
HTTPbis Working Group R. Fielding, Ed.

Internet-Draft Adobe

Updates: 2817 (if approved) J. Gettys

Obsoletes: 2145,2616 (if approved) Alcatel-Lucent

Intended status: Standards Track J. Mogul

Expires: May 03, 2012 HP

H. Frystyk

Microsoft

L. Masinter

Adobe

P. Leach

Microsoft

T. Berners-Lee

W3C/MIT

Y. Lafon, Ed.

W3C

J. F. Reschke, Ed.

greenbytes

October 31, 2011

HTTP/1.1, part 1: URIs, Connections, and Message Parsing

draft-ietf-httpbis-p1-messaging-17

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-level protocol

for distributed, collaborative, hypertext information systems. HTTP has

been in use by the World Wide Web global information initiative since

1990. This document is Part 1 of the seven-part specification that

defines the protocol referred to as "HTTP/1.1" and, taken together,

obsoletes RFC 2616 and moves it to historic status, along with its

predecessor RFC 2068.

Part 1 provides an overview of HTTP and its associated terminology,

defines the "http" and "https" Uniform Resource Identifier (URI)

schemes, defines the generic message syntax and parsing requirements

for HTTP message frames, and describes general security concerns for

implementations.

This part also obsoletes RFCs 2145 (on HTTP version numbers) and 2817

(on using CONNECT for TLS upgrades) and moves them to historic status.

Editorial Note (To be removed by RFC Editor)

Discussion of this draft should take place on the HTTPBIS working group

mailing list (ietf-http-wg@w3.org), which is archived at http://

lists.w3.org/Archives/Public/ietf-http-wg/.

The current issues list is at http://tools.ietf.org/wg/httpbis/trac/

report/3 and related documents (including fancy diffs) can be found at

http://tools.ietf.org/wg/httpbis/.

http://lists.w3.org/Archives/Public/ietf-http-wg/
http://lists.w3.org/Archives/Public/ietf-http-wg/
http://tools.ietf.org/wg/httpbis/trac/report/3
http://tools.ietf.org/wg/httpbis/trac/report/3
http://tools.ietf.org/wg/httpbis/

The changes in this draft are summarized in Appendix Appendix C.18.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on May 03, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November 10,

2008. The person(s) controlling the copyright in some of this material

may not have granted the IETF Trust the right to allow modifications of

such material outside the IETF Standards Process. Without obtaining an

adequate license from the person(s) controlling the copyright in such

materials, this document may not be modified outside the IETF Standards

Process, and derivative works of it may not be created outside the IETF

Standards Process, except to format it for publication as an RFC or to

translate it into languages other than English.

Table of Contents

1. Introduction

1.1. Conformance and Error Handling

1.2. Syntax Notation

1.2.1. ABNF Extension: #rule

1.2.2. Basic Rules

*

*

*

*

*

2. Architecture

2.1. Client/Server Messaging

2.2. Message Orientation and Buffering

2.3. Connections and Transport Independence

2.4. Intermediaries

2.5. Caches

2.6. Protocol Versioning

2.7. Uniform Resource Identifiers

2.7.1. http URI scheme

2.7.2. https URI scheme

2.7.3. http and https URI Normalization and Comparison

3. Message Format

3.1. Start Line

3.1.1. Request-Line

3.1.1.1. Method

3.1.1.2. request-target

3.1.2. Response Status-Line

3.1.2.1. Status Code

3.1.2.2. Reason Phrase

3.2. Header Fields

3.2.1. Field Parsing

3.2.2. Field Length

3.2.3. Common Field ABNF Rules

3.3. Message Body

3.4. Handling Incomplete Messages

3.5. Message Parsing Robustness

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

4. Message Routing

4.1. Types of Request Target

4.2. The Resource Identified by a Request

4.3. Effective Request URI

5. Protocol Parameters

5.1. Transfer Codings

5.1.1. Chunked Transfer Coding

5.1.2. Compression Codings

5.1.2.1. Compress Coding

5.1.2.2. Deflate Coding

5.1.2.3. Gzip Coding

5.1.3. Transfer Coding Registry

5.2. Product Tokens

5.3. Quality Values

6. Connections

6.1. Persistent Connections

6.1.1. Purpose

6.1.2. Overall Operation

6.1.2.1. Negotiation

6.1.2.2. Pipelining

6.1.3. Proxy Servers

6.1.3.1. End-to-end and Hop-by-hop Header Fields

6.1.3.2. Non-modifiable Header Fields

6.1.4. Practical Considerations

6.1.5. Retrying Requests

6.2. Message Transmission Requirements

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

6.2.1. Persistent Connections and Flow Control

6.2.2. Monitoring Connections for Error Status Messages

6.2.3. Use of the 100 (Continue) Status

7. Miscellaneous notes that might disappear

7.1. Scheme aliases considered harmful

7.2. Use of HTTP for proxy communication

7.3. Interception of HTTP for access control

7.4. Use of HTTP by other protocols

7.5. Use of HTTP by media type specification

8. Header Field Definitions

8.1. Connection

8.2. Content-Length

8.3. Host

8.4. TE

8.5. Trailer

8.6. Transfer-Encoding

8.7. Upgrade

8.7.1. Upgrade Token Registry

8.8. Via

9. IANA Considerations

9.1. Header Field Registration

9.2. URI Scheme Registration

9.3. Internet Media Type Registrations

9.3.1. Internet Media Type message/http

9.3.2. Internet Media Type application/http

9.4. Transfer Coding Registry

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

9.5. Upgrade Token Registration

10. Security Considerations

10.1. Personal Information

10.2. Abuse of Server Log Information

10.3. Attacks Based On File and Path Names

10.4. DNS-related Attacks

10.5. Proxies and Caching

10.6. Protocol Element Size Overflows

10.7. Denial of Service Attacks on Proxies

11. Acknowledgments

12. References

12.1. Normative References

12.2. Informative References

Appendix A. HTTP Version History

Appendix A.1. Changes from HTTP/1.0

Appendix A.1.1. Multi-homed Web Servers

Appendix A.1.2. Keep-Alive Connections

Appendix A.2. Changes from RFC 2616

Appendix B. Collected ABNF

Appendix C. Change Log (to be removed by RFC Editor before

publication)

Appendix C.1. Since RFC 2616

Appendix C.2. Since draft-ietf-httpbis-p1-messaging-00

Appendix C.3. Since draft-ietf-httpbis-p1-messaging-01

Appendix C.4. Since draft-ietf-httpbis-p1-messaging-02

Appendix C.5. Since draft-ietf-httpbis-p1-messaging-03

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Appendix C.6. Since draft-ietf-httpbis-p1-messaging-04

Appendix C.7. Since draft-ietf-httpbis-p1-messaging-05

Appendix C.8. Since draft-ietf-httpbis-p1-messaging-06

Appendix C.9. Since draft-ietf-httpbis-p1-messaging-07

Appendix C.10. Since draft-ietf-httpbis-p1-messaging-08

Appendix C.11. Since draft-ietf-httpbis-p1-messaging-09

Appendix C.12. Since draft-ietf-httpbis-p1-messaging-10

Appendix C.13. Since draft-ietf-httpbis-p1-messaging-11

Appendix C.14. Since draft-ietf-httpbis-p1-messaging-12

Appendix C.15. Since draft-ietf-httpbis-p1-messaging-13

Appendix C.16. Since draft-ietf-httpbis-p1-messaging-14

Appendix C.17. Since draft-ietf-httpbis-p1-messaging-15

Appendix C.18. Since draft-ietf-httpbis-p1-messaging-16

Index

Authors' Addresses

1. Introduction

The Hypertext Transfer Protocol (HTTP) is an application-level request/

response protocol that uses extensible semantics and MIME-like message

payloads for flexible interaction with network-based hypertext

information systems. HTTP relies upon the Uniform Resource Identifier

(URI) standard [RFC3986] to indicate the target resource and

relationships between resources. Messages are passed in a format

similar to that used by Internet mail [RFC5322] and the Multipurpose

Internet Mail Extensions (MIME) [RFC2045] (see Appendix A of [Part3]

for the differences between HTTP and MIME messages).

HTTP is a generic interface protocol for information systems. It is

designed to hide the details of how a service is implemented by

presenting a uniform interface to clients that is independent of the

types of resources provided. Likewise, servers do not need to be aware

of each client's purpose: an HTTP request can be considered in

isolation rather than being associated with a specific type of client

or a predetermined sequence of application steps. The result is a

protocol that can be used effectively in many different contexts and

for which implementations can evolve independently over time.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

HTTP is also designed for use as an intermediation protocol for

translating communication to and from non-HTTP information systems.

HTTP proxies and gateways can provide access to alternative information

services by translating their diverse protocols into a hypertext format

that can be viewed and manipulated by clients in the same way as HTTP

services.

One consequence of HTTP flexibility is that the protocol cannot be

defined in terms of what occurs behind the interface. Instead, we are

limited to defining the syntax of communication, the intent of received

communication, and the expected behavior of recipients. If the

communication is considered in isolation, then successful actions ought

to be reflected in corresponding changes to the observable interface

provided by servers. However, since multiple clients might act in

parallel and perhaps at cross-purposes, we cannot require that such

changes be observable beyond the scope of a single response.

This document is Part 1 of the seven-part specification of HTTP,

defining the protocol referred to as "HTTP/1.1", obsoleting [RFC2616]

and [RFC2145]. Part 1 describes the architectural elements that are

used or referred to in HTTP, defines the "http" and "https" URI

schemes, describes overall network operation and connection management,

and defines HTTP message framing and forwarding requirements. Our goal

is to define all of the mechanisms necessary for HTTP message handling

that are independent of message semantics, thereby defining the

complete set of requirements for message parsers and message-forwarding

intermediaries.

1.1. Conformance and Error Handling

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

This document defines conformance criteria for several roles in HTTP

communication, including Senders, Recipients, Clients, Servers, User-

Agents, Origin Servers, Intermediaries, Proxies and Gateways. See

Section 2 for definitions of these terms.

An implementation is considered conformant if it complies with all of

the requirements associated with its role(s). Note that SHOULD-level

requirements are relevant here, unless one of the documented exceptions

is applicable.

This document also uses ABNF to define valid protocol elements (Section

1.2). In addition to the prose requirements placed upon them, Senders

MUST NOT generate protocol elements that are invalid.

Unless noted otherwise, Recipients MAY take steps to recover a usable

protocol element from an invalid construct. However, HTTP does not

define specific error handling mechanisms, except in cases where it has

direct impact on security. This is because different uses of the

protocol require different error handling strategies; for example, a

Web browser may wish to transparently recover from a response where the

Location header field doesn't parse according to the ABNF, whereby in a

systems control protocol using HTTP, this type of error recovery could

lead to dangerous consequences.

1.2. Syntax Notation

This specification uses the Augmented Backus-Naur Form (ABNF) notation

of [RFC5234].

The following core rules are included by reference, as defined in

[RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF

(CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double quote),

HEXDIG (hexadecimal 0-9/A-F/a-f), HTAB (horizontal tab), LF (line

feed), OCTET (any 8-bit sequence of data), SP (space), and VCHAR (any

visible [USASCII] character).

As a syntactic convention, ABNF rule names prefixed with "obs-" denote

"obsolete" grammar rules that appear for historical reasons.

1.2.1. ABNF Extension: #rule

The #rule extension to the ABNF rules of [RFC5234] is used to improve

readability.

A construct "#" is defined, similar to "*", for defining comma-

delimited lists of elements. The full form is "<n>#<m>element"

indicating at least <n> and at most <m> elements, each separated by a

single comma (",") and optional whitespace (OWS, Section 1.2.2).

Thus,

 1#element => element *(OWS "," OWS element)

and:

 #element => [1#element]

and for n >= 1 and m > 1:

 <n>#<m>element => element <n-1>*<m-1>(OWS "," OWS element)

For compatibility with legacy list rules, recipients SHOULD accept

empty list elements. In other words, consumers would follow the list

productions:

 #element => [("," / element) *(OWS "," [OWS element])]

 1#element => *("," OWS) element *(OWS "," [OWS element])

Note that empty elements do not contribute to the count of elements

present, though.

For example, given these ABNF productions:

 example-list = 1#example-list-elmt

 example-list-elmt = token ; see Section 3.2.3

Then these are valid values for example-list (not including the double

quotes, which are present for delimitation only):

 "foo,bar"

 "foo ,bar,"

 "foo , ,bar,charlie "

But these values would be invalid, as at least one non-empty element is

required:

 ""

 ","

 ", ,"

Appendix Appendix B shows the collected ABNF, with the list rules

expanded as explained above.

1.2.2. Basic Rules

This specification uses three rules to denote the use of linear

whitespace: OWS (optional whitespace), RWS (required whitespace), and

BWS ("bad" whitespace).

The OWS rule is used where zero or more linear whitespace octets might

appear. OWS SHOULD either not be produced or be produced as a single

SP. Multiple OWS octets that occur within field-content SHOULD either

be replaced with a single SP or transformed to all SP octets (each

octet other than SP replaced with SP) before interpreting the field

value or forwarding the message downstream.

RWS is used when at least one linear whitespace octet is required to

separate field tokens. RWS SHOULD be produced as a single SP. Multiple

RWS octets that occur within field-content SHOULD either be replaced

with a single SP or transformed to all SP octets before interpreting

the field value or forwarding the message downstream.

BWS is used where the grammar allows optional whitespace for historical

reasons but senders SHOULD NOT produce it in messages. HTTP/1.1

recipients MUST accept such bad optional whitespace and remove it

before interpreting the field value or forwarding the message

downstream.

 OWS = *(SP / HTAB / obs-fold)

 ; "optional" whitespace

 RWS = 1*(SP / HTAB / obs-fold)

 ; "required" whitespace

 BWS = OWS

 ; "bad" whitespace

 obs-fold = CRLF (SP / HTAB)

 ; obsolete line folding

 ; see Section 3.2.1

2. Architecture

HTTP was created for the World Wide Web architecture and has evolved

over time to support the scalability needs of a worldwide hypertext

system. Much of that architecture is reflected in the terminology and

syntax productions used to define HTTP.

2.1. Client/Server Messaging

HTTP is a stateless request/response protocol that operates by

exchanging messages (Section 3) across a reliable transport or session-

layer "connection". An HTTP "client" is a program that establishes a

connection to a server for the purpose of sending one or more HTTP

requests. An HTTP "server" is a program that accepts connections in

order to service HTTP requests by sending HTTP responses.

Note that the terms client and server refer only to the roles that

these programs perform for a particular connection. The same program

might act as a client on some connections and a server on others. We

use the term "user agent" to refer to the program that initiates a

request, such as a WWW browser, editor, or spider (web-traversing

robot), and the term "origin server" to refer to the program that can

originate authoritative responses to a request. For general

requirements, we use the term "sender" to refer to whichever component

sent a given message and the term "recipient" to refer to any component

that receives the message.

Most HTTP communication consists of a retrieval request (GET) for a

representation of some resource identified by a URI. In the simplest

case, this might be accomplished via a single bidirectional connection

(===) between the user agent (UA) and the origin server (O).

 request >

 UA ======================================= O

 < response

A client sends an HTTP request to the server in the form of a request

message, beginning with a request-line that includes a method, URI, and

protocol version (Section 3.1.1), followed by MIME-like header fields

containing request modifiers, client information, and payload metadata

(Section 3.2), an empty line to indicate the end of the header section,

and finally a message body containing the payload body (if any, Section

3.3).

A server responds to the client's request by sending an HTTP response

message, beginning with a status line that includes the protocol

version, a success or error code, and textual reason phrase (Section

3.1.2), followed by MIME-like header fields containing server

information, resource metadata, and payload metadata (Section 3.2), an

empty line to indicate the end of the header section, and finally a

message body containing the payload body (if any, Section 3.3).

The following example illustrates a typical message exchange for a GET

request on the URI "http://www.example.com/hello.txt":

client request:

 GET /hello.txt HTTP/1.1

 User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3

 Host: www.example.com

 Accept: */*

server response:

 HTTP/1.1 200 OK

 Date: Mon, 27 Jul 2009 12:28:53 GMT

 Server: Apache

 Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT

 ETag: "34aa387-d-1568eb00"

 Accept-Ranges: bytes

 Content-Length: 14

 Vary: Accept-Encoding

 Content-Type: text/plain

 Hello World!

2.2. Message Orientation and Buffering

Fundamentally, HTTP is a message-based protocol. Although message

bodies can be chunked (Section 5.1.1) and implementations often make

parts of a message available progressively, this is not required, and

some widely-used implementations only make a message available when it

is complete. Furthermore, while most proxies will progressively stream

messages, some amount of buffering will take place, and some proxies

might buffer messages to perform transformations, check content or

provide other services.

Therefore, extensions to and uses of HTTP cannot rely on the

availability of a partial message, or assume that messages will not be

buffered. There are strategies that can be used to test for buffering

in a given connection, but it should be understood that behaviors can

differ across connections, and between requests and responses.

Recipients MUST consider every message in a connection in isolation;

because HTTP is a stateless protocol, it cannot be assumed that two

requests on the same connection are from the same client or share any

other common attributes. In particular, intermediaries might mix

requests from different clients into a single server connection. Note

that some existing HTTP extensions (e.g., [RFC4559]) violate this

requirement, thereby potentially causing interoperability and security

problems.

2.3. Connections and Transport Independence

HTTP messaging is independent of the underlying transport or session-

layer connection protocol(s). HTTP only presumes a reliable transport

with in-order delivery of requests and the corresponding in-order

delivery of responses. The mapping of HTTP request and response

structures onto the data units of the underlying transport protocol is

outside the scope of this specification.

The specific connection protocols to be used for an interaction are

determined by client configuration and the target resource's URI. For

example, the "http" URI scheme (Section 2.7.1) indicates a default

connection of TCP over IP, with a default TCP port of 80, but the

client might be configured to use a proxy via some other connection

port or protocol instead of using the defaults.

A connection might be used for multiple HTTP request/response

exchanges, as defined in Section 6.1.

2.4. Intermediaries

HTTP enables the use of intermediaries to satisfy requests through a

chain of connections. There are three common forms of HTTP

intermediary: proxy, gateway, and tunnel. In some cases, a single

intermediary might act as an origin server, proxy, gateway, or tunnel,

switching behavior based on the nature of each request.

 > > > >

 UA =========== A =========== B =========== C =========== O

 < < < <

The figure above shows three intermediaries (A, B, and C) between the

user agent and origin server. A request or response message that

travels the whole chain will pass through four separate connections.

Some HTTP communication options might apply only to the connection with

the nearest, non-tunnel neighbor, only to the end-points of the chain,

or to all connections along the chain. Although the diagram is linear,

each participant might be engaged in multiple, simultaneous

communications. For example, B might be receiving requests from many

clients other than A, and/or forwarding requests to servers other than

C, at the same time that it is handling A's request.

We use the terms "upstream" and "downstream" to describe various

requirements in relation to the directional flow of a message: all

messages flow from upstream to downstream. Likewise, we use the terms

inbound and outbound to refer to directions in relation to the request

path: "inbound" means toward the origin server and "outbound" means

toward the user agent.

 A "proxy" is a message forwarding agent that is selected by the

client, usually via local configuration rules, to receive requests for

some type(s) of absolute URI and attempt to satisfy those requests via

translation through the HTTP interface. Some translations are minimal,

such as for proxy requests for "http" URIs, whereas other requests

might require translation to and from entirely different application-

layer protocols. Proxies are often used to group an organization's HTTP

requests through a common intermediary for the sake of security,

annotation services, or shared caching.

An HTTP-to-HTTP proxy is called a "transforming proxy" if it is

designed or configured to modify request or response messages in a

semantically meaningful way (i.e., modifications, beyond those required

by normal HTTP processing, that change the message in a way that would

be significant to the original sender or potentially significant to

downstream recipients). For example, a transforming proxy might be

acting as a shared annotation server (modifying responses to include

references to a local annotation database), a malware filter, a format

transcoder, or an intranet-to-Internet privacy filter. Such

transformations are presumed to be desired by the client (or client

organization) that selected the proxy and are beyond the scope of this

specification. However, when a proxy is not intended to transform a

given message, we use the term "non-transforming proxy" to target

requirements that preserve HTTP message semantics. See Section 7.2.4 of

[Part2] and Section 3.6 of [Part6] for status and warning codes related

to transformations.

A "gateway" (a.k.a., "reverse proxy") is a receiving agent that acts

as a layer above some other server(s) and translates the received

requests to the underlying server's protocol. Gateways are often used

to encapsulate legacy or untrusted information services, to improve

server performance through "accelerator" caching, and to enable

partitioning or load-balancing of HTTP services across multiple

machines.

A gateway behaves as an origin server on its outbound connection and as

a user agent on its inbound connection. All HTTP requirements

applicable to an origin server also apply to the outbound communication

of a gateway. A gateway communicates with inbound servers using any

protocol that it desires, including private extensions to HTTP that are

outside the scope of this specification. However, an HTTP-to-HTTP

gateway that wishes to interoperate with third-party HTTP servers MUST

comply with HTTP user agent requirements on the gateway's inbound

connection and MUST implement the Connection (Section 8.1) and Via

(Section 8.8) header fields for both connections.

 A "tunnel" acts as a blind relay between two connections without

changing the messages. Once active, a tunnel is not considered a party

to the HTTP communication, though the tunnel might have been initiated

by an HTTP request. A tunnel ceases to exist when both ends of the

relayed connection are closed. Tunnels are used to extend a virtual

connection through an intermediary, such as when transport-layer

security is used to establish private communication through a shared

firewall proxy.

In addition, there may exist network intermediaries that are not

considered part of the HTTP communication but nevertheless act as

filters or redirecting agents (usually violating HTTP semantics,

causing security problems, and otherwise making a mess of things). Such

a network intermediary, often referred to as an "interception proxy"

[RFC3040], "transparent proxy" [RFC1919], or "captive portal", differs

from an HTTP proxy because it has not been selected by the client.

Instead, the network intermediary redirects outgoing TCP port 80

packets (and occasionally other common port traffic) to an internal

HTTP server. Interception proxies are commonly found on public network

access points, as a means of enforcing account subscription prior to

allowing use of non-local Internet services, and within corporate

firewalls to enforce network usage policies. They are indistinguishable

from a man-in-the-middle attack.

2.5. Caches

A "cache" is a local store of previous response messages and the

subsystem that controls its message storage, retrieval, and deletion. A

cache stores cacheable responses in order to reduce the response time

and network bandwidth consumption on future, equivalent requests. Any

client or server MAY employ a cache, though a cache cannot be used by a

server while it is acting as a tunnel.

The effect of a cache is that the request/response chain is shortened

if one of the participants along the chain has a cached response

applicable to that request. The following illustrates the resulting

chain if B has a cached copy of an earlier response from O (via C) for

a request which has not been cached by UA or A.

 > >

 UA =========== A =========== B - - - - - - C - - - - - - O

 < <

 A response is "cacheable" if a cache is allowed to store a copy of the

response message for use in answering subsequent requests. Even when a

response is cacheable, there might be additional constraints placed by

the client or by the origin server on when that cached response can be

used for a particular request. HTTP requirements for cache behavior and

cacheable responses are defined in Section 2 of [Part6].

There are a wide variety of architectures and configurations of caches

and proxies deployed across the World Wide Web and inside large

organizations. These systems include national hierarchies of proxy

caches to save transoceanic bandwidth, systems that broadcast or

multicast cache entries, organizations that distribute subsets of

cached data via optical media, and so on.

2.6. Protocol Versioning

HTTP uses a "<major>.<minor>" numbering scheme to indicate versions of

the protocol. This specification defines version "1.1". The protocol

version as a whole indicates the sender's compliance with the set of

requirements laid out in that version's corresponding specification of

HTTP.

The version of an HTTP message is indicated by an HTTP-Version field in

the first line of the message. HTTP-Version is case-sensitive.

 HTTP-Version = HTTP-Prot-Name "/" DIGIT "." DIGIT

 HTTP-Prot-Name = %x48.54.54.50 ; "HTTP", case-sensitive

The HTTP version number consists of two decimal digits separated by a

"." (period or decimal point). The first digit ("major version")

indicates the HTTP messaging syntax, whereas the second digit ("minor

version") indicates the highest minor version to which the sender is at

least conditionally compliant and able to understand for future

communication. The minor version advertises the sender's communication

capabilities even when the sender is only using a backwards-compatible

subset of the protocol, thereby letting the recipient know that more

advanced features can be used in response (by servers) or in future

requests (by clients).

When an HTTP/1.1 message is sent to an HTTP/1.0 recipient [RFC1945] or

a recipient whose version is unknown, the HTTP/1.1 message is

constructed such that it can be interpreted as a valid HTTP/1.0 message

if all of the newer features are ignored. This specification places

recipient-version requirements on some new features so that a compliant

sender will only use compatible features until it has determined,

through configuration or the receipt of a message, that the recipient

supports HTTP/1.1.

The interpretation of an HTTP header field does not change between

minor versions of the same major version, though the default behavior

of a recipient in the absence of such a field can change. Unless

specified otherwise, header fields defined in HTTP/1.1 are defined for

all versions of HTTP/1.x. In particular, the Host and Connection header

fields ought to be implemented by all HTTP/1.x implementations whether

or not they advertise compliance with HTTP/1.1.

New header fields can be defined such that, when they are understood by

a recipient, they might override or enhance the interpretation of

previously defined header fields. When an implementation receives an

unrecognized header field, the recipient MUST ignore that header field

for local processing regardless of the message's HTTP version. An

unrecognized header field received by a proxy MUST be forwarded

downstream unless the header field's field-name is listed in the

message's Connection header-field (see Section 8.1). These requirements

allow HTTP's functionality to be enhanced without requiring prior

update of all compliant intermediaries.

Intermediaries that process HTTP messages (i.e., all intermediaries

other than those acting as a tunnel) MUST send their own HTTP-Version

in forwarded messages. In other words, they MUST NOT blindly forward

the first line of an HTTP message without ensuring that the protocol

version matches what the intermediary understands, and is at least

conditionally compliant to, for both the receiving and sending of

messages. Forwarding an HTTP message without rewriting the HTTP-Version

might result in communication errors when downstream recipients use the

message sender's version to determine what features are safe to use for

later communication with that sender.

An HTTP client SHOULD send a request version equal to the highest

version for which the client is at least conditionally compliant and

whose major version is no higher than the highest version supported by

the server, if this is known. An HTTP client MUST NOT send a version

for which it is not at least conditionally compliant.

An HTTP client MAY send a lower request version if it is known that the

server incorrectly implements the HTTP specification, but only after

the client has attempted at least one normal request and determined

from the response status or header fields (e.g., Server) that the

server improperly handles higher request versions.

An HTTP server SHOULD send a response version equal to the highest

version for which the server is at least conditionally compliant and

whose major version is less than or equal to the one received in the

request. An HTTP server MUST NOT send a version for which it is not at

least conditionally compliant. A server MAY send a 505 (HTTP Version

Not Supported) response if it cannot send a response using the major

version used in the client's request.

An HTTP server MAY send an HTTP/1.0 response to an HTTP/1.0 request if

it is known or suspected that the client incorrectly implements the

HTTP specification and is incapable of correctly processing later

version responses, such as when a client fails to parse the version

number correctly or when an intermediary is known to blindly forward

the HTTP-Version even when it doesn't comply with the given minor

version of the protocol. Such protocol downgrades SHOULD NOT be

performed unless triggered by specific client attributes, such as when

one or more of the request header fields (e.g., User-Agent) uniquely

match the values sent by a client known to be in error.

The intention of HTTP's versioning design is that the major number will

only be incremented if an incompatible message syntax is introduced,

and that the minor number will only be incremented when changes made to

the protocol have the effect of adding to the message semantics or

implying additional capabilities of the sender. However, the minor

version was not incremented for the changes introduced between

[RFC2068] and [RFC2616], and this revision is specifically avoiding any

such changes to the protocol.

2.7. Uniform Resource Identifiers

Uniform Resource Identifiers (URIs) [RFC3986] are used throughout HTTP

as the means for identifying resources. URI references are used to

target requests, indicate redirects, and define relationships. HTTP

does not limit what a resource might be; it merely defines an interface

that can be used to interact with a resource via HTTP. More information

on the scope of URIs and resources can be found in [RFC3986].

This specification adopts the definitions of "URI-reference",

"absolute-URI", "relative-part", "port", "host", "path-abempty", "path-

absolute", "query", and "authority" from the URI generic syntax

[RFC3986]. In addition, we define a partial-URI rule for protocol

elements that allow a relative URI but not a fragment.

 URI-reference = <URI-reference, defined in [RFC3986], Section 4.1>

 absolute-URI = <absolute-URI, defined in [RFC3986], Section 4.3>

 relative-part = <relative-part, defined in [RFC3986], Section 4.2>

 authority = <authority, defined in [RFC3986], Section 3.2>

 path-abempty = <path-abempty, defined in [RFC3986], Section 3.3>

 path-absolute = <path-absolute, defined in [RFC3986], Section 3.3>

 port = <port, defined in [RFC3986], Section 3.2.3>

 query = <query, defined in [RFC3986], Section 3.4>

 uri-host = <host, defined in [RFC3986], Section 3.2.2>

 partial-URI = relative-part ["?" query]

Each protocol element in HTTP that allows a URI reference will indicate

in its ABNF production whether the element allows any form of reference

(URI-reference), only a URI in absolute form (absolute-URI), only the

path and optional query components, or some combination of the above.

Unless otherwise indicated, URI references are parsed relative to the

effective request URI, which defines the default base URI for

references in both the request and its corresponding response.

2.7.1. http URI scheme

The "http" URI scheme is hereby defined for the purpose of minting

identifiers according to their association with the hierarchical

namespace governed by a potential HTTP origin server listening for TCP

connections on a given port.

 http-URI = "http:" "//" authority path-abempty ["?" query]

The HTTP origin server is identified by the generic syntax's authority

[uri] component, which includes a host identifier and optional TCP port

([RFC3986], Section 3.2.2). The remainder of the URI, consisting of

both the hierarchical path component and optional query component,

serves as an identifier for a potential resource within that origin

server's name space.

If the host identifier is provided as an IP literal or IPv4 address,

then the origin server is any listener on the indicated TCP port at

that IP address. If host is a registered name, then that name is

considered an indirect identifier and the recipient might use a name

resolution service, such as DNS, to find the address of a listener for

that host. The host MUST NOT be empty; if an "http" URI is received

with an empty host, then it MUST be rejected as invalid. If the port

subcomponent is empty or not given, then TCP port 80 is assumed (the

default reserved port for WWW services).

Regardless of the form of host identifier, access to that host is not

implied by the mere presence of its name or address. The host might or

might not exist and, even when it does exist, might or might not be

running an HTTP server or listening to the indicated port. The "http"

URI scheme makes use of the delegated nature of Internet names and

addresses to establish a naming authority (whatever entity has the

ability to place an HTTP server at that Internet name or address) and

allows that authority to determine which names are valid and how they

might be used.

When an "http" URI is used within a context that calls for access to

the indicated resource, a client MAY attempt access by resolving the

host to an IP address, establishing a TCP connection to that address on

the indicated port, and sending an HTTP request message (Section 3)

containing the URI's identifying data (Section 4) to the server. If the

server responds to that request with a non-interim HTTP response

message, as described in Section 4 of [Part2], then that response is

considered an authoritative answer to the client's request.

Although HTTP is independent of the transport protocol, the "http"

scheme is specific to TCP-based services because the name delegation

process depends on TCP for establishing authority. An HTTP service

based on some other underlying connection protocol would presumably be

identified using a different URI scheme, just as the "https" scheme

(below) is used for servers that require an SSL/TLS transport layer on

a connection. Other protocols might also be used to provide access to

"http" identified resources — it is only the authoritative interface

used for mapping the namespace that is specific to TCP.

The URI generic syntax for authority also includes a deprecated

userinfo subcomponent ([RFC3986], Section 3.2.1) for including user

authentication information in the URI. Some implementations make use of

the userinfo component for internal configuration of authentication

information, such as within command invocation options, configuration

files, or bookmark lists, even though such usage might expose a user

identifier or password. Senders MUST NOT include a userinfo

subcomponent (and its "@" delimiter) when transmitting an "http" URI in

a message. Recipients of HTTP messages that contain a URI reference

SHOULD parse for the existence of userinfo and treat its presence as an

error, likely indicating that the deprecated subcomponent is being used

to obscure the authority for the sake of phishing attacks.

2.7.2. https URI scheme

The "https" URI scheme is hereby defined for the purpose of minting

identifiers according to their association with the hierarchical

namespace governed by a potential HTTP origin server listening for SSL/

TLS-secured connections on a given TCP port.

All of the requirements listed above for the "http" scheme are also

requirements for the "https" scheme, except that a default TCP port of

443 is assumed if the port subcomponent is empty or not given, and the

TCP connection MUST be secured for privacy through the use of strong

encryption prior to sending the first HTTP request.

 https-URI = "https:" "//" authority path-abempty ["?" query]

Unlike the "http" scheme, responses to "https" identified requests are

never "public" and thus MUST NOT be reused for shared caching. They

can, however, be reused in a private cache if the message is cacheable

by default in HTTP or specifically indicated as such by the Cache-

Control header field (Section 3.2 of [Part6]).

Resources made available via the "https" scheme have no shared identity

with the "http" scheme even if their resource identifiers indicate the

same authority (the same host listening to the same TCP port). They are

distinct name spaces and are considered to be distinct origin servers.

However, an extension to HTTP that is defined to apply to entire host

domains, such as the Cookie protocol [RFC6265], can allow information

set by one service to impact communication with other services within a

matching group of host domains.

The process for authoritative access to an "https" identified resource

is defined in [RFC2818].

2.7.3. http and https URI Normalization and Comparison

Since the "http" and "https" schemes conform to the URI generic syntax,

such URIs are normalized and compared according to the algorithm

defined in [RFC3986], Section 6, using the defaults described above for

each scheme.

If the port is equal to the default port for a scheme, the normal form

is to elide the port subcomponent. Likewise, an empty path component is

equivalent to an absolute path of "/", so the normal form is to provide

a path of "/" instead. The scheme and host are case-insensitive and

normally provided in lowercase; all other components are compared in a

case-sensitive manner. Characters other than those in the "reserved"

set are equivalent to their percent-encoded octets (see [RFC3986],

Section 2.1): the normal form is to not encode them.

For example, the following three URIs are equivalent:

 http://example.com:80/~smith/home.html

 http://EXAMPLE.com/%7Esmith/home.html

 http://EXAMPLE.com:/%7esmith/home.html

3. Message Format

All HTTP/1.1 messages consist of a start-line followed by a sequence of

octets in a format similar to the Internet Message Format [RFC5322]:

zero or more header fields (collectively referred to as the "headers"

or the "header section"), an empty line indicating the end of the

header section, and an optional message-body.

 HTTP-message = start-line

 *(header-field CRLF)

 CRLF

 [message-body]

The normal procedure for parsing an HTTP message is to read the start-

line into a structure, read each header field into a hash table by

field name until the empty line, and then use the parsed data to

determine if a message-body is expected. If a message-body has been

indicated, then it is read as a stream until an amount of octets equal

to the message-body length is read or the connection is closed.

Recipients MUST parse an HTTP message as a sequence of octets in an

encoding that is a superset of US-ASCII [USASCII]. Parsing an HTTP

message as a stream of Unicode characters, without regard for the

specific encoding, creates security vulnerabilities due to the varying

ways that string processing libraries handle invalid multibyte

character sequences that contain the octet LF (%x0A). String-based

parsers can only be safely used within protocol elements after the

element has been extracted from the message, such as within a header

field-value after message parsing has delineated the individual fields.

3.1. Start Line

An HTTP message can either be a request from client to server or a

response from server to client. Syntactically, the two types of message

differ only in the start-line, which is either a Request-Line (for

requests) or a Status-Line (for responses), and in the algorithm for

determining the length of the message-body (Section 3.3). In theory, a

client could receive requests and a server could receive responses,

distinguishing them by their different start-line formats, but in

practice servers are implemented to only expect a request (a response

is interpreted as an unknown or invalid request method) and clients are

implemented to only expect a response.

 start-line = Request-Line / Status-Line

Implementations MUST NOT send whitespace between the start-line and the

first header field. The presence of such whitespace in a request might

be an attempt to trick a server into ignoring that field or processing

the line after it as a new request, either of which might result in a

security vulnerability if other implementations within the request

chain interpret the same message differently. Likewise, the presence of

such whitespace in a response might be ignored by some clients or cause

others to cease parsing.

3.1.1. Request-Line

The Request-Line begins with a method token, followed by a single space

(SP), the request-target, another single space (SP), the protocol

version, and ending with CRLF.

 Request-Line = Method SP request-target SP HTTP-Version CRLF

3.1.1.1. Method

The Method token indicates the request method to be performed on the

target resource. The request method is case-sensitive.

 Method = token

See Section 2 of [Part2] for further information, such as the list of

methods defined by this specification, the IANA registry, and

considerations for new methods.

3.1.1.2. request-target

The request-target identifies the target resource upon which to apply

the request. The four options for request-target are described in

Section 4.1.

 request-target = "*"

 / absolute-URI

 / (path-absolute ["?" query])

 / authority

HTTP does not place a pre-defined limit on the length of a request-

target. A server MUST be prepared to receive URIs of unbounded length

and respond with the 414 (URI Too Long) status code if the received

request-target would be longer than the server wishes to handle (see

Section 7.4.15 of [Part2]).

Various ad-hoc limitations on request-target length are found in

practice. It is RECOMMENDED that all HTTP senders and recipients

support request-target lengths of 8000 or more octets.

Note: Fragments ([RFC3986], Section 3.5) are not part of the

request-target and thus will not be transmitted in an HTTP

request.

3.1.2. Response Status-Line

The first line of a Response message is the Status-Line, consisting of

the protocol version, a space (SP), the status code, another space, a

possibly-empty textual phrase describing the status code, and ending

with CRLF.

*

 Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

3.1.2.1. Status Code

The Status-Code element is a 3-digit integer result code of the attempt

to understand and satisfy the request. See Section 4 of [Part2] for

further information, such as the list of status codes defined by this

specification, the IANA registry, and considerations for new status

codes.

 Status-Code = 3DIGIT

3.1.2.2. Reason Phrase

The Reason Phrase exists for the sole purpose of providing a textual

description associated with the numeric status code, out of deference

to earlier Internet application protocols that were more frequently

used with interactive text clients. A client SHOULD ignore the content

of the Reason Phrase.

 Reason-Phrase = *(HTAB / SP / VCHAR / obs-text)

3.2. Header Fields

Each HTTP header field consists of a case-insensitive field name

followed by a colon (":"), optional whitespace, and the field value.

 header-field = field-name ":" OWS field-value BWS

 field-name = token

 field-value = *(field-content / obs-fold)

 field-content = *(HTAB / SP / VCHAR / obs-text)

The field-name token labels the corresponding field-value as having the

semantics defined by that header field. For example, the Date header

field is defined in Section 9.2 of [Part2] as containing the

origination timestamp for the message in which it appears.

HTTP header fields are fully extensible: there is no limit on the

introduction of new field names, each presumably defining new

semantics, or on the number of header fields used in a given message.

Existing fields are defined in each part of this specification and in

many other specifications outside the standards process. New header

fields can be introduced without changing the protocol version if their

defined semantics allow them to be safely ignored by recipients that do

not recognize them.

New HTTP header fields SHOULD be registered with IANA according to the

procedures in Section 3.1 of [Part2]. Unrecognized header fields MUST

be forwarded by a proxy unless the field-name is listed in the

Connection header field (Section 8.1) or the proxy is specifically

configured to block or otherwise transform such fields. Unrecognized

header fields SHOULD be ignored by other recipients.

The order in which header fields with differing field names are

received is not significant. However, it is "good practice" to send

header fields that contain control data first, such as Host on requests

and Date on responses, so that implementations can decide when not to

handle a message as early as possible. A server MUST wait until the

entire header section is received before interpreting a request

message, since later header fields might include conditionals,

authentication credentials, or deliberately misleading duplicate header

fields that would impact request processing.

Multiple header fields with the same field name MUST NOT be sent in a

message unless the entire field value for that header field is defined

as a comma-separated list [i.e., #(values)]. Multiple header fields

with the same field name can be combined into one "field-name: field-

value" pair, without changing the semantics of the message, by

appending each subsequent field value to the combined field value in

order, separated by a comma. The order in which header fields with the

same field name are received is therefore significant to the

interpretation of the combined field value; a proxy MUST NOT change the

order of these field values when forwarding a message.

Note: The "Set-Cookie" header field as implemented in practice

can occur multiple times, but does not use the list syntax, and

thus cannot be combined into a single line ([RFC6265]). (See

Appendix A.2.3 of [Kri2001] for details.) Also note that the Set-

Cookie2 header field specified in [RFC2965] does not share this

problem.

3.2.1. Field Parsing

No whitespace is allowed between the header field-name and colon. In

the past, differences in the handling of such whitespace have led to

security vulnerabilities in request routing and response handling. Any

received request message that contains whitespace between a header

field-name and colon MUST be rejected with a response code of 400 (Bad

Request). A proxy MUST remove any such whitespace from a response

message before forwarding the message downstream.

A field value MAY be preceded by optional whitespace (OWS); a single SP

is preferred. The field value does not include any leading or trailing

white space: OWS occurring before the first non-whitespace octet of the

field value or after the last non-whitespace octet of the field value

is ignored and SHOULD be removed before further processing (as this

does not change the meaning of the header field).

Historically, HTTP header field values could be extended over multiple

lines by preceding each extra line with at least one space or

horizontal tab (obs-fold). This specification deprecates such line

folding except within the message/http media type (Section 9.3.1). HTTP

senders MUST NOT produce messages that include line folding (i.e., that

contain any field-content that matches the obs-fold rule) unless the

message is intended for packaging within the message/http media type.

*

HTTP recipients SHOULD accept line folding and replace any embedded

obs-fold whitespace with either a single SP or a matching number of SP

octets (to avoid buffer copying) prior to interpreting the field value

or forwarding the message downstream.

Historically, HTTP has allowed field content with text in the

ISO-8859-1 [ISO-8859-1] character encoding and supported other

character sets only through use of [RFC2047] encoding. In practice,

most HTTP header field values use only a subset of the US-ASCII

character encoding [USASCII]. Newly defined header fields SHOULD limit

their field values to US-ASCII octets. Recipients SHOULD treat other

(obs-text) octets in field content as opaque data.

3.2.2. Field Length

HTTP does not place a pre-defined limit on the length of header fields,

either in isolation or as a set. A server MUST be prepared to receive

request header fields of unbounded length and respond with a 4xx status

code if the received header field(s) would be longer than the server

wishes to handle.

A client that receives response headers that are longer than it wishes

to handle can only treat it as a server error.

Various ad-hoc limitations on header length are found in practice. It

is RECOMMENDED that all HTTP senders and recipients support messages

whose combined header fields have 4000 or more octets.

3.2.3. Common Field ABNF Rules

Many HTTP/1.1 header field values consist of words (token or quoted-

string) separated by whitespace or special characters. These special

characters MUST be in a quoted string to be used within a parameter

value (as defined in Section 5.1).

 word = token / quoted-string

 token = 1*tchar

 tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*"

 / "+" / "-" / "." / "^" / "_" / "`" / "|" / "~"

 / DIGIT / ALPHA

 ; any VCHAR, except special

 special = "(" / ")" / "<" / ">" / "@" / ","

 / ";" / ":" / "\" / DQUOTE / "/" / "["

 / "]" / "?" / "=" / "{" / "}"

A string of text is parsed as a single word if it is quoted using

double-quote marks.

 quoted-string = DQUOTE *(qdtext / quoted-pair) DQUOTE

 qdtext = OWS / %x21 / %x23-5B / %x5D-7E / obs-text

 obs-text = %x80-FF

The backslash octet ("\") can be used as a single-octet quoting

mechanism within quoted-string constructs:

 quoted-pair = "\" (HTAB / SP / VCHAR / obs-text)

Recipients that process the value of the quoted-string MUST handle a

quoted-pair as if it were replaced by the octet following the

backslash.

Senders SHOULD NOT escape octets in quoted-strings that do not require

escaping (i.e., other than DQUOTE and the backslash octet).

Comments can be included in some HTTP header fields by surrounding the

comment text with parentheses. Comments are only allowed in fields

containing "comment" as part of their field value definition.

 comment = "(" *(ctext / quoted-cpair / comment) ")"

 ctext = OWS / %x21-27 / %x2A-5B / %x5D-7E / obs-text

The backslash octet ("\") can be used as a single-octet quoting

mechanism within comment constructs:

 quoted-cpair = "\" (HTAB / SP / VCHAR / obs-text)

Senders SHOULD NOT escape octets in comments that do not require

escaping (i.e., other than the backslash octet "\" and the parentheses

"(" and ")").

3.3. Message Body

The message-body (if any) of an HTTP message is used to carry the

payload body associated with the request or response.

 message-body = *OCTET

The message-body differs from the payload body only when a transfer-

coding has been applied, as indicated by the Transfer-Encoding header

field (Section 8.6). If more than one Transfer-Encoding header field is

present in a message, the multiple field-values MUST be combined into

one field-value, according to the algorithm defined in Section 3.2,

before determining the message-body length.

When one or more transfer-codings are applied to a payload in order to

form the message-body, the Transfer-Encoding header field MUST contain

the list of transfer-codings applied. Transfer-Encoding is a property

of the message, not of the payload, and thus MAY be added or removed by

any implementation along the request/response chain under the

constraints found in Section 5.1.

If a message is received that has multiple Content-Length header fields

(Section 8.2) with field-values consisting of the same decimal value,

or a single Content-Length header field with a field value containing a

list of identical decimal values (e.g., "Content-Length: 42, 42"),

indicating that duplicate Content-Length header fields have been

generated or combined by an upstream message processor, then the

recipient MUST either reject the message as invalid or replace the

duplicated field-values with a single valid Content-Length field

containing that decimal value prior to determining the message-body

length.

The rules for when a message-body is allowed in a message differ for

requests and responses.

The presence of a message-body in a request is signaled by the

inclusion of a Content-Length or Transfer-Encoding header field in the

request's header fields, even if the request method does not define any

use for a message-body. This allows the request message framing

algorithm to be independent of method semantics.

For response messages, whether or not a message-body is included with a

message is dependent on both the request method and the response status

code (Section 3.1.2.1). Responses to the HEAD request method never

include a message-body because the associated response header fields

(e.g., Transfer-Encoding, Content-Length, etc.) only indicate what

their values would have been if the request method had been GET. All

1xx (Informational), 204 (No Content), and 304 (Not Modified) responses

MUST NOT include a message-body. All other responses do include a

message-body, although the body MAY be of zero length.

The length of the message-body is determined by one of the following

(in order of precedence):

Any response to a HEAD request and any response with a status

code of 100-199, 204, or 304 is always terminated by the first

empty line after the header fields, regardless of the header

fields present in the message, and thus cannot contain a

message-body.

If a Transfer-Encoding header field is present and the

"chunked" transfer-coding (Section 5.1) is the final encoding,

the message-body length is determined by reading and decoding

the chunked data until the transfer-coding indicates the data

is complete.

If a Transfer-Encoding header field is present in a response

and the "chunked" transfer-coding is not the final encoding,

the message-body length is determined by reading the connection

until it is closed by the server. If a Transfer-Encoding header

field is present in a request and the "chunked" transfer-coding

is not the final encoding, the message-body length cannot be

determined reliably; the server MUST respond with the 400 (Bad

Request) status code and then close the connection.

1.

2.

If a message is received with both a Transfer-Encoding header

field and a Content-Length header field, the Transfer-Encoding

overrides the Content-Length. Such a message might indicate an

attempt to perform request or response smuggling (bypass of

security-related checks on message routing or content) and thus

ought to be handled as an error. The provided Content-Length

MUST be removed, prior to forwarding the message downstream, or

replaced with the real message-body length after the transfer-

coding is decoded.

If a message is received without Transfer-Encoding and with

either multiple Content-Length header fields having differing

field-values or a single Content-Length header field having an

invalid value, then the message framing is invalid and MUST be

treated as an error to prevent request or response smuggling.

If this is a request message, the server MUST respond with a

400 (Bad Request) status code and then close the connection. If

this is a response message received by a proxy, the proxy MUST

discard the received response, send a 502 (Bad Gateway) status

code as its downstream response, and then close the connection.

If this is a response message received by a user-agent, it MUST

be treated as an error by discarding the message and closing

the connection.

If a valid Content-Length header field is present without

Transfer-Encoding, its decimal value defines the message-body

length in octets. If the actual number of octets sent in the

message is less than the indicated Content-Length, the

recipient MUST consider the message to be incomplete and treat

the connection as no longer usable. If the actual number of

octets sent in the message is more than the indicated Content-

Length, the recipient MUST only process the message-body up to

the field value's number of octets; the remainder of the

message MUST either be discarded or treated as the next message

in a pipeline. For the sake of robustness, a user-agent MAY

attempt to detect and correct such an error in message framing

if it is parsing the response to the last request on a

connection and the connection has been closed by the server.

If this is a request message and none of the above are true,

then the message-body length is zero (no message-body is

present).

Otherwise, this is a response message without a declared

message-body length, so the message-body length is determined

by the number of octets received prior to the server closing

the connection.

3.

4.

5.

6.

Since there is no way to distinguish a successfully completed, close-

delimited message from a partially-received message interrupted by

network failure, implementations SHOULD use encoding or length-

delimited messages whenever possible. The close-delimiting feature

exists primarily for backwards compatibility with HTTP/1.0.

A server MAY reject a request that contains a message-body but not a

Content-Length by responding with 411 (Length Required).

Unless a transfer-coding other than "chunked" has been applied, a

client that sends a request containing a message-body SHOULD use a

valid Content-Length header field if the message-body length is known

in advance, rather than the "chunked" encoding, since some existing

services respond to "chunked" with a 411 (Length Required) status code

even though they understand the chunked encoding. This is typically

because such services are implemented via a gateway that requires a

content-length in advance of being called and the server is unable or

unwilling to buffer the entire request before processing.

A client that sends a request containing a message-body MUST include a

valid Content-Length header field if it does not know the server will

handle HTTP/1.1 (or later) requests; such knowledge can be in the form

of specific user configuration or by remembering the version of a prior

received response.

3.4. Handling Incomplete Messages

Request messages that are prematurely terminated, possibly due to a

cancelled connection or a server-imposed time-out exception, MUST

result in closure of the connection; sending an HTTP/1.1 error response

prior to closing the connection is OPTIONAL.

Response messages that are prematurely terminated, usually by closure

of the connection prior to receiving the expected number of octets or

by failure to decode a transfer-encoded message-body, MUST be recorded

as incomplete. A response that terminates in the middle of the header

block (before the empty line is received) cannot be assumed to convey

the full semantics of the response and MUST be treated as an error.

A message-body that uses the chunked transfer encoding is incomplete if

the zero-sized chunk that terminates the encoding has not been

received. A message that uses a valid Content-Length is incomplete if

the size of the message-body received (in octets) is less than the

value given by Content-Length. A response that has neither chunked

transfer encoding nor Content-Length is terminated by closure of the

connection, and thus is considered complete regardless of the number of

message-body octets received, provided that the header block was

received intact.

A user agent MUST NOT render an incomplete response message-body as if

it were complete (i.e., some indication must be given to the user that

an error occurred). Cache requirements for incomplete responses are

defined in Section 2.1 of [Part6].

A server MUST read the entire request message-body or close the

connection after sending its response, since otherwise the remaining

data on a persistent connection would be misinterpreted as the next

request. Likewise, a client MUST read the entire response message-body

if it intends to reuse the same connection for a subsequent request.

Pipelining multiple requests on a connection is described in Section

6.1.2.2.

3.5. Message Parsing Robustness

Older HTTP/1.0 client implementations might send an extra CRLF after a

POST request as a lame workaround for some early server applications

that failed to read message-body content that was not terminated by a

line-ending. An HTTP/1.1 client MUST NOT preface or follow a request

with an extra CRLF. If terminating the request message-body with a

line-ending is desired, then the client MUST include the terminating

CRLF octets as part of the message-body length.

In the interest of robustness, servers SHOULD ignore at least one empty

line received where a Request-Line is expected. In other words, if the

server is reading the protocol stream at the beginning of a message and

receives a CRLF first, it SHOULD ignore the CRLF. Likewise, although

the line terminator for the start-line and header fields is the

sequence CRLF, we recommend that recipients recognize a single LF as a

line terminator and ignore any CR.

When a server listening only for HTTP request messages, or processing

what appears from the start-line to be an HTTP request message,

receives a sequence of octets that does not match the HTTP-message

grammar aside from the robustness exceptions listed above, the server

MUST respond with an HTTP/1.1 400 (Bad Request) response.

4. Message Routing

In most cases, the user agent is provided a URI reference from which it

determines an absolute URI for identifying the target resource. When a

request to the resource is initiated, all or part of that URI is used

to construct the HTTP request-target.

4.1. Types of Request Target

The four options for request-target are dependent on the nature of the

request.

 The asterisk "*" form of request-target, which MUST NOT be used with

any request method other than OPTIONS, means that the request applies

to the server as a whole (the listening process) rather than to a

specific named resource at that server. For example,

 OPTIONS * HTTP/1.1

 The "absolute-URI" form is REQUIRED when the request is being made to

a proxy. The proxy is requested to either forward the request or

service it from a valid cache, and then return the response. Note that

the proxy MAY forward the request on to another proxy or directly to

the server specified by the absolute-URI. In order to avoid request

loops, a proxy that forwards requests to other proxies MUST be able to

recognize and exclude all of its own server names, including any

aliases, local variations, and the numeric IP address. An example

Request-Line would be:

 GET http://www.example.org/pub/WWW/TheProject.html HTTP/1.1

To allow for transition to absolute-URIs in all requests in future

versions of HTTP, all HTTP/1.1 servers MUST accept the absolute-URI

form in requests, even though HTTP/1.1 clients will only generate them

in requests to proxies.

If a proxy receives a host name that is not a fully qualified domain

name, it MAY add its domain to the host name it received. If a proxy

receives a fully qualified domain name, the proxy MUST NOT change the

host name.

 The "authority form" is only used by the CONNECT request method

(Section 6.9 of [Part2]).

 The most common form of request-target is that used when making a

request to an origin server ("origin form"). In this case, the absolute

path and query components of the URI MUST be transmitted as the

request-target, and the authority component MUST be transmitted in a

Host header field. For example, a client wishing to retrieve a

representation of the resource, as identified above, directly from the

origin server would open (or reuse) a TCP connection to port 80 of the

host "www.example.org" and send the lines:

 GET /pub/WWW/TheProject.html HTTP/1.1

 Host: www.example.org

followed by the remainder of the Request. Note that the origin form of

request-target always starts with an absolute path; if the target

resource's URI path is empty, then an absolute path of "/" MUST be

provided in the request-target.

If a proxy receives an OPTIONS request with an absolute-URI form of

request-target in which the URI has an empty path and no query

component, then the last proxy on the request chain MUST use a request-

target of "*" when it forwards the request to the indicated origin

server.

For example, the request

 OPTIONS http://www.example.org:8001 HTTP/1.1

would be forwarded by the final proxy as

 OPTIONS * HTTP/1.1

 Host: www.example.org:8001

after connecting to port 8001 of host "www.example.org".

The request-target is transmitted in the format specified in Section

2.7.1. If the request-target is percent-encoded ([RFC3986], Section

2.1), the origin server MUST decode the request-target in order to

properly interpret the request. Servers SHOULD respond to invalid

request-targets with an appropriate status code.

A non-transforming proxy MUST NOT rewrite the "path-absolute" part of

the received request-target when forwarding it to the next inbound

server, except as noted above to replace a null path-absolute with "/"

or "*".

Note: The "no rewrite" rule prevents the proxy from changing the

meaning of the request when the origin server is improperly using

a non-reserved URI character for a reserved purpose. Implementors

need to be aware that some pre-HTTP/1.1 proxies have been known

to rewrite the request-target.

4.2. The Resource Identified by a Request

The exact resource identified by an Internet request is determined by

examining both the request-target and the Host header field.

An origin server that does not allow resources to differ by the

requested host MAY ignore the Host header field value when determining

the resource identified by an HTTP/1.1 request. (But see Appendix

Appendix A.1.1 for other requirements on Host support in HTTP/1.1.)

An origin server that does differentiate resources based on the host

requested (sometimes referred to as virtual hosts or vanity host names)

MUST use the following rules for determining the requested resource on

an HTTP/1.1 request:

If request-target is an absolute-URI, the host is part of the

request-target. Any Host header field value in the request MUST

be ignored.

If the request-target is not an absolute-URI, and the request

includes a Host header field, the host is determined by the

Host header field value.

If the host as determined by rule 1 or 2 is not a valid host on

the server, the response MUST be a 400 (Bad Request) error

message.

Recipients of an HTTP/1.0 request that lacks a Host header field MAY

attempt to use heuristics (e.g., examination of the URI path for

something unique to a particular host) in order to determine what exact

resource is being requested.

*

1.

2.

3.

4.3. Effective Request URI

HTTP requests often do not carry the absolute URI ([RFC3986], Section

4.3) for the target resource; instead, the URI needs to be inferred

from the request-target, Host header field, and connection context. The

result of this process is called the "effective request URI". The

"target resource" is the resource identified by the effective request

URI.

If the request-target is an absolute-URI, then the effective request

URI is the request-target.

If the request-target uses the path-absolute form or the asterisk form,

and the Host header field is present, then the effective request URI is

constructed by concatenating

the scheme name: "http" if the request was received over an

insecure TCP connection, or "https" when received over a SSL/TLS-

secured TCP connection,

the octet sequence "://",

the authority component, as specified in the Host header field

(Section 8.3), and

the request-target obtained from the Request-Line, unless the

request-target is just the asterisk "*".

If the request-target uses the path-absolute form or the asterisk form,

and the Host header field is not present, then the effective request

URI is undefined.

Otherwise, when request-target uses the authority form, the effective

request URI is undefined.

Example 1: the effective request URI for the message

 GET /pub/WWW/TheProject.html HTTP/1.1

 Host: www.example.org:8080

(received over an insecure TCP connection) is "http", plus "://", plus

the authority component "www.example.org:8080", plus the request-target

"/pub/WWW/TheProject.html", thus "http://www.example.org:8080/pub/WWW/

TheProject.html".

Example 2: the effective request URI for the message

 OPTIONS * HTTP/1.1

 Host: www.example.org

(received over an SSL/TLS secured TCP connection) is "https", plus

"://", plus the authority component "www.example.org", thus "https://

www.example.org".

*

*

*

*

Effective request URIs are compared using the rules described in

Section 2.7.3, except that empty path components MUST NOT be treated as

equivalent to an absolute path of "/".

5. Protocol Parameters

5.1. Transfer Codings

Transfer-coding values are used to indicate an encoding transformation

that has been, can be, or might need to be applied to a payload body in

order to ensure "safe transport" through the network. This differs from

a content coding in that the transfer-coding is a property of the

message rather than a property of the representation that is being

transferred.

 transfer-coding = "chunked" ; Section 5.1.1

 / "compress" ; Section 5.1.2.1

 / "deflate" ; Section 5.1.2.2

 / "gzip" ; Section 5.1.2.3

 / transfer-extension

 transfer-extension = token *(OWS ";" OWS transfer-parameter)

Parameters are in the form of attribute/value pairs.

 transfer-parameter = attribute BWS "=" BWS value

 attribute = token

 value = word

All transfer-coding values are case-insensitive. HTTP/1.1 uses

transfer-coding values in the TE header field (Section 8.4) and in the

Transfer-Encoding header field (Section 8.6).

Transfer-codings are analogous to the Content-Transfer-Encoding values

of MIME, which were designed to enable safe transport of binary data

over a 7-bit transport service ([RFC2045], Section 6). However, safe

transport has a different focus for an 8bit-clean transfer protocol. In

HTTP, the only unsafe characteristic of message-bodies is the

difficulty in determining the exact message body length (Section 3.3),

or the desire to encrypt data over a shared transport.

A server that receives a request message with a transfer-coding it does

not understand SHOULD respond with 501 (Not Implemented) and then close

the connection. A server MUST NOT send transfer-codings to an HTTP/1.0

client.

5.1.1. Chunked Transfer Coding

The chunked encoding modifies the body of a message in order to

transfer it as a series of chunks, each with its own size indicator,

followed by an OPTIONAL trailer containing header fields. This allows

dynamically produced content to be transferred along with the

information necessary for the recipient to verify that it has received

the full message.

 Chunked-Body = *chunk

 last-chunk

 trailer-part

 CRLF

 chunk = chunk-size [chunk-ext] CRLF

 chunk-data CRLF

 chunk-size = 1*HEXDIG

 last-chunk = 1*("0") [chunk-ext] CRLF

 chunk-ext = *(";" chunk-ext-name

 ["=" chunk-ext-val])

 chunk-ext-name = token

 chunk-ext-val = token / quoted-str-nf

 chunk-data = 1*OCTET ; a sequence of chunk-size octets

 trailer-part = *(header-field CRLF)

 quoted-str-nf = DQUOTE *(qdtext-nf / quoted-pair) DQUOTE

 ; like quoted-string, but disallowing line folding

 qdtext-nf = HTAB / SP / %x21 / %x23-5B / %x5D-7E / obs-text

The chunk-size field is a string of hex digits indicating the size of

the chunk-data in octets. The chunked encoding is ended by any chunk

whose size is zero, followed by the trailer, which is terminated by an

empty line.

The trailer allows the sender to include additional HTTP header fields

at the end of the message. The Trailer header field can be used to

indicate which header fields are included in a trailer (see Section

8.5).

A server using chunked transfer-coding in a response MUST NOT use the

trailer for any header fields unless at least one of the following is

true:

the request included a TE header field that indicates

"trailers" is acceptable in the transfer-coding of the

response, as described in Section 8.4; or,

the trailer fields consist entirely of optional metadata, and

the recipient could use the message (in a manner acceptable to

the server where the field originated) without receiving it. In

other words, the server that generated the header (often but

not always the origin server) is willing to accept the

possibility that the trailer fields might be silently discarded

along the path to the client.

This requirement prevents an interoperability failure when the message

is being received by an HTTP/1.1 (or later) proxy and forwarded to an

1.

2.

HTTP/1.0 recipient. It avoids a situation where compliance with the

protocol would have necessitated a possibly infinite buffer on the

proxy.

A process for decoding the "chunked" transfer-coding can be represented

in pseudo-code as:

 length := 0

 read chunk-size, chunk-ext (if any) and CRLF

 while (chunk-size > 0) {

 read chunk-data and CRLF

 append chunk-data to decoded-body

 length := length + chunk-size

 read chunk-size and CRLF

 }

 read header-field

 while (header-field not empty) {

 append header-field to existing header fields

 read header-field

 }

 Content-Length := length

 Remove "chunked" from Transfer-Encoding

All HTTP/1.1 applications MUST be able to receive and decode the

"chunked" transfer-coding and MUST ignore chunk-ext extensions they do

not understand.

Since "chunked" is the only transfer-coding required to be understood

by HTTP/1.1 recipients, it plays a crucial role in delimiting messages

on a persistent connection. Whenever a transfer-coding is applied to a

payload body in a request, the final transfer-coding applied MUST be

"chunked". If a transfer-coding is applied to a response payload body,

then either the final transfer-coding applied MUST be "chunked" or the

message MUST be terminated by closing the connection. When the

"chunked" transfer-coding is used, it MUST be the last transfer-coding

applied to form the message-body. The "chunked" transfer-coding MUST

NOT be applied more than once in a message-body.

5.1.2. Compression Codings

The codings defined below can be used to compress the payload of a

message.

Note: Use of program names for the identification of encoding

formats is not desirable and is discouraged for future encodings.

Their use here is representative of historical practice, not good

design.

Note: For compatibility with previous implementations of HTTP,

applications SHOULD consider "x-gzip" and "x-compress" to be

equivalent to "gzip" and "compress" respectively.

*

*

5.1.2.1. Compress Coding

The "compress" format is produced by the common UNIX file compression

program "compress". This format is an adaptive Lempel-Ziv-Welch coding

(LZW).

5.1.2.2. Deflate Coding

The "deflate" format is defined as the "deflate" compression mechanism

(described in [RFC1951]) used inside the "zlib" data format

([RFC1950]).

Note: Some incorrect implementations send the "deflate"

compressed data without the zlib wrapper.

5.1.2.3. Gzip Coding

The "gzip" format is produced by the file compression program "gzip"

(GNU zip), as described in [RFC1952]. This format is a Lempel-Ziv

coding (LZ77) with a 32 bit CRC.

5.1.3. Transfer Coding Registry

The HTTP Transfer Coding Registry defines the name space for the

transfer coding names.

Registrations MUST include the following fields:

Name

Description

Pointer to specification text

Names of transfer codings MUST NOT overlap with names of content

codings (Section 2.2 of [Part3]), unless the encoding transformation is

identical (as it is the case for the compression codings defined in

Section 5.1.2).

Values to be added to this name space require a specification (see

"Specification Required" in Section 4.1 of [RFC5226]), and MUST conform

to the purpose of transfer coding defined in this section.

The registry itself is maintained at http://www.iana.org/assignments/

http-parameters.

5.2. Product Tokens

Product tokens are used to allow communicating applications to identify

themselves by software name and version. Most fields using product

tokens also allow sub-products which form a significant part of the

application to be listed, separated by whitespace. By convention, the

*

*

*

*

http://www.iana.org/assignments/http-parameters
http://www.iana.org/assignments/http-parameters

products are listed in order of their significance for identifying the

application.

 product = token ["/" product-version]

 product-version = token

Examples:

 User-Agent: CERN-LineMode/2.15 libwww/2.17b3

 Server: Apache/0.8.4

Product tokens SHOULD be short and to the point. They MUST NOT be used

for advertising or other non-essential information. Although any token

octet MAY appear in a product-version, this token SHOULD only be used

for a version identifier (i.e., successive versions of the same product

SHOULD only differ in the product-version portion of the product

value).

5.3. Quality Values

Both transfer codings (TE request header field, Section 8.4) and

content negotiation (Section 5 of [Part3]) use short "floating point"

numbers to indicate the relative importance ("weight") of various

negotiable parameters. A weight is normalized to a real number in the

range 0 through 1, where 0 is the minimum and 1 the maximum value. If a

parameter has a quality value of 0, then content with this parameter is

"not acceptable" for the client. HTTP/1.1 applications MUST NOT

generate more than three digits after the decimal point. User

configuration of these values SHOULD also be limited in this fashion.

 qvalue = ("0" ["." 0*3DIGIT])

 / ("1" ["." 0*3("0")])

Note: "Quality values" is a misnomer, since these values merely

represent relative degradation in desired quality.

6. Connections

6.1. Persistent Connections

6.1.1. Purpose

Prior to persistent connections, a separate TCP connection was

established for each request, increasing the load on HTTP servers and

causing congestion on the Internet. The use of inline images and other

associated data often requires a client to make multiple requests of

the same server in a short amount of time. Analysis of these

performance problems and results from a prototype implementation are

available [Pad1995] [Spe]. Implementation experience and measurements

*

of actual HTTP/1.1 implementations show good results [Nie1997].

Alternatives have also been explored, for example, T/TCP [Tou1998].

Persistent HTTP connections have a number of advantages:

By opening and closing fewer TCP connections, CPU time is saved

in routers and hosts (clients, servers, proxies, gateways,

tunnels, or caches), and memory used for TCP protocol control

blocks can be saved in hosts.

HTTP requests and responses can be pipelined on a connection.

Pipelining allows a client to make multiple requests without

waiting for each response, allowing a single TCP connection to be

used much more efficiently, with much lower elapsed time.

Network congestion is reduced by reducing the number of packets

caused by TCP opens, and by allowing TCP sufficient time to

determine the congestion state of the network.

Latency on subsequent requests is reduced since there is no time

spent in TCP's connection opening handshake.

HTTP can evolve more gracefully, since errors can be reported

without the penalty of closing the TCP connection. Clients using

future versions of HTTP might optimistically try a new feature,

but if communicating with an older server, retry with old

semantics after an error is reported.

HTTP implementations SHOULD implement persistent connections.

6.1.2. Overall Operation

A significant difference between HTTP/1.1 and earlier versions of HTTP

is that persistent connections are the default behavior of any HTTP

connection. That is, unless otherwise indicated, the client SHOULD

assume that the server will maintain a persistent connection, even

after error responses from the server.

Persistent connections provide a mechanism by which a client and a

server can signal the close of a TCP connection. This signaling takes

place using the Connection header field (Section 8.1). Once a close has

been signaled, the client MUST NOT send any more requests on that

connection.

6.1.2.1. Negotiation

An HTTP/1.1 server MAY assume that a HTTP/1.1 client intends to

maintain a persistent connection unless a Connection header field

including the connection-token "close" was sent in the request. If the

server chooses to close the connection immediately after sending the

response, it SHOULD send a Connection header field including the

connection-token "close".

*

*

*

*

*

An HTTP/1.1 client MAY expect a connection to remain open, but would

decide to keep it open based on whether the response from a server

contains a Connection header field with the connection-token close. In

case the client does not want to maintain a connection for more than

that request, it SHOULD send a Connection header field including the

connection-token close.

If either the client or the server sends the close token in the

Connection header field, that request becomes the last one for the

connection.

Clients and servers SHOULD NOT assume that a persistent connection is

maintained for HTTP versions less than 1.1 unless it is explicitly

signaled. See Appendix Appendix A.1.2 for more information on backward

compatibility with HTTP/1.0 clients.

In order to remain persistent, all messages on the connection MUST have

a self-defined message length (i.e., one not defined by closure of the

connection), as described in Section 3.3.

6.1.2.2. Pipelining

A client that supports persistent connections MAY "pipeline" its

requests (i.e., send multiple requests without waiting for each

response). A server MUST send its responses to those requests in the

same order that the requests were received.

Clients which assume persistent connections and pipeline immediately

after connection establishment SHOULD be prepared to retry their

connection if the first pipelined attempt fails. If a client does such

a retry, it MUST NOT pipeline before it knows the connection is

persistent. Clients MUST also be prepared to resend their requests if

the server closes the connection before sending all of the

corresponding responses.

Clients SHOULD NOT pipeline requests using non-idempotent request

methods or non-idempotent sequences of request methods (see Section

6.1.2 of [Part2]). Otherwise, a premature termination of the transport

connection could lead to indeterminate results. A client wishing to

send a non-idempotent request SHOULD wait to send that request until it

has received the response status line for the previous request.

6.1.3. Proxy Servers

It is especially important that proxies correctly implement the

properties of the Connection header field as specified in Section 8.1.

The proxy server MUST signal persistent connections separately with its

clients and the origin servers (or other proxy servers) that it

connects to. Each persistent connection applies to only one transport

link.

A proxy server MUST NOT establish a HTTP/1.1 persistent connection with

an HTTP/1.0 client (but see Section 19.7.1 of [RFC2068] for information

and discussion of the problems with the Keep-Alive header field

implemented by many HTTP/1.0 clients).

6.1.3.1. End-to-end and Hop-by-hop Header Fields

For the purpose of defining the behavior of caches and non-caching

proxies, we divide HTTP header fields into two categories:

End-to-end header fields, which are transmitted to the ultimate

recipient of a request or response. End-to-end header fields in

responses MUST be stored as part of a cache entry and MUST be

transmitted in any response formed from a cache entry.

Hop-by-hop header fields, which are meaningful only for a single

transport-level connection, and are not stored by caches or

forwarded by proxies.

The following HTTP/1.1 header fields are hop-by-hop header fields:

Connection

Keep-Alive

Proxy-Authenticate

Proxy-Authorization

TE

Trailer

Transfer-Encoding

Upgrade

All other header fields defined by HTTP/1.1 are end-to-end header

fields.

Other hop-by-hop header fields MUST be listed in a Connection header

field (Section 8.1).

6.1.3.2. Non-modifiable Header Fields

Some features of HTTP/1.1, such as Digest Authentication, depend on the

value of certain end-to-end header fields. A non-transforming proxy

SHOULD NOT modify an end-to-end header field unless the definition of

that header field requires or specifically allows that.

A non-transforming proxy MUST NOT modify any of the following fields in

a request or response, and it MUST NOT add any of these fields if not

already present:

Allow

Content-Location

*

*

*

*

*

*

*

*

*

*

*

*

Content-MD5

ETag

Last-Modified

Server

A non-transforming proxy MUST NOT modify any of the following fields in

a response:

Expires

but it MAY add any of these fields if not already present. If an

Expires header field is added, it MUST be given a field-value identical

to that of the Date header field in that response.

A proxy MUST NOT modify or add any of the following fields in a message

that contains the no-transform cache-control directive, or in any

request:

Content-Encoding

Content-Range

Content-Type

A transforming proxy MAY modify or add these fields to a message that

does not include no-transform, but if it does so, it MUST add a Warning

214 (Transformation applied) if one does not already appear in the

message (see Section 3.6 of [Part6]).

Warning: Unnecessary modification of end-to-end header fields

might cause authentication failures if stronger authentication

mechanisms are introduced in later versions of HTTP. Such

authentication mechanisms MAY rely on the values of header fields

not listed here.

A non-transforming proxy MUST preserve the message payload ([Part3]),

though it MAY change the message-body through application or removal of

a transfer-coding (Section 5.1).

6.1.4. Practical Considerations

Servers will usually have some time-out value beyond which they will no

longer maintain an inactive connection. Proxy servers might make this a

higher value since it is likely that the client will be making more

connections through the same server. The use of persistent connections

places no requirements on the length (or existence) of this time-out

for either the client or the server.

*

*

*

*

*

*

*

*

*

When a client or server wishes to time-out it SHOULD issue a graceful

close on the transport connection. Clients and servers SHOULD both

constantly watch for the other side of the transport close, and respond

to it as appropriate. If a client or server does not detect the other

side's close promptly it could cause unnecessary resource drain on the

network.

A client, server, or proxy MAY close the transport connection at any

time. For example, a client might have started to send a new request at

the same time that the server has decided to close the "idle"

connection. From the server's point of view, the connection is being

closed while it was idle, but from the client's point of view, a

request is in progress.

Clients (including proxies) SHOULD limit the number of simultaneous

connections that they maintain to a given server (including proxies).

Previous revisions of HTTP gave a specific number of connections as a

ceiling, but this was found to be impractical for many applications. As

a result, this specification does not mandate a particular maximum

number of connections, but instead encourages clients to be

conservative when opening multiple connections.

In particular, while using multiple connections avoids the "head-of-

line blocking" problem (whereby a request that takes significant

server-side processing and/or has a large payload can block subsequent

requests on the same connection), each connection used consumes server

resources (sometimes significantly), and furthermore using multiple

connections can cause undesirable side effects in congested networks.

Note that servers might reject traffic that they deem abusive,

including an excessive number of connections from a client.

6.1.5. Retrying Requests

Senders can close the transport connection at any time. Therefore,

clients, servers, and proxies MUST be able to recover from asynchronous

close events. Client software MAY reopen the transport connection and

retransmit the aborted sequence of requests without user interaction so

long as the request sequence is idempotent (see Section 6.1.2 of

[Part2]). Non-idempotent request methods or sequences MUST NOT be

automatically retried, although user agents MAY offer a human operator

the choice of retrying the request(s). Confirmation by user-agent

software with semantic understanding of the application MAY substitute

for user confirmation. The automatic retry SHOULD NOT be repeated if

the second sequence of requests fails.

6.2. Message Transmission Requirements

6.2.1. Persistent Connections and Flow Control

HTTP/1.1 servers SHOULD maintain persistent connections and use TCP's

flow control mechanisms to resolve temporary overloads, rather than

terminating connections with the expectation that clients will retry.

The latter technique can exacerbate network congestion.

6.2.2. Monitoring Connections for Error Status Messages

An HTTP/1.1 (or later) client sending a message-body SHOULD monitor the

network connection for an error status code while it is transmitting

the request. If the client sees an error status code, it SHOULD

immediately cease transmitting the body. If the body is being sent

using a "chunked" encoding (Section 5.1), a zero length chunk and empty

trailer MAY be used to prematurely mark the end of the message. If the

body was preceded by a Content-Length header field, the client MUST

close the connection.

6.2.3. Use of the 100 (Continue) Status

The purpose of the 100 (Continue) status code (see Section 7.1.1 of

[Part2]) is to allow a client that is sending a request message with a

request body to determine if the origin server is willing to accept the

request (based on the request header fields) before the client sends

the request body. In some cases, it might either be inappropriate or

highly inefficient for the client to send the body if the server will

reject the message without looking at the body.

Requirements for HTTP/1.1 clients:

If a client will wait for a 100 (Continue) response before

sending the request body, it MUST send an Expect header field

(Section 9.3 of [Part2]) with the "100-continue" expectation.

A client MUST NOT send an Expect header field (Section 9.3 of

[Part2]) with the "100-continue" expectation if it does not

intend to send a request body.

Because of the presence of older implementations, the protocol allows

ambiguous situations in which a client might send "Expect: 100-

continue" without receiving either a 417 (Expectation Failed) or a 100

(Continue) status code. Therefore, when a client sends this header

field to an origin server (possibly via a proxy) from which it has

never seen a 100 (Continue) status code, the client SHOULD NOT wait for

an indefinite period before sending the request body.

Requirements for HTTP/1.1 origin servers:

Upon receiving a request which includes an Expect header field

with the "100-continue" expectation, an origin server MUST either

respond with 100 (Continue) status code and continue to read from

the input stream, or respond with a final status code. The origin

server MUST NOT wait for the request body before sending the 100

(Continue) response. If it responds with a final status code, it

MAY close the transport connection or it MAY continue to read and

*

*

*

discard the rest of the request. It MUST NOT perform the request

method if it returns a final status code.

An origin server SHOULD NOT send a 100 (Continue) response if the

request message does not include an Expect header field with the

"100-continue" expectation, and MUST NOT send a 100 (Continue)

response if such a request comes from an HTTP/1.0 (or earlier)

client. There is an exception to this rule: for compatibility

with [RFC2068], a server MAY send a 100 (Continue) status code in

response to an HTTP/1.1 PUT or POST request that does not include

an Expect header field with the "100-continue" expectation. This

exception, the purpose of which is to minimize any client

processing delays associated with an undeclared wait for 100

(Continue) status code, applies only to HTTP/1.1 requests, and

not to requests with any other HTTP-version value.

An origin server MAY omit a 100 (Continue) response if it has

already received some or all of the request body for the

corresponding request.

An origin server that sends a 100 (Continue) response MUST

ultimately send a final status code, once the request body is

received and processed, unless it terminates the transport

connection prematurely.

If an origin server receives a request that does not include an

Expect header field with the "100-continue" expectation, the

request includes a request body, and the server responds with a

final status code before reading the entire request body from the

transport connection, then the server SHOULD NOT close the

transport connection until it has read the entire request, or

until the client closes the connection. Otherwise, the client

might not reliably receive the response message. However, this

requirement is not be construed as preventing a server from

defending itself against denial-of-service attacks, or from badly

broken client implementations.

Requirements for HTTP/1.1 proxies:

If a proxy receives a request that includes an Expect header

field with the "100-continue" expectation, and the proxy either

knows that the next-hop server complies with HTTP/1.1 or higher,

or does not know the HTTP version of the next-hop server, it MUST

forward the request, including the Expect header field.

If the proxy knows that the version of the next-hop server is

HTTP/1.0 or lower, it MUST NOT forward the request, and it MUST

respond with a 417 (Expectation Failed) status code.

*

*

*

*

*

*

Proxies SHOULD maintain a record of the HTTP version numbers

received from recently-referenced next-hop servers.

A proxy MUST NOT forward a 100 (Continue) response if the request

message was received from an HTTP/1.0 (or earlier) client and did

not include an Expect header field with the "100-continue"

expectation. This requirement overrides the general rule for

forwarding of 1xx responses (see Section 7.1 of [Part2]).

7. Miscellaneous notes that might disappear

7.1. Scheme aliases considered harmful

7.2. Use of HTTP for proxy communication

7.3. Interception of HTTP for access control

7.4. Use of HTTP by other protocols

7.5. Use of HTTP by media type specification

8. Header Field Definitions

This section defines the syntax and semantics of HTTP header fields

related to message origination, framing, and routing.

Header Field Name Defined in...

Connection Section 8.1

Content-Length Section 8.2

Host Section 8.3

TE Section 8.4

Trailer Section 8.5

Transfer-Encoding Section 8.6

Upgrade Section 8.7

Via Section 8.8

8.1. Connection

The "Connection" header field allows the sender to specify options that

are desired only for that particular connection. Such connection

options MUST be removed or replaced before the message can be forwarded

downstream by a proxy or gateway. This mechanism also allows the sender

to indicate which HTTP header fields used in the message are only

intended for the immediate recipient ("hop-by-hop"), as opposed to all

recipients on the chain ("end-to-end"), enabling the message to be

self-descriptive and allowing future connection-specific extensions to

*

*

be deployed in HTTP without fear that they will be blindly forwarded by

previously deployed intermediaries.

The Connection header field's value has the following grammar:

 Connection = 1#connection-token

 connection-token = token

A proxy or gateway MUST parse a received Connection header field before

a message is forwarded and, for each connection-token in this field,

remove any header field(s) from the message with the same name as the

connection-token, and then remove the Connection header field itself or

replace it with the sender's own connection options for the forwarded

message.

A sender MUST NOT include field-names in the Connection header field-

value for fields that are defined as expressing constraints for all

recipients in the request or response chain, such as the Cache-Control

header field (Section 3.2 of [Part6]).

The connection options do not have to correspond to a header field

present in the message, since a connection-specific header field might

not be needed if there are no parameters associated with that

connection option. Recipients that trigger certain connection behavior

based on the presence of connection options MUST do so based on the

presence of the connection-token rather than only the presence of the

optional header field. In other words, if the connection option is

received as a header field but not indicated within the Connection

field-value, then the recipient MUST ignore the connection-specific

header field because it has likely been forwarded by an intermediary

that is only partially compliant.

When defining new connection options, specifications ought to carefully

consider existing deployed header fields and ensure that the new

connection-token does not share the same name as an unrelated header

field that might already be deployed. Defining a new connection-token

essentially reserves that potential field-name for carrying additional

information related to the connection option, since it would be unwise

for senders to use that field-name for anything else.

HTTP/1.1 defines the "close" connection option for the sender to signal

that the connection will be closed after completion of the response.

For example,

 Connection: close

in either the request or the response header fields indicates that the

connection SHOULD NOT be considered "persistent" (Section 6.1) after

the current request/response is complete.

An HTTP/1.1 client that does not support persistent connections MUST

include the "close" connection option in every request message.

An HTTP/1.1 server that does not support persistent connections MUST

include the "close" connection option in every response message that

does not have a 1xx (Informational) status code.

8.2. Content-Length

The "Content-Length" header field indicates the size of the message-

body, in decimal number of octets, for any message other than a

response to a HEAD request or a response with a status code of 304. In

the case of a response to a HEAD request, Content-Length indicates the

size of the payload body (not including any potential transfer-coding)

that would have been sent had the request been a GET. In the case of a

304 (Not Modified) response to a GET request, Content-Length indicates

the size of the payload body (not including any potential transfer-

coding) that would have been sent in a 200 (OK) response.

 Content-Length = 1*DIGIT

An example is

 Content-Length: 3495

Implementations SHOULD use this field to indicate the message-body

length when no transfer-coding is being applied and the payload's body

length can be determined prior to being transferred. Section 3.3

describes how recipients determine the length of a message-body.

Any Content-Length greater than or equal to zero is a valid value.

Note that the use of this field in HTTP is significantly different from

the corresponding definition in MIME, where it is an optional field

used within the "message/external-body" content-type.

8.3. Host

The "Host" header field in a request provides the host and port

information from the target resource's URI, enabling the origin server

to distinguish between resources while servicing requests for multiple

host names on a single IP address. Since the Host field-value is

critical information for handling a request, it SHOULD be sent as the

first header field following the Request-Line.

 Host = uri-host [":" port] ; Section 2.7.1

A client MUST send a Host header field in all HTTP/1.1 request

messages. If the target resource's URI includes an authority component,

then the Host field-value MUST be identical to that authority component

after excluding any userinfo (Section 2.7.1). If the authority

component is missing or undefined for the target resource's URI, then

the Host header field MUST be sent with an empty field-value.

For example, a GET request to the origin server for <http://

www.example.org/pub/WWW/> would begin with:

 GET /pub/WWW/ HTTP/1.1

 Host: www.example.org

The Host header field MUST be sent in an HTTP/1.1 request even if the

request-target is in the form of an absolute-URI, since this allows the

Host information to be forwarded through ancient HTTP/1.0 proxies that

might not have implemented Host.

When an HTTP/1.1 proxy receives a request with a request-target in the

form of an absolute-URI, the proxy MUST ignore the received Host header

field (if any) and instead replace it with the host information of the

request-target. When a proxy forwards a request, it MUST generate the

Host header field based on the received absolute-URI rather than the

received Host.

Since the Host header field acts as an application-level routing

mechanism, it is a frequent target for malware seeking to poison a

shared cache or redirect a request to an unintended server. An

interception proxy is particularly vulnerable if it relies on the Host

header field value for redirecting requests to internal servers, or for

use as a cache key in a shared cache, without first verifying that the

intercepted connection is targeting a valid IP address for that host.

A server MUST respond with a 400 (Bad Request) status code to any HTTP/

1.1 request message that lacks a Host header field and to any request

message that contains more than one Host header field or a Host header

field with an invalid field-value.

See Sections 4.2 and Appendix A.1.1 for other requirements relating to

Host.

8.4. TE

The "TE" header field indicates what extension transfer-codings it is

willing to accept in the response, and whether or not it is willing to

accept trailer fields in a chunked transfer-coding.

Its value consists of the keyword "trailers" and/or a comma-separated

list of extension transfer-coding names with optional accept parameters

(as described in Section 5.1).

 TE = #t-codings

 t-codings = "trailers" / (transfer-extension [te-params])

 te-params = OWS ";" OWS "q=" qvalue *(te-ext)

 te-ext = OWS ";" OWS token ["=" word]

The presence of the keyword "trailers" indicates that the client is

willing to accept trailer fields in a chunked transfer-coding, as

defined in Section 5.1.1. This keyword is reserved for use with

transfer-coding values even though it does not itself represent a

transfer-coding.

Examples of its use are:

 TE: deflate

 TE:

 TE: trailers, deflate;q=0.5

The TE header field only applies to the immediate connection.

Therefore, the keyword MUST be supplied within a Connection header

field (Section 8.1) whenever TE is present in an HTTP/1.1 message.

A server tests whether a transfer-coding is acceptable, according to a

TE field, using these rules:

The "chunked" transfer-coding is always acceptable. If the

keyword "trailers" is listed, the client indicates that it is

willing to accept trailer fields in the chunked response on

behalf of itself and any downstream clients. The implication is

that, if given, the client is stating that either all

downstream clients are willing to accept trailer fields in the

forwarded response, or that it will attempt to buffer the

response on behalf of downstream recipients.

Note: HTTP/1.1 does not define any means to limit the size of a

chunked response such that a client can be assured of buffering

the entire response.

If the transfer-coding being tested is one of the transfer-

codings listed in the TE field, then it is acceptable unless it

is accompanied by a qvalue of 0. (As defined in Section 5.3, a

qvalue of 0 means "not acceptable".)

If multiple transfer-codings are acceptable, then the

acceptable transfer-coding with the highest non-zero qvalue is

preferred. The "chunked" transfer-coding always has a qvalue of

1.

If the TE field-value is empty or if no TE field is present, the only

transfer-coding is "chunked". A message with no transfer-coding is

always acceptable.

8.5. Trailer

The "Trailer" header field indicates that the given set of header

fields is present in the trailer of a message encoded with chunked

transfer-coding.

 Trailer = 1#field-name

An HTTP/1.1 message SHOULD include a Trailer header field in a message

using chunked transfer-coding with a non-empty trailer. Doing so allows

the recipient to know which header fields to expect in the trailer.

If no Trailer header field is present, the trailer SHOULD NOT include

any header fields. See Section 5.1.1 for restrictions on the use of

trailer fields in a "chunked" transfer-coding.

1.

2.

3.

Message header fields listed in the Trailer header field MUST NOT

include the following header fields:

Transfer-Encoding

Content-Length

Trailer

8.6. Transfer-Encoding

The "Transfer-Encoding" header field indicates what transfer-codings

(if any) have been applied to the message body. It differs from

Content-Encoding (Section 2.2 of [Part3]) in that transfer-codings are

a property of the message (and therefore are removed by

intermediaries), whereas content-codings are not.

 Transfer-Encoding = 1#transfer-coding

Transfer-codings are defined in Section 5.1. An example is:

 Transfer-Encoding: chunked

If multiple encodings have been applied to a representation, the

transfer-codings MUST be listed in the order in which they were

applied. Additional information about the encoding parameters MAY be

provided by other header fields not defined by this specification.

Many older HTTP/1.0 applications do not understand the Transfer-

Encoding header field.

8.7. Upgrade

The "Upgrade" header field allows the client to specify what additional

communication protocols it would like to use, if the server chooses to

switch protocols. Servers can use it to indicate what protocols they

are willing to switch to.

 Upgrade = 1#product

For example,

 Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11

The Upgrade header field is intended to provide a simple mechanism for

transition from HTTP/1.1 to some other, incompatible protocol. It does

so by allowing the client to advertise its desire to use another

protocol, such as a later version of HTTP with a higher major version

number, even though the current request has been made using HTTP/1.1.

This eases the difficult transition between incompatible protocols by

allowing the client to initiate a request in the more commonly

*

*

*

supported protocol while indicating to the server that it would like to

use a "better" protocol if available (where "better" is determined by

the server, possibly according to the nature of the request method or

target resource).

The Upgrade header field only applies to switching application-layer

protocols upon the existing transport-layer connection. Upgrade cannot

be used to insist on a protocol change; its acceptance and use by the

server is optional. The capabilities and nature of the application-

layer communication after the protocol change is entirely dependent

upon the new protocol chosen, although the first action after changing

the protocol MUST be a response to the initial HTTP request containing

the Upgrade header field.

The Upgrade header field only applies to the immediate connection.

Therefore, the upgrade keyword MUST be supplied within a Connection

header field (Section 8.1) whenever Upgrade is present in an HTTP/1.1

message.

The Upgrade header field cannot be used to indicate a switch to a

protocol on a different connection. For that purpose, it is more

appropriate to use a 3xx redirection response (Section 7.3 of [Part2]).

Servers MUST include the "Upgrade" header field in 101 (Switching

Protocols) responses to indicate which protocol(s) are being switched

to, and MUST include it in 426 (Upgrade Required) responses to indicate

acceptable protocols to upgrade to. Servers MAY include it in any other

response to indicate that they are willing to upgrade to one of the

specified protocols.

This specification only defines the protocol name "HTTP" for use by the

family of Hypertext Transfer Protocols, as defined by the HTTP version

rules of Section 2.6 and future updates to this specification.

Additional tokens can be registered with IANA using the registration

procedure defined below.

8.7.1. Upgrade Token Registry

The HTTP Upgrade Token Registry defines the name space for product

tokens used to identify protocols in the Upgrade header field. Each

registered token is associated with contact information and an optional

set of specifications that details how the connection will be processed

after it has been upgraded.

Registrations are allowed on a First Come First Served basis as

described in Section 4.1 of [RFC5226]. The specifications need not be

IETF documents or be subject to IESG review. Registrations are subject

to the following rules:

A token, once registered, stays registered forever.

The registration MUST name a responsible party for the

registration.

The registration MUST name a point of contact.

1.

2.

3.

The registration MAY name a set of specifications associated

with that token. Such specifications need not be publicly

available.

The responsible party MAY change the registration at any time.

The IANA will keep a record of all such changes, and make them

available upon request.

The responsible party for the first registration of a "product"

token MUST approve later registrations of a "version" token

together with that "product" token before they can be

registered.

If absolutely required, the IESG MAY reassign the

responsibility for a token. This will normally only be used in

the case when a responsible party cannot be contacted.

8.8. Via

The "Via" header field MUST be sent by a proxy or gateway to indicate

the intermediate protocols and recipients between the user agent and

the server on requests, and between the origin server and the client on

responses. It is analogous to the "Received" field used by email

systems (Section 3.6.7 of [RFC5322]) and is intended to be used for

tracking message forwards, avoiding request loops, and identifying the

protocol capabilities of all senders along the request/response chain.

 Via = 1#(received-protocol RWS received-by

 [RWS comment])

 received-protocol = [protocol-name "/"] protocol-version

 protocol-name = token

 protocol-version = token

 received-by = (uri-host [":" port]) / pseudonym

 pseudonym = token

The received-protocol indicates the protocol version of the message

received by the server or client along each segment of the request/

response chain. The received-protocol version is appended to the Via

field value when the message is forwarded so that information about the

protocol capabilities of upstream applications remains visible to all

recipients.

The protocol-name is excluded if and only if it would be "HTTP". The

received-by field is normally the host and optional port number of a

recipient server or client that subsequently forwarded the message.

However, if the real host is considered to be sensitive information, it

MAY be replaced by a pseudonym. If the port is not given, it MAY be

assumed to be the default port of the received-protocol.

Multiple Via field values represent each proxy or gateway that has

forwarded the message. Each recipient MUST append its information such

4.

5.

6.

7.

that the end result is ordered according to the sequence of forwarding

applications.

Comments MAY be used in the Via header field to identify the software

of each recipient, analogous to the User-Agent and Server header

fields. However, all comments in the Via field are optional and MAY be

removed by any recipient prior to forwarding the message.

For example, a request message could be sent from an HTTP/1.0 user

agent to an internal proxy code-named "fred", which uses HTTP/1.1 to

forward the request to a public proxy at p.example.net, which completes

the request by forwarding it to the origin server at www.example.com.

The request received by www.example.com would then have the following

Via header field:

 Via: 1.0 fred, 1.1 p.example.net (Apache/1.1)

A proxy or gateway used as a portal through a network firewall SHOULD

NOT forward the names and ports of hosts within the firewall region

unless it is explicitly enabled to do so. If not enabled, the received-

by host of any host behind the firewall SHOULD be replaced by an

appropriate pseudonym for that host.

For organizations that have strong privacy requirements for hiding

internal structures, a proxy or gateway MAY combine an ordered

subsequence of Via header field entries with identical received-

protocol values into a single such entry. For example,

 Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy

could be collapsed to

 Via: 1.0 ricky, 1.1 mertz, 1.0 lucy

Senders SHOULD NOT combine multiple entries unless they are all under

the same organizational control and the hosts have already been

replaced by pseudonyms. Senders MUST NOT combine entries which have

different received-protocol values.

9. IANA Considerations

9.1. Header Field Registration

The Message Header Field Registry located at http://www.iana.org/

assignments/message-headers/message-header-index.html shall be updated

with the permanent registrations below (see [RFC3864]):

Header Field Name Protocol Status Reference

Connection http standard Section 8.1

Content-Length http standard Section 8.2

Host http standard Section 8.3

http://www.iana.org/assignments/message-headers/message-header-index.html
http://www.iana.org/assignments/message-headers/message-header-index.html

Type name:

Subtype name:

Required parameters:

Optional parameters:

version:

Header Field Name Protocol Status Reference

TE http standard Section 8.4

Trailer http standard Section 8.5

Transfer-Encoding http standard Section 8.6

Upgrade http standard Section 8.7

Via http standard Section 8.8

Furthermore, the header field name "Close" shall be registered as

"reserved", as its use as HTTP header field would be in conflict with

the use of the "close" connection option for the "Connection" header

field (Section 8.1).

Header Field Name Protocol Status Reference

Close http reserved Section 9.1

The change controller is: "IETF (iesg@ietf.org) - Internet Engineering

Task Force".

9.2. URI Scheme Registration

The entries for the "http" and "https" URI Schemes in the registry

located at http://www.iana.org/assignments/uri-schemes.html shall be

updated to point to Sections 2.7.1 and 2.7.2 of this document (see

[RFC4395]).

9.3. Internet Media Type Registrations

This document serves as the specification for the Internet media types

"message/http" and "application/http". The following is to be

registered with IANA (see [RFC4288]).

9.3.1. Internet Media Type message/http

The message/http type can be used to enclose a single HTTP request or

response message, provided that it obeys the MIME restrictions for all

"message" types regarding line length and encodings.

message

http

none

version, msgtype

The HTTP-Version number of the enclosed message (e.g.,

"1.1"). If not present, the version can be determined from the

first line of the body.

http://www.iana.org/assignments/uri-schemes.html

msgtype:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author/Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

version:

msgtype:

The message type — "request" or "response". If not

present, the type can be determined from the first line of the

body.

only "7bit", "8bit", or "binary" are

permitted

none

none

This specification (see Section 9.3.1).

none

none

none

See

Authors Section.

COMMON

none

IESG

9.3.2. Internet Media Type application/http

The application/http type can be used to enclose a pipeline of one or

more HTTP request or response messages (not intermixed).

application

http

none

version, msgtype

The HTTP-Version number of the enclosed messages (e.g.,

"1.1"). If not present, the version can be determined from the

first line of the body.

The message type — "request" or "response". If not

present, the type can be determined from the first line of the

body.

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Additional information:

Magic number(s):

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author/Change controller:

HTTP messages enclosed by this type are in

"binary" format; use of an appropriate Content-Transfer-Encoding is

required when transmitted via E-mail.

none

none

This specification (see Section 9.3.2).

none

none

none

See

Authors Section.

COMMON

none

IESG

9.4. Transfer Coding Registry

The registration procedure for HTTP Transfer Codings is now defined by

Section 5.1.3 of this document.

The HTTP Transfer Codings Registry located at http://www.iana.org/

assignments/http-parameters shall be updated with the registrations

below:

Name Description Reference

chunked Transfer in a series of chunks
Section

5.1.1

compress UNIX "compress" program method
Section

5.1.2.1

deflate
"deflate" compression mechanism ([RFC1951])

used inside the "zlib" data format ([RFC1950])

Section

5.1.2.2

gzip Same as GNU zip [RFC1952]
Section

5.1.2.3

http://www.iana.org/assignments/http-parameters
http://www.iana.org/assignments/http-parameters

9.5. Upgrade Token Registration

The registration procedure for HTTP Upgrade Tokens — previously defined

in Section 7.2 of [RFC2817] — is now defined by Section 8.7.1 of this

document.

The HTTP Status Code Registry located at http://www.iana.org/

assignments/http-upgrade-tokens/ shall be updated with the registration

below:

Value Description Reference

HTTP Hypertext Transfer Protocol Section 2.6 of this specification

10. Security Considerations

This section is meant to inform application developers, information

providers, and users of the security limitations in HTTP/1.1 as

described by this document. The discussion does not include definitive

solutions to the problems revealed, though it does make some

suggestions for reducing security risks.

10.1. Personal Information

HTTP clients are often privy to large amounts of personal information

(e.g., the user's name, location, mail address, passwords, encryption

keys, etc.), and SHOULD be very careful to prevent unintentional

leakage of this information. We very strongly recommend that a

convenient interface be provided for the user to control dissemination

of such information, and that designers and implementors be

particularly careful in this area. History shows that errors in this

area often create serious security and/or privacy problems and generate

highly adverse publicity for the implementor's company.

10.2. Abuse of Server Log Information

A server is in the position to save personal data about a user's

requests which might identify their reading patterns or subjects of

interest. This information is clearly confidential in nature and its

handling can be constrained by law in certain countries. People using

HTTP to provide data are responsible for ensuring that such material is

not distributed without the permission of any individuals that are

identifiable by the published results.

10.3. Attacks Based On File and Path Names

Implementations of HTTP origin servers SHOULD be careful to restrict

the documents returned by HTTP requests to be only those that were

intended by the server administrators. If an HTTP server translates

HTTP URIs directly into file system calls, the server MUST take special

care not to serve files that were not intended to be delivered to HTTP

http://www.iana.org/assignments/http-upgrade-tokens/
http://www.iana.org/assignments/http-upgrade-tokens/

clients. For example, UNIX, Microsoft Windows, and other operating

systems use ".." as a path component to indicate a directory level

above the current one. On such a system, an HTTP server MUST disallow

any such construct in the request-target if it would otherwise allow

access to a resource outside those intended to be accessible via the

HTTP server. Similarly, files intended for reference only internally to

the server (such as access control files, configuration files, and

script code) MUST be protected from inappropriate retrieval, since they

might contain sensitive information. Experience has shown that minor

bugs in such HTTP server implementations have turned into security

risks.

10.4. DNS-related Attacks

HTTP clients rely heavily on the Domain Name Service (DNS), and are

thus generally prone to security attacks based on the deliberate

misassociation of IP addresses and DNS names not protected by DNSSec.

Clients need to be cautious in assuming the validity of an IP number/

DNS name association unless the response is protected by DNSSec

([RFC4033]).

10.5. Proxies and Caching

By their very nature, HTTP proxies are men-in-the-middle, and represent

an opportunity for man-in-the-middle attacks. Compromise of the systems

on which the proxies run can result in serious security and privacy

problems. Proxies have access to security-related information, personal

information about individual users and organizations, and proprietary

information belonging to users and content providers. A compromised

proxy, or a proxy implemented or configured without regard to security

and privacy considerations, might be used in the commission of a wide

range of potential attacks.

Proxy operators need to protect the systems on which proxies run as

they would protect any system that contains or transports sensitive

information. In particular, log information gathered at proxies often

contains highly sensitive personal information, and/or information

about organizations. Log information needs to be carefully guarded, and

appropriate guidelines for use need to be developed and followed.

(Section 10.2).

Proxy implementors need to consider the privacy and security

implications of their design and coding decisions, and of the

configuration options they provide to proxy operators (especially the

default configuration).

Users of a proxy need to be aware that proxies are no trustworthier

than the people who run them; HTTP itself cannot solve this problem.

The judicious use of cryptography, when appropriate, might suffice to

protect against a broad range of security and privacy attacks. Such

cryptography is beyond the scope of the HTTP/1.1 specification.

10.6. Protocol Element Size Overflows

Because HTTP uses mostly textual, character-delimited fields, attackers

can overflow buffers in implementations, and/or perform a Denial of

Service against implementations that accept fields with unlimited

lengths.

To promote interoperability, this specification makes specific

recommendations for size limits on request-targets (Section 3.1.1.2)

and blocks of header fields (Section 3.2). These are minimum

recommendations, chosen to be supportable even by implementations with

limited resources; it is expected that most implementations will choose

substantially higher limits.

This specification also provides a way for servers to reject messages

that have request-targets that are too long (Section 7.4.15 of [Part2])

or request entities that are too large (Section 7.4 of [Part2]).

Other fields (including but not limited to request methods, response

status phrases, header field-names, and body chunks) SHOULD be limited

by implementations carefully, so as to not impede interoperability.

10.7. Denial of Service Attacks on Proxies

They exist. They are hard to defend against. Research continues.

Beware.

11. Acknowledgments

This document revision builds on the work that went into RFC 2616

[RFC2616] and its predecessors. See Section 16 of [RFC2616] for

detailed acknowledgements.

Since 1999, many contributors have helped by reporting bugs, asking

smart questions, drafting and reviewing text, and discussing open

issues:

Adam Barth, Adam Roach, Addison Phillips, Adrian Chadd, Adrien de Croy,

Alan Ford, Alan Ruttenberg, Albert Lunde, Alex Rousskov, Alexey

Melnikov, Alisha Smith, Amichai Rothman, Amit Klein, Amos Jeffries,

Andreas Maier, Andreas Petersson, Anne van Kesteren, Anthony Bryan,

Asbjorn Ulsberg, Balachander Krishnamurthy, Barry Leiba, Ben Laurie,

Benjamin Niven-Jenkins, Bil Corry, Bill Burke, Bjoern Hoehrmann, Bob

Scheifler, Boris Zbarsky, Brett Slatkin, Brian Kell, Brian McBarron,

Brian Pane, Brian Smith, Bryce Nesbitt, Carl Kugler, Charles Fry, Chris

Newman, Cyrus Daboo, Dale Robert Anderson, Dan Winship, Daniel

Stenberg, Dave Cridland, Dave Crocker, Dave Kristol, David Booth, David

Singer, David W. Morris, Diwakar Shetty, Drummond Reed, Duane Wessels,

Edward Lee, Eliot Lear, Eran Hammer-Lahav, Eric D. Williams, Eric J.

Bowman, Eric Lawrence, Erik Aronesty, Florian Weimer, Frank Ellermann,

Fred Bohle, Geoffrey Sneddon, Gervase Markham, Greg Wilkins, Harald

Tveit Alvestrand, Harry Halpin, Helge Hess, Henrik Nordstrom, Henry S.

Thompson, Henry Story, Howard Melman, Hugo Haas, Ian Hickson, Ingo

Struck, J. Ross Nicoll, James H. Manger, James Lacey, James M. Snell,

Jamie Lokier, Jan Algermissen, Jeff Hodges (for coming up with the term

'effective Request-URI'), Jeff Walden, Jim Luther, Joe D. Williams, Joe

Gregorio, Joe Orton, John C. Klensin, John C. Mallery, John Cowan, John

Kemp, John Panzer, John Schneider, John Stracke, Jonas Sicking,

Jonathan Moore, Jonathan Rees, Jordi Ros, Joris Dobbelsteen, Josh

Cohen, Julien Pierre, Jungshik Shin, Justin Chapweske, Justin

Erenkrantz, Justin James, Kalvinder Singh, Karl Dubost, Keith Hoffman,

Keith Moore, Koen Holtman, Konstantin Voronkov, Kris Zyp, Lisa

Dusseault, Maciej Stachowiak, Marc Schneider, Marc Slemko, Mark Baker,

Mark Nottingham (Working Group chair), Mark Pauley, Martin J. Duerst,

Martin Thomson, Matt Lynch, Matthew Cox, Max Clark, Michael Burrows,

Michael Hausenblas, Mike Amundsen, Mike Kelly, Mike Schinkel, Miles

Sabin, Mykyta Yevstifeyev, Nathan Rixham, Nicholas Shanks, Nico

Williams, Nicolas Alvarez, Noah Slater, Pablo Castro, Pat Hayes,

Patrick R. McManus, Paul E. Jones, Paul Hoffman, Paul Marquess, Peter

Saint-Andre, Peter Watkins, Phil Archer, Phillip Hallam-Baker, Poul-

Henning Kamp, Preethi Natarajan, Reto Bachmann-Gmuer, Richard Cyganiak,

Robert Brewer, Robert Collins, Robert O'Callahan, Robert Olofsson,

Robert Sayre, Robert Siemer, Robert de Wilde, Roberto Javier Godoy,

Ronny Widjaja, S. Mike Dierken, Salvatore Loreto, Sam Johnston, Sam

Ruby, Scott Lawrence (for maintaining the original issues list), Sean

B. Palmer, Shane McCarron, Stefan Eissing, Stefan Tilkov, Stefanos

Harhalakis, Stephane Bortzmeyer, Stuart Williams, Subbu Allamaraju,

Sylvain Hellegouarch, Tapan Divekar, Thomas Broyer, Thomas Nordin,

Thomas Roessler, Tim Morgan, Tim Olsen, Travis Snoozy, Tyler Close,

Vincent Murphy, Wenbo Zhu, Werner Baumann, Wilbur Streett, Wilfredo

Sanchez Vega, William A. Rowe Jr., William Chan, Willy Tarreau, Xiaoshu

Wang, Yaron Goland, Yngve Nysaeter Pettersen, Yogesh Bang, Yutaka Oiwa,

and Zed A. Shaw.

12. References

12.1. Normative References

[ISO-8859-1]

International Organization for Standardization,

"Information technology -- 8-bit single-byte coded

graphic character sets -- Part 1: Latin alphabet No.

1 ", ISO/IEC 8859-1:1998, 1998.

[Part2]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y.

and J. F. Reschke, "HTTP/1.1, part 2: Message

Semantics", Internet-Draft draft-ietf-httpbis-p2-

semantics-17, October 2011.

[Part3]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y.

and J. F. Reschke, "HTTP/1.1, part 3: Message

Payload and Content Negotiation", Internet-Draft

draft-ietf-httpbis-p3-payload-17, October 2011.

[Part6]

http://tools.ietf.org/html/draft-ietf-httpbis-p2-semantics-17
http://tools.ietf.org/html/draft-ietf-httpbis-p2-semantics-17
http://tools.ietf.org/html/draft-ietf-httpbis-p3-payload-17
http://tools.ietf.org/html/draft-ietf-httpbis-p3-payload-17

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y.,

Nottingham, M. and J. F. Reschke, "HTTP/1.1, part 6:

Caching", Internet-Draft draft-ietf-httpbis-p6-

cache-17, October 2011.

[RFC5234]

Crocker, D. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234,

January 2008.

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3986]

Berners-Lee, T., Fielding, R. and L. Masinter,

"Uniform Resource Identifier (URI): Generic Syntax",

STD 66, RFC 3986, January 2005.

[USASCII]

American National Standards Institute, "Coded

Character Set -- 7-bit American Standard Code for

Information Interchange", ANSI X3.4, 1986.

[RFC1950]

Deutsch, L.P. and J-L. Gailly, "ZLIB Compressed Data

Format Specification version 3.3", RFC 1950, May

1996.

RFC 1950 is an Informational RFC, thus it might be

less stable than this specification. On the other

hand, this downward reference was present since the

publication of RFC 2068 in 1997, therefore it is

unlikely to cause problems in practice. See also

[RFC1951]

Deutsch, P., "DEFLATE Compressed Data Format

Specification version 1.3", RFC 1951, May 1996.

RFC 1951 is an Informational RFC, thus it might be

less stable than this specification. On the other

hand, this downward reference was present since the

publication of RFC 2068 in 1997, therefore it is

unlikely to cause problems in practice. See also

[RFC1952]

Deutsch, P., Gailly, J-L., Adler, M., Deutsch, L.P.

and G. Randers-Pehrson, "GZIP file format

specification version 4.3", RFC 1952, May 1996.

RFC 1952 is an Informational RFC, thus it might be

less stable than this specification. On the other

hand, this downward reference was present since the

publication of RFC 2068 in 1997, therefore it is

unlikely to cause problems in practice. See also

12.2. Informative References

[Nie1997]

Frystyk, H., Gettys, J., Prud'hommeaux, E., Lie, H. and

C. Lilley, "Network Performance Effects of HTTP/1.1,

CSS1, and PNG", ACM Proceedings of the ACM SIGCOMM '97

conference on Applications, technologies,

architectures, and protocols for computer communication

SIGCOMM '97, September 1997.

http://tools.ietf.org/html/draft-ietf-httpbis-p6-cache-17
http://tools.ietf.org/html/draft-ietf-httpbis-p6-cache-17
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc1950
http://tools.ietf.org/html/rfc1950
http://tools.ietf.org/html/rfc1951
http://tools.ietf.org/html/rfc1951
http://tools.ietf.org/html/rfc1952
http://tools.ietf.org/html/rfc1952

[Pad1995]

Padmanabhan, V.N. and J.C. Mogul, "Improving HTTP

Latency", Computer Networks and ISDN Systems v. 28, pp.

25-35, December 1995.

[RFC1919]
Chatel, M., "Classical versus Transparent IP Proxies",

RFC 1919, March 1996.

[RFC1945]

Berners-Lee, T., Fielding, R.T. and H.F. Nielsen,

"Hypertext Transfer Protocol -- HTTP/1.0", RFC 1945,

May 1996.

[RFC2045]

Freed, N. and N.S. Borenstein, "Multipurpose Internet

Mail Extensions (MIME) Part One: Format of Internet

Message Bodies", RFC 2045, November 1996.

[RFC2047]

Moore, K., "MIME (Multipurpose Internet Mail

Extensions) Part Three: Message Header Extensions for

Non-ASCII Text", RFC 2047, November 1996.

[RFC2068]

Fielding, R., Gettys, J., Mogul, J., Nielsen, H. and T.

Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1",

RFC 2068, January 1997.

[RFC2145]

Mogul, J.C., Fielding, R.T., Gettys, J. and H.F.

Nielsen, "Use and Interpretation of HTTP Version

Numbers", RFC 2145, May 1997.

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC2817]
Khare, R. and S. Lawrence, "Upgrading to TLS Within

HTTP/1.1", RFC 2817, May 2000.

[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

[RFC2965]
Kristol, D. M. and L. Montulli, "HTTP State Management

Mechanism", RFC 2965, October 2000.

[RFC3040]

Cooper, I., Melve, I. and G. Tomlinson, "Internet Web

Replication and Caching Taxonomy", RFC 3040, January

2001.

[RFC3864]

Klyne, G., Nottingham, M. and J. Mogul, "Registration

Procedures for Message Header Fields", BCP 90, RFC

3864, September 2004.

[RFC4033]

Arends, R., Austein, R., Larson, M., Massey, D. and S.

Rose, "DNS Security Introduction and Requirements", RFC

4033, March 2005.

[RFC4288]

Freed, N. and J. Klensin, "Media Type Specifications

and Registration Procedures", BCP 13, RFC 4288,

December 2005.

[RFC4395]

Hansen, T., Hardie, T. and L. Masinter, "Guidelines and

Registration Procedures for New URI Schemes", BCP 115,

RFC 4395, February 2006.

[RFC4559]

Jaganathan, K., Zhu, L. and J. Brezak, "SPNEGO-based

Kerberos and NTLM HTTP Authentication in Microsoft

Windows", RFC 4559, June 2006.

[RFC5226]

http://tools.ietf.org/html/rfc1919
http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2047
http://tools.ietf.org/html/rfc2047
http://tools.ietf.org/html/rfc2047
http://tools.ietf.org/html/rfc2068
http://tools.ietf.org/html/rfc2145
http://tools.ietf.org/html/rfc2145
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2817
http://tools.ietf.org/html/rfc2817
http://tools.ietf.org/html/rfc2818
http://tools.ietf.org/html/rfc2965
http://tools.ietf.org/html/rfc2965
http://tools.ietf.org/html/rfc3040
http://tools.ietf.org/html/rfc3040
http://tools.ietf.org/html/rfc3864
http://tools.ietf.org/html/rfc3864
http://tools.ietf.org/html/rfc4033
http://tools.ietf.org/html/rfc4288
http://tools.ietf.org/html/rfc4288
http://tools.ietf.org/html/rfc4395
http://tools.ietf.org/html/rfc4395
http://tools.ietf.org/html/rfc4559
http://tools.ietf.org/html/rfc4559
http://tools.ietf.org/html/rfc4559

Narten, T. and H. Alvestrand, "Guidelines for Writing

an IANA Considerations Section in RFCs", BCP 26, RFC

5226, May 2008.

[RFC5322]
Resnick, P., "Internet Message Format", RFC 5322,

October 2008.

[RFC6265]
Barth, A., "HTTP State Management Mechanism", RFC 6265,

April 2011.

[BCP97]

Klensin, J. and S. Hartman, "Handling Normative

References to Standards-Track Documents", BCP 97, RFC

4897, June 2007.

[Kri2001]

Kristol, D., "HTTP Cookies: Standards, Privacy, and

Politics", ACM Transactions on Internet Technology Vol.

1, #2, November 2001.

[Spe] Spero, S., "Analysis of HTTP Performance Problems", .

[Tou1998]

Touch, J., Heidemann, J. and K. Obraczka, "Analysis of

HTTP Performance", ISI Research Report ISI/RR-98-463,

Aug 1998.

(original report dated Aug. 1996)

Appendix A. HTTP Version History

HTTP has been in use by the World-Wide Web global information

initiative since 1990. The first version of HTTP, later referred to as

HTTP/0.9, was a simple protocol for hypertext data transfer across the

Internet with only a single request method (GET) and no metadata. HTTP/

1.0, as defined by [RFC1945], added a range of request methods and

MIME-like messaging that could include metadata about the data

transferred and modifiers on the request/response semantics. However,

HTTP/1.0 did not sufficiently take into consideration the effects of

hierarchical proxies, caching, the need for persistent connections, or

name-based virtual hosts. The proliferation of incompletely-implemented

applications calling themselves "HTTP/1.0" further necessitated a

protocol version change in order for two communicating applications to

determine each other's true capabilities.

HTTP/1.1 remains compatible with HTTP/1.0 by including more stringent

requirements that enable reliable implementations, adding only those

new features that will either be safely ignored by an HTTP/1.0

recipient or only sent when communicating with a party advertising

compliance with HTTP/1.1.

It is beyond the scope of a protocol specification to mandate

compliance with previous versions. HTTP/1.1 was deliberately designed,

however, to make supporting previous versions easy. We would expect a

general-purpose HTTP/1.1 server to understand any valid request in the

format of HTTP/1.0 and respond appropriately with an HTTP/1.1 message

that only uses features understood (or safely ignored) by HTTP/1.0

clients. Likewise, would expect an HTTP/1.1 client to understand any

valid HTTP/1.0 response.

Since HTTP/0.9 did not support header fields in a request, there is no

mechanism for it to support name-based virtual hosts (selection of

http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc6265
http://tools.ietf.org/html/rfc4897
http://tools.ietf.org/html/rfc4897

resource by inspection of the Host header field). Any server that

implements name-based virtual hosts ought to disable support for HTTP/

0.9. Most requests that appear to be HTTP/0.9 are, in fact, badly

constructed HTTP/1.x requests wherein a buggy client failed to properly

encode linear whitespace found in a URI reference and placed in the

request-target.

Appendix A.1. Changes from HTTP/1.0

This section summarizes major differences between versions HTTP/1.0 and

HTTP/1.1.

Appendix A.1.1. Multi-homed Web Servers

The requirements that clients and servers support the Host header field

(Section 8.3), report an error if it is missing from an HTTP/1.1

request, and accept absolute URIs (Section 3.1.1.2) are among the most

important changes defined by HTTP/1.1.

Older HTTP/1.0 clients assumed a one-to-one relationship of IP

addresses and servers; there was no other established mechanism for

distinguishing the intended server of a request than the IP address to

which that request was directed. The Host header field was introduced

during the development of HTTP/1.1 and, though it was quickly

implemented by most HTTP/1.0 browsers, additional requirements were

placed on all HTTP/1.1 requests in order to ensure complete adoption.

At the time of this writing, most HTTP-based services are dependent

upon the Host header field for targeting requests.

Appendix A.1.2. Keep-Alive Connections

For most implementations of HTTP/1.0, each connection is established by

the client prior to the request and closed by the server after sending

the response. However, some implementations implement the Keep-Alive

version of persistent connections described in Section 19.7.1 of

[RFC2068].

Some clients and servers might wish to be compatible with some previous

implementations of persistent connections in HTTP/1.0 clients and

servers. Persistent connections in HTTP/1.0 are explicitly negotiated

as they are not the default behavior. HTTP/1.0 experimental

implementations of persistent connections are faulty, and the new

facilities in HTTP/1.1 are designed to rectify these problems. The

problem was that some existing HTTP/1.0 clients might send Keep-Alive

to a proxy server that doesn't understand Connection, which would then

erroneously forward it to the next inbound server, which would

establish the Keep-Alive connection and result in a hung HTTP/1.0 proxy

waiting for the close on the response. The result is that HTTP/1.0

clients must be prevented from using Keep-Alive when talking to

proxies.

However, talking to proxies is the most important use of persistent

connections, so that prohibition is clearly unacceptable. Therefore, we

need some other mechanism for indicating a persistent connection is

desired, which is safe to use even when talking to an old proxy that

ignores Connection. Persistent connections are the default for HTTP/1.1

messages; we introduce a new keyword (Connection: close) for declaring

non-persistence. See Section 8.1.

Appendix A.2. Changes from RFC 2616

Empty list elements in list productions have been deprecated. (Section

1.2.1)

Rules about implicit linear whitespace between certain grammar

productions have been removed; now it's only allowed when specifically

pointed out in the ABNF. (Section 1.2.2)

Clarify that the string "HTTP" in the HTTP-Version ABFN production is

case sensitive. Restrict the version numbers to be single digits due to

the fact that implementations are known to handle multi-digit version

numbers incorrectly. (Section 2.6)

Require that invalid whitespace around field-names be rejected.

(Section 3.2)

The NUL octet is no longer allowed in comment and quoted-string text.

The quoted-pair rule no longer allows escaping control characters other

than HTAB. Non-ASCII content in header fields and reason phrase has

been obsoleted and made opaque (the TEXT rule was removed). (Section

3.2.3)

Require recipients to handle bogus Content-Length header fields as

errors. (Section 3.3)

Remove reference to non-existent identity transfer-coding value tokens.

(Sections 3.3 and 5.1)

Update use of abs_path production from RFC 1808 to the path-absolute +

query components of RFC 3986. State that the asterisk form is allowed

for the OPTIONS request method only. (Section 3.1.1.2)

Clarification that the chunk length does not include the count of the

octets in the chunk header and trailer. Furthermore disallowed line

folding in chunk extensions. (Section 5.1.1)

Remove hard limit of two connections per server. Remove requirement to

retry a sequence of requests as long it was idempotent. Remove

requirements about when servers are allowed to close connections

prematurely. (Section 6.1.4)

Remove requirement to retry requests under certain cirumstances when

the server prematurely closes the connection. (Section 6.2)

Change ABNF productions for header fields to only define the field

value. (Section 8)

Clarify exactly when close connection options must be sent. (Section

8.1)

Define the semantics of the "Upgrade" header field in responses other

than 101 (this was incorporated from [RFC2817]). (Section 8.7)

Appendix B. Collected ABNF

BWS = OWS

Chunked-Body = *chunk last-chunk trailer-part CRLF

Connection = *("," OWS) connection-token *(OWS "," [OWS

 connection-token])

Content-Length = 1*DIGIT

HTTP-Prot-Name = %x48.54.54.50 ; HTTP

HTTP-Version = HTTP-Prot-Name "/" DIGIT "." DIGIT

HTTP-message = start-line *(header-field CRLF) CRLF [message-body

]

Host = uri-host [":" port]

Method = token

OWS = *(SP / HTAB / obs-fold)

RWS = 1*(SP / HTAB / obs-fold)

Reason-Phrase = *(HTAB / SP / VCHAR / obs-text)

Request-Line = Method SP request-target SP HTTP-Version CRLF

Status-Code = 3DIGIT

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

TE = [("," / t-codings) *(OWS "," [OWS t-codings])]

Trailer = *("," OWS) field-name *(OWS "," [OWS field-name])

Transfer-Encoding = *("," OWS) transfer-coding *(OWS "," [OWS

 transfer-coding])

URI-reference = <URI-reference, defined in [RFC3986], Section 4.1>

Upgrade = *("," OWS) product *(OWS "," [OWS product])

Via = *("," OWS) received-protocol RWS received-by [RWS comment]

 *(OWS "," [OWS received-protocol RWS received-by [RWS comment]]

)

absolute-URI = <absolute-URI, defined in [RFC3986], Section 4.3>

attribute = token

authority = <authority, defined in [RFC3986], Section 3.2>

chunk = chunk-size [chunk-ext] CRLF chunk-data CRLF

chunk-data = 1*OCTET

chunk-ext = *(";" chunk-ext-name ["=" chunk-ext-val])

chunk-ext-name = token

chunk-ext-val = token / quoted-str-nf

chunk-size = 1*HEXDIG

comment = "(" *(ctext / quoted-cpair / comment) ")"

connection-token = token

ctext = OWS / %x21-27 ; '!'-'''

 / %x2A-5B ; '*'-'['

 / %x5D-7E ; ']'-'~'

 / obs-text

field-content = *(HTAB / SP / VCHAR / obs-text)

field-name = token

field-value = *(field-content / obs-fold)

header-field = field-name ":" OWS field-value BWS

http-URI = "http://" authority path-abempty ["?" query]

https-URI = "https://" authority path-abempty ["?" query]

last-chunk = 1*"0" [chunk-ext] CRLF

message-body = *OCTET

obs-fold = CRLF (SP / HTAB)

obs-text = %x80-FF

partial-URI = relative-part ["?" query]

path-abempty = <path-abempty, defined in [RFC3986], Section 3.3>

path-absolute = <path-absolute, defined in [RFC3986], Section 3.3>

port = <port, defined in [RFC3986], Section 3.2.3>

product = token ["/" product-version]

product-version = token

protocol-name = token

protocol-version = token

pseudonym = token

qdtext = OWS / "!" / %x23-5B ; '#'-'['

 / %x5D-7E ; ']'-'~'

 / obs-text

qdtext-nf = HTAB / SP / "!" / %x23-5B ; '#'-'['

 / %x5D-7E ; ']'-'~'

 / obs-text

query = <query, defined in [RFC3986], Section 3.4>

quoted-cpair = "\" (HTAB / SP / VCHAR / obs-text)

quoted-pair = "\" (HTAB / SP / VCHAR / obs-text)

quoted-str-nf = DQUOTE *(qdtext-nf / quoted-pair) DQUOTE

quoted-string = DQUOTE *(qdtext / quoted-pair) DQUOTE

qvalue = ("0" ["." *3DIGIT]) / ("1" ["." *3"0"])

received-by = (uri-host [":" port]) / pseudonym

received-protocol = [protocol-name "/"] protocol-version

relative-part = <relative-part, defined in [RFC3986], Section 4.2>

request-target = "*" / absolute-URI / (path-absolute ["?" query])

 / authority

special = "(" / ")" / "<" / ">" / "@" / "," / ";" / ":" / "\" /

 DQUOTE / "/" / "[" / "]" / "?" / "=" / "{" / "}"

start-line = Request-Line / Status-Line

t-codings = "trailers" / (transfer-extension [te-params])

tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." /

 "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA

te-ext = OWS ";" OWS token ["=" word]

te-params = OWS ";" OWS "q=" qvalue *te-ext

token = 1*tchar

trailer-part = *(header-field CRLF)

transfer-coding = "chunked" / "compress" / "deflate" / "gzip" /

 transfer-extension

transfer-extension = token *(OWS ";" OWS transfer-parameter)

transfer-parameter = attribute BWS "=" BWS value

uri-host = <host, defined in [RFC3986], Section 3.2.2>

value = word

word = token / quoted-string

ABNF diagnostics:

; Chunked-Body defined but not used

; Connection defined but not used

; Content-Length defined but not used

; HTTP-message defined but not used

; Host defined but not used

; TE defined but not used

; Trailer defined but not used

; Transfer-Encoding defined but not used

; URI-reference defined but not used

; Upgrade defined but not used

; Via defined but not used

; http-URI defined but not used

; https-URI defined but not used

; partial-URI defined but not used

; special defined but not used

Appendix C. Change Log (to be removed by RFC Editor before publication)

Appendix C.1. Since RFC 2616

Extracted relevant partitions from [RFC2616].

Appendix C.2. Since draft-ietf-httpbis-p1-messaging-00

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/1: "HTTP Version

should be case sensitive" (http://purl.org/NET/http-

errata#verscase)

*

http://tools.ietf.org/wg/httpbis/trac/ticket/1
http://purl.org/NET/http-errata#verscase
http://purl.org/NET/http-errata#verscase

http://tools.ietf.org/wg/httpbis/trac/ticket/2: "'unsafe'

characters" (http://purl.org/NET/http-errata#unsafe-uri)

http://tools.ietf.org/wg/httpbis/trac/ticket/3: "Chunk Size

Definition" (http://purl.org/NET/http-errata#chunk-size)

http://tools.ietf.org/wg/httpbis/trac/ticket/4: "Message Length"

(http://purl.org/NET/http-errata#msg-len-chars)

http://tools.ietf.org/wg/httpbis/trac/ticket/8: "Media Type

Registrations" (http://purl.org/NET/http-errata#media-reg)

http://tools.ietf.org/wg/httpbis/trac/ticket/11: "URI includes

query" (http://purl.org/NET/http-errata#uriquery)

http://tools.ietf.org/wg/httpbis/trac/ticket/15: "No close on 1xx

responses" (http://purl.org/NET/http-errata#noclose1xx)

http://tools.ietf.org/wg/httpbis/trac/ticket/16: "Remove

'identity' token references" (http://purl.org/NET/http-

errata#identity)

http://tools.ietf.org/wg/httpbis/trac/ticket/26: "Import query

BNF"

http://tools.ietf.org/wg/httpbis/trac/ticket/31: "qdtext BNF"

http://tools.ietf.org/wg/httpbis/trac/ticket/35: "Normative and

Informative references"

http://tools.ietf.org/wg/httpbis/trac/ticket/42: "RFC2606

Compliance"

http://tools.ietf.org/wg/httpbis/trac/ticket/45: "RFC977

reference"

http://tools.ietf.org/wg/httpbis/trac/ticket/46: "RFC1700

references"

http://tools.ietf.org/wg/httpbis/trac/ticket/47: "inconsistency

in date format explanation"

http://tools.ietf.org/wg/httpbis/trac/ticket/48: "Date reference

typo"

http://tools.ietf.org/wg/httpbis/trac/ticket/65: "Informative

references"

http://tools.ietf.org/wg/httpbis/trac/ticket/66: "ISO-8859-1

Reference"

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/2
http://purl.org/NET/http-errata#unsafe-uri
http://tools.ietf.org/wg/httpbis/trac/ticket/3
http://purl.org/NET/http-errata#chunk-size
http://tools.ietf.org/wg/httpbis/trac/ticket/4
http://purl.org/NET/http-errata#msg-len-chars
http://tools.ietf.org/wg/httpbis/trac/ticket/8
http://purl.org/NET/http-errata#media-reg
http://tools.ietf.org/wg/httpbis/trac/ticket/11
http://purl.org/NET/http-errata#uriquery
http://tools.ietf.org/wg/httpbis/trac/ticket/15
http://purl.org/NET/http-errata#noclose1xx
http://tools.ietf.org/wg/httpbis/trac/ticket/16
http://purl.org/NET/http-errata#identity
http://purl.org/NET/http-errata#identity
http://tools.ietf.org/wg/httpbis/trac/ticket/26
http://tools.ietf.org/wg/httpbis/trac/ticket/31
http://tools.ietf.org/wg/httpbis/trac/ticket/35
http://tools.ietf.org/wg/httpbis/trac/ticket/42
http://tools.ietf.org/wg/httpbis/trac/ticket/45
http://tools.ietf.org/wg/httpbis/trac/ticket/46
http://tools.ietf.org/wg/httpbis/trac/ticket/47
http://tools.ietf.org/wg/httpbis/trac/ticket/48
http://tools.ietf.org/wg/httpbis/trac/ticket/65
http://tools.ietf.org/wg/httpbis/trac/ticket/66

http://tools.ietf.org/wg/httpbis/trac/ticket/86: "Normative up-

to-date references"

Other changes:

Update media type registrations to use RFC4288 template.

Use names of RFC4234 core rules DQUOTE and HTAB, fix broken ABNF

for chunk-data (work in progress on http://tools.ietf.org/wg/

httpbis/trac/ticket/36)

Appendix C.3. Since draft-ietf-httpbis-p1-messaging-01

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/19: "Bodies on GET

(and other) requests"

http://tools.ietf.org/wg/httpbis/trac/ticket/55: "Updating to

RFC4288"

http://tools.ietf.org/wg/httpbis/trac/ticket/57: "Status Code and

Reason Phrase"

http://tools.ietf.org/wg/httpbis/trac/ticket/82: "rel_path not

used"

Ongoing work on ABNF conversion (http://tools.ietf.org/wg/httpbis/trac/

ticket/36):

Get rid of duplicate BNF rule names ("host" -> "uri-host",

"trailer" -> "trailer-part").

Avoid underscore character in rule names ("http_URL" -> "http-

URL", "abs_path" -> "path-absolute").

Add rules for terms imported from URI spec ("absoluteURI",

"authority", "path-absolute", "port", "query", "relativeURI",

"host) — these will have to be updated when switching over to

RFC3986.

Synchronize core rules with RFC5234.

Get rid of prose rules that span multiple lines.

Get rid of unused rules LOALPHA and UPALPHA.

Move "Product Tokens" section (back) into Part 1, as "token" is

used in the definition of the Upgrade header field.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/86
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/19
http://tools.ietf.org/wg/httpbis/trac/ticket/55
http://tools.ietf.org/wg/httpbis/trac/ticket/57
http://tools.ietf.org/wg/httpbis/trac/ticket/82
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/36

Add explicit references to BNF syntax and rules imported from

other parts of the specification.

Rewrite prose rule "token" in terms of "tchar", rewrite prose

rule "TEXT".

Appendix C.4. Since draft-ietf-httpbis-p1-messaging-02

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/51: "HTTP-date vs.

rfc1123-date"

http://tools.ietf.org/wg/httpbis/trac/ticket/64: "WS in quoted-

pair"

Ongoing work on IANA Message Header Field Registration (http://

tools.ietf.org/wg/httpbis/trac/ticket/40):

Reference RFC 3984, and update header field registrations for

headers defined in this document.

Ongoing work on ABNF conversion (http://tools.ietf.org/wg/httpbis/trac/

ticket/36):

Replace string literals when the string really is case-sensitive

(HTTP-Version).

Appendix C.5. Since draft-ietf-httpbis-p1-messaging-03

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/28: "Connection

closing"

http://tools.ietf.org/wg/httpbis/trac/ticket/97: "Move

registrations and registry information to IANA Considerations"

http://tools.ietf.org/wg/httpbis/trac/ticket/120: "need new URL

for PAD1995 reference"

http://tools.ietf.org/wg/httpbis/trac/ticket/127: "IANA

Considerations: update HTTP URI scheme registration"

http://tools.ietf.org/wg/httpbis/trac/ticket/128: "Cite HTTPS URI

scheme definition"

http://tools.ietf.org/wg/httpbis/trac/ticket/129: "List-type

headers vs Set-Cookie"

*

*

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/51
http://tools.ietf.org/wg/httpbis/trac/ticket/64
http://tools.ietf.org/wg/httpbis/trac/ticket/40
http://tools.ietf.org/wg/httpbis/trac/ticket/40
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/28
http://tools.ietf.org/wg/httpbis/trac/ticket/97
http://tools.ietf.org/wg/httpbis/trac/ticket/120
http://tools.ietf.org/wg/httpbis/trac/ticket/127
http://tools.ietf.org/wg/httpbis/trac/ticket/128
http://tools.ietf.org/wg/httpbis/trac/ticket/129

Ongoing work on ABNF conversion (http://tools.ietf.org/wg/httpbis/trac/

ticket/36):

Replace string literals when the string really is case-sensitive

(HTTP-Date).

Replace HEX by HEXDIG for future consistence with RFC 5234's core

rules.

Appendix C.6. Since draft-ietf-httpbis-p1-messaging-04

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/34: "Out-of-date

reference for URIs"

http://tools.ietf.org/wg/httpbis/trac/ticket/132: "RFC 2822 is

updated by RFC 5322"

Ongoing work on ABNF conversion (http://tools.ietf.org/wg/httpbis/trac/

ticket/36):

Use "/" instead of "|" for alternatives.

Get rid of RFC822 dependency; use RFC5234 plus extensions

instead.

Only reference RFC 5234's core rules.

Introduce new ABNF rules for "bad" whitespace ("BWS"), optional

whitespace ("OWS") and required whitespace ("RWS").

Rewrite ABNFs to spell out whitespace rules, factor out header

field value format definitions.

Appendix C.7. Since draft-ietf-httpbis-p1-messaging-05

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/30: "Header LWS"

http://tools.ietf.org/wg/httpbis/trac/ticket/52: "Sort 1.3

Terminology"

http://tools.ietf.org/wg/httpbis/trac/ticket/63: "RFC2047 encoded

words"

http://tools.ietf.org/wg/httpbis/trac/ticket/74: "Character

Encodings in TEXT"

*

*

*

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/34
http://tools.ietf.org/wg/httpbis/trac/ticket/132
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/30
http://tools.ietf.org/wg/httpbis/trac/ticket/52
http://tools.ietf.org/wg/httpbis/trac/ticket/63
http://tools.ietf.org/wg/httpbis/trac/ticket/74

http://tools.ietf.org/wg/httpbis/trac/ticket/77: "Line Folding"

http://tools.ietf.org/wg/httpbis/trac/ticket/83: "OPTIONS * and

proxies"

http://tools.ietf.org/wg/httpbis/trac/ticket/94: "Reason-Phrase

BNF"

http://tools.ietf.org/wg/httpbis/trac/ticket/111: "Use of TEXT"

http://tools.ietf.org/wg/httpbis/trac/ticket/118: "Join

"Differences Between HTTP Entities and RFC 2045 Entities"?"

http://tools.ietf.org/wg/httpbis/trac/ticket/134: "RFC822

reference left in discussion of date formats"

Final work on ABNF conversion (http://tools.ietf.org/wg/httpbis/trac/

ticket/36):

Rewrite definition of list rules, deprecate empty list elements.

Add appendix containing collected and expanded ABNF.

Other changes:

Rewrite introduction; add mostly new Architecture Section.

Move definition of quality values from Part 3 into Part 1; make

TE request header field grammar independent of accept-params

(defined in Part 3).

Appendix C.8. Since draft-ietf-httpbis-p1-messaging-06

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/161: "base for

numeric protocol elements"

http://tools.ietf.org/wg/httpbis/trac/ticket/162: "comment ABNF"

Partly resolved issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/88: "205 Bodies"

(took out language that implied that there might be methods for

which a request body MUST NOT be included)

http://tools.ietf.org/wg/httpbis/trac/ticket/163: "editorial

improvements around HTTP-date"

*

*

*

*

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/77
http://tools.ietf.org/wg/httpbis/trac/ticket/83
http://tools.ietf.org/wg/httpbis/trac/ticket/94
http://tools.ietf.org/wg/httpbis/trac/ticket/111
http://tools.ietf.org/wg/httpbis/trac/ticket/118
http://tools.ietf.org/wg/httpbis/trac/ticket/134
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/161
http://tools.ietf.org/wg/httpbis/trac/ticket/162
http://tools.ietf.org/wg/httpbis/trac/ticket/88
http://tools.ietf.org/wg/httpbis/trac/ticket/163

Appendix C.9. Since draft-ietf-httpbis-p1-messaging-07

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/93: "Repeating

single-value headers"

http://tools.ietf.org/wg/httpbis/trac/ticket/131: "increase

connection limit"

http://tools.ietf.org/wg/httpbis/trac/ticket/157: "IP addresses

in URLs"

http://tools.ietf.org/wg/httpbis/trac/ticket/172: "take over HTTP

Upgrade Token Registry"

http://tools.ietf.org/wg/httpbis/trac/ticket/173: "CR and LF in

chunk extension values"

http://tools.ietf.org/wg/httpbis/trac/ticket/184: "HTTP/0.9

support"

http://tools.ietf.org/wg/httpbis/trac/ticket/188: "pick IANA

policy (RFC5226) for Transfer Coding / Content Coding"

http://tools.ietf.org/wg/httpbis/trac/ticket/189: "move

definitions of gzip/deflate/compress to part 1"

http://tools.ietf.org/wg/httpbis/trac/ticket/194: "disallow

control characters in quoted-pair"

Partly resolved issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/148: "update IANA

requirements wrt Transfer-Coding values" (add the IANA

Considerations subsection)

Appendix C.10. Since draft-ietf-httpbis-p1-messaging-08

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/201: "header

parsing, treatment of leading and trailing OWS"

Partly resolved issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/60: "Placement of

13.5.1 and 13.5.2"

*

*

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/93
http://tools.ietf.org/wg/httpbis/trac/ticket/131
http://tools.ietf.org/wg/httpbis/trac/ticket/157
http://tools.ietf.org/wg/httpbis/trac/ticket/172
http://tools.ietf.org/wg/httpbis/trac/ticket/173
http://tools.ietf.org/wg/httpbis/trac/ticket/184
http://tools.ietf.org/wg/httpbis/trac/ticket/188
http://tools.ietf.org/wg/httpbis/trac/ticket/189
http://tools.ietf.org/wg/httpbis/trac/ticket/194
http://tools.ietf.org/wg/httpbis/trac/ticket/148
http://tools.ietf.org/wg/httpbis/trac/ticket/201
http://tools.ietf.org/wg/httpbis/trac/ticket/60

http://tools.ietf.org/wg/httpbis/trac/ticket/200: "use of term

"word" when talking about header structure"

Appendix C.11. Since draft-ietf-httpbis-p1-messaging-09

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/73: "Clarification

of the term 'deflate'"

http://tools.ietf.org/wg/httpbis/trac/ticket/83: "OPTIONS * and

proxies"

http://tools.ietf.org/wg/httpbis/trac/ticket/122: "MIME-Version

not listed in P1, general header fields"

http://tools.ietf.org/wg/httpbis/trac/ticket/143: "IANA registry

for content/transfer encodings"

http://tools.ietf.org/wg/httpbis/trac/ticket/165: "Case-

sensitivity of HTTP-date"

http://tools.ietf.org/wg/httpbis/trac/ticket/200: "use of term

"word" when talking about header structure"

Partly resolved issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/196: "Term for the

requested resource's URI"

Appendix C.12. Since draft-ietf-httpbis-p1-messaging-10

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/28: "Connection

Closing"

http://tools.ietf.org/wg/httpbis/trac/ticket/90: "Delimiting

messages with multipart/byteranges"

http://tools.ietf.org/wg/httpbis/trac/ticket/95: "Handling

multiple Content-Length headers"

http://tools.ietf.org/wg/httpbis/trac/ticket/109: "Clarify entity

/ representation / variant terminology"

http://tools.ietf.org/wg/httpbis/trac/ticket/220: "consider

removing the 'changes from 2068' sections"

*

*

*

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/200
http://tools.ietf.org/wg/httpbis/trac/ticket/73
http://tools.ietf.org/wg/httpbis/trac/ticket/83
http://tools.ietf.org/wg/httpbis/trac/ticket/122
http://tools.ietf.org/wg/httpbis/trac/ticket/143
http://tools.ietf.org/wg/httpbis/trac/ticket/165
http://tools.ietf.org/wg/httpbis/trac/ticket/200
http://tools.ietf.org/wg/httpbis/trac/ticket/196
http://tools.ietf.org/wg/httpbis/trac/ticket/28
http://tools.ietf.org/wg/httpbis/trac/ticket/90
http://tools.ietf.org/wg/httpbis/trac/ticket/95
http://tools.ietf.org/wg/httpbis/trac/ticket/109
http://tools.ietf.org/wg/httpbis/trac/ticket/220

Partly resolved issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/159: "HTTP(s) URI

scheme definitions"

Appendix C.13. Since draft-ietf-httpbis-p1-messaging-11

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/193: "Trailer

requirements"

http://tools.ietf.org/wg/httpbis/trac/ticket/204: "Text about

clock requirement for caches belongs in p6"

http://tools.ietf.org/wg/httpbis/trac/ticket/221: "effective

request URI: handling of missing host in HTTP/1.0"

http://tools.ietf.org/wg/httpbis/trac/ticket/248: "confusing Date

requirements for clients"

Partly resolved issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/95: "Handling

multiple Content-Length headers"

Appendix C.14. Since draft-ietf-httpbis-p1-messaging-12

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/75: "RFC2145

Normative"

http://tools.ietf.org/wg/httpbis/trac/ticket/159: "HTTP(s) URI

scheme definitions" (tune the requirements on userinfo)

http://tools.ietf.org/wg/httpbis/trac/ticket/210: "define

'transparent' proxy"

http://tools.ietf.org/wg/httpbis/trac/ticket/224: "Header

Classification"

http://tools.ietf.org/wg/httpbis/trac/ticket/233: "Is * usable as

a request-uri for new methods?"

http://tools.ietf.org/wg/httpbis/trac/ticket/240: "Migrate

Upgrade details from RFC2817"

http://tools.ietf.org/wg/httpbis/trac/ticket/276: "untangle ABNFs

for header fields"

*

*

*

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/159
http://tools.ietf.org/wg/httpbis/trac/ticket/193
http://tools.ietf.org/wg/httpbis/trac/ticket/204
http://tools.ietf.org/wg/httpbis/trac/ticket/221
http://tools.ietf.org/wg/httpbis/trac/ticket/248
http://tools.ietf.org/wg/httpbis/trac/ticket/95
http://tools.ietf.org/wg/httpbis/trac/ticket/75
http://tools.ietf.org/wg/httpbis/trac/ticket/159
http://tools.ietf.org/wg/httpbis/trac/ticket/210
http://tools.ietf.org/wg/httpbis/trac/ticket/224
http://tools.ietf.org/wg/httpbis/trac/ticket/233
http://tools.ietf.org/wg/httpbis/trac/ticket/240
http://tools.ietf.org/wg/httpbis/trac/ticket/276

http://tools.ietf.org/wg/httpbis/trac/ticket/279: "update RFC

2109 reference"

Appendix C.15. Since draft-ietf-httpbis-p1-messaging-13

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/53: "Allow is not in

13.5.2"

http://tools.ietf.org/wg/httpbis/trac/ticket/95: "Handling

multiple Content-Length headers"

http://tools.ietf.org/wg/httpbis/trac/ticket/276: "untangle ABNFs

for header fields"

http://tools.ietf.org/wg/httpbis/trac/ticket/286: "Content-Length

ABNF broken"

Appendix C.16. Since draft-ietf-httpbis-p1-messaging-14

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/273: "HTTP-Version

should be redefined as fixed length pair of DIGIT . DIGIT"

http://tools.ietf.org/wg/httpbis/trac/ticket/282: "Recommend

minimum sizes for protocol elements"

http://tools.ietf.org/wg/httpbis/trac/ticket/283: "Set

expectations around buffering"

http://tools.ietf.org/wg/httpbis/trac/ticket/288: "Considering

messages in isolation"

Appendix C.17. Since draft-ietf-httpbis-p1-messaging-15

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/100: "DNS Spoofing /

DNS Binding advice"

http://tools.ietf.org/wg/httpbis/trac/ticket/254: "move RFCs

2145, 2616, 2817 to Historic status"

http://tools.ietf.org/wg/httpbis/trac/ticket/270: "\-escaping in

quoted strings"

http://tools.ietf.org/wg/httpbis/trac/ticket/305: "'Close' should

be reserved in the HTTP header field registry"

*

*

*

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/279
http://tools.ietf.org/wg/httpbis/trac/ticket/53
http://tools.ietf.org/wg/httpbis/trac/ticket/95
http://tools.ietf.org/wg/httpbis/trac/ticket/276
http://tools.ietf.org/wg/httpbis/trac/ticket/286
http://tools.ietf.org/wg/httpbis/trac/ticket/273
http://tools.ietf.org/wg/httpbis/trac/ticket/282
http://tools.ietf.org/wg/httpbis/trac/ticket/283
http://tools.ietf.org/wg/httpbis/trac/ticket/288
http://tools.ietf.org/wg/httpbis/trac/ticket/100
http://tools.ietf.org/wg/httpbis/trac/ticket/254
http://tools.ietf.org/wg/httpbis/trac/ticket/270
http://tools.ietf.org/wg/httpbis/trac/ticket/305

Appendix C.18. Since draft-ietf-httpbis-p1-messaging-16

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/186: "Document

HTTP's error-handling philosophy"

http://tools.ietf.org/wg/httpbis/trac/ticket/215: "Explain header

registration"

http://tools.ietf.org/wg/httpbis/trac/ticket/219: "Revise

Acknowledgements Sections"

http://tools.ietf.org/wg/httpbis/trac/ticket/297: "Retrying

Requests"

http://tools.ietf.org/wg/httpbis/trac/ticket/318: "Closing the

connection on server error"

Index

A

absolute-URI form (of request-target)

accelerator

asterisk form (of request-target)

authority form (of request-target)

C

cacheable

captive portal

D

downstream

G

gateway

I

inbound

interception proxy

N

non-transforming proxy

O

origin form (of request-target)

outbound

P

proxy

R

reverse proxy

T

transforming proxy

transparent proxy

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/186
http://tools.ietf.org/wg/httpbis/trac/ticket/215
http://tools.ietf.org/wg/httpbis/trac/ticket/219
http://tools.ietf.org/wg/httpbis/trac/ticket/297
http://tools.ietf.org/wg/httpbis/trac/ticket/318

tunnel

U

upstream

Authors' Addresses

Roy T. Fielding editor Fielding Adobe Systems Incorporated 345 Park

Ave San Jose, CA 95110 USA EMail: fielding@gbiv.com URI: http://

roy.gbiv.com/

Jim Gettys Gettys Alcatel-Lucent Bell Labs 21 Oak Knoll Road

Carlisle, MA 01741 USA EMail: jg@freedesktop.org URI: http://

gettys.wordpress.com/

Jeffrey C. Mogul Mogul Hewlett-Packard Company HP Labs, Large Scale

Systems Group 1501 Page Mill Road, MS 1177 Palo Alto, CA 94304 USA

EMail: JeffMogul@acm.org

Henrik Frystyk Nielsen Frystyk Microsoft Corporation

1 Microsoft Way Redmond, WA 98052 USA EMail: henrikn@microsoft.com

Larry Masinter Masinter Adobe Systems Incorporated 345 Park Ave San

Jose, CA 95110 USA EMail: LMM@acm.org URI: http://

larry.masinter.net/

Paul J. Leach Leach Microsoft Corporation 1 Microsoft Way Redmond,

WA 98052 EMail: paulle@microsoft.com

Tim Berners-Lee Berners-Lee World Wide Web Consortium MIT Computer

Science and Artificial Intelligence Laboratory The Stata Center,

Building 32 32 Vassar Street Cambridge, MA 02139 USA EMail:

timbl@w3.org URI: http://www.w3.org/People/Berners-Lee/

Yves Lafon editor Lafon World Wide Web Consortium W3C / ERCIM 2004,

rte des Lucioles Sophia-Antipolis, AM 06902 France EMail:

ylafon@w3.org URI: http://www.raubacapeu.net/people/yves/

Julian F. Reschke editor Reschke greenbytes GmbH Hafenweg 16

Muenster, NW 48155 Germany Phone: +49 251 2807760 EMail:

julian.reschke@greenbytes.de URI: http://greenbytes.de/tech/webdav/

http://roy.gbiv.com/
http://roy.gbiv.com/
http://gettys.wordpress.com/
http://gettys.wordpress.com/
http://larry.masinter.net/
http://larry.masinter.net/
http://www.w3.org/People/Berners-Lee/
http://www.raubacapeu.net/people/yves/
http://greenbytes.de/tech/webdav/

	Abstract
	Editorial Note (To be removed by RFC Editor)
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conformance and Error Handling
	1.2. Syntax Notation
	1.2.1. ABNF Extension: #rule
	1.2.2. Basic Rules
	2. Architecture
	2.1. Client/Server Messaging
	2.2. Message Orientation and Buffering
	2.3. Connections and Transport Independence
	2.4. Intermediaries
	2.5. Caches
	2.6. Protocol Versioning
	2.7. Uniform Resource Identifiers
	2.7.1. http URI scheme
	2.7.2. https URI scheme
	2.7.3. http and https URI Normalization and Comparison
	3. Message Format
	3.1. Start Line
	3.1.1. Request-Line
	3.1.1.1. Method
	3.1.1.2. request-target
	3.1.2. Response Status-Line
	3.1.2.1. Status Code
	3.1.2.2. Reason Phrase
	3.2. Header Fields
	3.2.1. Field Parsing
	3.2.2. Field Length
	3.2.3. Common Field ABNF Rules
	3.3. Message Body
	3.4. Handling Incomplete Messages
	3.5. Message Parsing Robustness
	4. Message Routing
	4.1. Types of Request Target
	4.2. The Resource Identified by a Request
	4.3. Effective Request URI
	5. Protocol Parameters
	5.1. Transfer Codings
	5.1.1. Chunked Transfer Coding
	5.1.2. Compression Codings
	5.1.2.1. Compress Coding
	5.1.2.2. Deflate Coding
	5.1.2.3. Gzip Coding
	5.1.3. Transfer Coding Registry
	5.2. Product Tokens
	5.3. Quality Values
	6. Connections
	6.1. Persistent Connections
	6.1.1. Purpose
	6.1.2. Overall Operation
	6.1.2.1. Negotiation
	6.1.2.2. Pipelining
	6.1.3. Proxy Servers
	6.1.3.1. End-to-end and Hop-by-hop Header Fields
	6.1.3.2. Non-modifiable Header Fields
	6.1.4. Practical Considerations
	6.1.5. Retrying Requests
	6.2. Message Transmission Requirements
	6.2.1. Persistent Connections and Flow Control
	6.2.2. Monitoring Connections for Error Status Messages
	6.2.3. Use of the 100 (Continue) Status
	7. Miscellaneous notes that might disappear
	7.1. Scheme aliases considered harmful
	7.2. Use of HTTP for proxy communication
	7.3. Interception of HTTP for access control
	7.4. Use of HTTP by other protocols
	7.5. Use of HTTP by media type specification
	8. Header Field Definitions
	8.1. Connection
	8.2. Content-Length
	8.3. Host
	8.4. TE
	8.5. Trailer
	8.6. Transfer-Encoding
	8.7. Upgrade
	8.7.1. Upgrade Token Registry
	8.8. Via
	9. IANA Considerations
	9.1. Header Field Registration
	9.2. URI Scheme Registration
	9.3. Internet Media Type Registrations
	9.3.1. Internet Media Type message/http
	9.3.2. Internet Media Type application/http
	9.4. Transfer Coding Registry
	9.5. Upgrade Token Registration
	10. Security Considerations
	10.1. Personal Information
	10.2. Abuse of Server Log Information
	10.3. Attacks Based On File and Path Names
	10.4. DNS-related Attacks
	10.5. Proxies and Caching
	10.6. Protocol Element Size Overflows
	10.7. Denial of Service Attacks on Proxies
	11. Acknowledgments
	12. References
	12.1. Normative References
	12.2. Informative References
	Appendix A. HTTP Version History
	Appendix A.1. Changes from HTTP/1.0
	Appendix A.1.1. Multi-homed Web Servers
	Appendix A.1.2. Keep-Alive Connections
	Appendix A.2. Changes from RFC 2616
	Appendix B. Collected ABNF
	Appendix C. Change Log (to be removed by RFC Editor before publication)
	Appendix C.1. Since RFC 2616
	Appendix C.2. Since draft-ietf-httpbis-p1-messaging-00
	Appendix C.3. Since draft-ietf-httpbis-p1-messaging-01
	Appendix C.4. Since draft-ietf-httpbis-p1-messaging-02
	Appendix C.5. Since draft-ietf-httpbis-p1-messaging-03
	Appendix C.6. Since draft-ietf-httpbis-p1-messaging-04
	Appendix C.7. Since draft-ietf-httpbis-p1-messaging-05
	Appendix C.8. Since draft-ietf-httpbis-p1-messaging-06
	Appendix C.9. Since draft-ietf-httpbis-p1-messaging-07
	Appendix C.10. Since draft-ietf-httpbis-p1-messaging-08
	Appendix C.11. Since draft-ietf-httpbis-p1-messaging-09
	Appendix C.12. Since draft-ietf-httpbis-p1-messaging-10
	Appendix C.13. Since draft-ietf-httpbis-p1-messaging-11
	Appendix C.14. Since draft-ietf-httpbis-p1-messaging-12
	Appendix C.15. Since draft-ietf-httpbis-p1-messaging-13
	Appendix C.16. Since draft-ietf-httpbis-p1-messaging-14
	Appendix C.17. Since draft-ietf-httpbis-p1-messaging-15
	Appendix C.18. Since draft-ietf-httpbis-p1-messaging-16
	Index
	Authors' Addresses

