Network Working Group R. Fielding, Ed. _T0C
Internet-Draft Day Software

Obsoletes: 2616

J. Gett
(if approved) erLys

One Laptop per

Updates: 2817 (if approved) Child

Intended status: Standards
Track

Expires: December 19, 2008 HP

J. Mogul

H. Frystyk
Microsoft

L. Masinter
Adobe Systems
P. Leach
Microsoft

T. Berners-Lee
W3C/MIT

Y. Lafon, Ed.
W3C

J. Reschke, Ed.
greenbytes
June 17, 2008

HTTP/1.1, part 2: Message Semantics
draft-ietf-httpbis-p2-semantics-03

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware have
been or will be disclosed, and any of which he or she becomes aware
will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2817
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
This Internet-Draft will expire on December 19, 2008.

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-level protocol
for distributed, collaborative, hypermedia information systems. HTTP
has been in use by the World Wide Web global information initiative
since 1990. This document is Part 2 of the seven-part specification
that defines the protocol referred to as "HTTP/1.1" and, taken
together, obsoletes RFC 2616. Part 2 defines the semantics of HTTP
messages as expressed by request methods, request-header fields,
response status codes, and response-header fields.

Editorial Note (To be removed by RFC Editor)

Discussion of this draft should take place on the HTTPBIS working group
mailing list (ietf-http-wg@w3.org). The current issues list is at
http://www.tools.ietf.org/wg/httpbis/trac/report/11 and related
documents (including fancy diffs) can be found at http://
www.tools.jetf.org/wg/httpbis/.

The changes in this draft are summarized in Appendix B.4 (Since draft-
ietf-httpbis-p2-semantics-02).

Table of Contents

Introduction

1.1. Requirements

Notational Conventions and Generic Grammar

Method

Request Header Fields

Status Code and Reason Phrase

5.1. Status Code Registry

Response Header Fields

Entity

Method Definitions

8.1. Safe and Idempotent Methods
8.1.1. Safe Methods

8.1.2. Idempotent Methods

EEEr

i

8.2 OPTIONS
8.3. GET
8.4. HEAD
8.5. POST
8.6. PUT
8.7. DELETE
8.8. TRACE
8.9 CONNECT

http://www.ietf.org/shadow.html
http://www.tools.ietf.org/wg/httpbis/trac/report/11
http://www.tools.ietf.org/wg/httpbis/
http://www.tools.ietf.org/wg/httpbis/

Status Code Definitions
9.1. Informational 1xx

9.1.1. 100 Continue

9.1.2. 101 Switching Protocols
9.2. Successful 2xx

.2.1. 200 OK

201 Created
202 Accepted
203 Non-Authoritative Information
204 No Content
205 Reset Content

.2.7. 206 Partial Content

© |© [© |[© |[© |© |©
NN INININININ
o (01 [~ W N

9.3. Redirection 3xx
9.3.1. 300 Multiple Choices
9.3.2. 301 Moved Permanently
9.3.3. 302 Found
9.3.4. 303 See Other
9.3.5. 304 Not Modified
9.3.6. 305 Use Proxy
9.3.7. 306 (Unused)
9.3.8. 307 Temporary Redirect
9.4 Client Error 4xx

.4.1. 400 Bad Request
401 Unauthorized
402 Payment Required
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Timeout
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request-URI Too Long
415 Unsupported Media Type
416 Requested Range Not Satisfiable
.4.18. 417 Expectation Failed
9.5. Server Error 5xx
.5.1. 500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Timeout
505 HTTP Version Not Supported
Field Definitions
10.1. Allow

© (00 [N O 01 [W N

S O [gy
o o b |w [Nk

© |© |[© |© |© |© [© |© |© |© [© |[© |© |© [© |[© |© |©
[N
\‘

B R e e I i T e i L e e e e E T E T B
[EEY
[©]

o |01 | (W N

10.2. Expect

10.3 From

10.4 Location
10.5 Max-Forwards
10.6 Referer

10.7 Retry-After
10.8. Server

10.9. User-Agent

11. TIANA Considerations
11.1. Status Code Registry
11.2. Message Header Registration
12. Security Considerations
12.1. Transfer of Sensitive Information
12.2. Encoding Sensitive Information in URIs
12.3. Location Headers and Spoofing
Acknowledgments
References
14.1. Normative References
14.2. 1Informative References
Appendix A. Compatibility with Previous Versions
A.1. Changes from RFC 2068
A.2. Changes from RFC 2616
Appendix B. Change Log (to be removed by RFC Editor before
publication)
B.1. Since RFC2616
B.2. Since draft-ietf-httpbis-p2-semantics-00
B.3. Since draft-ietf-httpbis-p2-semantics-01
B.4. Since draft-ietf-httpbis-p2-semantics-02

[T
N jw

§ Index

8§ Authors' Addresses

8§ Intellectual Property and Copyright Statements

1. Introduction TOC

This document defines HTTP/1.1 request and response semantics. Each
HTTP message, as defined in [Partl] (Fielding, R., Ed., Gettys, J.,
Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.,
Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs,
Connections, and Message Parsing,” June 2008.), is in the form of
either a request or a response. An HTTP server listens on a connection
for HTTP requests and responds to each request, in the order received
on that connection, with one or more HTTP response messages. This
document defines the commonly agreed upon semantics of the HTTP uniform
interface, the intentions defined by each request method, and the

various response messages that might be expected as a result of
applying that method for the requested resource.

This document is currently disorganized in order to minimize the
changes between drafts and enable reviewers to see the smaller errata
changes. The next draft will reorganize the sections to better reflect
the content. In particular, the sections will be ordered according to
the typical processing of an HTTP request message (after message
parsing): resource mapping, general header fields, methods, request
modifiers, response status, and resource metadata. The current mess
reflects how widely dispersed these topics and associated requirements
had become in [RFC2616] (Fielding, R., Gettys, J., Moqul, J., Frystyk,
H., Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext Transfer
Protocol -- HTTP/1.1,” June 1999.).

1.1. Requirements TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.).

An implementation is not compliant if it fails to satisfy one or more
of the MUST or REQUIRED level requirements for the protocols it
implements. An implementation that satisfies all the MUST or REQUIRED
level and all the SHOULD level requirements for its protocols is said
to be "unconditionally compliant"; one that satisfies all the MUST
level requirements but not all the SHOULD level requirements for its
protocols is said to be "conditionally compliant."

2. Notational Conventions and Generic Grammar TOC

This specification uses the ABNF syntax defined in Section 2.1 of
[Partl] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J.
Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message
Parsing,” June 2008.) and the core rules defined in Section 2.2 of
[Partl] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J.
Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message
Parsing,” June 2008.): [abnf.dep] (ABNF syntax and basic rules will be
adopted from RFC 5234, see <http://tools.ietf.org/wg/httpbis/trac/

ticket/36>.)

DIGIT = <DIGIT, defined in [Partl], Section 2.2>

comment <comment, defined in [Partl1], Section 2.2>
quoted-string <quoted-string, defined in [Part1], Section 2.2>
token = <token, defined in [Partl], Section 2.2>

The ABNF rules below are defined in other parts:

absoluteURI <absoluteURI, defined in [Partl1], Section 3.2.1>
fragment <fragment, defined in [Partl], Section 3.2.1>
Host = <Host, defined in [Partl1], Section 8.4>

HTTP-date = <HTTP-date, defined in [Partl1], Section 3.3.1>
product = <product, defined in [Partil1], Section 3.5>
relativeURI = <relativeURI, defined in [Partl], Section 3.2.1>
TE = <TE, defined in [Partl], Section 8.8>

Accept = <Accept, defined in [Part3], Section 6.1>

Accept-Charset =

<Accept-Charset, defined in [Part3], Section 6.2>
Accept-Encoding =

<Accept-Encoding, defined in [Part3], Section 6.3>
Accept-Language =

<Accept-Language, defined in [Part3], Section 6.4>

ETag <ETag, defined in [Part4], Section 7.1>
If-Match = <If-Match, defined in [Part4], Section 7.2>
If-Modified-Since =

<If-Modified-Since, defined in [Part4], Section 7.3>
If-None-Match = <If-None-Match, defined in [Part4], Section 7.4>
If-Unmodified-Since =

<If-Unmodified-Since, defined in [Part4], Section 7.5>

Accept-Ranges <Accept-Ranges, defined in [Part5], Section 6.1>

If-Range = <If-Range, defined in [Part5], Section 6.3>
Range = <Range, defined in [Part5], Section 6.4>
Age = <Age, defined in [Part6], Section 16.1>

Vary = <Vary, defined in [Part6], Section 16.5>

Authorization = <Authorization, defined in [Part7], Section 4.1>
Proxy-Authenticate =

<Proxy-Authenticate, defined in [Part7], Section 4.2>
Proxy-Authorization =

<Proxy-Authorization, defined in [Part7], Section 4.3>
Www-Authenticate =

<Www-Authenticate, defined in [Part7], Section 4.4>

3. Method TOC

The Method token indicates the method to be performed on the resource
identified by the Request-URI. The method is case-sensitive.

extension-method
= token

Method = %X4F.50.54.49.4F.4E.53 ; "OPTIONS", Section 8.2
| %x47.45.54 ; "GET", Section 8.3
| %x48.45.41.44 ; "HEAD", Section 8.4
| %x50.4F.53.54 ; "POST", Section 8.5
| %x50.55.54 ; "PUT", Section 8.6
| %x44.45.4C.45.54.45 ; "DELETE", Section 8.7
| %x54.52.41.43.45 ; "TRACE", Section 8.8
| %x43.4F.4E.4E.45.43.54 ; "CONNECT", Section 8.9
I
d

extension-metho

The list of methods allowed by a resource can be specified in an Allow
header field (Section 10.1 (Allow)). The return code of the response
always notifies the client whether a method is currently allowed on a
resource, since the set of allowed methods can change dynamically. An
origin server SHOULD return the status code 405 (Method Not Allowed) if
the method is known by the origin server but not allowed for the
requested resource, and 501 (Not Implemented) if the method is
unrecognized or not implemented by the origin server. The methods GET
and HEAD MUST be supported by all general-purpose servers. All other
methods are OPTIONAL; however, if the above methods are implemented,
they MUST be implemented with the same semantics as those specified in
Section 8 (Method Definitions).

4. Request Header Fields TOC

The request-header fields allow the client to pass additional
information about the request, and about the client itself, to the
server. These fields act as request modifiers, with semantics

equivalent to the parameters on a programming language method
invocation.

request-header = Accept ; [Part3], Section 6.1
| Accept-Charset ; [Part3], Section 6.2
| Accept-Encoding ; [Part3], Section 6.3
| Accept-Language ; [Part3], Section 6.4
| Authorization ; [Part7], Section 4.1
| Expect ; Section 10.2
| From ; Section 10.3
| Host ; [Partl], Section 8.4
| If-Match ; [Part4], Section 7.2
| If-Modified-Since ; [Part4], Section 7.3
| If-None-Match ; [Part4], Section 7.4
| If-Range ; [Part5], Section 6.3
| If-Unmodified-Since ; [Part4], Section 7.5
| Max-Forwards ; Section 10.5
| Proxy-Authorization ; [Part7], Section 4.3
| Range ; [Part5], Section 6.4
| Referer ; Section 10.6
| TE ; [Partl1], Section 8.8
| User-Agent ; Section 10.9

Request-header field names can be extended reliably only in combination
with a change in the protocol version. However, new or experimental
header fields MAY be given the semantics of request-header fields if
all parties in the communication recognize them to be request-header
fields. Unrecognized header fields are treated as entity-header fields.

5. Status Code and Reason Phrase TOC

The Status-Code element is a 3-digit integer result code of the attempt
to understand and satisfy the request. The status codes listed below
are defined in Section 9 (Status Code Definitions). The Reason-Phrase
is intended to give a short textual description of the Status-Code. The
Status-Code is intended for use by automata and the Reason-Phrase 1is
intended for the human user. The client is not required to examine or
display the Reason-Phrase.

The individual values of the numeric status codes defined for HTTP/1.1,
and an example set of corresponding Reason-Phrase's, are presented
below. The reason phrases listed here are only recommendations -- they
MAY be replaced by local equivalents without affecting the protocol.

Status-Code =

"100" ; Section Continue

"101" ; Section Switching Protocols

"200" ; Section OK

"201" ; Section Created

"202" ; Section Accepted

"203" ; Section Non-Authoritative Information
"204" ; Section No Content

Reset Content
Partial Content
Multiple Choices
Moved Permanently

"205" ; Section
"206" ; Section
"300" ; Section
"301" ; Section

"302" ; Section Found

"303" ; Section See Other
"304" ; Section Not Modified
"305" ; Section Use Proxy

"307" ; Section
"400" ; Section

Temporary Redirect
Bad Request

"401" ; Section Unauthorized
"402" ; Section Payment Required
"403" ; Section Forbidden

"404" ; Section Not Found

Method Not Allowed
Not Acceptable
Proxy Authentication Required
Request Time-out
Conflict
Gone
Length Required
Precondition Failed
Request Entity Too Large
.15: Request-URI Too Large
.16: Unsupported Media Type
.17: Requested range not satisfiable
.18: Expectation Failed
: Internal Server Error

"405" ; Section
"406" ; Section
"407" ; Section
"408" ; Section
"409" ; Section
"410" ; Section
"411" ; Section
"412" ; Section
"413" ; Section
"414" ; Section
"415" ; Section
"416" ; Section
"417" ; Section
"500" ; Section
"501" ; Section
"502" ; Section
"503" ; Section
"504" ; Section
"505" ; Section
extension-code

© 0O NO O~ WNREOWOWOO UV, WNESNOOOGGAWOWDNENDNPR

O
Nw NP O

1
2: Not Implemented

3: Bad Gateway

.4: Service Unavailable

5: Gateway Time-out

6: HTTP Version not supported

© ©
o o1 o1 oo o0k~ b~ BSADBSMBMMBBPAMPAMPAMPAAEAEAEAEEEEPPOWDWWWWWWDNDNDNDDNDDNDNDDNNDNDDDNDIRELPRE

extension-code 3DIGIT
Reason-Phrase = *<TEXT, excluding CR, LF>

HTTP status codes are extensible. HTTP applications are not required to
understand the meaning of all registered status codes, though such

understanding is obviously desirable. However, applications MUST
understand the class of any status code, as indicated by the first
digit, and treat any unrecognized response as being equivalent to the
x00 status code of that class, with the exception that an unrecognized
response MUST NOT be cached. For example, if an unrecognized status
code of 431 is received by the client, it can safely assume that there
was something wrong with its request and treat the response as if it
had received a 400 status code. In such cases, user agents SHOULD
present to the user the entity returned with the response, since that
entity is likely to include human-readable information which will
explain the unusual status.

5.1. Status Code Registry TOC

The HTTP Status Code Registry defines the name space for the Status-
Code token in the Status line of an HTTP response.

Values to be added to this name space are subject to IETF review
([RFC5226] (Narten, T. and H. Alvestrand, “Guidelines for Writing an
TIANA Considerations Section in RFCs,” May 2008.), Section 4.1). Any
document registering new status codes should be traceable through
statuses of either 'Obsoletes' or 'Updates' to this document.

The registry itself is maintained at http://www.iana.org/assignments/
http-status-codes.

6. Response Header Fields TOC

The response-header fields allow the server to pass additional
information about the response which cannot be placed in the Status-
Line. These header fields give information about the server and about
further access to the resource identified by the Request-URI.

response-header = Accept-Ranges ; [Part5], Section 6.1
| Age ; [Part6], Section 16.
| Allow ; Section 10.1
| ETag ; [Part4], Section 7.1
| Location ; Section 10.4
| Proxy-Authenticate ; [Part7], Section 4.2
| Retry-After ; Section 10.7
| Server ; Section 10.8
| vary ; [Part6], Section 16.
| Www-Authenticate ; [Part7], Section 4.4

Response-header field names can be extended reliably only in
combination with a change in the protocol version. However, new or

http://www.iana.org/assignments/http-status-codes
http://www.iana.org/assignments/http-status-codes

experimental header fields MAY be given the semantics of response-
header fields if all parties in the communication recognize them to be
response-header fields. Unrecognized header fields are treated as
entity-header fields.

7. Entity T0C

Request and Response messages MAY transfer an entity if not otherwise
restricted by the request method or response status code. An entity
consists of entity-header fields and an entity-body, although some
responses will only include the entity-headers. HTTP entity-body and
entity-header fields are defined in [Part3] (Fielding, R., Ed., Gettys,

J., Moqul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.,
Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 3: Message Payload

and Content Negotiation,” June 2008.).

An entity-body is only present in a message when a message-body is
present, as described in Section 4.3 of [Partil] (Fielding, R., Ed.,
Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs,
Connections, and Message Parsing,” June 2008.). The entity-body is
obtained from the message-body by decoding any Transfer-Encoding that
might have been applied to ensure safe and proper transfer of the
message.

8. Method Definitions TOC

The set of common methods for HTTP/1.1 is defined below. Although this
set can be expanded, additional methods cannot be assumed to share the
same semantics for separately extended clients and servers.

8.1. Safe and Idempotent Methods TOC

8.1.1. Safe Methods TOC

Implementors should be aware that the software represents the user in
their interactions over the Internet, and should be careful to allow
the user to be aware of any actions they might take which may have an
unexpected significance to themselves or others.

In particular, the convention has been established that the GET and
HEAD methods SHOULD NOT have the significance of taking an action other
than retrieval. These methods ought to be considered "safe". This
allows user agents to represent other methods, such as POST, PUT and
DELETE, in a special way, so that the user is made aware of the fact
that a possibly unsafe action is being requested.

Naturally, it is not possible to ensure that the server does not
generate side-effects as a result of performing a GET request; in fact,
some dynamic resources consider that a feature. The important
distinction here is that the user did not request the side-effects, so
therefore cannot be held accountable for them.

8.1.2. Idempotent Methods TOC

Methods can also have the property of "idempotence" in that (aside from
error or expiration issues) the side-effects of N > 0 identical
requests is the same as for a single request. The methods GET, HEAD,
PUT and DELETE share this property. Also, the methods OPTIONS and TRACE
SHOULD NOT have side effects, and so are inherently idempotent.
However, it is possible that a sequence of several requests is non-
idempotent, even if all of the methods executed in that sequence are
idempotent. (A sequence is idempotent if a single execution of the
entire sequence always yields a result that is not changed by a
reexecution of all, or part, of that sequence.) For example, a sequence
is non-idempotent if its result depends on a value that is later
modified in the same sequence.

A sequence that never has side effects is idempotent, by definition
(provided that no concurrent operations are being executed on the same
set of resources).

8.2. OPTIONS TOC

The OPTIONS method represents a request for information about the
communication options available on the request/response chain
identified by the Request-URI. This method allows the client to
determine the options and/or requirements associated with a resource,
or the capabilities of a server, without implying a resource action or
initiating a resource retrieval.

Responses to this method are not cacheable.

If the OPTIONS request includes an entity-body (as indicated by the
presence of Content-Length or Transfer-Encoding), then the media type
MUST be indicated by a Content-Type field. Although this specification
does not define any use for such a body, future extensions to HTTP
might use the OPTIONS body to make more detailed queries on the server.

A server that does not support such an extension MAY discard the
request body.

If the Request-URI is an asterisk ("*"), the OPTIONS request is
intended to apply to the server in general rather than to a specific
resource. Since a server's communication options typically depend on
the resource, the "*" request is only useful as a "ping" or "no-op"
type of method; it does nothing beyond allowing the client to test the
capabilities of the server. For example, this can be used to test a
proxy for HTTP/1.1 compliance (or lack thereof).

If the Request-URI is not an asterisk, the OPTIONS request applies only
to the options that are available when communicating with that
resource.

A 200 response SHOULD include any header fields that indicate optional
features implemented by the server and applicable to that resource
(e.g., Allow), possibly including extensions not defined by this
specification. The response body, if any, SHOULD also include
information about the communication options. The format for such a body
is not defined by this specification, but might be defined by future
extensions to HTTP. Content negotiation MAY be used to select the
appropriate response format. If no response body is included, the
response MUST include a Content-Length field with a field-value of "0".
The Max-Forwards request-header field MAY be used to target a specific
proxy in the request chain. When a proxy receives an OPTIONS request on
an absoluteURI for which request forwarding is permitted, the proxy
MUST check for a Max-Forwards field. If the Max-Forwards field-value is
zero ("0"), the proxy MUST NOT forward the message; instead, the proxy
SHOULD respond with its own communication options. If the Max-Forwards
field-value is an integer greater than zero, the proxy MUST decrement
the field-value when it forwards the request. If no Max-Forwards field
is present in the request, then the forwarded request MUST NOT include
a Max-Forwards field.

8.3. GET T0C

The GET method means retrieve whatever information (in the form of an
entity) is identified by the Request-URI. If the Request-URI refers to
a data-producing process, it is the produced data which shall be
returned as the entity in the response and not the source text of the
process, unless that text happens to be the output of the process.

The semantics of the GET method change to a "conditional GET" if the
request message includes an If-Modified-Since, If-Unmodified-Since, If-
Match, If-None-Match, or If-Range header field. A conditional GET
method requests that the entity be transferred only under the
circumstances described by the conditional header field(s). The
conditional GET method is intended to reduce unnecessary network usage

by allowing cached entities to be refreshed without requiring multiple
requests or transferring data already held by the client.

The semantics of the GET method change to a "partial GET" if the
request message includes a Range header field. A partial GET requests
that only part of the entity be transferred, as described in Section
6.4 of [Part5] (Fielding, R., Ed., Gettys, J., Moqul, J., Frystyk, H.,
Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J.
Reschke, Ed., “HTTP/1.1, part 5: Range Requests and Partial Responses,”
June 2008.). The partial GET method is intended to reduce unnecessary
network usage by allowing partially-retrieved entities to be completed
without transferring data already held by the client.

The response to a GET request is cacheable if and only if it meets the
requirements for HTTP caching described in [Part6] (Fielding, R., Ed.,
Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 6:
Caching,” June 2008.).

See Section 12.2 (Encoding Sensitive Information in URIs) for security
considerations when used for forms.

8.4. HEAD T0C

The HEAD method is identical to GET except that the server MUST NOT
return a message-body in the response. The metainformation contained in
the HTTP headers in response to a HEAD request SHOULD be identical to
the information sent in response to a GET request. This method can be
used for obtaining metainformation about the entity implied by the
request without transferring the entity-body itself. This method is
often used for testing hypertext links for validity, accessibility, and
recent modification.

The response to a HEAD request MAY be cacheable in the sense that the
information contained in the response MAY be used to update a
previously cached entity from that resource. If the new field values
indicate that the cached entity differs from the current entity (as
would be indicated by a change in Content-Length, Content-MD5, ETag or
Last-Modified), then the cache MUST treat the cache entry as stale.

8.5. POST T0C

The POST method is used to request that the origin server accept the
entity enclosed in the request as data to be processed by the resource
identified by the Request-URI in the Request-Line. POST is designed to
allow a uniform method to cover the following functions:

*Annotation of existing resources;

*Posting a message to a bulletin board, newsgroup, mailing list,
or similar group of articles;

*Providing a block of data, such as the result of submitting a
form, to a data-handling process;

*Extending a database through an append operation.

The actual function performed by the POST method is determined by the
server and is usually dependent on the Request-URI.

The action performed by the POST method might not result in a resource
that can be identified by a URI. In this case, either 200 (OK) or 204
(No Content) is the appropriate response status, depending on whether
or not the response includes an entity that describes the result.

If a resource has been created on the origin server, the response
SHOULD be 201 (Created) and contain an entity which describes the
status of the request and refers to the new resource, and a Location
header (see Section 10.4 (Location)).

Responses to this method are not cacheable, unless the response
includes appropriate Cache-Control or Expires header fields. However,
the 303 (See Other) response can be used to direct the user agent to
retrieve a cacheable resource.

8.6. PUT TOC

The PUT method requests that the enclosed entity be stored at the
supplied Request-URI. If the Request-URI refers to an already existing
resource, the enclosed entity SHOULD be considered as a modified
version of the one residing on the origin server. If the Request-URI
does not point to an existing resource, and that URI is capable of
being defined as a new resource by the requesting user agent, the
origin server can create the resource with that URI. If a new resource
is created at the Request-URI, the origin server MUST inform the user
agent via the 201 (Created) response. If an existing resource is
modified, either the 200 (OK) or 204 (No Content) response codes SHOULD
be sent to indicate successful completion of the request. If the
resource could not be created or modified with the Request-URI, an
appropriate error response SHOULD be given that reflects the nature of
the problem. The recipient of the entity MUST NOT ignore any Content-*
(e.g. Content-Range) headers that it does not understand or implement
and MUST return a 501 (Not Implemented) response in such cases.

If the request passes through a cache and the Request-URI identifies
one or more currently cached entities, those entries SHOULD be treated
as stale. Responses to this method are not cacheable.

The fundamental difference between the POST and PUT requests is
reflected in the different meaning of the Request-URI. The URI in a
POST request identifies the resource that will handle the enclosed

entity. That resource might be a data-accepting process, a gateway to
some other protocol, or a separate entity that accepts annotations. In
contrast, the URI in a PUT request identifies the entity enclosed with
the request -- the user agent knows what URI is intended and the server
MUST NOT attempt to apply the request to some other resource. If the
server desires that the request be applied to a different URI, it MUST
send a 301 (Moved Permanently) response; the user agent MAY then make
its own decision regarding whether or not to redirect the request.

A single resource MAY be identified by many different URIs. For
example, an article might have a URI for identifying "the current
version" which is separate from the URI identifying each particular
version. In this case, a PUT request on a general URI might result in
several other URIs being defined by the origin server.

HTTP/1.1 does not define how a PUT method affects the state of an
origin server.

Unless otherwise specified for a particular entity-header, the entity-
headers in the PUT request SHOULD be applied to the resource created or
modified by the PUT.

8.7. DELETE T0C

The DELETE method requests that the origin server delete the resource
identified by the Request-URI. This method MAY be overridden by human
intervention (or other means) on the origin server. The client cannot
be guaranteed that the operation has been carried out, even if the
status code returned from the origin server indicates that the action
has been completed successfully. However, the server SHOULD NOT
indicate success unless, at the time the response is given, it intends
to delete the resource or move it to an inaccessible location.

A successful response SHOULD be 200 (OK) if the response includes an
entity describing the status, 202 (Accepted) if the action has not yet
been enacted, or 204 (No Content) if the action has been enacted but
the response does not include an entity.

If the request passes through a cache and the Request-URI identifies
one or more currently cached entities, those entries SHOULD be treated
as stale. Responses to this method are not cacheable.

8.8. TRACE T0C

The TRACE method is used to invoke a remote, application-layer loop-
back of the request message. The final recipient of the request SHOULD
reflect the message received back to the client as the entity-body of a
200 (OK) response. The final recipient is either the origin server or
the first proxy or gateway to receive a Max-Forwards value of zero (0)

in the request (see Section 10.5 (Max-Forwards)). A TRACE request MUST
NOT include an entity.

TRACE allows the client to see what is being received at the other end
of the request chain and use that data for testing or diagnostic
information. The value of the VvVia header field (Section 8.9 of [Partl
(Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
Leach, P., Berners-lLee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/

1.1, part 1: URIs, Connections, and Message Parsing,” June 2008.)) is
of particular interest, since it acts as a trace of the request chain.
Use of the Max-Forwards header field allows the client to limit the
length of the request chain, which is useful for testing a chain of
proxies forwarding messages in an infinite loop.

If the request is valid, the response SHOULD contain the entire request
message in the entity-body, with a Content-Type of "message/http" (see
Appendix A.1 of [Parti] (Fielding, R., Ed., Gettys, J., Mogul, J.,
Frystyk, H., Masinter, L., Leach, P., Berners-lLee, T., Lafon, Y., Ed.,
and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message
Parsing,” June 2008.)). Responses to this method MUST NOT be cached.

8.9. CONNECT T0C

This specification reserves the method name CONNECT for use with a
proxy that can dynamically switch to being a tunnel (e.g. SSL tunneling
[Luo1998] (Luotonen, A., “Tunneling TCP based protocols through Web
proxy servers,” August 1998.)).

9. Status Code Definitions TOC

Each Status-Code is described below, including a description of which
method(s) it can follow and any metainformation required in the
response.

9.1. Informational 1xx TOC

This class of status code indicates a provisional response, consisting
only of the Status-Line and optional headers, and is terminated by an
empty line. There are no required headers for this class of status
code. Since HTTP/1.0 did not define any 1xx status codes, servers MUST
NOT send a 1xx response to an HTTP/1.0 client except under experimental
conditions.

A client MUST be prepared to accept one or more 1xx status responses
prior to a regular response, even if the client does not expect a 100
(Continue) status message. Unexpected 1xx status responses MAY be
ignored by a user agent.

Proxies MUST forward 1xx responses, unless the connection between the
proxy and its client has been closed, or unless the proxy itself
requested the generation of the 1xx response. (For example, if a proxy
adds a "Expect: 100-continue" field when it forwards a request, then it
need not forward the corresponding 100 (Continue) response(s).)

9.1.1. 100 Continue TOC

The client SHOULD continue with its request. This interim response is
used to inform the client that the initial part of the request has been
received and has not yet been rejected by the server. The client SHOULD
continue by sending the remainder of the request or, if the request has
already been completed, ignore this response. The server MUST send a
final response after the request has been completed. See Section 7.2.3
of [Partl] (Fielding, R., Ed., Gettys, J., Moqul, J., Frystyk, H.,
Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J.
Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message
Parsing,” June 2008.) for detailed discussion of the use and handling
of this status code.

9.1.2. 101 Switching Protocols TOC

The server understands and is willing to comply with the client's
request, via the Upgrade message header field (Section 6.4 of [Parts
(Fielding, R., Ed., Gettys, J., Moqul, J., Frystyk, H., Masinter, L.,
Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/
1.1, part 5: Range Requests and Partial Responses,” June 2008.)), for a
change in the application protocol being used on this connection. The
server will switch protocols to those defined by the response's Upgrade
header field immediately after the empty line which terminates the 101
response.

The protocol SHOULD be switched only when it is advantageous to do so.
For example, switching to a newer version of HTTP is advantageous over
older versions, and switching to a real-time, synchronous protocol
might be advantageous when delivering resources that use such features.

T0C

9.2. Successful 2xx

This class of status code indicates that the client's request was
successfully received, understood, and accepted.

9.2.1. 200 OK TOC

The request has succeeded. The information returned with the response
is dependent on the method used in the request, for example:

GET an entity corresponding to the requested resource is sent in
the response;

HEAD the entity-header fields corresponding to the requested
resource are sent in the response without any message-body;

POST an entity describing or containing the result of the action;

TRACE an entity containing the request message as received by the
end server.

9.2.2. 201 Created TOC

The request has been fulfilled and resulted in a new resource being
created. The newly created resource can be referenced by the URI(S)
returned in the entity of the response, with the most specific URI for
the resource given by a Location header field. The response SHOULD
include an entity containing a list of resource characteristics and
location(s) from which the user or user agent can choose the one most
appropriate. The entity format is specified by the media type given in
the Content-Type header field. The origin server MUST create the
resource before returning the 201 status code. If the action cannot be
carried out immediately, the server SHOULD respond with 202 (Accepted)
response instead.

A 201 response MAY contain an ETag response header field indicating the
current value of the entity tag for the requested variant just created,
see Section 7.1 of [Part4] (Fielding, R., Ed., Gettys, J., Mogul, J.,
Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
and J. Reschke, Ed., “HTTP/1.1, part 4: Conditional Requests,”

June 2008.).

9.2.3. 202 Accepted TOC

The request has been accepted for processing, but the processing has
not been completed. The request might or might not eventually be acted
upon, as it might be disallowed when processing actually takes place.
There is no facility for re-sending a status code from an asynchronous
operation such as this.

The 202 response is intentionally non-committal. Its purpose is to
allow a server to accept a request for some other process (perhaps a
batch-oriented process that is only run once per day) without requiring
that the user agent's connection to the server persist until the
process is completed. The entity returned with this response SHOULD
include an indication of the request's current status and either a
pointer to a status monitor or some estimate of when the user can
expect the request to be fulfilled.

9.2.4. 203 Non-Authoritative Information TOC

The returned metainformation in the entity-header is not the definitive
set as available from the origin server, but is gathered from a local
or a third-party copy. The set presented MAY be a subset or superset of
the original version. For example, including local annotation
information about the resource might result in a superset of the
metainformation known by the origin server. Use of this response code
is not required and is only appropriate when the response would
otherwise be 200 (OK).

9.2.5. 204 No Content TOC

The server has fulfilled the request but does not need to return an
entity-body, and might want to return updated metainformation. The
response MAY include new or updated metainformation in the form of
entity-headers, which if present SHOULD be associated with the
requested variant.

If the client is a user agent, it SHOULD NOT change its document view
from that which caused the request to be sent. This response is
primarily intended to allow input for actions to take place without
causing a change to the user agent's active document view, although any
new or updated metainformation SHOULD be applied to the document
currently in the user agent's active view.

The 204 response MUST NOT include a message-body, and thus is always
terminated by the first empty line after the header fields.

9.2.6. 205 Reset Content TOC

The server has fulfilled the request and the user agent SHOULD reset
the document view which caused the request to be sent. This response is
primarily intended to allow input for actions to take place via user
input, followed by a clearing of the form in which the input is given
so that the user can easily initiate another input action. The response
MUST NOT include an entity.

9.2.7. 206 Partial Content TOC

The server has fulfilled the partial GET request for the resource and
the enclosed entity is a partial representation as defined in [Part5
(Fielding, R., Ed., Gettys, J., Moqul, J., Frystyk, H., Masinter, L.,
Leach, P., Berners-lLee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/
1.1, part 5: Range Requests and Partial Responses,” June 2008.).

9.3. Redirection 3xx TOC

This class of status code indicates that further action needs to be
taken by the user agent in order to fulfill the request. The action
required MAY be carried out by the user agent without interaction with
the user if and only if the method used in the second request is GET or
HEAD. A client SHOULD detect infinite redirection loops, since such
loops generate network traffic for each redirection.

Note: previous versions of this specification recommended a maximum
of five redirections. Content developers should be aware that there
might be clients that implement such a fixed limitation.

9.3.1. 300 Multiple Choices TOC

The requested resource corresponds to any one of a set of
representations, each with its own specific location, and agent-driven
negotiation information (Section 5 of [Part3] (Fielding, R., Ed.,
Gettys, J., Mogqul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 3:
Message Payload and Content Negotiation,” June 2008.)) is being

provided so that the user (or user agent) can select a preferred
representation and redirect its request to that location.

Unless it was a HEAD request, the response SHOULD include an entity
containing a list of resource characteristics and location(s) from
which the user or user agent can choose the one most appropriate. The
entity format is specified by the media type given in the Content-Type
header field. Depending upon the format and the capabilities of the
user agent, selection of the most appropriate choice MAY be performed
automatically. However, this specification does not define any standard
for such automatic selection.

If the server has a preferred choice of representation, it SHOULD
include the specific URI for that representation in the Location field;
user agents MAY use the Location field value for automatic redirection.
This response is cacheable unless indicated otherwise.

9.3.2. 301 Moved Permanently TOC

The requested resource has been assigned a new permanent URI and any
future references to this resource SHOULD use one of the returned URIs.
Clients with link editing capabilities ought to automatically re-link
references to the Request-URI to one or more of the new references
returned by the server, where possible. This response is cacheable
unless indicated otherwise.

The new permanent URI SHOULD be given by the Location field in the
response. Unless the request method was HEAD, the entity of the
response SHOULD contain a short hypertext note with a hyperlink to the
new URI(S).

If the 301 status code is received in response to a request method that
is known to be "safe", as defined in Section 8.1.1 (Safe Methods), then
the request MAY be automatically redirected by the user agent without
confirmation. Otherwise, the user agent MUST NOT automatically redirect
the request unless it can be confirmed by the user, since this might
change the conditions under which the request was issued.

Note: When automatically redirecting a POST request after receiving
a 301 status code, some existing HTTP/1.0 user agents will
erroneously change it into a GET request.

9.3.3. 302 Found TOC

The requested resource resides temporarily under a different URI. Since
the redirection might be altered on occasion, the client SHOULD

continue to use the Request-URI for future requests. This response is
only cacheable if indicated by a Cache-Control or Expires header field.
The temporary URI SHOULD be given by the Location field in the
response. Unless the request method was HEAD, the entity of the
response SHOULD contain a short hypertext note with a hyperlink to the
new URI(S).

If the 302 status code is received in response to a request method that
is known to be "safe", as defined in Section 8.1.1 (Safe Methods), then
the request MAY be automatically redirected by the user agent without
confirmation. Otherwise, the user agent MUST NOT automatically redirect
the request unless it can be confirmed by the user, since this might
change the conditions under which the request was issued.

Note: [RFC1945] (Berners-Lee, T., Fielding, R., and H. Nielsen,
“Hypertext Transfer Protocol -- HTTP/1.0,” May 1996.) and [RFC2068]
(Fielding, R., Gettys, J., Moqul, J., Nielsen, H., and T. Berners-
Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” January 1997.)
specify that the client is not allowed to change the method on the
redirected request. However, most existing user agent
implementations treat 302 as if it were a 303 response, performing a
GET on the Location field-value regardless of the original request
method. The status codes 303 and 307 have been added for servers
that wish to make unambiguously clear which kind of reaction is
expected of the client.

9.3.4. 303 See Other T0C

The server directs the user agent to a different resource, indicated by
a URI in the Location header field, that provides an indirect response
to the original request. The user agent MAY perform a GET request on
the URI in the Location field in order to obtain a representation
corresponding to the response, be redirected again, or end with an
error status. The Location URI is not a substitute reference for the
originally requested resource.

The 303 status is generally applicable to any HTTP method. It is
primarily used to allow the output of a POST action to redirect the
user agent to a selected resource, since doing so provides the
information corresponding to the POST response in a form that can be
separately identified, bookmarked, and cached independent of the
original request.

A 303 response to a GET request indicates that the requested resource
does not have a representation of its own that can be transferred by
the server over HTTP. The Location URI indicates a resource that is
descriptive of the requested resource such that the follow-on
representation may be useful without implying that it adequately

represents the previously requested resource. Note that answers to the
gquestions of what can be represented, what representations are
adequate, and what might be a useful description are outside the scope
of HTTP and thus entirely determined by the resource owner(s).

A 303 response SHOULD NOT be cached unless it is indicated as cacheable
by Cache-Control or Expires header fields. Except for responses to a
HEAD request, the entity of a 303 response SHOULD contain a short
hypertext note with a hyperlink to the Location URI.

9.3.5. 304 Not Modified TOC

The response to the request has not been modified since the conditions
indicated by the client's conditional GET request, as defined in
[Part4] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J.
Reschke, Ed., “HTTP/1.1, part 4: Conditional Requests,” June 2008.).

9.3.6. 305 Use Proxy T0C

The 305 status was defined in a previous version of this specification
(see Appendix A.2 (Changes from RFC 2616)), and is now deprecated.

9.3.7. 306 (Unused) TOC

The 306 status code was used in a previous version of the
specification, is no longer used, and the code is reserved.

9.3.8. 307 Temporary Redirect TOC

The requested resource resides temporarily under a different URI. Since
the redirection MAY be altered on occasion, the client SHOULD continue
to use the Request-URI for future requests. This response is only
cacheable if indicated by a Cache-Control or Expires header field.

The temporary URI SHOULD be given by the Location field in the
response. Unless the request method was HEAD, the entity of the
response SHOULD contain a short hypertext note with a hyperlink to the
new URI(s) , since many pre-HTTP/1.1 user agents do not understand the
307 status. Therefore, the note SHOULD contain the information
necessary for a user to repeat the original request on the new URI.

If the 307 status code is received in response to a request method that
is known to be "safe", as defined in Section 8.1.1 (Safe Methods), then
the request MAY be automatically redirected by the user agent without
confirmation. Otherwise, the user agent MUST NOT automatically redirect
the request unless it can be confirmed by the user, since this might
change the conditions under which the request was issued.

9.4. Client Error 4xx TOC

The 4xx class of status code is intended for cases in which the client
seems to have erred. Except when responding to a HEAD request, the
server SHOULD include an entity containing an explanation of the error
situation, and whether it is a temporary or permanent condition. These
status codes are applicable to any request method. User agents SHOULD
display any included entity to the user.

If the client is sending data, a server implementation using TCP SHOULD
be careful to ensure that the client acknowledges receipt of the
packet(s) containing the response, before the server closes the input
connection. If the client continues sending data to the server after
the close, the server's TCP stack will send a reset packet to the
client, which may erase the client's unacknowledged input buffers
before they can be read and interpreted by the HTTP application.

9.4.1. 400 Bad Request TOC

The request could not be understood by the server due to malformed
syntax. The client SHOULD NOT repeat the request without modifications.

9.4.2. 401 Unauthorized TOC

The request requires user authentication (see [Part7] (Fielding, R.,
Ed., Gettys, J., Moqul, J., Frystyk, H., Masinter, L., Leach, P.,
Berners-lLee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part
7: Authentication,” June 2008.)).

9.4.3. 402 Payment Required TOC

This code is reserved for future use.

9.4.4. 403 Forbidden TOC

The server understood the request, but is refusing to fulfill it.
Authorization will not help and the request SHOULD NOT be repeated. If
the request method was not HEAD and the server wishes to make public
why the request has not been fulfilled, it SHOULD describe the reason
for the refusal in the entity. If the server does not wish to make this
information available to the client, the status code 404 (Not Found)
can be used instead.

9.4.5. 404 Not Found T0C

The server has not found anything matching the Request-URI. No
indication is given of whether the condition is temporary or permanent.
The 410 (Gone) status code SHOULD be used if the server knows, through
some internally configurable mechanism, that an old resource is
permanently unavailable and has no forwarding address. This status code
is commonly used when the server does not wish to reveal exactly why
the request has been refused, or when no other response is applicable.

9.4.6. 405 Method Not Allowed TOC

The method specified in the Request-Line is not allowed for the
resource identified by the Request-URI. The response MUST include an
Allow header containing a list of valid methods for the requested
resource.

9.4.7. 406 Not Acceptable TOC

The resource identified by the request is only capable of generating
response entities which have content characteristics not acceptable
according to the accept headers sent in the request.

Unless it was a HEAD request, the response SHOULD include an entity
containing a list of available entity characteristics and location(s)
from which the user or user agent can choose the one most appropriate.
The entity format is specified by the media type given in the Content-
Type header field. Depending upon the format and the capabilities of
the user agent, selection of the most appropriate choice MAY be
performed automatically. However, this specification does not define
any standard for such automatic selection.

Note: HTTP/1.1 servers are allowed to return responses which are not
acceptable according to the accept headers sent in the request. In
some cases, this may even be preferable to sending a 406 response.
User agents are encouraged to inspect the headers of an incoming
response to determine if it is acceptable.

If the response could be unacceptable, a user agent SHOULD temporarily
stop receipt of more data and query the user for a decision on further
actions.

9.4.8. 407 Proxy Authentication Required TOC

This code is similar to 401 (Unauthorized), but indicates that the
client must first authenticate itself with the proxy (see [Part7]
(Fielding, R., Ed., Gettys, J., Moqul, J., Frystyk, H., Masinter, L.,
Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/
1.1, part 7: Authentication,” June 2008.)).

9.4.9. 408 Request Timeout TOC

The client did not produce a request within the time that the server
was prepared to wait. The client MAY repeat the request without
modifications at any later time.

9.4.10. 409 Conflict TOC

The request could not be completed due to a conflict with the current
state of the resource. This code is only allowed in situations where it
is expected that the user might be able to resolve the conflict and
resubmit the request. The response body SHOULD include enough
information for the user to recognize the source of the conflict.
Ideally, the response entity would include enough information for the
user or user agent to fix the problem; however, that might not be
possible and is not required.

Conflicts are most likely to occur in response to a PUT request. For
example, if versioning were being used and the entity being PUT
included changes to a resource which conflict with those made by an
earlier (third-party) request, the server might use the 409 response to
indicate that it can't complete the request. In this case, the response
entity would likely contain a list of the differences between the two
versions in a format defined by the response Content-Type.

9.4.11. 410 Gone TOC

The requested resource is no longer available at the server and no
forwarding address is known. This condition is expected to be
considered permanent. Clients with link editing capabilities SHOULD
delete references to the Request-URI after user approval. If the server
does not know, or has no facility to determine, whether or not the
condition is permanent, the status code 404 (Not Found) SHOULD be used
instead. This response is cacheable unless indicated otherwise.

The 410 response is primarily intended to assist the task of web
maintenance by notifying the recipient that the resource is
intentionally unavailable and that the server owners desire that remote
links to that resource be removed. Such an event is common for limited-
time, promotional services and for resources belonging to individuals
no longer working at the server's site. It is not necessary to mark all
permanently unavailable resources as "gone" or to keep the mark for any
length of time -- that is left to the discretion of the server owner.

9.4.12. 411 Length Required TOC

The server refuses to accept the request without a defined Content-
Length. The client MAY repeat the request if it adds a valid Content-
Length header field containing the length of the message-body in the
request message.

9.4.13. 412 Precondition Failed TOC

The precondition given in one or more of the request-header fields
evaluated to false when it was tested on the server, as defined in
[Part4] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J.
Reschke, Ed., “HTTP/1.1, part 4: Conditional Requests,” June 2008.).

9.4.14. 413 Request Entity Too Large TOC

The server is refusing to process a request because the request entity
is larger than the server is willing or able to process. The server MAY
close the connection to prevent the client from continuing the request.

If the condition is temporary, the server SHOULD include a Retry-After
header field to indicate that it is temporary and after what time the
client MAY try again.

9.4.15. 414 Request-URI Too Long TOC

The server is refusing to service the request because the Request-URI
is longer than the server is willing to interpret. This rare condition
is only likely to occur when a client has improperly converted a POST
request to a GET request with long query information, when the client
has descended into a URI "black hole" of redirection (e.g., a
redirected URI prefix that points to a suffix of itself), or when the
server is under attack by a client attempting to exploit security holes
present in some servers using fixed-length buffers for reading or
manipulating the Request-URI.

9.4.16. 415 Unsupported Media Type TOC

The server is refusing to service the request because the entity of the
request is in a format not supported by the requested resource for the
requested method.

9.4.17. 416 Requested Range Not Satisfiable TOC

The request included a Range request-header field (Section 6.4 of
[Part5] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J.
Reschke, Ed., “HTTP/1.1, part 5: Range Requests and Partial Responses,”

June 2008.)) and none of the range-specifier values in this field
overlap the current extent of the selected resource.

9.4.18. 417 Expectation Failed TOC

The expectation given in an Expect request-header field (see

Section 10.2 (Expect)) could not be met by this server, or, if the
server is a proxy, the server has unambiguous evidence that the request
could not be met by the next-hop server.

9.5. Server Error 5xx TOC

Response status codes beginning with the digit "5" indicate cases in
which the server is aware that it has erred or is incapable of
performing the request. Except when responding to a HEAD request, the
server SHOULD include an entity containing an explanation of the error
situation, and whether it is a temporary or permanent condition. User
agents SHOULD display any included entity to the user. These response
codes are applicable to any request method.

9.5.1. 500 Internal Server Error TOC

The server encountered an unexpected condition which prevented it from
fulfilling the request.

9.5.2. 501 Not Implemented TOC

The server does not support the functionality required to fulfill the
request. This is the appropriate response when the server does not
recognize the request method and is not capable of supporting it for
any resource.

9.5.3. 502 Bad Gateway TOC

The server, while acting as a gateway or proxy, received an invalid
response from the upstream server it accessed in attempting to fulfill
the request.

9.5.4. 503 Service Unavailable TOC

The server is currently unable to handle the request due to a temporary
overloading or maintenance of the server. The implication is that this
is a temporary condition which will be alleviated after some delay. If
known, the length of the delay MAY be indicated in a Retry-After
header. If no Retry-After is given, the client SHOULD handle the
response as it would for a 500 response.

Note: The existence of the 503 status code does not imply that a
server must use it when becoming overloaded. Some servers may wish
to simply refuse the connection.

9.5.5. 504 Gateway Timeout TOC

The server, while acting as a gateway or proxy, did not receive a
timely response from the upstream server specified by the URI (e.g.
HTTP, FTP, LDAP) or some other auxiliary server (e.g. DNS) it needed to
access in attempting to complete the request.

Note: Note to implementors: some deployed proxies are known to
return 400 or 500 when DNS lookups time out.

9.5.6. 505 HTTP Version Not Supported TOC

The server does not support, or refuses to support, the protocol
version that was used in the request message. The server is indicating
that it is unable or unwilling to complete the request using the same
major version as the client, as described in Section 3.1 of [Partl
(Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/
1.1, part 1: URIs, Connections, and Message Parsing,” June 2008.),
other than with this error message. The response SHOULD contain an
entity describing why that version is not supported and what other
protocols are supported by that server.

10. Header Field Definitions TOC

This section defines the syntax and semantics of HTTP/1.1 header fields
related to request and response semantics.

For entity-header fields, both sender and recipient refer to either the
client or the server, depending on who sends and who receives the
entity.

10.1. Allow T0C

The Allow response-header field lists the set of methods advertised as
supported by the resource identified by the Request-URI. The purpose of
this field is strictly to inform the recipient of valid methods
associated with the resource. An Allow header field MUST be present in
a 405 (Method Not Allowed) response.

Allow = "Allow" ":" #Method
Example of use:
Allow: GET, HEAD, PUT
The actual set of allowed methods is defined by the origin server at
the time of each request.
A proxy MUST NOT modify the Allow header field even if it does not

understand all the methods specified, since the user agent might have
other means of communicating with the origin server.

10.2. Expect TOC

The Expect request-header field is used to indicate that particular
server behaviors are required by the client.

Expect = "Expect" ":" 1#expectation

expectation = "100-continue" | expectation-extension

expectation-extension = token ["=" (token | quoted-string)
*expect-params]

expect-params = ";" token ["=" (token | quoted-string)]

A server that does not understand or is unable to comply with any of
the expectation values in the Expect field of a request MUST respond
with appropriate error status. The server MUST respond with a 417
(Expectation Failed) status if any of the expectations cannot be met
or, if there are other problems with the request, some other 4xx
status.

This header field is defined with extensible syntax to allow for future
extensions. If a server receives a request containing an Expect field
that includes an expectation-extension that it does not support, it
MUST respond with a 417 (Expectation Failed) status.

Comparison of expectation values is case-insensitive for unquoted
tokens (including the 100-continue token), and is case-sensitive for
gquoted-string expectation-extensions.

The Expect mechanism is hop-by-hop: that is, an HTTP/1.1 proxy MUST
return a 417 (Expectation Failed) status if it receives a request with
an expectation that it cannot meet. However, the Expect request-header
itself is end-to-end; it MUST be forwarded if the request is forwarded.

Many older HTTP/1.0 and HTTP/1.1 applications do not understand the
Expect header.

See Section 7.2.3 of [Partl] (Fielding, R., Ed., Gettys, J., Moqul, J.,
Frystyk, H., Masinter, L., Leach, P., Berners-lLee, T., Lafon, Y., Ed.,
and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message
Parsing,” June 2008.) for the use of the 100 (Continue) status.

10.3. From TOC

The From request-header field, if given, SHOULD contain an Internet e-
mail address for the human user who controls the requesting user agent.
The address SHOULD be machine-usable, as defined by "mailbox" in
Section 3.4 of [RFC2822] (Resnick, P., “Internet Message Format,”

April 2001.):

From = "From" ":" mailbox

<mailbox, defined in [RFC2822], Section 3.4>

mailbox
An example is:
From: webmaster@example.org

This header field MAY be used for logging purposes and as a means for
identifying the source of invalid or unwanted requests. It SHOULD NOT
be used as an insecure form of access protection. The interpretation of
this field is that the request is being performed on behalf of the
person given, who accepts responsibility for the method performed. In
particular, robot agents SHOULD include this header so that the person
responsible for running the robot can be contacted if problems occur on
the receiving end.

The Internet e-mail address in this field MAY be separate from the
Internet host which issued the request. For example, when a request is
passed through a proxy the original issuer's address SHOULD be used.
The client SHOULD NOT send the From header field without the user's
approval, as it might conflict with the user's privacy interests or
their site's security policy. It is strongly recommended that the user
be able to disable, enable, and modify the value of this field at any
time prior to a request.

10.4. Location TOC

The Location response-header field is used for the identification of a
new resource or to redirect the recipient to a location other than the

Request-URI for completion of the request. For 201 (Created) responses,
the Location is that of the new resource which was created by the
request. For 3xx responses, the location SHOULD indicate the server's
preferred URI for automatic redirection to the resource. The field
value consists of a single absolute URI.

Location = "Location" ":" absoluteURI ["#" fragment]
An example is:
Location: http://www.example.org/pub/WwWww/People.html
Note: The Content-Location header field (Section 6.7 of [Part3

(Fielding, R., Ed., Gettys, J., Moqul, J., Frystyk, H., Masinter,
L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed.,

“HTTP/1.1, part 3: Message Payload and Content Negotiation,”

June 2008.)) differs from Location in that the Content-Location
identifies the original location of the entity enclosed in the
request. It is therefore possible for a response to contain header
fields for both Location and Content-Location.

There are circumstances in which a fragment identifier in a Location
URL would not be appropriate:

*With a 201 Created response, because in this usage the Location
header specifies the URL for the entire created resource.

*With a 300 Multiple Choices, since the choice decision 1is
intended to be made on resource characteristics and not fragment
characteristics.

*With 305 Use Proxy.

10.5. Max-Forwards TOC

The Max-Forwards request-header field provides a mechanism with the
TRACE (Section 8.8 (TRACE)) and OPTIONS (Section 8.2 (OPTIONS)) methods
to limit the number of proxies or gateways that can forward the request
to the next inbound server. This can be useful when the client is
attempting to trace a request chain which appears to be failing or
looping in mid-chain.

Max-Forwards = "Max-Forwards" ":" 1*DIGIT

The Max-Forwards value is a decimal integer indicating the remaining
number of times this request message may be forwarded.

Each proxy or gateway recipient of a TRACE or OPTIONS request
containing a Max-Forwards header field MUST check and update its value
prior to forwarding the request. If the received value is zero (0), the
recipient MUST NOT forward the request; instead, it MUST respond as the
final recipient. If the received Max-Forwards value is greater than
zero, then the forwarded message MUST contain an updated Max-Forwards
field with a value decremented by one (1).

The Max-Forwards header field MAY be ignored for all other methods
defined by this specification and for any extension methods for which
it is not explicitly referred to as part of that method definition.

10.6. Referer TOC

The Referer[sic] request-header field allows the client to specify, for
the server's benefit, the address (URI) of the resource from which the
Request-URI was obtained (the "referrer", although the header field is
misspelled.) The Referer request-header allows a server to generate
lists of back-1links to resources for interest, logging, optimized
caching, etc. It also allows obsolete or mistyped links to be traced
for maintenance. The Referer field MUST NOT be sent if the Request-URI
was obtained from a source that does not have its own URI, such as
input from the user keyboard.

Referer = "Referer" ":" (absoluteURI | relativeURI)
Example:
Referer: http://www.example.org/hypertext/Overview.html
If the field value is a relative URI, it SHOULD be interpreted relative
to the Request-URI. The URI MUST NOT include a fragment. See

Section 12.2 (Encoding Sensitive Information in URIs) for security
considerations.

10.7. Retry-After TOC

The Retry-After response-header field can be used with a 503 (Service
Unavailable) response to indicate how long the service is expected to
be unavailable to the requesting client. This field MAY also be used
with any 3xx (Redirection) response to indicate the minimum time the
user-agent is asked wait before issuing the redirected request. The

value of this field can be either an HTTP-date or an integer number of
seconds (in decimal) after the time of the response.

Retry-After = "Retry-After" ":" (HTTP-date | delta-seconds)

Time spans are non-negative decimal integers, representing time in
seconds.

delta-seconds = 1*DIGIT
Two examples of its use are

Retry-After: Fri, 31 Dec 1999 23:59:59 GMT
Retry-After: 120

In the latter example, the delay is 2 minutes.

10.8. Server TOC

The Server response-header field contains information about the
software used by the origin server to handle the request. The field can
contain multiple product tokens (Section 3.5 of [Partl] (Fielding, R.,
Ed., Gettys, J., Moqul, J., Frystyk, H., Masinter, L., Leach, P.,
Berners-lLee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part
1: URIs, Connections, and Message Parsing,” June 2008.)) and comments
identifying the server and any significant subproducts. The product
tokens are listed in order of their significance for identifying the
application.

Server = "Server" ":" 1*(product | comment)
Example:
Server: CERN/3.0 libwww/2.17

If the response is being forwarded through a proxy, the proxy
application MUST NOT modify the Server response-header. Instead, it
MUST include a Via field (as described in Section 8.9 of [Partil
(Fielding, R., Ed., Gettys, J., Moqul, J., Frystyk, H., Masinter, L.,
Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/
1.1, part 1: URIs, Connections, and Message Parsing,” June 2008.)).

Note: Revealing the specific software version of the server might
allow the server machine to become more vulnerable to attacks
against software that is known to contain security holes. Server
implementors are encouraged to make this field a configurable
option.

10.9. User-Agent TOC

The User-Agent request-header field contains information about the user
agent originating the request. This is for statistical purposes, the
tracing of protocol violations, and automated recognition of user
agents for the sake of tailoring responses to avoid particular user
agent limitations. User agents SHOULD include this field with requests.
The field can contain multiple product tokens (Section 3.5 of [Partil
(Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
Leach, P., Berners-lLee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/
1.1, part 1: URIs, Connections, and Message Parsing,” June 2008.)) and
comments identifying the agent and any subproducts which form a
significant part of the user agent. By convention, the product tokens
are listed in order of their significance for identifying the
application.

User-Agent = "User-Agent" ":" 1*(product | comment)
Example:
User-Agent: CERN-LineMode/2.15 libwww/2.17b3
11. IANA Considerations TOC
11.1. Status Code Registry TOC
The registration procedure for HTTP Status Codes -- previously defined

in Section 7.1 of [RFC2817] (Khare, R. and S. Lawrence, “Upgrading to
TLS Within HTTP/1.1,"” May 2000.) -- is now defined by Section 5.1
(Status Code Registry) of this document.

The HTTP Status Code Registry located at http://www.iana.org/
assignments/http-status-codes should be updated with the registrations
below:

Value Description Reference
100 Continue Section 9.1.1 (100 Continue)
101 Switching Protocols Section 9.1.2 (101 Switching Protocols)

200 OK Section 9.2.1 (200 OK)

http://www.iana.org/assignments/http-status-codes
http://www.iana.org/assignments/http-status-codes

201
202

203

204
205
206
300
301
302
303
304
305
306
307
400
401
402
403
404
405
406

407

408
409
410
411

412

413

414

415

416

417
500

Created
Accepted

Non-Authoritative
Information

No Content

Reset Content
Partial Content
Multiple Choices
Moved Permanently
Found

See Other

Not Modified

Use Proxy

(Unused)

Temporary Redirect
Bad Request
Unauthorized
Payment Required
Forbidden

Not Found

Method Not Allowed
Not Acceptable

Proxy Authentication
Required

Request Timeout
Conflict
Gone

Length Required

Precondition Failed

Request Entity Too Large

Request-URI Too Long

Unsupported Media Type

Requested Range Not
Satisfiable

Expectation Failed

Internal Server Error

Section 9.2.2 (201 Created)

Section 9.2.3 (202 Accepted)

Section 9.2.4 (203 Non-Authoritative
Information)

Section 9.2.5 (204 No Content)

Section 9.2.6 (205 Reset Content)
Section 9.2.7 (206 Partial Content)
Section 9.3.1 (300 Multiple Choices)
Section 9.3.2 (301 Moved Permanently)
Section 9.3.3 (302 Found)

Section 9.3.4 (303 See Other)

Section 9.3.5 (304 Not Modified)
Section 9.3.6 (305 Use Proxy)

Section 9.3.7 (306 (Unused))

Section 9.3.8 (307 Temporary Redirect)
Section 9.4.1 (400 Bad Request)
Section 9.4.2 (401 Unauthorized)
Section 9.4.3 (402 Payment Required)
Section 9.4.4 (403 Forbidden)

Section 9.4.5 (404 Not Found)

Section 9.4.6 (405 Method Not Allowed)
Section 9.4.7 (406 Not Acceptable)
Section 9.4.8 (407 Proxy Authentication
Required)

Section 9.4.9 (408 Request Timeout)
Section 9.4.10 (409 Conflict)

Section 9.4.11 (410 Gone)

Section 9.4.12 (411 lLength Required)
Section 9.4.13 (412 Precondition
Failed)

Section 9.4.14 (413 Request Entity Too
Large)

Section 9.4.15 (414 Request-URI Too
Long)

Section 9.4.16 (415 Unsupported Media
Type)

Section 9.4.17 (416 Requested Range Not
Satisfiable)

Section 9.4.18 (417 Expectation Failed)

Section 9.5.1 (500 Internal Server

Error)
501 Not Implemented Section 9.5.2 (501 Not Implemented)
502 Bad Gateway Section 9.5.3 (502 Bad Gateway)
503 Service Unavailable Section 9.5.4 (503 Service Unavailable)
504 Gateway Timeout Section 9.5.5 (504 Gateway Timeout)
505 HTTP Version Not Section 9.5.6 (505 HTTP Version Not
Supported Supported
11.2. Message Header Registration _TOoC

The Message Header Registry located at http://www.iana.org/assignments/

message-headers/message-header-index.html should be updated with the
permanent registrations below (see [RFC3864] (Klyne, G., Nottingham,
M., and J. Mogul, “Registration Procedures for Message Header Fields,”
September 2004.)):

Header Field Name Protocol Status Reference

Allow http standard Section 10.1 (Allow)

Expect http standard Section 10.2 (Expect)

From http standard Section 10.3 (From)
Location http standard Section 10.4 (Location)
Max-Forwards http standard Section 10.5 (Max-Forwards)
Referer http standard Section 10.6 (Referer)
Retry-After http standard Section 10.7 (Retry-After)
Server http standard Section 10.8 (Server)
User-Agent http standard Section 10.9 (User-Agent)

The change controller is: "IETF (iesg@ietf.org) - Internet Engineering
Task Force".

12. Security Considerations TOC

This section is meant to inform application developers, information
providers, and users of the security limitations in HTTP/1.1 as
described by this document. The discussion does not include definitive
solutions to the problems revealed, though it does make some
suggestions for reducing security risks.

http://www.iana.org/assignments/message-headers/message-header-index.html
http://www.iana.org/assignments/message-headers/message-header-index.html

12.1. Transfer of Sensitive Information TOC

Like any generic data transfer protocol, HTTP cannot regulate the
content of the data that is transferred, nor is there any a priori
method of determining the sensitivity of any particular piece of
information within the context of any given request. Therefore,
applications SHOULD supply as much control over this information as
possible to the provider of that information. Four header fields are
worth special mention in this context: Server, Via, Referer and From.
Revealing the specific software version of the server might allow the
server machine to become more vulnerable to attacks against software
that is known to contain security holes. Implementors SHOULD make the
Server header field a configurable option.

Proxies which serve as a portal through a network firewall SHOULD take
special precautions regarding the transfer of header information that
identifies the hosts behind the firewall. In particular, they SHOULD
remove, or replace with sanitized versions, any Via fields generated
behind the firewall.

The Referer header allows reading patterns to be studied and reverse
links drawn. Although it can be very useful, its power can be abused if
user details are not separated from the information contained in the
Referer. Even when the personal information has been removed, the
Referer header might indicate a private document's URI whose
publication would be inappropriate.

The information sent in the From field might conflict with the user's
privacy interests or their site's security policy, and hence it SHOULD
NOT be transmitted without the user being able to disable, enable, and
modify the contents of the field. The user MUST be able to set the
contents of this field within a user preference or application defaults
configuration.

We suggest, though do not require, that a convenient toggle interface
be provided for the user to enable or disable the sending of From and
Referer information.

The User-Agent (Section 10.9 (User-Agent)) or Server (Section 10.8
(Server)) header fields can sometimes be used to determine that a
specific client or server have a particular security hole which might
be exploited. Unfortunately, this same information is often used for
other valuable purposes for which HTTP currently has no better
mechanism.

12.2. Encoding Sensitive Information in URIs TOC

Because the source of a link might be private information or might
reveal an otherwise private information source, it is strongly
recommended that the user be able to select whether or not the Referer

field is sent. For example, a browser client could have a toggle switch
for browsing openly/anonymously, which would respectively enable/
disable the sending of Referer and From information.

Clients SHOULD NOT include a Referer header field in a (non-secure)
HTTP request if the referring page was transferred with a secure
protocol.

Authors of services should not use GET-based forms for the submission
of sensitive data because that data will be encoded in the Request-URI.
Many existing servers, proxies, and user agents log or display the
Request-URI in places where it might be visible to third parties. Such
services can use POST-based form submission instead.

12.3. Location Headers and Spoofing TOC

If a single server supports multiple organizations that do not trust
one another, then it MUST check the values of Location and Content-
Location headers in responses that are generated under control of said
organizations to make sure that they do not attempt to invalidate
resources over which they have no authority.

13. Acknowledgments TOC

14. References TOC

14.1. Normative References
TOC

[Parti] Fielding, R., Ed., Gettys, J., Moqul, J., Frystyk, H.,
Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
and J. Reschke, Ed., “HTTP/1.1, part 1: URIs,
Connections, and Message Parsing,” draft-ietf-httpbis-pl-
messaging-03 (work in progress), June 2008.

[Part3] Fielding, R., Ed., Gettys, J., Moqul, J., Frystyk, H.,
Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
and J. Reschke, Ed., “HTTP/1.1, part 3: Message Payload
and Content Negotiation,” draft-ietf-httpbis-p3-
payload-03 (work in progress), June 2008.

[Part4]

mailto:fielding@gbiv.com
mailto:jg@laptop.org
mailto:JeffMogul@acm.org
mailto:henrikn@microsoft.com
mailto:LMM@acm.org
mailto:paulle@microsoft.com
mailto:timbl@w3.org
mailto:ylafon@w3.org
mailto:julian.reschke@greenbytes.de
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p1-messaging-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p1-messaging-03.txt
mailto:fielding@gbiv.com
mailto:jg@laptop.org
mailto:JeffMogul@acm.org
mailto:henrikn@microsoft.com
mailto:LMM@acm.org
mailto:paulle@microsoft.com
mailto:timbl@w3.org
mailto:ylafon@w3.org
mailto:julian.reschke@greenbytes.de
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p3-payload-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p3-payload-03.txt

[Part5]

[Part6]

[Part7]

[RFC2119]

Fielding, R., Ed., Gettys, J., Moqul, J., Frystyk, H.,
Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
and J. Reschke, Ed., “HTTP/1.1, part 4: Conditional
Requests,” draft-ietf-httpbis-p4-conditional-03 (work in
progress), June 2008.

Fielding, R., Ed., Gettys, J., Moqul, J., Frystyk, H.,
Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
and J. Reschke, Ed., “HTTP/1.1, part 5: Range Requests
and Partial Responses,” draft-ietf-httpbis-p5-range-03
(work in progress), June 2008.

Fielding, R., Ed., Gettys, J., Moqul, J., Frystyk, H.,
Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
and J. Reschke, Ed., “HTTP/1.1, part 6: Caching,” draft-
ietf-httpbis-p6-cache-03 (work in progress), June 2008.
Fielding, R., Ed., Gettys, J., Moqul, J., Frystyk, H.,
Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
and J. Reschke, Ed., “HTTP/1.1, part 7: Authentication,”
draft-ietf-httpbis-p7-auth-03 (work in progress),

June 2008.

Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997.

14.2. Informative References

[Luo1998]

[RFC1945]

[RFC2068]

[RFC2616]

[RFC2817]

[RFC2822]

[RFC3864]

[RFC5226]

TOC
Luotonen, A., “Tunneling TCP based protocols through Web
proxy servers,” draft-luotonen-web-proxy-tunneling-01
(work in progress), August 1998.
Berners-Lee, T., Fielding, R., and H. Nielsen, *“Hypertext
Transfer Protocol -- HTTP/1.0,” RFC 1945, May 1996.
Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and T.
Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,”
RFC 2068, January 1997.
Fielding, R., Gettys, J., Moqul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext
Transfer Protocol -- HTTP/1.1,” RFC 2616, June 1999.
Khare, R. and S. Lawrence, “Upgrading to TLS Within HTTP/
1.1,” RFC 2817, May 2000.
Resnick, P., “Internet Message Format,” RFC 2822,
April 2001.
Klyne, G., Nottingham, M., and J. Mogul, “Registration
Procedures for Message Header Fields,” BCP 90, RFC 3864,
September 2004.
Narten, T. and H. Alvestrand, “Guidelines for Writing an
IANA Considerations Section in RFCs,” BCP 26, RFC 5226,
May 2008.

mailto:fielding@gbiv.com
mailto:jg@laptop.org
mailto:JeffMogul@acm.org
mailto:henrikn@microsoft.com
mailto:LMM@acm.org
mailto:paulle@microsoft.com
mailto:timbl@w3.org
mailto:ylafon@w3.org
mailto:julian.reschke@greenbytes.de
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p4-conditional-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p4-conditional-03.txt
mailto:fielding@gbiv.com
mailto:jg@laptop.org
mailto:JeffMogul@acm.org
mailto:henrikn@microsoft.com
mailto:LMM@acm.org
mailto:paulle@microsoft.com
mailto:timbl@w3.org
mailto:ylafon@w3.org
mailto:julian.reschke@greenbytes.de
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p5-range-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p5-range-03.txt
mailto:fielding@gbiv.com
mailto:jg@laptop.org
mailto:JeffMogul@acm.org
mailto:henrikn@microsoft.com
mailto:LMM@acm.org
mailto:paulle@microsoft.com
mailto:timbl@w3.org
mailto:ylafon@w3.org
mailto:julian.reschke@greenbytes.de
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p6-cache-03.txt
mailto:fielding@gbiv.com
mailto:jg@laptop.org
mailto:JeffMogul@acm.org
mailto:henrikn@microsoft.com
mailto:LMM@acm.org
mailto:paulle@microsoft.com
mailto:timbl@w3.org
mailto:ylafon@w3.org
mailto:julian.reschke@greenbytes.de
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p7-auth-03.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.ietf.org/internet-drafts/draft-luotonen-web-proxy-tunneling-01.txt
http://www.ietf.org/internet-drafts/draft-luotonen-web-proxy-tunneling-01.txt
mailto:timbl@w3.org
mailto:fielding@ics.uci.edu
mailto:frystyk@w3.org
http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc1945
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:timbl@w3.org
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2068
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
mailto:rohit@4K-associates.com
mailto:lawrence@agranat.com
http://tools.ietf.org/html/rfc2817
http://tools.ietf.org/html/rfc2817
http://tools.ietf.org/html/rfc2822
mailto:GK-IETF@ninebynine.org
mailto:mnot@pobox.com
mailto:JeffMogul@acm.org
http://tools.ietf.org/html/rfc3864
http://tools.ietf.org/html/rfc3864
mailto:narten@us.ibm.com
mailto:Harald@Alvestrand.no
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226

Appendix A. Compatibility with Previous Versions TOC

A.1. Changes from RFC 2068 TOC

Clarified which error code should be used for inbound server failures
(e.g. DNS failures). (Section 9.5.5 (504 Gateway Timeout)).

201 (Created) had a race that required an Etag be sent when a resource
is first created. (Section 9.2.2 (201 Created)).

Rewrite of message transmission requirements to make it much harder for
implementors to get it wrong, as the consequences of errors here can
have significant impact on the Internet, and to deal with the following
problems:

1. Changing "HTTP/1.1 or later" to "HTTP/1.1", in contexts where
this was incorrectly placing a requirement on the behavior of
an implementation of a future version of HTTP/1.Xx

2. Made it clear that user-agents should retry requests, not
"clients" in general.

3. Converted requirements for clients to ignore unexpected 100
(Continue) responses, and for proxies to forward 100 responses,
into a general requirement for 1xx responses.

4. Modified some TCP-specific language, to make it clearer that
non-TCP transports are possible for HTTP.

5. Require that the origin server MUST NOT wait for the request
body before it sends a required 100 (Continue) response.

6. Allow, rather than require, a server to omit 100 (Continue) if
it has already seen some of the request body.

7. Allow servers to defend against denial-of-service attacks and
broken clients.

This change adds the Expect header and 417 status code.

Clean up confusion between 403 and 404 responses. (Section 9.4.4 (403
Forbidden), 9.4.5 (404 Not Found), and 9.4.11 (410 Gone))

The PATCH, LINK, UNLINK methods were defined but not commonly
implemented in previous versions of this specification. See Section
19.6.1 of [RFC2068] (Fielding, R., Gettys, J., Mogul, J., Nielsen, H
and T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,”
January 1997.).

=y

A.2. Changes from RFC 2616 TOC

This document takes over the Status Code Registry, previously defined
in Section 7.1 of [RFC2817] (Khare, R. and S. Lawrence, “Upgrading to
TLS Within HTTP/1.1,” May 2000.). (Section 5.1 (Status Code Registry))
Clarify definition of POST. (Section 8.5 (POST))

Failed to consider that there are many other request methods that are
safe to automatically redirect, and further that the user agent is able
to make that determination based on the request method semantics.
(Sections 9.3.2 (301 Moved Permanently), 9.3.3 (302 Found) and 9.3.8
(307 Temporary Redirect))

Deprecate 305 Use Proxy status code, because user agents did not
implement it. It used to indicate that the requested resource must be
accessed through the proxy given by the Location field. The Location
field gave the URI of the proxy. The recipient was expected to repeat
this single request via the proxy. (Section 9.3.6 (305 Use Proxy))
Reclassify Allow header as response header, removing the option to
specify it in a PUT request. Relax the server requirement on the
contents of the Allow header and remove requirement on clients to
always trust the header value. (Section 10.1 (Allow))

Correct syntax of Location header to allow fragment, as referred symbol
wasn't what was expected, and add some clarifications as to when it
would not be appropriate. (Section 10.4 (Location))

In the description of the Server header, the via field was described as
a SHOULD. The requirement was and is stated correctly in the
description of the Vvia header in Section 8.9 of [Partil] (Fielding, R.,
Ed., Gettys, J., Moqul, J., Frystyk, H., Masinter, L., Leach, P.,
Berners-lLee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part
1: URIs, Connections, and Message Parsing,” June 2008.). (Section 10.8

(Server))

Appendix B. Change Log (to be removed by RFC Editor before TOC
publication)
B.1. Since RFC2616 TOC

Extracted relevant partitions from [RFC2616] (Fielding, R., Gettys, J.,
Moqul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee,
“Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.).

B.2. Since draft-ietf-httpbis-p2-semantics-00 TOC
Closed issues:

*http://www3.tools.ietf.org/wg/httpbis/trac/ticket/5: "Via is a
MUST" (http://purl.org/NET/http-errata#via-must)

*http://www3.tools.ietf.org/wg/httpbis/trac/ticket/6: "Fragments
allowed in Location" (http://purl.org/NET/http-errata#location-

fragments)

*http://www3.tools.ietf.org/wg/httpbis/trac/ticket/10: "Safe
Methods vs Redirection" (http://purl.org/NET/http-
errata#saferedirect)

*http://www3.tools.jietf.org/wg/httpbis/trac/ticket/17: "Revise
description of the POST method" (http://purl.org/NET/http-

errata#post)

*http://www3.tools.jietf.org/wg/httpbis/trac/ticket/35: "Normative
and Informative references"

*http://www3.tools.ietf.org/wg/httpbis/trac/ticket/42: "RFC2606
Compliance"

*http://www3.tools.ietf.org/wg/httpbis/trac/ticket/65:
"Informative references"

*http://www3.tools.ietf.org/wg/httpbis/trac/ticket/84: "Redundant
cross-references"

Other changes:

*Move definitions of 304 and 412 condition codes to [Part4
(Fielding, R., Ed., Gettys, J., Mogqul, J., Frystyk, H., Masinter,
L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke,
Ed., “HTTP/1.1, part 4: Conditional Requests,” June 2008.)

B.3. Since draft-ietf-httpbis-p2-semantics-01 TOC

Closed issues:

*http://www3.tools.ietf.org/wg/httpbis/trac/ticket/21: "PUT side
effects"

http://www3.tools.ietf.org/wg/httpbis/trac/ticket/5
http://purl.org/NET/http-errata#via-must
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/6
http://purl.org/NET/http-errata#location-fragments
http://purl.org/NET/http-errata#location-fragments
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/10
http://purl.org/NET/http-errata#saferedirect
http://purl.org/NET/http-errata#saferedirect
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/17
http://purl.org/NET/http-errata#post
http://purl.org/NET/http-errata#post
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/35
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/42
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/65
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/84
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/21

*http://www3.tools.ietf.org/wg/httpbis/trac/ticket/91: "Duplicate
Host header requirements"

Ongoing work on ABNF conversion (http://www3.tools.ietf.org/wg/httpbis/
trac/ticket/36):

*Move "Product Tokens" section (back) into Part 1, as "token" is
used in the definition of the Upgrade header.

*Add explicit references to BNF syntax and rules imported from
other parts of the specification.

*Copy definition of delta-seconds from Part6 instead of
referencing it.

B.4. Since draft-ietf-httpbis-p2-semantics-02 TOC
Closed issues:

*http://www3.tools.ietf.org/wg/httpbis/trac/ticket/24: "Requiring
Allow in 405 responses"

*http://www3.tools.ietf.org/wg/httpbis/trac/ticket/59: "Status
Code Registry"

*http://www3.tools.ietf.org/wg/httpbis/trac/ticket/61:
"Redirection vs. Location"

*http://www3.tools.ietf.org/wg/httpbis/trac/ticket/70:
"Cacheability of 303 response"

*http://www3.tools.ietf.org/wg/httpbis/trac/ticket/76: "305 Use
Proxy"

*http://www3.tools.ietf.org/wg/httpbis/trac/ticket/105:
"Classification for Allow header"

*http://www3.tools.ietf.org/wg/httpbis/trac/ticket/112: "PUT -
'store under' vs 'store at'"

Ongoing work on IANA Message Header Registration (http://
www3.tools.ietf.org/wg/httpbis/trac/ticket/40):

*Reference RFC 3984, and update header registrations for headers
defined in this document.

http://www3.tools.ietf.org/wg/httpbis/trac/ticket/91
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/36
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/36
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/24
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/59
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/61
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/70
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/76
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/105
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/112
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/40
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/40

Ongoing work on ABNF conversion (http://www3.tools.ietf.org/wg/httpbis/
trac/ticket/36):

*Replace string literals when the string really is case-sensitive
(method).

Index

100 Continue (status code)
101 Switching Protocols (status code)

200 OK (status code)

201 Created (status code)

202 Accepted (status code)

203 Non-Authoritative Information (status code)
204 No Content (status code)

205 Reset Content (status code)

206 Partial Content (status code)

300 Multiple Choices (status code)
301 Moved Permanently (status code)
302 Found (status code)

303 See Other (status code)

304 Not Modified (status code)

305 Use Proxy (status code)

306 (Unused) (status code)

307 Temporary Redirect (status code)

400 Bad Request (status code)

401 Unauthorized (status code)

402 Payment Required (status code)

403 Forbidden (status code)

404 Not Found (status code)

405 Method Not Allowed (status code)

406 Not Acceptable (status code)

407 Proxy Authentication Required (status code)
408 Request Timeout (status code)

409 Conflict (status code)

410 Gone (status code)

411 Length Required (status code)

412 Precondition Failed (status code)

413 Request Entity Too Large (status code)
414 Request-URI Too Long (status code)

http://www3.tools.ietf.org/wg/httpbis/trac/ticket/36
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/36

415 Unsupported Media Type (status code)
416 Requested Range Not Satisfiable (status code)

417 Expectation Failed (status code)

500 Internal Server Error (status code)

501 Not Implemented (status code)

502 Bad Gateway (status code)

503 Service Unavailable (status code)

504 Gateway Timeout (status code)

505 HTTP Version Not Supported (status code)

Allow header

CONNECT method

DELETE method

Expect header

From header

GET method
Grammar
Allow
delta-seconds
Expect
expect-params

expectation
expectation-extension

extension-code
extension-method
From

Location

Max-Forwards
Method
Reason-Phrase
Referer
request-header
response-header
Retry-After
Server
Status-Code

User-Agent

HEAD method
Headers

Allow

Expect

From
Location
Max-Forwards
Referer

Retry-After
Server

User -Agent

LINK method
Location header

Max-Forwards header

Methods
CONNECT
DELETE
GET
HEAD
LINK
OPTIONS
PATCH
POST
PUT
TRACE
UNLTINK

OPTIONS method

PATCH method
POST method
PUT method

Referer header
Retry-After header

Server header
Status Codes
100 Continue
101 Switching Protocols
200 OK
201 Created
202 Accepted
203 Non-Authoritative Information
204 No Content
205 Reset Content

206 Partial Content

300 Multiple Choices

301 Moved Permanently

302 Found

303 See Other

304 Not Modified

305 Use Proxy

306 (Unused)

307 Temporary Redirect

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required
408 Request Timeout

409 Conflict

410 Gone

411 Length Required

412 Precondition Failed

413 Request Entity Too Large
414 Request-URT Too Long

415 Unsupported Media Type
416 Requested Range Not Satisfiable
417 Expectation Failed

500 Internal Server Error
501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Timeout

505 HTTP Version Not Supported

TRACE method

UNLINK method
User -Agent header

Authors' Addresses
TOC

Roy T. Fielding (editor)

Day Software

23 Corporate Plaza DR, Suite 280
Newport Beach, CA 92660

USA
Phone: +1-949-706-5300
Fax: +1-949-706-5305
Email: fielding@gbiv.com
URI: http://roy.gbiv.com/

Jim Gettys
One Laptop per Child
21 Oak Knoll Road
Carlisle, MA 01741
USA
Email: jg@laptop.org
URI: http://www.laptop.org/

Jeffrey C. Mogul
Hewlett-Packard Company
HP Labs, Large Scale Systems Group
1501 Page Mill Road, MS 1177
Palo Alto, CA 94304
USA
Email: JeffMogul@acm.org

Henrik Frystyk Nielsen
Microsoft Corporation
1 Microsoft Wway
Redmond, WA 98052
USA

Email: henrikn@microsoft.com

Larry Masinter
Adobe Systems, Incorporated
345 Park Ave
San Jose, CA 95110
USA
Email: LMM@acm.org
URI: http://larry.masinter.net/

Paul J. Leach
Microsoft Corporation
1 Microsoft Way
Redmond, WA 98052
Email: paulle@microsoft.com

Tim Berners-Lee

World wWide Web Consortium

MIT Computer Science and Artificial Intelligence Laboratory
The Stata Center, Building 32

http://roy.gbiv.com/
http://www.laptop.org/
http://larry.masinter.net/

32 Vassar Street
Cambridge, MA 02139
USA
Email: timbl@w3.org
URI: http://www.w3.0rg/People/Berners-Lee/

Yves Lafon (editor)
wWorld wWide Web Consortium
W3C / ERCIM
2004, rte des Lucioles
Sophia-Antipolis, AM 06902
France

Email: ylafon@w3.org

URI: http://www.raubacapeu.net/people/yves/

Julian F. Reschke (editor)
greenbytes GmbH
Hafenweg 16
Muenster, NW 48155
Germany
Phone: +49 251 2807760
Fax: +49 251 2807761
Email: julian.reschke@greenbytes.de
URI: http://greenbytes.de/tech/webdav/

Full Copyright Statement
TOC
Copyright © The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
“AS IS” basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has made

http://www.w3.org/People/Berners-Lee/
http://www.raubacapeu.net/people/yves/
http://greenbytes.de/tech/webdav/

any independent effort to identify any such rights. Information on the
procedures with respect to rights in RFC documents can be found in

BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification
can be obtained from the IETF on-line IPR repository at http://
www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
that may cover technology that may be required to implement this
standard. Please address the information to the IETF at ietf-
ipr@ietf.org.

http://www.ietf.org/ipr
http://www.ietf.org/ipr

	HTTP/1.1, part 2: Message Semanticsdraft-ietf-httpbis-p2-semantics-03
	Status of this Memo
	Abstract
	Editorial Note (To be removed by RFC Editor)
	Table of Contents
	1. Introduction
	1.1. Requirements
	2. Notational Conventions and Generic Grammar
	3. Method
	4. Request Header Fields
	5. Status Code and Reason Phrase
	5.1. Status Code Registry
	6. Response Header Fields
	7. Entity
	8. Method Definitions
	8.1. Safe and Idempotent Methods
	8.1.1. Safe Methods
	8.1.2. Idempotent Methods
	8.2. OPTIONS
	8.3. GET
	8.4. HEAD
	8.5. POST
	8.6. PUT
	8.7. DELETE
	8.8. TRACE
	8.9. CONNECT
	9. Status Code Definitions
	9.1. Informational 1xx
	9.1.1. 100 Continue
	9.1.2. 101 Switching Protocols
	9.2. Successful 2xx
	9.2.1. 200 OK
	9.2.2. 201 Created
	9.2.3. 202 Accepted
	9.2.4. 203 Non-Authoritative Information
	9.2.5. 204 No Content
	9.2.6. 205 Reset Content
	9.2.7. 206 Partial Content
	9.3. Redirection 3xx
	9.3.1. 300 Multiple Choices
	9.3.2. 301 Moved Permanently
	9.3.3. 302 Found
	9.3.4. 303 See Other
	9.3.5. 304 Not Modified
	9.3.6. 305 Use Proxy
	9.3.7. 306 (Unused)
	9.3.8. 307 Temporary Redirect
	9.4. Client Error 4xx
	9.4.1. 400 Bad Request
	9.4.2. 401 Unauthorized
	9.4.3. 402 Payment Required
	9.4.4. 403 Forbidden
	9.4.5. 404 Not Found
	9.4.6. 405 Method Not Allowed
	9.4.7. 406 Not Acceptable
	9.4.8. 407 Proxy Authentication Required
	9.4.9. 408 Request Timeout
	9.4.10. 409 Conflict
	9.4.11. 410 Gone
	9.4.12. 411 Length Required
	9.4.13. 412 Precondition Failed
	9.4.14. 413 Request Entity Too Large
	9.4.15. 414 Request-URI Too Long
	9.4.16. 415 Unsupported Media Type
	9.4.17. 416 Requested Range Not Satisfiable
	9.4.18. 417 Expectation Failed
	9.5. Server Error 5xx
	9.5.1. 500 Internal Server Error
	9.5.2. 501 Not Implemented
	9.5.3. 502 Bad Gateway
	9.5.4. 503 Service Unavailable
	9.5.5. 504 Gateway Timeout
	9.5.6. 505 HTTP Version Not Supported
	10. Header Field Definitions
	10.1. Allow
	10.2. Expect
	10.3. From
	10.4. Location
	10.5. Max-Forwards
	10.6. Referer
	10.7. Retry-After
	10.8. Server
	10.9. User-Agent
	11. IANA Considerations
	11.1. Status Code Registry
	11.2. Message Header Registration
	12. Security Considerations
	12.1. Transfer of Sensitive Information
	12.2. Encoding Sensitive Information in URIs
	12.3. Location Headers and Spoofing
	13. Acknowledgments
	14. References
	14.1. Normative References
	14.2. Informative References
	Appendix A. Compatibility with Previous Versions
	A.1. Changes from RFC 2068
	A.2. Changes from RFC 2616
	Appendix B. Change Log (to be removed by RFC Editor before publication)
	B.1. Since RFC2616
	B.2. Since draft-ietf-httpbis-p2-semantics-00
	B.3. Since draft-ietf-httpbis-p2-semantics-01
	B.4. Since draft-ietf-httpbis-p2-semantics-02
	Index
	Authors' Addresses
	Full Copyright Statement
	Intellectual Property

