWS protocol)

absolute-URI = <absolute-URI, see [RFC3986], Section 4.3>

absolute-form = absolute-URI

absolute-path = <absolute-path, see [Semantics], Section 2.4>

asterisk-form = "*"

authority = <authority, see [RFC3986], Section 3.2>

authority-form = authority

chunk = chunk-size [chunk-ext] CRLF chunk-data CRLF

chunk-data = 1*OCTET

chunk-ext = *(BWS ";" BWS chunk-ext-name [BWS "=" BWS chunk-ext-val

])

chunk-ext-name = token

chunk-ext-val = token / quoted-string

chunk-size = 1*HEXDIG

chunked-body = *chunk last-chunk trailer-section CRLF

comment = <comment, see [Semantics], Section 5.4.1.3>

connection-option = token

field-line = field-name ":" OWS field-value OWS

field-name = <field-name, see [Semantics], Section 5.3>

field-value = <field-value, see [Semantics], Section 5.4>

last-chunk = 1*"0" [chunk-ext] CRLF

message-body = *OCTET

method = token

obs-fold = OWS CRLF RWS

obs-text = <obs-text, see [Semantics], Section 5.4.1.2>

origin-form = absolute-path ["?" query]

port = <port, see [RFC3986], Section 3.2.3>

protocol = protocol-name ["/" protocol-version]

protocol-name = token

protocol-version = token

query = <query, see [RFC3986], Section 3.4>

quoted-string = <quoted-string, see [Semantics], Section 5.4.1.2>

rank = ("0" ["." *3DIGIT]) / ("1" ["." *3"0"])

reason-phrase = 1*(HTAB / SP / VCHAR / obs-text)

request-line = method SP request-target SP HTTP-version

request-target = origin-form / absolute-form / authority-form /

 asterisk-form

start-line = request-line / status-line

status-code = 3DIGIT

status-line = HTTP-version SP status-code SP [reason-phrase]

t-codings = "trailers" / (transfer-coding [t-ranking])

t-ranking = OWS ";" OWS "q=" rank

token = <token, see [Semantics], Section 5.4.1.1>

trailer-section = *(field-line CRLF)

transfer-coding = token *(OWS ";" OWS transfer-parameter)

transfer-parameter = token BWS "=" BWS (token / quoted-string)

uri-host = <host, see [RFC3986], Section 3.2.2>

Appendix B. Differences between HTTP and MIME

HTTP/1.1 uses many of the constructs defined for the Internet

Message Format [RFC5322] and the Multipurpose Internet Mail

Extensions (MIME) [RFC2045] to allow a message body to be

transmitted in an open variety of representations and with

extensible fields. However, RFC 2045 is focused only on email;

applications of HTTP have many characteristics that differ from

email; hence, HTTP has features that differ from MIME. These

differences were carefully chosen to optimize performance over

binary connections, to allow greater freedom in the use of new media

types, to make date comparisons easier, and to acknowledge the

practice of some early HTTP servers and clients.

This appendix describes specific areas where HTTP differs from MIME.

Proxies and gateways to and from strict MIME environments need to be

aware of these differences and provide the appropriate conversions

where necessary.

B.1. MIME-Version

¶

¶

¶

HTTP is not a MIME-compliant protocol. However, messages can include

a single MIME-Version header field to indicate what version of the

MIME protocol was used to construct the message. Use of the MIME-

Version header field indicates that the message is in full

conformance with the MIME protocol (as defined in [RFC2045]).

Senders are responsible for ensuring full conformance (where

possible) when exporting HTTP messages to strict MIME environments.

B.2. Conversion to Canonical Form

MIME requires that an Internet mail body part be converted to

canonical form prior to being transferred, as described in Section 4

of [RFC2049]. Section 7.1.1.2 of [Semantics] describes the forms

allowed for subtypes of the "text" media type when transmitted over

HTTP. [RFC2046] requires that content with a type of "text"

represent line breaks as CRLF and forbids the use of CR or LF

outside of line break sequences. HTTP allows CRLF, bare CR, and bare

LF to indicate a line break within text content.

A proxy or gateway from HTTP to a strict MIME environment ought to

translate all line breaks within text media types to the RFC 2049

canonical form of CRLF. Note, however, this might be complicated by

the presence of a Content-Encoding and by the fact that HTTP allows

the use of some charsets that do not use octets 13 and 10 to

represent CR and LF, respectively.

Conversion will break any cryptographic checksums applied to the

original content unless the original content is already in canonical

form. Therefore, the canonical form is recommended for any content

that uses such checksums in HTTP.

B.3. Conversion of Date Formats

HTTP/1.1 uses a restricted set of date formats (Section 5.4.1.5 of

[Semantics]) to simplify the process of date comparison. Proxies and

gateways from other protocols ought to ensure that any Date header

field present in a message conforms to one of the HTTP/1.1 formats

and rewrite the date if necessary.

B.4. Conversion of Content-Encoding

MIME does not include any concept equivalent to HTTP/1.1's Content-

Encoding header field. Since this acts as a modifier on the media

type, proxies and gateways from HTTP to MIME-compliant protocols

ought to either change the value of the Content-Type header field or

decode the representation before forwarding the message. (Some

experimental applications of Content-Type for Internet mail have

used a media-type parameter of ";conversions=<content-coding>" to

perform a function equivalent to Content-Encoding. However, this

parameter is not part of the MIME standards).

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc2049#section-4
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#canonicalization.and.text.defaults
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#http.date

B.5. Conversion of Content-Transfer-Encoding

HTTP does not use the Content-Transfer-Encoding field of MIME.

Proxies and gateways from MIME-compliant protocols to HTTP need to

remove any Content-Transfer-Encoding prior to delivering the

response message to an HTTP client.

Proxies and gateways from HTTP to MIME-compliant protocols are

responsible for ensuring that the message is in the correct format

and encoding for safe transport on that protocol, where "safe

transport" is defined by the limitations of the protocol being used.

Such a proxy or gateway ought to transform and label the data with

an appropriate Content-Transfer-Encoding if doing so will improve

the likelihood of safe transport over the destination protocol.

B.6. MHTML and Line Length Limitations

HTTP implementations that share code with MHTML [RFC2557]

implementations need to be aware of MIME line length limitations.

Since HTTP does not have this limitation, HTTP does not fold long

lines. MHTML messages being transported by HTTP follow all

conventions of MHTML, including line length limitations and folding,

canonicalization, etc., since HTTP transfers message-bodies as

payload and, aside from the "multipart/byteranges" type

(Section 7.3.5 of [Semantics]), does not interpret the content or

any MIME header lines that might be contained therein.

Appendix C. HTTP Version History

HTTP has been in use since 1990. The first version, later referred

to as HTTP/0.9, was a simple protocol for hypertext data transfer

across the Internet, using only a single request method (GET) and no

metadata. HTTP/1.0, as defined by [RFC1945], added a range of

request methods and MIME-like messaging, allowing for metadata to be

transferred and modifiers placed on the request/response semantics.

However, HTTP/1.0 did not sufficiently take into consideration the

effects of hierarchical proxies, caching, the need for persistent

connections, or name-based virtual hosts. The proliferation of

incompletely implemented applications calling themselves "HTTP/1.0"

further necessitated a protocol version change in order for two

communicating applications to determine each other's true

capabilities.

HTTP/1.1 remains compatible with HTTP/1.0 by including more

stringent requirements that enable reliable implementations, adding

only those features that can either be safely ignored by an HTTP/1.0

recipient or only be sent when communicating with a party

advertising conformance with HTTP/1.1.

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#multipart.byteranges

HTTP/1.1 has been designed to make supporting previous versions

easy. A general-purpose HTTP/1.1 server ought to be able to

understand any valid request in the format of HTTP/1.0, responding

appropriately with an HTTP/1.1 message that only uses features

understood (or safely ignored) by HTTP/1.0 clients. Likewise, an

HTTP/1.1 client can be expected to understand any valid HTTP/1.0

response.

Since HTTP/0.9 did not support header fields in a request, there is

no mechanism for it to support name-based virtual hosts (selection

of resource by inspection of the Host header field). Any server that

implements name-based virtual hosts ought to disable support for

HTTP/0.9. Most requests that appear to be HTTP/0.9 are, in fact,

badly constructed HTTP/1.x requests caused by a client failing to

properly encode the request-target.

C.1. Changes from HTTP/1.0

This section summarizes major differences between versions HTTP/1.0

and HTTP/1.1.

C.1.1. Multihomed Web Servers

The requirements that clients and servers support the Host header

field (Section 6.6 of [Semantics]), report an error if it is missing

from an HTTP/1.1 request, and accept absolute URIs (Section 3.2) are

among the most important changes defined by HTTP/1.1.

Older HTTP/1.0 clients assumed a one-to-one relationship of IP

addresses and servers; there was no other established mechanism for

distinguishing the intended server of a request than the IP address

to which that request was directed. The Host header field was

introduced during the development of HTTP/1.1 and, though it was

quickly implemented by most HTTP/1.0 browsers, additional

requirements were placed on all HTTP/1.1 requests in order to ensure

complete adoption. At the time of this writing, most HTTP-based

services are dependent upon the Host header field for targeting

requests.

C.1.2. Keep-Alive Connections

In HTTP/1.0, each connection is established by the client prior to

the request and closed by the server after sending the response.

However, some implementations implement the explicitly negotiated

("Keep-Alive") version of persistent connections described in

Section 19.7.1 of [RFC2068].

Some clients and servers might wish to be compatible with these

previous approaches to persistent connections, by explicitly

negotiating for them with a "Connection: keep-alive" request header

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-10#field.host
https://rfc-editor.org/rfc/rfc2068#section-19.7.1

field. However, some experimental implementations of HTTP/1.0

persistent connections are faulty; for example, if an HTTP/1.0 proxy

server doesn't understand Connection, it will erroneously forward

that header field to the next inbound server, which would result in

a hung connection.

One attempted solution was the introduction of a Proxy-Connection

header field, targeted specifically at proxies. In practice, this

was also unworkable, because proxies are often deployed in multiple

layers, bringing about the same problem discussed above.

As a result, clients are encouraged not to send the Proxy-Connection

header field in any requests.

Clients are also encouraged to consider the use of Connection: keep-

alive in requests carefully; while they can enable persistent

connections with HTTP/1.0 servers, clients using them will need to

monitor the connection for "hung" requests (which indicate that the

client ought stop sending the header field), and this mechanism

ought not be used by clients at all when a proxy is being used.

C.1.3. Introduction of Transfer-Encoding

HTTP/1.1 introduces the Transfer-Encoding header field (Section

6.1). Transfer codings need to be decoded prior to forwarding an

HTTP message over a MIME-compliant protocol.

C.2. Changes from RFC 7230

Most of the sections introducing HTTP's design goals, history,

architecture, conformance criteria, protocol versioning, URIs,

message routing, and header fields have been moved to [Semantics].

This document has been reduced to just the messaging syntax and

connection management requirements specific to HTTP/1.1.

Prohibited generation of bare CRs outside of payload body. (Section

2.2)

In the ABNF for chunked extensions, re-introduced (bad) whitespace

around ";" and "=". Whitespace was removed in [RFC7230], but that

change was found to break existing implementations (see [Err4667]).

(Section 7.1.1)

Trailer field semantics now transcend the specifics of chunked

encoding. The decoding algorithm for chunked (Section 7.1.3) has

been updated to encourage storage/forwarding of trailer fields

separately from the header section, to only allow merging into the

header section if the recipient knows the corresponding field

definition permits and defines how to merge, and otherwise to

discard the trailer fields instead of merging. The trailer part is

¶

¶

¶

¶

¶

¶

¶

¶

now called the trailer section to be more consistent with the header

section and more distinct from a body part. (Section 7.1.2)

Disallowed transfer coding parameters called "q" in order to avoid

conflicts with the use of ranks in the TE header field. (Section

7.3)

Appendix D. Change Log

This section is to be removed before publishing as an RFC.

D.1. Between RFC7230 and draft 00

The changes were purely editorial:

Change boilerplate and abstract to indicate the "draft" status,

and update references to ancestor specifications.

Adjust historical notes.

Update links to sibling specifications.

Replace sections listing changes from RFC 2616 by new empty

sections referring to RFC 723x.

Remove acknowledgements specific to RFC 723x.

Move "Acknowledgements" to the very end and make them unnumbered.

D.2. Since draft-ietf-httpbis-messaging-00

The changes in this draft are editorial, with respect to HTTP as a

whole, to move all core HTTP semantics into [Semantics]:

Moved introduction, architecture, conformance, and ABNF

extensions from RFC 7230 (Messaging) to semantics [Semantics].

Moved discussion of MIME differences from RFC 7231 (Semantics) to

Appendix B since they mostly cover transforming 1.1 messages.

Moved all extensibility tips, registration procedures, and

registry tables from the IANA considerations to normative

sections, reducing the IANA considerations to just instructions

that will be removed prior to publication as an RFC.

D.3. Since draft-ietf-httpbis-messaging-01

Cite RFC 8126 instead of RFC 5226 (<https://github.com/httpwg/

http-core/issues/75>)

¶

¶

¶

¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

¶

*

¶

*

¶

*

¶

*

¶

https://github.com/httpwg/http-core/issues/75
https://github.com/httpwg/http-core/issues/75

Resolved erratum 4779, no change needed here (<https://

github.com/httpwg/http-core/issues/87>, <https://www.rfc-

editor.org/errata/eid4779>)

In Section 7, fixed prose claiming transfer parameters allow bare

names (<https://github.com/httpwg/http-core/issues/88>, <https://

www.rfc-editor.org/errata/eid4839>)

Resolved erratum 4225, no change needed here (<https://

github.com/httpwg/http-core/issues/90>, <https://www.rfc-

editor.org/errata/eid4225>)

Replace "response code" with "response status code" (<https://

github.com/httpwg/http-core/issues/94>, <https://www.rfc-

editor.org/errata/eid4050>)

In Section 9.4, clarify statement about HTTP/1.0 keep-alive

(<https://github.com/httpwg/http-core/issues/96>, <https://

www.rfc-editor.org/errata/eid4205>)

In Section 7.1.1, re-introduce (bad) whitespace around ";" and

"=" (<https://github.com/httpwg/http-core/issues/101>, <https://

www.rfc-editor.org/errata/eid4667>, <https://www.rfc-editor.org/

errata/eid4825>)

In Section 7.3, state that transfer codings should not use

parameters named "q" (<https://github.com/httpwg/http-core/

issues/15>, <https://www.rfc-editor.org/errata/eid4683>)

In Section 7, mark coding name "trailers" as reserved in the IANA

registry (<https://github.com/httpwg/http-core/issues/108>)

D.4. Since draft-ietf-httpbis-messaging-02

In Section 4, explain why the reason phrase should be ignored by

clients (<https://github.com/httpwg/http-core/issues/60>).

Add Section 9.3 to explain how request/response correlation is

performed (<https://github.com/httpwg/http-core/issues/145>)

D.5. Since draft-ietf-httpbis-messaging-03

In Section 9.3, caution against treating data on a connection as

part of a not-yet-issued request (<https://github.com/httpwg/

http-core/issues/26>)

In Section 7, remove the predefined codings from the ABNF and

make it generic instead (<https://github.com/httpwg/http-core/

issues/66>)

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://github.com/httpwg/http-core/issues/87
https://github.com/httpwg/http-core/issues/87
https://www.rfc-editor.org/errata/eid4779
https://www.rfc-editor.org/errata/eid4779
https://github.com/httpwg/http-core/issues/88
https://www.rfc-editor.org/errata/eid4839
https://www.rfc-editor.org/errata/eid4839
https://github.com/httpwg/http-core/issues/90
https://github.com/httpwg/http-core/issues/90
https://www.rfc-editor.org/errata/eid4225
https://www.rfc-editor.org/errata/eid4225
https://github.com/httpwg/http-core/issues/94
https://github.com/httpwg/http-core/issues/94
https://www.rfc-editor.org/errata/eid4050
https://www.rfc-editor.org/errata/eid4050
https://github.com/httpwg/http-core/issues/96
https://www.rfc-editor.org/errata/eid4205
https://www.rfc-editor.org/errata/eid4205
https://github.com/httpwg/http-core/issues/101
https://www.rfc-editor.org/errata/eid4667
https://www.rfc-editor.org/errata/eid4667
https://www.rfc-editor.org/errata/eid4825
https://www.rfc-editor.org/errata/eid4825
https://github.com/httpwg/http-core/issues/15
https://github.com/httpwg/http-core/issues/15
https://www.rfc-editor.org/errata/eid4683
https://github.com/httpwg/http-core/issues/108
https://github.com/httpwg/http-core/issues/60
https://github.com/httpwg/http-core/issues/145
https://github.com/httpwg/http-core/issues/26
https://github.com/httpwg/http-core/issues/26
https://github.com/httpwg/http-core/issues/66
https://github.com/httpwg/http-core/issues/66

Use RFC 7405 ABNF notation for case-sensitive string constants

(<https://github.com/httpwg/http-core/issues/133>)

D.6. Since draft-ietf-httpbis-messaging-04

In Section 9.9, clarify that protocol-name is to be matched case-

insensitively (<https://github.com/httpwg/http-core/issues/8>)

In Section 5.2, add leading optional whitespace to obs-fold ABNF

(<https://github.com/httpwg/http-core/issues/19>, <https://

www.rfc-editor.org/errata/eid4189>)

In Section 4, add clarifications about empty reason phrases

(<https://github.com/httpwg/http-core/issues/197>)

Move discussion of retries from Section 9.4.1 into [Semantics]

(<https://github.com/httpwg/http-core/issues/230>)

D.7. Since draft-ietf-httpbis-messaging-05

In Section 7.1.2, the trailer part has been renamed the trailer

section (for consistency with the header section) and trailers

are no longer merged as header fields by default, but rather can

be discarded, kept separate from header fields, or merged with

header fields only if understood and defined as being mergeable

(<https://github.com/httpwg/http-core/issues/16>)

In Section 2.1 and related Sections, move the trailing CRLF from

the line grammars into the message format (<https://github.com/

httpwg/http-core/issues/62>)

Moved Section 2.3 down (<https://github.com/httpwg/http-core/

issues/68>)

In Section 9.9, use 'websocket' instead of 'HTTP/2.0' in examples

(<https://github.com/httpwg/http-core/issues/112>)

Move version non-specific text from Section 6 into semantics as

"payload body" (<https://github.com/httpwg/http-core/issues/159>)

In Section 9.8, add text from RFC 2818 (<https://github.com/

httpwg/http-core/issues/236>)

D.8. Since draft-ietf-httpbis-messaging-06

In Section 12.5, update the APLN protocol id for HTTP/1.1

(<https://github.com/httpwg/http-core/issues/49>)

In Section 5, align with updates to field terminology in

semantics (<https://github.com/httpwg/http-core/issues/111>)

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://github.com/httpwg/http-core/issues/133
https://github.com/httpwg/http-core/issues/8
https://github.com/httpwg/http-core/issues/19
https://www.rfc-editor.org/errata/eid4189
https://www.rfc-editor.org/errata/eid4189
https://github.com/httpwg/http-core/issues/197
https://github.com/httpwg/http-core/issues/230
https://github.com/httpwg/http-core/issues/16
https://github.com/httpwg/http-core/issues/62
https://github.com/httpwg/http-core/issues/62
https://github.com/httpwg/http-core/issues/68
https://github.com/httpwg/http-core/issues/68
https://github.com/httpwg/http-core/issues/112
https://github.com/httpwg/http-core/issues/159
https://github.com/httpwg/http-core/issues/236
https://github.com/httpwg/http-core/issues/236
https://github.com/httpwg/http-core/issues/49
https://github.com/httpwg/http-core/issues/111

In Section 9.1, clarify that new connection options indeed need

to be registered (<https://github.com/httpwg/http-core/issues/

285>)

In Section 1.1, reference RFC 8174 as well (<https://github.com/

httpwg/http-core/issues/303>)

D.9. Since draft-ietf-httpbis-messaging-07

Move TE: trailers into [Semantics] (<https://github.com/httpwg/

http-core/issues/18>)

In Section 6.3, adjust requirements for handling multiple

content-length values (<https://github.com/httpwg/http-core/

issues/59>)

Throughout, replace "effective request URI" with "target URI"

(<https://github.com/httpwg/http-core/issues/259>)

In Section 6.1, don't claim Transfer-Encoding is supported by

HTTP/2 or later (<https://github.com/httpwg/http-core/issues/

297>)

D.10. Since draft-ietf-httpbis-messaging-08

In Section 2.2, disallow bare CRs (<https://github.com/httpwg/

http-core/issues/31>)

Appendix A now uses the sender variant of the "#" list expansion

(<https://github.com/httpwg/http-core/issues/192>)

In Section 5, adjust IANA "Close" entry for new registry format

(<https://github.com/httpwg/http-core/issues/273>)

D.11. Since draft-ietf-httpbis-messaging-09

Switch to xml2rfc v3 mode for draft generation (<https://

github.com/httpwg/http-core/issues/394>)

Acknowledgments

See Appendix "Acknowledgments" of [Semantics].

Authors' Addresses

Roy T. Fielding (editor)

Adobe

345 Park Ave

San Jose, CA 95110

United States of America

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

https://github.com/httpwg/http-core/issues/285
https://github.com/httpwg/http-core/issues/285
https://github.com/httpwg/http-core/issues/303
https://github.com/httpwg/http-core/issues/303
https://github.com/httpwg/http-core/issues/18
https://github.com/httpwg/http-core/issues/18
https://github.com/httpwg/http-core/issues/59
https://github.com/httpwg/http-core/issues/59
https://github.com/httpwg/http-core/issues/259
https://github.com/httpwg/http-core/issues/297
https://github.com/httpwg/http-core/issues/297
https://github.com/httpwg/http-core/issues/31
https://github.com/httpwg/http-core/issues/31
https://github.com/httpwg/http-core/issues/192
https://github.com/httpwg/http-core/issues/273
https://github.com/httpwg/http-core/issues/394
https://github.com/httpwg/http-core/issues/394

Email: fielding@gbiv.com

URI: https://roy.gbiv.com/

Mark Nottingham (editor)

Fastly

Email: mnot@mnot.net

URI: https://www.mnot.net/

Julian F. Reschke (editor)

greenbytes GmbH

Hafenweg 16

48155 Münster

Germany

Email: julian.reschke@greenbytes.de

URI: https://greenbytes.de/tech/webdav/

mailto:fielding@gbiv.com
https://roy.gbiv.com/
mailto:mnot@mnot.net
https://www.mnot.net/
mailto:julian.reschke@greenbytes.de
https://greenbytes.de/tech/webdav/

	HTTP/1.1 Messaging
	Abstract
	Editorial Note
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Notation
	1.2. Syntax Notation

	2. Message
	2.1. Message Format
	2.2. Message Parsing
	2.3. HTTP Version

	3. Request Line
	3.1. Method
	3.2. Request Target
	3.2.1. origin-form
	3.2.2. absolute-form
	3.2.3. authority-form
	3.2.4. asterisk-form

	3.3. Reconstructing the Target URI

	4. Status Line
	5. Field Syntax
	5.1. Field Line Parsing
	5.2. Obsolete Line Folding

	6. Message Body
	6.1. Transfer-Encoding
	6.2. Content-Length
	6.3. Message Body Length

	7. Transfer Codings
	7.1. Chunked Transfer Coding
	7.1.1. Chunk Extensions
	7.1.2. Chunked Trailer Section
	7.1.3. Decoding Chunked

	7.2. Transfer Codings for Compression
	7.3. Transfer Coding Registry
	7.4. TE

	8. Handling Incomplete Messages
	9. Connection Management
	9.1. Connection
	9.2. Establishment
	9.3. Associating a Response to a Request
	9.4. Persistence
	9.4.1. Retrying Requests
	9.4.2. Pipelining

	9.5. Concurrency
	9.6. Failures and Timeouts
	9.7. Tear-down
	9.8. TLS Connection Closure
	9.9. Upgrade
	9.9.1. Upgrade Protocol Names
	9.9.2. Upgrade Token Registry

	10. Enclosing Messages as Data
	10.1. Media Type message/http
	10.2. Media Type application/http

	11. Security Considerations
	11.1. Response Splitting
	11.2. Request Smuggling
	11.3. Message Integrity
	11.4. Message Confidentiality

	12. IANA Considerations
	12.1. Field Name Registration
	12.2. Media Type Registration
	12.3. Transfer Coding Registration
	12.4. Upgrade Token Registration
	12.5. ALPN Protocol ID Registration

	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. Collected ABNF
	Appendix B. Differences between HTTP and MIME
	B.1. MIME-Version
	B.2. Conversion to Canonical Form
	B.3. Conversion of Date Formats
	B.4. Conversion of Content-Encoding
	B.5. Conversion of Content-Transfer-Encoding
	B.6. MHTML and Line Length Limitations
	Appendix C. HTTP Version History
	C.1. Changes from HTTP/1.0
	C.1.1. Multihomed Web Servers
	C.1.2. Keep-Alive Connections
	C.1.3. Introduction of Transfer-Encoding

	C.2. Changes from RFC 7230
	Appendix D. Change Log
	D.1. Between RFC7230 and draft 00
	D.2. Since draft-ietf-httpbis-messaging-00
	D.3. Since draft-ietf-httpbis-messaging-01
	D.4. Since draft-ietf-httpbis-messaging-02
	D.5. Since draft-ietf-httpbis-messaging-03
	D.6. Since draft-ietf-httpbis-messaging-04
	D.7. Since draft-ietf-httpbis-messaging-05
	D.8. Since draft-ietf-httpbis-messaging-06
	D.9. Since draft-ietf-httpbis-messaging-07
	D.10. Since draft-ietf-httpbis-messaging-08
	D.11. Since draft-ietf-httpbis-messaging-09
	Acknowledgments
	Authors' Addresses

