
HTTPbis Working Group R. Fielding, Ed.
Internet-Draft Adobe
Obsoletes: 2616 (if approved) J. Gettys
Updates: 2817 (if approved) Alcatel-Lucent
Intended status: Standards Track J. Mogul
Expires: January 12, 2012 HP
 H. Frystyk
 Microsoft
 L. Masinter
 Adobe
 P. Leach
 Microsoft
 T. Berners-Lee
 W3C/MIT
 Y. Lafon, Ed.
 W3C
 J. Reschke, Ed.
 greenbytes
 July 11, 2011

HTTP/1.1, part 2: Message Semantics
draft-ietf-httpbis-p2-semantics-15

Abstract

 The Hypertext Transfer Protocol (HTTP) is an application-level
 protocol for distributed, collaborative, hypermedia information
 systems. HTTP has been in use by the World Wide Web global
 information initiative since 1990. This document is Part 2 of the
 seven-part specification that defines the protocol referred to as
 "HTTP/1.1" and, taken together, obsoletes RFC 2616. Part 2 defines
 the semantics of HTTP messages as expressed by request methods,
 request header fields, response status codes, and response header
 fields.

Editorial Note (To be removed by RFC Editor)

 Discussion of this draft should take place on the HTTPBIS working
 group mailing list (ietf-http-wg@w3.org), which is archived at
 <http://lists.w3.org/Archives/Public/ietf-http-wg/>.

 The current issues list is at
 <http://tools.ietf.org/wg/httpbis/trac/report/3> and related
 documents (including fancy diffs) can be found at
 <http://tools.ietf.org/wg/httpbis/>.

 The changes in this draft are summarized in Appendix C.16.

Fielding, et al. Expires January 12, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2817
https://datatracker.ietf.org/doc/html/rfc2616
http://lists.w3.org/Archives/Public/ietf-http-wg/
http://tools.ietf.org/wg/httpbis/trac/report/3
http://tools.ietf.org/wg/httpbis/

Internet-Draft HTTP/1.1, Part 2 July 2011

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 12, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 6
1.1. Requirements . 6

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Fielding, et al. Expires January 12, 2012 [Page 2]

Internet-Draft HTTP/1.1, Part 2 July 2011

1.2. Syntax Notation . 6
1.2.1. Core Rules . 7

 1.2.2. ABNF Rules defined in other Parts of the
 Specification . 7

2. Method . 7
2.1. Overview of Methods 8
2.2. Method Registry . 8
2.2.1. Considerations for New Methods 8

3. Request Header Fields . 9
4. Status Code and Reason Phrase 10
4.1. Overview of Status Codes 10
4.2. Status Code Registry 12
4.2.1. Considerations for New Status Codes 12

5. Response Header Fields . 13
6. Representation . 13

 6.1. Identifying the Resource Associated with a
 Representation . 13

7. Method Definitions . 14
7.1. Safe and Idempotent Methods 14
7.1.1. Safe Methods . 14
7.1.2. Idempotent Methods 15

7.2. OPTIONS . 15
7.3. GET . 16
7.4. HEAD . 17
7.5. POST . 17
7.6. PUT . 18
7.7. DELETE . 20
7.8. TRACE . 21
7.9. CONNECT . 21
7.9.1. Establishing a Tunnel with CONNECT 22

8. Status Code Definitions 23
8.1. Informational 1xx . 23
8.1.1. 100 Continue . 23
8.1.2. 101 Switching Protocols 23

8.2. Successful 2xx . 24
8.2.1. 200 OK . 24
8.2.2. 201 Created . 24
8.2.3. 202 Accepted . 25
8.2.4. 203 Non-Authoritative Information 25
8.2.5. 204 No Content . 25
8.2.6. 205 Reset Content 26
8.2.7. 206 Partial Content 26

8.3. Redirection 3xx . 26
8.3.1. 300 Multiple Choices 27
8.3.2. 301 Moved Permanently 27
8.3.3. 302 Found . 28
8.3.4. 303 See Other . 28
8.3.5. 304 Not Modified 29

Fielding, et al. Expires January 12, 2012 [Page 3]

Internet-Draft HTTP/1.1, Part 2 July 2011

8.3.6. 305 Use Proxy . 29
8.3.7. 306 (Unused) . 29
8.3.8. 307 Temporary Redirect 29

8.4. Client Error 4xx . 30
8.4.1. 400 Bad Request 30
8.4.2. 401 Unauthorized 30
8.4.3. 402 Payment Required 30
8.4.4. 403 Forbidden . 30
8.4.5. 404 Not Found . 31
8.4.6. 405 Method Not Allowed 31
8.4.7. 406 Not Acceptable 31
8.4.8. 407 Proxy Authentication Required 32
8.4.9. 408 Request Timeout 32
8.4.10. 409 Conflict . 32
8.4.11. 410 Gone . 32
8.4.12. 411 Length Required 33
8.4.13. 412 Precondition Failed 33
8.4.14. 413 Request Representation Too Large 33
8.4.15. 414 URI Too Long 33
8.4.16. 415 Unsupported Media Type 34
8.4.17. 416 Requested Range Not Satisfiable 34
8.4.18. 417 Expectation Failed 34
8.4.19. 426 Upgrade Required 34

8.5. Server Error 5xx . 34
8.5.1. 500 Internal Server Error 35
8.5.2. 501 Not Implemented 35
8.5.3. 502 Bad Gateway 35
8.5.4. 503 Service Unavailable 35
8.5.5. 504 Gateway Timeout 35
8.5.6. 505 HTTP Version Not Supported 36

9. Header Field Definitions 36
9.1. Allow . 36
9.2. Expect . 36
9.3. From . 37
9.4. Location . 38
9.5. Max-Forwards . 39
9.6. Referer . 39
9.7. Retry-After . 40
9.8. Server . 40
9.9. User-Agent . 41

10. IANA Considerations . 42
10.1. Method Registry . 42
10.2. Status Code Registry 42
10.3. Header Field Registration 43

11. Security Considerations 44
11.1. Transfer of Sensitive Information 44
11.2. Encoding Sensitive Information in URIs 45
11.3. Location Headers and Spoofing 46

Fielding, et al. Expires January 12, 2012 [Page 4]

Internet-Draft HTTP/1.1, Part 2 July 2011

11.4. Security Considerations for CONNECT 46
12. Acknowledgments . 46
13. References . 46
13.1. Normative References 46
13.2. Informative References 47

Appendix A. Changes from RFC 2616 48
Appendix B. Collected ABNF 49
Appendix C. Change Log (to be removed by RFC Editor before

 publication) . 51
C.1. Since RFC 2616 . 51
C.2. Since draft-ietf-httpbis-p2-semantics-00 51
C.3. Since draft-ietf-httpbis-p2-semantics-01 52
C.4. Since draft-ietf-httpbis-p2-semantics-02 52
C.5. Since draft-ietf-httpbis-p2-semantics-03 53
C.6. Since draft-ietf-httpbis-p2-semantics-04 53
C.7. Since draft-ietf-httpbis-p2-semantics-05 54
C.8. Since draft-ietf-httpbis-p2-semantics-06 54
C.9. Since draft-ietf-httpbis-p2-semantics-07 54
C.10. Since draft-ietf-httpbis-p2-semantics-08 55
C.11. Since draft-ietf-httpbis-p2-semantics-09 55
C.12. Since draft-ietf-httpbis-p2-semantics-10 55
C.13. Since draft-ietf-httpbis-p2-semantics-11 56
C.14. Since draft-ietf-httpbis-p2-semantics-12 56
C.15. Since draft-ietf-httpbis-p2-semantics-13 58
C.16. Since draft-ietf-httpbis-p2-semantics-14 58

 Index . 58

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-07
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-08
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-09
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-10
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-11
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-12
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-13
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-14

Fielding, et al. Expires January 12, 2012 [Page 5]

Internet-Draft HTTP/1.1, Part 2 July 2011

1. Introduction

 This document defines HTTP/1.1 request and response semantics. Each
 HTTP message, as defined in [Part1], is in the form of either a
 request or a response. An HTTP server listens on a connection for
 HTTP requests and responds to each request, in the order received on
 that connection, with one or more HTTP response messages. This
 document defines the commonly agreed upon semantics of the HTTP
 uniform interface, the intentions defined by each request method, and
 the various response messages that might be expected as a result of
 applying that method to the target resource.

 This document is currently disorganized in order to minimize the
 changes between drafts and enable reviewers to see the smaller errata
 changes. A future draft will reorganize the sections to better
 reflect the content. In particular, the sections will be ordered
 according to the typical processing of an HTTP request message (after
 message parsing): resource mapping, methods, request modifying header
 fields, response status, status modifying header fields, and resource
 metadata. The current mess reflects how widely dispersed these
 topics and associated requirements had become in [RFC2616].

1.1. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 An implementation is not compliant if it fails to satisfy one or more
 of the "MUST" or "REQUIRED" level requirements for the protocols it
 implements. An implementation that satisfies all the "MUST" or
 "REQUIRED" level and all the "SHOULD" level requirements for its
 protocols is said to be "unconditionally compliant"; one that
 satisfies all the "MUST" level requirements but not all the "SHOULD"
 level requirements for its protocols is said to be "conditionally
 compliant".

1.2. Syntax Notation

 This specification uses the ABNF syntax defined in Section 1.2 of
 [Part1] (which extends the syntax defined in [RFC5234] with a list
 rule). Appendix B shows the collected ABNF, with the list rule
 expanded.

 The following core rules are included by reference, as defined in
[RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF

 (CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double quote),
 HEXDIG (hexadecimal 0-9/A-F/a-f), LF (line feed), OCTET (any 8-bit

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B.1

Fielding, et al. Expires January 12, 2012 [Page 6]

Internet-Draft HTTP/1.1, Part 2 July 2011

 sequence of data), SP (space), VCHAR (any visible USASCII character),
 and WSP (whitespace).

1.2.1. Core Rules

 The core rules below are defined in Section 1.2.2 of [Part1]:

 quoted-string = <quoted-string, defined in [Part1], Section 1.2.2>
 token = <token, defined in [Part1], Section 1.2.2>
 OWS = <OWS, defined in [Part1], Section 1.2.2>
 RWS = <RWS, defined in [Part1], Section 1.2.2>
 obs-text = <obs-text, defined in [Part1], Section 1.2.2>

1.2.2. ABNF Rules defined in other Parts of the Specification

 The ABNF rules below are defined in other parts:

 absolute-URI = <absolute-URI, defined in [Part1], Section 2.7>
 comment = <comment, defined in [Part1], Section 3.2>
 HTTP-date = <HTTP-date, defined in [Part1], Section 6.1>
 partial-URI = <partial-URI, defined in [Part1], Section 2.7>
 product = <product, defined in [Part1], Section 6.3>
 URI-reference = <URI-reference, defined in [Part1], Section 2.7>

2. Method

 The Method token indicates the request method to be performed on the
 target resource (Section 4.3 of [Part1]). The method is case-
 sensitive.

 Method = token

 The list of methods allowed by a resource can be specified in an
 Allow header field (Section 9.1). The status code of the response
 always notifies the client whether a method is currently allowed on a
 resource, since the set of allowed methods can change dynamically.
 An origin server SHOULD respond with the status code 405 (Method Not
 Allowed) if the method is known by the origin server but not allowed
 for the resource, and 501 (Not Implemented) if the method is
 unrecognized or not implemented by the origin server. The methods
 GET and HEAD MUST be supported by all general-purpose servers. All
 other methods are OPTIONAL; however, if the above methods are
 implemented, they MUST be implemented with the same semantics as
 those specified in Section 7.

Fielding, et al. Expires January 12, 2012 [Page 7]

Internet-Draft HTTP/1.1, Part 2 July 2011

2.1. Overview of Methods

 The methods listed below are defined in Section 7.

 +-------------+---------------+
 | Method Name | Defined in... |
 +-------------+---------------+
OPTIONS	Section 7.2
GET	Section 7.3
HEAD	Section 7.4
POST	Section 7.5
PUT	Section 7.6
DELETE	Section 7.7
TRACE	Section 7.8
CONNECT	Section 7.9
 +-------------+---------------+

 Note that this list is not exhaustive -- it does not include request
 methods defined in other specifications.

2.2. Method Registry

 The HTTP Method Registry defines the name space for the Method token
 in the Request line of an HTTP request.

 Registrations MUST include the following fields:

 o Method Name (see Section 2)

 o Safe ("yes" or "no", see Section 7.1.1)

 o Pointer to specification text

 Values to be added to this name space are subject to IETF review
 ([RFC5226], Section 4.1).

 The registry itself is maintained at
 <http://www.iana.org/assignments/http-methods>.

2.2.1. Considerations for New Methods

 When it is necessary to express new semantics for a HTTP request that
 aren't specific to a single application or media type, and currently
 defined methods are inadequate, it may be appropriate to register a
 new method.

 HTTP methods are generic; that is, they are potentially applicable to
 any resource, not just one particular media type, "type" of resource,

https://datatracker.ietf.org/doc/html/rfc5226#section-4.1
http://www.iana.org/assignments/http-methods

Fielding, et al. Expires January 12, 2012 [Page 8]

Internet-Draft HTTP/1.1, Part 2 July 2011

 or application. As such, it is preferred that new HTTP methods be
 registered in a document that isn't specific to a single application,
 so that this is clear.

 Due to the parsing rules defined in Section 3.3 of [Part1],
 definitions of HTTP methods cannot prohibit the presence of a
 message-body on either the request or the response message (with
 responses to HEAD requests being the single exception). Definitions
 of new methods cannot change this rule, but they can specify that
 only zero-length bodies (as opposed to absent bodies) are allowed.

 New method definitions need to indicate whether they are safe
 (Section 7.1.1), what semantics (if any) the request body has, and
 whether they are idempotent (Section 7.1.2). They also need to state
 whether they can be cached ([Part6]); in particular what conditions a
 cache may store the response, and under what conditions such a stored
 response may be used to satisfy a subsequent request.

3. Request Header Fields

 The request header fields allow the client to pass additional
 information about the request, and about the client itself, to the
 server. These fields act as request modifiers, with semantics
 equivalent to the parameters on a programming language method
 invocation.

 +---------------------+------------------------+
 | Header Field Name | Defined in... |
 +---------------------+------------------------+
Accept	Section 6.1 of [Part3]
Accept-Charset	Section 6.2 of [Part3]
Accept-Encoding	Section 6.3 of [Part3]
Accept-Language	Section 6.4 of [Part3]
Authorization	Section 4.1 of [Part7]
Expect	Section 9.2
From	Section 9.3
Host	Section 9.4 of [Part1]
If-Match	Section 3.1 of [Part4]
If-Modified-Since	Section 3.3 of [Part4]
If-None-Match	Section 3.2 of [Part4]
If-Range	Section 5.3 of [Part5]
If-Unmodified-Since	Section 3.4 of [Part4]
Max-Forwards	Section 9.5
Proxy-Authorization	Section 4.3 of [Part7]
Range	Section 5.4 of [Part5]
Referer	Section 9.6
TE	Section 9.5 of [Part1]

Fielding, et al. Expires January 12, 2012 [Page 9]

Internet-Draft HTTP/1.1, Part 2 July 2011

 | User-Agent | Section 9.9 |
 +---------------------+------------------------+

4. Status Code and Reason Phrase

 The Status-Code element is a 3-digit integer result code of the
 attempt to understand and satisfy the request.

 The Reason-Phrase is intended to give a short textual description of
 the Status-Code and is intended for a human user. The client does
 not need to examine or display the Reason-Phrase.

 Status-Code = 3DIGIT
 Reason-Phrase = *(WSP / VCHAR / obs-text)

 HTTP status codes are extensible. HTTP applications are not required
 to understand the meaning of all registered status codes, though such
 understanding is obviously desirable. However, applications MUST
 understand the class of any status code, as indicated by the first
 digit, and treat any unrecognized response as being equivalent to the
 x00 status code of that class, with the exception that an
 unrecognized response MUST NOT be cached. For example, if an
 unrecognized status code of 431 is received by the client, it can
 safely assume that there was something wrong with its request and
 treat the response as if it had received a 400 status code. In such
 cases, user agents SHOULD present to the user the representation
 enclosed with the response, since that representation is likely to
 include human-readable information which will explain the unusual
 status.

4.1. Overview of Status Codes

 The status codes listed below are defined in Section 8 of this
 specification, Section 4 of [Part4], Section 3 of [Part5], and
 Section 3 of [Part7]. The reason phrases listed here are only
 recommendations -- they can be replaced by local equivalents without
 affecting the protocol.

Fielding, et al. Expires January 12, 2012 [Page 10]

Internet-Draft HTTP/1.1, Part 2 July 2011

 +-------------+------------------------------+----------------------+
 | Status-Code | Reason-Phrase | Defined in... |
 +-------------+------------------------------+----------------------+
100	Continue	Section 8.1.1
101	Switching Protocols	Section 8.1.2
200	OK	Section 8.2.1
201	Created	Section 8.2.2
202	Accepted	Section 8.2.3
203	Non-Authoritative	Section 8.2.4
	Information	
204	No Content	Section 8.2.5
205	Reset Content	Section 8.2.6
206	Partial Content	Section 3.1 of
		[Part5]
300	Multiple Choices	Section 8.3.1
301	Moved Permanently	Section 8.3.2
302	Found	Section 8.3.3
303	See Other	Section 8.3.4
304	Not Modified	Section 4.1 of
		[Part4]
305	Use Proxy	Section 8.3.6
307	Temporary Redirect	Section 8.3.8
400	Bad Request	Section 8.4.1
401	Unauthorized	Section 3.1 of
		[Part7]
402	Payment Required	Section 8.4.3
403	Forbidden	Section 8.4.4
404	Not Found	Section 8.4.5
405	Method Not Allowed	Section 8.4.6
406	Not Acceptable	Section 8.4.7
407	Proxy Authentication	Section 3.2 of
	Required	[Part7]
408	Request Time-out	Section 8.4.9
409	Conflict	Section 8.4.10
410	Gone	Section 8.4.11
411	Length Required	Section 8.4.12
412	Precondition Failed	Section 4.2 of
		[Part4]
413	Request Representation Too	Section 8.4.14
	Large	
414	URI Too Long	Section 8.4.15
415	Unsupported Media Type	Section 8.4.16
416	Requested range not	Section 3.2 of
	satisfiable	[Part5]
417	Expectation Failed	Section 8.4.18
426	Upgrade Required	Section 8.4.19
500	Internal Server Error	Section 8.5.1
501	Not Implemented	Section 8.5.2

Fielding, et al. Expires January 12, 2012 [Page 11]

Internet-Draft HTTP/1.1, Part 2 July 2011

502	Bad Gateway	Section 8.5.3
503	Service Unavailable	Section 8.5.4
504	Gateway Time-out	Section 8.5.5
505	HTTP Version not supported	Section 8.5.6
 +-------------+------------------------------+----------------------+

 Note that this list is not exhaustive -- it does not include
 extension status codes defined in other specifications.

4.2. Status Code Registry

 The HTTP Status Code Registry defines the name space for the Status-
 Code token in the Status-Line of an HTTP response.

 Values to be added to this name space are subject to IETF review
 ([RFC5226], Section 4.1).

 The registry itself is maintained at
 <http://www.iana.org/assignments/http-status-codes>.

4.2.1. Considerations for New Status Codes

 When it is necessary to express new semantics for a HTTP response
 that aren't specific to a single application or media type, and
 currently defined status codes are inadequate, a new status code can
 be registered.

 HTTP status codes are generic; that is, they are potentially
 applicable to any resource, not just one particular media type,
 "type" of resource, or application. As such, it is preferred that
 new HTTP status codes be registered in a document that isn't specific
 to a single application, so that this is clear.

 Definitions of new HTTP status codes typically explain the request
 conditions that produce a response containing the status code (e.g.,
 combinations of request headers and/or method(s)), along with any
 interactions with response headers (e.g., those that are required,
 those that modify the semantics of the response).

 New HTTP status codes are required to fall under one of the
 categories defined in Section 8. To allow existing parsers to
 properly handle them, new status codes cannot disallow a response
 body, although they can mandate a zero-length response body. They
 can require the presence of one or more particular HTTP response
 header(s).

 Likewise, their definitions can specify that caches are allowed to
 use heuristics to determine their freshness (see [Part6]; by default,

https://datatracker.ietf.org/doc/html/rfc5226#section-4.1
http://www.iana.org/assignments/http-status-codes

Fielding, et al. Expires January 12, 2012 [Page 12]

Internet-Draft HTTP/1.1, Part 2 July 2011

 it is not allowed), and can define how to determine the resource
 which they carry a representation for (see Section 6.1; by default,
 it is anonymous).

5. Response Header Fields

 The response header fields allow the server to pass additional
 information about the response which cannot be placed in the Status-
 Line. These header fields give information about the server and
 about further access to the target resource (Section 4.3 of [Part1]).

 +--------------------+------------------------+
 | Header Field Name | Defined in... |
 +--------------------+------------------------+
Accept-Ranges	Section 5.1 of [Part5]
Age	Section 3.1 of [Part6]
Allow	Section 9.1
ETag	Section 2.2 of [Part4]
Location	Section 9.4
Proxy-Authenticate	Section 4.2 of [Part7]
Retry-After	Section 9.7
Server	Section 9.8
Vary	Section 3.5 of [Part6]
WWW-Authenticate	Section 4.4 of [Part7]
 +--------------------+------------------------+

6. Representation

 Request and Response messages MAY transfer a representation if not
 otherwise restricted by the request method or response status code.
 A representation consists of metadata (representation header fields)
 and data (representation body). When a complete or partial
 representation is enclosed in an HTTP message, it is referred to as
 the payload of the message. HTTP representations are defined in
 [Part3].

 A representation body is only present in a message when a message-
 body is present, as described in Section 3.3 of [Part1]. The
 representation body is obtained from the message-body by decoding any
 Transfer-Encoding that might have been applied to ensure safe and
 proper transfer of the message.

6.1. Identifying the Resource Associated with a Representation

 It is sometimes necessary to determine an identifier for the resource
 associated with a representation.

 An HTTP request representation, when present, is always associated

Fielding, et al. Expires January 12, 2012 [Page 13]

Internet-Draft HTTP/1.1, Part 2 July 2011

 with an anonymous (i.e., unidentified) resource.

 In the common case, an HTTP response is a representation of the
 target resource (see Section 4.3 of [Part1]). However, this is not
 always the case. To determine the URI of the resource a response is
 associated with, the following rules are used (with the first
 applicable one being selected):

 1. If the response status code is 200 or 203 and the request method
 was GET, the response payload is a representation of the target
 resource.

 2. If the response status code is 204, 206, or 304 and the request
 method was GET or HEAD, the response payload is a partial
 representation of the target resource (see Section 2.8 of
 [Part6]).

 3. If the response has a Content-Location header field, and that URI
 is the same as the effective request URI, the response payload is
 a representation of the target resource.

 4. If the response has a Content-Location header field, and that URI
 is not the same as the effective request URI, then the response
 asserts that its payload is a representation of the resource
 identified by the Content-Location URI. However, such an
 assertion cannot be trusted unless it can be verified by other
 means (not defined by HTTP).

 5. Otherwise, the response is a representation of an anonymous
 (i.e., unidentified) resource.

 [[TODO-req-uri: The comparison function is going to have to be
 defined somewhere, because we already need to compare URIs for things
 like cache invalidation.]]

7. Method Definitions

 The set of common request methods for HTTP/1.1 is defined below.
 Although this set can be expanded, additional methods cannot be
 assumed to share the same semantics for separately extended clients
 and servers.

7.1. Safe and Idempotent Methods

7.1.1. Safe Methods

 Implementors need to be aware that the software represents the user
 in their interactions over the Internet, and need to allow the user

Fielding, et al. Expires January 12, 2012 [Page 14]

Internet-Draft HTTP/1.1, Part 2 July 2011

 to be aware of any actions they take which might have an unexpected
 significance to themselves or others.

 In particular, the convention has been established that the GET,
 HEAD, OPTIONS, and TRACE request methods SHOULD NOT have the
 significance of taking an action other than retrieval. These request
 methods ought to be considered "safe". This allows user agents to
 represent other methods, such as POST, PUT and DELETE, in a special
 way, so that the user is made aware of the fact that a possibly
 unsafe action is being requested.

 Naturally, it is not possible to ensure that the server does not
 generate side-effects as a result of performing a GET request; in
 fact, some dynamic resources consider that a feature. The important
 distinction here is that the user did not request the side-effects,
 so therefore cannot be held accountable for them.

7.1.2. Idempotent Methods

 Request methods can also have the property of "idempotence" in that,
 aside from error or expiration issues, the intended effect of
 multiple identical requests is the same as for a single request.
 PUT, DELETE, and all safe request methods are idempotent. It is
 important to note that idempotence refers only to changes requested
 by the client: a server is free to change its state due to multiple
 requests for the purpose of tracking those requests, versioning of
 results, etc.

7.2. OPTIONS

 The OPTIONS method requests information about the communication
 options available on the request/response chain identified by the
 effective request URI. This method allows a client to determine the
 options and/or requirements associated with a resource, or the
 capabilities of a server, without implying a resource action or
 initiating a resource retrieval.

 Responses to the OPTIONS method are not cacheable.

 If the OPTIONS request includes a message-body (as indicated by the
 presence of Content-Length or Transfer-Encoding), then the media type
 MUST be indicated by a Content-Type field. Although this
 specification does not define any use for such a body, future
 extensions to HTTP might use the OPTIONS body to make more detailed
 queries on the server.

 If the request-target is an asterisk ("*"), the OPTIONS request is
 intended to apply to the server in general rather than to a specific

Fielding, et al. Expires January 12, 2012 [Page 15]

Internet-Draft HTTP/1.1, Part 2 July 2011

 resource. Since a server's communication options typically depend on
 the resource, the "*" request is only useful as a "ping" or "no-op"
 type of method; it does nothing beyond allowing the client to test
 the capabilities of the server. For example, this can be used to
 test a proxy for HTTP/1.1 compliance (or lack thereof).

 If the request-target is not an asterisk, the OPTIONS request applies
 only to the options that are available when communicating with that
 resource.

 A 200 response SHOULD include any header fields that indicate
 optional features implemented by the server and applicable to that
 resource (e.g., Allow), possibly including extensions not defined by
 this specification. The response body, if any, SHOULD also include
 information about the communication options. The format for such a
 body is not defined by this specification, but might be defined by
 future extensions to HTTP. Content negotiation MAY be used to select
 the appropriate response format. If no response body is included,
 the response MUST include a Content-Length field with a field-value
 of "0".

 The Max-Forwards header field MAY be used to target a specific proxy
 in the request chain (see Section 9.5). If no Max-Forwards field is
 present in the request, then the forwarded request MUST NOT include a
 Max-Forwards field.

7.3. GET

 The GET method requests transfer of a current representation of the
 target resource.

 If the target resource is a data-producing process, it is the
 produced data which shall be returned as the representation in the
 response and not the source text of the process, unless that text
 happens to be the output of the process.

 The semantics of the GET method change to a "conditional GET" if the
 request message includes an If-Modified-Since, If-Unmodified-Since,
 If-Match, If-None-Match, or If-Range header field. A conditional GET
 requests that the representation be transferred only under the
 circumstances described by the conditional header field(s). The
 conditional GET request is intended to reduce unnecessary network
 usage by allowing cached representations to be refreshed without
 requiring multiple requests or transferring data already held by the
 client.

 The semantics of the GET method change to a "partial GET" if the
 request message includes a Range header field. A partial GET

Fielding, et al. Expires January 12, 2012 [Page 16]

Internet-Draft HTTP/1.1, Part 2 July 2011

 requests that only part of the representation be transferred, as
 described in Section 5.4 of [Part5]. The partial GET request is
 intended to reduce unnecessary network usage by allowing partially-
 retrieved representations to be completed without transferring data
 already held by the client.

 Bodies on GET requests have no defined semantics. Note that sending
 a body on a GET request might cause some existing implementations to
 reject the request.

 The response to a GET request is cacheable and MAY be used to satisfy
 subsequent GET and HEAD requests (see [Part6]).

 See Section 11.2 for security considerations when used for forms.

7.4. HEAD

 The HEAD method is identical to GET except that the server MUST NOT
 return a message-body in the response. The metadata contained in the
 HTTP header fields in response to a HEAD request SHOULD be identical
 to the information sent in response to a GET request. This method
 can be used for obtaining metadata about the representation implied
 by the request without transferring the representation body. This
 method is often used for testing hypertext links for validity,
 accessibility, and recent modification.

 The response to a HEAD request is cacheable and MAY be used to
 satisfy a subsequent HEAD request; see [Part6]. It also MAY be used
 to update a previously cached representation from that resource; if
 the new field values indicate that the cached representation differs
 from the current representation (as would be indicated by a change in
 Content-Length, Content-MD5, ETag or Last-Modified), then the cache
 MUST treat the cache entry as stale.

 Bodies on HEAD requests have no defined semantics. Note that sending
 a body on a HEAD request might cause some existing implementations to
 reject the request.

7.5. POST

 The POST method requests that the origin server accept the
 representation enclosed in the request as data to be processed by the
 target resource. POST is designed to allow a uniform method to cover
 the following functions:

 o Annotation of existing resources;

Fielding, et al. Expires January 12, 2012 [Page 17]

Internet-Draft HTTP/1.1, Part 2 July 2011

 o Posting a message to a bulletin board, newsgroup, mailing list, or
 similar group of articles;

 o Providing a block of data, such as the result of submitting a
 form, to a data-handling process;

 o Extending a database through an append operation.

 The actual function performed by the POST method is determined by the
 server and is usually dependent on the effective request URI.

 The action performed by the POST method might not result in a
 resource that can be identified by a URI. In this case, either 200
 (OK) or 204 (No Content) is the appropriate response status code,
 depending on whether or not the response includes a representation
 that describes the result.

 If a resource has been created on the origin server, the response
 SHOULD be 201 (Created) and contain a representation which describes
 the status of the request and refers to the new resource, and a
 Location header field (see Section 9.4).

 Responses to POST requests are only cacheable when they include
 explicit freshness information (see Section 2.3.1 of [Part6]). A
 cached POST response with a Content-Location header field (see
 Section 6.7 of [Part3]) whose value is the effective Request URI MAY
 be used to satisfy subsequent GET and HEAD requests.

 Note that POST caching is not widely implemented. However, the 303
 (See Other) response can be used to direct the user agent to retrieve
 a cacheable resource.

7.6. PUT

 The PUT method requests that the state of the target resource be
 created or replaced with the state defined by the representation
 enclosed in the request message payload. A successful PUT of a given
 representation would suggest that a subsequent GET on that same
 target resource will result in an equivalent representation being
 returned in a 200 (OK) response. However, there is no guarantee that
 such a state change will be observable, since the target resource
 might be acted upon by other user agents in parallel, or might be
 subject to dynamic processing by the origin server, before any
 subsequent GET is received. A successful response only implies that
 the user agent's intent was achieved at the time of its processing by
 the origin server.

 If the target resource does not have a current representation and the

Fielding, et al. Expires January 12, 2012 [Page 18]

Internet-Draft HTTP/1.1, Part 2 July 2011

 PUT successfully creates one, then the origin server MUST inform the
 user agent by sending a 201 (Created) response. If the target
 resource does have a current representation and that representation
 is successfully modified in accordance with the state of the enclosed
 representation, then either a 200 (OK) or 204 (No Content) response
 SHOULD be sent to indicate successful completion of the request.

 Unrecognized header fields SHOULD be ignored (i.e., not saved as part
 of the resource state).

 An origin server SHOULD verify that the PUT representation is
 consistent with any constraints which the server has for the target
 resource that cannot or will not be changed by the PUT. This is
 particularly important when the origin server uses internal
 configuration information related to the URI in order to set the
 values for representation metadata on GET responses. When a PUT
 representation is inconsistent with the target resource, the origin
 server SHOULD either make them consistent, by transforming the
 representation or changing the resource configuration, or respond
 with an appropriate error message containing sufficient information
 to explain why the representation is unsuitable. The 409 (Conflict)
 or 415 (Unsupported Media Type) status codes are suggested, with the
 latter being specific to constraints on Content-Type values.

 For example, if the target resource is configured to always have a
 Content-Type of "text/html" and the representation being PUT has a
 Content-Type of "image/jpeg", then the origin server SHOULD do one
 of: (a) reconfigure the target resource to reflect the new media
 type; (b) transform the PUT representation to a format consistent
 with that of the resource before saving it as the new resource state;
 or, (c) reject the request with a 415 response indicating that the
 target resource is limited to "text/html", perhaps including a link
 to a different resource that would be a suitable target for the new
 representation.

 HTTP does not define exactly how a PUT method affects the state of an
 origin server beyond what can be expressed by the intent of the user
 agent request and the semantics of the origin server response. It
 does not define what a resource might be, in any sense of that word,
 beyond the interface provided via HTTP. It does not define how
 resource state is "stored", nor how such storage might change as a
 result of a change in resource state, nor how the origin server
 translates resource state into representations. Generally speaking,
 all implementation details behind the resource interface are
 intentionally hidden by the server.

 The fundamental difference between the POST and PUT methods is
 highlighted by the different intent for the target resource. The

Fielding, et al. Expires January 12, 2012 [Page 19]

Internet-Draft HTTP/1.1, Part 2 July 2011

 target resource in a POST request is intended to handle the enclosed
 representation as a data-accepting process, such as for a gateway to
 some other protocol or a document that accepts annotations. In
 contrast, the target resource in a PUT request is intended to take
 the enclosed representation as a new or replacement value. Hence,
 the intent of PUT is idempotent and visible to intermediaries, even
 though the exact effect is only known by the origin server.

 Proper interpretation of a PUT request presumes that the user agent
 knows what target resource is desired. A service that is intended to
 select a proper URI on behalf of the client, after receiving a state-
 changing request, SHOULD be implemented using the POST method rather
 than PUT. If the origin server will not make the requested PUT state
 change to the target resource and instead wishes to have it applied
 to a different resource, such as when the resource has been moved to
 a different URI, then the origin server MUST send a 301 (Moved
 Permanently) response; the user agent MAY then make its own decision
 regarding whether or not to redirect the request.

 A PUT request applied to the target resource MAY have side-effects on
 other resources. For example, an article might have a URI for
 identifying "the current version" (a resource) which is separate from
 the URIs identifying each particular version (different resources
 that at one point shared the same state as the current version
 resource). A successful PUT request on "the current version" URI
 might therefore create a new version resource in addition to changing
 the state of the target resource, and might also cause links to be
 added between the related resources.

 An origin server SHOULD reject any PUT request that contains a
 Content-Range header field, since it might be misinterpreted as
 partial content (or might be partial content that is being mistakenly
 PUT as a full representation). Partial content updates are possible
 by targeting a separately identified resource with state that
 overlaps a portion of the larger resource, or by using a different
 method that has been specifically defined for partial updates (for
 example, the PATCH method defined in [RFC5789]).

 Responses to the PUT method are not cacheable. If a PUT request
 passes through a cache that has one or more stored responses for the
 effective request URI, those stored responses will be invalidated
 (see Section 2.5 of [Part6]).

7.7. DELETE

 The DELETE method requests that the origin server delete the target
 resource. This method MAY be overridden by human intervention (or
 other means) on the origin server. The client cannot be guaranteed

https://datatracker.ietf.org/doc/html/rfc5789

Fielding, et al. Expires January 12, 2012 [Page 20]

Internet-Draft HTTP/1.1, Part 2 July 2011

 that the operation has been carried out, even if the status code
 returned from the origin server indicates that the action has been
 completed successfully. However, the server SHOULD NOT indicate
 success unless, at the time the response is given, it intends to
 delete the resource or move it to an inaccessible location.

 A successful response SHOULD be 200 (OK) if the response includes an
 representation describing the status, 202 (Accepted) if the action
 has not yet been enacted, or 204 (No Content) if the action has been
 enacted but the response does not include a representation.

 Bodies on DELETE requests have no defined semantics. Note that
 sending a body on a DELETE request might cause some existing
 implementations to reject the request.

 Responses to the DELETE method are not cacheable. If a DELETE
 request passes through a cache that has one or more stored responses
 for the effective request URI, those stored responses will be
 invalidated (see Section 2.5 of [Part6]).

7.8. TRACE

 The TRACE method requests a remote, application-layer loop-back of
 the request message. The final recipient of the request SHOULD
 reflect the message received back to the client as the message-body
 of a 200 (OK) response. The final recipient is either the origin
 server or the first proxy to receive a Max-Forwards value of zero (0)
 in the request (see Section 9.5). A TRACE request MUST NOT include a
 message-body.

 TRACE allows the client to see what is being received at the other
 end of the request chain and use that data for testing or diagnostic
 information. The value of the Via header field (Section 9.9 of
 [Part1]) is of particular interest, since it acts as a trace of the
 request chain. Use of the Max-Forwards header field allows the
 client to limit the length of the request chain, which is useful for
 testing a chain of proxies forwarding messages in an infinite loop.

 If the request is valid, the response SHOULD have a Content-Type of
 "message/http" (see Section 10.3.1 of [Part1]) and contain a message-
 body that encloses a copy of the entire request message. Responses
 to the TRACE method are not cacheable.

7.9. CONNECT

 The CONNECT method requests that the proxy establish a tunnel to the
 request-target and then restrict its behavior to blind forwarding of
 packets until the connection is closed.

Fielding, et al. Expires January 12, 2012 [Page 21]

Internet-Draft HTTP/1.1, Part 2 July 2011

 When using CONNECT, the request-target MUST use the authority form
 (Section 4.1.2 of [Part1]); i.e., the request-target consists of only
 the host name and port number of the tunnel destination, separated by
 a colon. For example,

 CONNECT server.example.com:80 HTTP/1.1
 Host: server.example.com:80

 Other HTTP mechanisms can be used normally with the CONNECT method --
 except end-to-end protocol Upgrade requests, since the tunnel must be
 established first.

 For example, proxy authentication might be used to establish the
 authority to create a tunnel:

 CONNECT server.example.com:80 HTTP/1.1
 Host: server.example.com:80
 Proxy-Authorization: basic aGVsbG86d29ybGQ=

 Bodies on CONNECT requests have no defined semantics. Note that
 sending a body on a CONNECT request might cause some existing
 implementations to reject the request.

 Like any other pipelined HTTP/1.1 request, data to be tunnel may be
 sent immediately after the blank line. The usual caveats also apply:
 data may be discarded if the eventual response is negative, and the
 connection may be reset with no response if more than one TCP segment
 is outstanding.

7.9.1. Establishing a Tunnel with CONNECT

 Any successful (2xx) response to a CONNECT request indicates that the
 proxy has established a connection to the requested host and port,
 and has switched to tunneling the current connection to that server
 connection.

 It may be the case that the proxy itself can only reach the requested
 origin server through another proxy. In this case, the first proxy
 SHOULD make a CONNECT request of that next proxy, requesting a tunnel
 to the authority. A proxy MUST NOT respond with any 2xx status code
 unless it has either a direct or tunnel connection established to the
 authority.

 An origin server which receives a CONNECT request for itself MAY
 respond with a 2xx status code to indicate that a connection is
 established.

Fielding, et al. Expires January 12, 2012 [Page 22]

Internet-Draft HTTP/1.1, Part 2 July 2011

 If at any point either one of the peers gets disconnected, any
 outstanding data that came from that peer will be passed to the other
 one, and after that also the other connection will be terminated by
 the proxy. If there is outstanding data to that peer undelivered,
 that data will be discarded.

8. Status Code Definitions

 Each Status-Code is described below, including any metadata required
 in the response.

8.1. Informational 1xx

 This class of status code indicates a provisional response,
 consisting only of the Status-Line and optional header fields, and is
 terminated by an empty line. There are no required header fields for
 this class of status code. Since HTTP/1.0 did not define any 1xx
 status codes, servers MUST NOT send a 1xx response to an HTTP/1.0
 client except under experimental conditions.

 A client MUST be prepared to accept one or more 1xx status responses
 prior to a regular response, even if the client does not expect a 100
 (Continue) status message. Unexpected 1xx status responses MAY be
 ignored by a user agent.

 Proxies MUST forward 1xx responses, unless the connection between the
 proxy and its client has been closed, or unless the proxy itself
 requested the generation of the 1xx response. (For example, if a
 proxy adds a "Expect: 100-continue" field when it forwards a request,
 then it need not forward the corresponding 100 (Continue)
 response(s).)

8.1.1. 100 Continue

 The client SHOULD continue with its request. This interim response
 is used to inform the client that the initial part of the request has
 been received and has not yet been rejected by the server. The
 client SHOULD continue by sending the remainder of the request or, if
 the request has already been completed, ignore this response. The
 server MUST send a final response after the request has been
 completed. See Section 7.2.3 of [Part1] for detailed discussion of
 the use and handling of this status code.

8.1.2. 101 Switching Protocols

 The server understands and is willing to comply with the client's
 request, via the Upgrade message header field (Section 9.8 of
 [Part1]), for a change in the application protocol being used on this

Fielding, et al. Expires January 12, 2012 [Page 23]

Internet-Draft HTTP/1.1, Part 2 July 2011

 connection. The server will switch protocols to those defined by the
 response's Upgrade header field immediately after the empty line
 which terminates the 101 response.

 The protocol SHOULD be switched only when it is advantageous to do
 so. For example, switching to a newer version of HTTP is
 advantageous over older versions, and switching to a real-time,
 synchronous protocol might be advantageous when delivering resources
 that use such features.

8.2. Successful 2xx

 This class of status code indicates that the client's request was
 successfully received, understood, and accepted.

8.2.1. 200 OK

 The request has succeeded. The payload returned with the response is
 dependent on the method used in the request, for example:

 GET a representation of the target resource is sent in the response;

 HEAD the same representation as GET, except without the message-
 body;

 POST a representation describing or containing the result of the
 action;

 TRACE a representation containing the request message as received by
 the end server.

 Caches MAY use a heuristic (see Section 2.3.1.1 of [Part6]) to
 determine freshness for 200 responses.

8.2.2. 201 Created

 The request has been fulfilled and has resulted in a new resource
 being created. The newly created resource can be referenced by the
 URI(s) returned in the payload of the response, with the most
 specific URI for the resource given by a Location header field. The
 response SHOULD include a payload containing a list of resource
 characteristics and location(s) from which the user or user agent can
 choose the one most appropriate. The payload format is specified by
 the media type given in the Content-Type header field. The origin
 server MUST create the resource before returning the 201 status code.
 If the action cannot be carried out immediately, the server SHOULD
 respond with 202 (Accepted) response instead.

Fielding, et al. Expires January 12, 2012 [Page 24]

Internet-Draft HTTP/1.1, Part 2 July 2011

 A 201 response MAY contain an ETag response header field indicating
 the current value of the entity-tag for the representation of the
 resource just created (see Section 2.2 of [Part4]).

8.2.3. 202 Accepted

 The request has been accepted for processing, but the processing has
 not been completed. The request might or might not eventually be
 acted upon, as it might be disallowed when processing actually takes
 place. There is no facility for re-sending a status code from an
 asynchronous operation such as this.

 The 202 response is intentionally non-committal. Its purpose is to
 allow a server to accept a request for some other process (perhaps a
 batch-oriented process that is only run once per day) without
 requiring that the user agent's connection to the server persist
 until the process is completed. The representation returned with
 this response SHOULD include an indication of the request's current
 status and either a pointer to a status monitor or some estimate of
 when the user can expect the request to be fulfilled.

8.2.4. 203 Non-Authoritative Information

 The representation in the response has been transformed or otherwise
 modified by a transforming proxy (Section 2.4 of [Part1]). Note that
 the behaviour of transforming intermediaries is controlled by the no-
 transform Cache-Control directive (Section 3.2 of [Part6]).

 This status code is only appropriate when the response status code
 would have been 200 (OK) otherwise. When the status code before
 transformation would have been different, the 214 Transformation
 Applied warn-code (Section 3.6 of [Part6]) is appropriate.

 Caches MAY use a heuristic (see Section 2.3.1.1 of [Part6]) to
 determine freshness for 203 responses.

8.2.5. 204 No Content

 The 204 (No Content) status code indicates that the server has
 successfully fulfilled the request and that there is no additional
 content to return in the response payload body. Metadata in the
 response header fields refer to the target resource and its current
 representation after the requested action.

 For example, if a 204 status code is received in response to a PUT
 request and the response contains an ETag header field, then the PUT
 was successful and the ETag field-value contains the entity-tag for
 the new representation of that target resource.

Fielding, et al. Expires January 12, 2012 [Page 25]

Internet-Draft HTTP/1.1, Part 2 July 2011

 The 204 response allows a server to indicate that the action has been
 successfully applied to the target resource while implying that the
 user agent SHOULD NOT traverse away from its current "document view"
 (if any). The server assumes that the user agent will provide some
 indication of the success to its user, in accord with its own
 interface, and apply any new or updated metadata in the response to
 the active representation.

 For example, a 204 status code is commonly used with document editing
 interfaces corresponding to a "save" action, such that the document
 being saved remains available to the user for editing. It is also
 frequently used with interfaces that expect automated data transfers
 to be prevalent, such as within distributed version control systems.

 The 204 response MUST NOT include a message-body, and thus is always
 terminated by the first empty line after the header fields.

8.2.6. 205 Reset Content

 The server has fulfilled the request and the user agent SHOULD reset
 the document view which caused the request to be sent. This response
 is primarily intended to allow input for actions to take place via
 user input, followed by a clearing of the form in which the input is
 given so that the user can easily initiate another input action.

 The message-body included with the response MUST be empty. Note that
 receivers still need to parse the response according to the algorithm
 defined in Section 3.3 of [Part1].

8.2.7. 206 Partial Content

 The server has fulfilled the partial GET request for the resource and
 the enclosed payload is a partial representation as defined in
 Section 3.1 of [Part5].

 Caches MAY use a heuristic (see Section 2.3.1.1 of [Part6]) to
 determine freshness for 206 responses.

8.3. Redirection 3xx

 This class of status code indicates that further action needs to be
 taken by the user agent in order to fulfill the request. The action
 required MAY be carried out by the user agent without interaction
 with the user if and only if the method used in the second request is
 known to be "safe", as defined in Section 7.1.1. A client SHOULD
 detect infinite redirection loops, since such loops generate network
 traffic for each redirection.

Fielding, et al. Expires January 12, 2012 [Page 26]

Internet-Draft HTTP/1.1, Part 2 July 2011

 Note: An earlier version of this specification recommended a
 maximum of five redirections ([RFC2068], Section 10.3). Content
 developers need to be aware that some clients might implement such
 a fixed limitation.

8.3.1. 300 Multiple Choices

 The target resource has more than one representation, each with its
 own specific location, and agent-driven negotiation information
 (Section 5 of [Part3]) is being provided so that the user (or user
 agent) can select a preferred representation by redirecting its
 request to that location.

 Unless it was a HEAD request, the response SHOULD include a
 representation containing a list of representation metadata and
 location(s) from which the user or user agent can choose the one most
 appropriate. The data format is specified by the media type given in
 the Content-Type header field. Depending upon the format and the
 capabilities of the user agent, selection of the most appropriate
 choice MAY be performed automatically. However, this specification
 does not define any standard for such automatic selection.

 If the server has a preferred choice of representation, it SHOULD
 include the specific URI for that representation in the Location
 field; user agents MAY use the Location field value for automatic
 redirection.

 Caches MAY use a heuristic (see Section 2.3.1.1 of [Part6]) to
 determine freshness for 300 responses.

8.3.2. 301 Moved Permanently

 The target resource has been assigned a new permanent URI and any
 future references to this resource SHOULD use one of the returned
 URIs. Clients with link editing capabilities ought to automatically
 re-link references to the effective request URI to one or more of the
 new references returned by the server, where possible.

 Caches MAY use a heuristic (see Section 2.3.1.1 of [Part6]) to
 determine freshness for 301 responses.

 The new permanent URI SHOULD be given by the Location field in the
 response. Unless the request method was HEAD, the representation of
 the response SHOULD contain a short hypertext note with a hyperlink
 to the new URI(s).

 If the 301 status code is received in response to a request method
 that is known to be "safe", as defined in Section 7.1.1, then the

https://datatracker.ietf.org/doc/html/rfc2068#section-10.3

Fielding, et al. Expires January 12, 2012 [Page 27]

Internet-Draft HTTP/1.1, Part 2 July 2011

 request MAY be automatically redirected by the user agent without
 confirmation. Otherwise, the user agent MUST NOT automatically
 redirect the request unless it can be confirmed by the user, since
 this might change the conditions under which the request was issued.

 Note: When automatically redirecting a POST request after
 receiving a 301 status code, some existing HTTP/1.0 user agents
 will erroneously change it into a GET request.

8.3.3. 302 Found

 The target resource resides temporarily under a different URI. Since
 the redirection might be altered on occasion, the client SHOULD
 continue to use the effective request URI for future requests.

 The temporary URI SHOULD be given by the Location field in the
 response. Unless the request method was HEAD, the representation of
 the response SHOULD contain a short hypertext note with a hyperlink
 to the new URI(s).

 If the 302 status code is received in response to a request method
 that is known to be "safe", as defined in Section 7.1.1, then the
 request MAY be automatically redirected by the user agent without
 confirmation. Otherwise, the user agent MUST NOT automatically
 redirect the request unless it can be confirmed by the user, since
 this might change the conditions under which the request was issued.

 Note: HTTP/1.0 ([RFC1945], Section 9.3) and the first version of
 HTTP/1.1 ([RFC2068], Section 10.3.3) specify that the client is
 not allowed to change the method on the redirected request.
 However, most existing user agent implementations treat 302 as if
 it were a 303 response, performing a GET on the Location field-
 value regardless of the original request method. Therefore, a
 previous version of this specification ([RFC2616], Section 10.3.3)
 has added the status codes 303 and 307 for servers that wish to
 make unambiguously clear which kind of reaction is expected of the
 client.

8.3.4. 303 See Other

 The server directs the user agent to a different resource, indicated
 by a URI in the Location header field, that provides an indirect
 response to the original request. The user agent MAY perform a GET
 request on the URI in the Location field in order to obtain a
 representation corresponding to the response, be redirected again, or
 end with an error status. The Location URI is not a substitute
 reference for the effective request URI.

https://datatracker.ietf.org/doc/html/rfc1945#section-9.3
https://datatracker.ietf.org/doc/html/rfc2068#section-10.3.3
https://datatracker.ietf.org/doc/html/rfc2616#section-10.3.3

Fielding, et al. Expires January 12, 2012 [Page 28]

Internet-Draft HTTP/1.1, Part 2 July 2011

 The 303 status code is generally applicable to any HTTP method. It
 is primarily used to allow the output of a POST action to redirect
 the user agent to a selected resource, since doing so provides the
 information corresponding to the POST response in a form that can be
 separately identified, bookmarked, and cached independent of the
 original request.

 A 303 response to a GET request indicates that the requested resource
 does not have a representation of its own that can be transferred by
 the server over HTTP. The Location URI indicates a resource that is
 descriptive of the target resource, such that the follow-on
 representation might be useful to recipients without implying that it
 adequately represents the target resource. Note that answers to the
 questions of what can be represented, what representations are
 adequate, and what might be a useful description are outside the
 scope of HTTP and thus entirely determined by the URI owner(s).

 Except for responses to a HEAD request, the representation of a 303
 response SHOULD contain a short hypertext note with a hyperlink to
 the Location URI.

8.3.5. 304 Not Modified

 The response to the request has not been modified since the
 conditions indicated by the client's conditional GET request, as
 defined in Section 4.1 of [Part4].

8.3.6. 305 Use Proxy

 The 305 status code was defined in a previous version of this
 specification (see Appendix A), and is now deprecated.

8.3.7. 306 (Unused)

 The 306 status code was used in a previous version of the
 specification, is no longer used, and the code is reserved.

8.3.8. 307 Temporary Redirect

 The target resource resides temporarily under a different URI. Since
 the redirection can change over time, the client SHOULD continue to
 use the effective request URI for future requests.

 The temporary URI SHOULD be given by the Location field in the
 response. Unless the request method was HEAD, the representation of
 the response SHOULD contain a short hypertext note with a hyperlink
 to the new URI(s), since many pre-HTTP/1.1 user agents do not
 understand the 307 status code. Therefore, the note SHOULD contain

Fielding, et al. Expires January 12, 2012 [Page 29]

Internet-Draft HTTP/1.1, Part 2 July 2011

 the information necessary for a user to repeat the original request
 on the new URI.

 If the 307 status code is received in response to a request method
 that is known to be "safe", as defined in Section 7.1.1, then the
 request MAY be automatically redirected by the user agent without
 confirmation. Otherwise, the user agent MUST NOT automatically
 redirect the request unless it can be confirmed by the user, since
 this might change the conditions under which the request was issued.

8.4. Client Error 4xx

 The 4xx class of status code is intended for cases in which the
 client seems to have erred. Except when responding to a HEAD
 request, the server SHOULD include a representation containing an
 explanation of the error situation, and whether it is a temporary or
 permanent condition. These status codes are applicable to any
 request method. User agents SHOULD display any included
 representation to the user.

 If the client is sending data, a server implementation using TCP
 SHOULD be careful to ensure that the client acknowledges receipt of
 the packet(s) containing the response, before the server closes the
 input connection. If the client continues sending data to the server
 after the close, the server's TCP stack will send a reset packet to
 the client, which might erase the client's unacknowledged input
 buffers before they can be read and interpreted by the HTTP
 application.

8.4.1. 400 Bad Request

 The request could not be understood by the server due to malformed
 syntax. The client SHOULD NOT repeat the request without
 modifications.

8.4.2. 401 Unauthorized

 The request requires user authentication (see Section 3.1 of
 [Part7]).

8.4.3. 402 Payment Required

 This code is reserved for future use.

8.4.4. 403 Forbidden

 The server understood the request, but refuses to authorize it.
 Providing different user authentication credentials might be

Fielding, et al. Expires January 12, 2012 [Page 30]

Internet-Draft HTTP/1.1, Part 2 July 2011

 successful, but any credentials that were provided in the request are
 insufficient. The request SHOULD NOT be repeated with the same
 credentials.

 If the request method was not HEAD and the server wishes to make
 public why the request has not been fulfilled, it SHOULD describe the
 reason for the refusal in the representation. If the server does not
 wish to make this information available to the client, the status
 code 404 (Not Found) MAY be used instead.

8.4.5. 404 Not Found

 The server has not found anything matching the effective request URI.
 No indication is given of whether the condition is temporary or
 permanent. The 410 (Gone) status code SHOULD be used if the server
 knows, through some internally configurable mechanism, that an old
 resource is permanently unavailable and has no forwarding address.
 This status code is commonly used when the server does not wish to
 reveal exactly why the request has been refused, or when no other
 response is applicable.

8.4.6. 405 Method Not Allowed

 The method specified in the Request-Line is not allowed for the
 target resource. The response MUST include an Allow header field
 containing a list of valid methods for the requested resource.

8.4.7. 406 Not Acceptable

 The resource identified by the request is only capable of generating
 response representations which have content characteristics not
 acceptable according to the accept header fields sent in the request.

 Unless it was a HEAD request, the response SHOULD include a
 representation containing a list of available representation
 characteristics and location(s) from which the user or user agent can
 choose the one most appropriate. The data format is specified by the
 media type given in the Content-Type header field. Depending upon
 the format and the capabilities of the user agent, selection of the
 most appropriate choice MAY be performed automatically. However,
 this specification does not define any standard for such automatic
 selection.

 Note: HTTP/1.1 servers are allowed to return responses which are
 not acceptable according to the accept header fields sent in the
 request. In some cases, this might even be preferable to sending
 a 406 response. User agents are encouraged to inspect the header
 fields of an incoming response to determine if it is acceptable.

Fielding, et al. Expires January 12, 2012 [Page 31]

Internet-Draft HTTP/1.1, Part 2 July 2011

 If the response could be unacceptable, a user agent SHOULD
 temporarily stop receipt of more data and query the user for a
 decision on further actions.

8.4.8. 407 Proxy Authentication Required

 This code is similar to 401 (Unauthorized), but indicates that the
 client must first authenticate itself with the proxy (see Section 3.2
 of [Part7]).

8.4.9. 408 Request Timeout

 The client did not produce a request within the time that the server
 was prepared to wait. The client MAY repeat the request without
 modifications at any later time.

8.4.10. 409 Conflict

 The request could not be completed due to a conflict with the current
 state of the resource. This code is only allowed in situations where
 it is expected that the user might be able to resolve the conflict
 and resubmit the request. The response body SHOULD include enough
 information for the user to recognize the source of the conflict.
 Ideally, the response representation would include enough information
 for the user or user agent to fix the problem; however, that might
 not be possible and is not required.

 Conflicts are most likely to occur in response to a PUT request. For
 example, if versioning were being used and the representation being
 PUT included changes to a resource which conflict with those made by
 an earlier (third-party) request, the server might use the 409
 response to indicate that it can't complete the request. In this
 case, the response representation would likely contain a list of the
 differences between the two versions in a format defined by the
 response Content-Type.

8.4.11. 410 Gone

 The target resource is no longer available at the server and no
 forwarding address is known. This condition is expected to be
 considered permanent. Clients with link editing capabilities SHOULD
 delete references to the effective request URI after user approval.
 If the server does not know, or has no facility to determine, whether
 or not the condition is permanent, the status code 404 (Not Found)
 SHOULD be used instead.

 The 410 response is primarily intended to assist the task of web
 maintenance by notifying the recipient that the resource is

Fielding, et al. Expires January 12, 2012 [Page 32]

Internet-Draft HTTP/1.1, Part 2 July 2011

 intentionally unavailable and that the server owners desire that
 remote links to that resource be removed. Such an event is common
 for limited-time, promotional services and for resources belonging to
 individuals no longer working at the server's site. It is not
 necessary to mark all permanently unavailable resources as "gone" or
 to keep the mark for any length of time -- that is left to the
 discretion of the server owner.

 Caches MAY use a heuristic (see Section 2.3.1.1 of [Part6]) to
 determine freshness for 410 responses.

8.4.12. 411 Length Required

 The server refuses to accept the request without a defined Content-
 Length. The client MAY repeat the request if it adds a valid
 Content-Length header field containing the length of the message-body
 in the request message.

8.4.13. 412 Precondition Failed

 The precondition given in one or more of the header fields evaluated
 to false when it was tested on the server, as defined in Section 4.2
 of [Part4].

8.4.14. 413 Request Representation Too Large

 The server is refusing to process a request because the request
 representation is larger than the server is willing or able to
 process. The server MAY close the connection to prevent the client
 from continuing the request.

 If the condition is temporary, the server SHOULD include a Retry-
 After header field to indicate that it is temporary and after what
 time the client MAY try again.

8.4.15. 414 URI Too Long

 The server is refusing to service the request because the effective
 request URI is longer than the server is willing to interpret. This
 rare condition is only likely to occur when a client has improperly
 converted a POST request to a GET request with long query
 information, when the client has descended into a URI "black hole" of
 redirection (e.g., a redirected URI prefix that points to a suffix of
 itself), or when the server is under attack by a client attempting to
 exploit security holes present in some servers using fixed-length
 buffers for reading or manipulating the effective request URI.

Fielding, et al. Expires January 12, 2012 [Page 33]

Internet-Draft HTTP/1.1, Part 2 July 2011

8.4.16. 415 Unsupported Media Type

 The server is refusing to service the request because the request
 payload is in a format not supported by this request method on the
 target resource.

8.4.17. 416 Requested Range Not Satisfiable

 The request included a Range header field (Section 5.4 of [Part5])
 and none of the range-specifier values in this field overlap the
 current extent of the selected resource. See Section 3.2 of [Part5].

8.4.18. 417 Expectation Failed

 The expectation given in an Expect header field (see Section 9.2)
 could not be met by this server, or, if the server is a proxy, the
 server has unambiguous evidence that the request could not be met by
 the next-hop server.

8.4.19. 426 Upgrade Required

 The request can not be completed without a prior protocol upgrade.
 This response MUST include an Upgrade header field (Section 9.8 of
 [Part1]) specifying the required protocols.

 Example:

 HTTP/1.1 426 Upgrade Required
 Upgrade: HTTP/2.0
 Connection: Upgrade

 The server SHOULD include a message body in the 426 response which
 indicates in human readable form the reason for the error and
 describes any alternative courses which may be available to the user.

8.5. Server Error 5xx

 Response status codes beginning with the digit "5" indicate cases in
 which the server is aware that it has erred or is incapable of
 performing the request. Except when responding to a HEAD request,
 the server SHOULD include a representation containing an explanation
 of the error situation, and whether it is a temporary or permanent
 condition. User agents SHOULD display any included representation to
 the user. These response codes are applicable to any request method.

Fielding, et al. Expires January 12, 2012 [Page 34]

Internet-Draft HTTP/1.1, Part 2 July 2011

8.5.1. 500 Internal Server Error

 The server encountered an unexpected condition which prevented it
 from fulfilling the request.

8.5.2. 501 Not Implemented

 The server does not support the functionality required to fulfill the
 request. This is the appropriate response when the server does not
 recognize the request method and is not capable of supporting it for
 any resource.

8.5.3. 502 Bad Gateway

 The server, while acting as a gateway or proxy, received an invalid
 response from the upstream server it accessed in attempting to
 fulfill the request.

8.5.4. 503 Service Unavailable

 The server is currently unable or unwilling to handle the request due
 to reasons such as temporary overloading, maintenance of the server,
 or rate limiting of the client.

 The implication is that this is a temporary condition which will be
 alleviated after some delay. If known, the length of the delay MAY
 be indicated in a Retry-After header field (Section 9.7). If no
 Retry-After is given, the client SHOULD handle the response as it
 would for a 500 response.

 Note: The existence of the 503 status code does not imply that a
 server must use it when becoming overloaded. Some servers might
 wish to simply refuse the connection.

8.5.5. 504 Gateway Timeout

 The server, while acting as a gateway or proxy, did not receive a
 timely response from the upstream server specified by the URI (e.g.,
 HTTP, FTP, LDAP) or some other auxiliary server (e.g., DNS) it needed
 to access in attempting to complete the request.

 Note to implementors: some deployed proxies are known to return
 400 or 500 when DNS lookups time out.

Fielding, et al. Expires January 12, 2012 [Page 35]

Internet-Draft HTTP/1.1, Part 2 July 2011

8.5.6. 505 HTTP Version Not Supported

 The server does not support, or refuses to support, the protocol
 version that was used in the request message. The server is
 indicating that it is unable or unwilling to complete the request
 using the same major version as the client, as described in Section

2.6 of [Part1], other than with this error message. The response
 SHOULD contain a representation describing why that version is not
 supported and what other protocols are supported by that server.

9. Header Field Definitions

 This section defines the syntax and semantics of HTTP/1.1 header
 fields related to request and response semantics.

9.1. Allow

 The "Allow" header field lists the set of methods advertised as
 supported by the target resource. The purpose of this field is
 strictly to inform the recipient of valid request methods associated
 with the resource.

 Allow = #Method

 Example of use:

 Allow: GET, HEAD, PUT

 The actual set of allowed methods is defined by the origin server at
 the time of each request.

 A proxy MUST NOT modify the Allow header field -- it does not need to
 understand all the methods specified in order to handle them
 according to the generic message handling rules.

9.2. Expect

 The "Expect" header field is used to indicate that particular server
 behaviors are required by the client.

 Expect = 1#expectation

 expectation = "100-continue" / expectation-extension
 expectation-extension = token ["=" (token / quoted-string)
 *expect-params]
 expect-params = ";" token ["=" (token / quoted-string)]

 A server that does not understand or is unable to comply with any of

Fielding, et al. Expires January 12, 2012 [Page 36]

Internet-Draft HTTP/1.1, Part 2 July 2011

 the expectation values in the Expect field of a request MUST respond
 with appropriate error status code. The server MUST respond with a
 417 (Expectation Failed) status code if any of the expectations
 cannot be met or, if there are other problems with the request, some
 other 4xx status code.

 This header field is defined with extensible syntax to allow for
 future extensions. If a server receives a request containing an
 Expect field that includes an expectation-extension that it does not
 support, it MUST respond with a 417 (Expectation Failed) status code.

 Comparison of expectation values is case-insensitive for unquoted
 tokens (including the 100-continue token), and is case-sensitive for
 quoted-string expectation-extensions.

 The Expect mechanism is hop-by-hop: that is, an HTTP/1.1 proxy MUST
 return a 417 (Expectation Failed) status code if it receives a
 request with an expectation that it cannot meet. However, the Expect
 header field itself is end-to-end; it MUST be forwarded if the
 request is forwarded.

 Many older HTTP/1.0 and HTTP/1.1 applications do not understand the
 Expect header field.

 See Section 7.2.3 of [Part1] for the use of the 100 (Continue) status
 code.

9.3. From

 The "From" header field, if given, SHOULD contain an Internet e-mail
 address for the human user who controls the requesting user agent.
 The address SHOULD be machine-usable, as defined by "mailbox" in

Section 3.4 of [RFC5322]:

 From = mailbox

 mailbox = <mailbox, defined in [RFC5322], Section 3.4>

 An example is:

 From: webmaster@example.org

 This header field MAY be used for logging purposes and as a means for
 identifying the source of invalid or unwanted requests. It SHOULD
 NOT be used as an insecure form of access protection. The
 interpretation of this field is that the request is being performed
 on behalf of the person given, who accepts responsibility for the
 method performed. In particular, robot agents SHOULD include this

https://datatracker.ietf.org/doc/html/rfc5322#section-3.4
https://datatracker.ietf.org/doc/html/rfc5322#section-3.4

Fielding, et al. Expires January 12, 2012 [Page 37]

Internet-Draft HTTP/1.1, Part 2 July 2011

 header field so that the person responsible for running the robot can
 be contacted if problems occur on the receiving end.

 The Internet e-mail address in this field MAY be separate from the
 Internet host which issued the request. For example, when a request
 is passed through a proxy the original issuer's address SHOULD be
 used.

 The client SHOULD NOT send the From header field without the user's
 approval, as it might conflict with the user's privacy interests or
 their site's security policy. It is strongly recommended that the
 user be able to disable, enable, and modify the value of this field
 at any time prior to a request.

9.4. Location

 The "Location" header field is used to identify a newly created
 resource, or to redirect the recipient to a different location for
 completion of the request.

 For 201 (Created) responses, the Location is the URI of the new
 resource which was created by the request. For 3xx responses, the
 location SHOULD indicate the server's preferred URI for automatic
 redirection to the resource.

 The field value consists of a single URI-reference. When it has the
 form of a relative reference ([RFC3986], Section 4.2), the final
 value is computed by resolving it against the effective request URI
 ([RFC3986], Section 5).

 Location = URI-reference

 Examples are:

 Location: http://www.example.org/pub/WWW/People.html#tim

 Location: /index.html

 There are circumstances in which a fragment identifier in a Location
 URI would not be appropriate. For instance, when it appears in a 201
 Created response, where the Location header field specifies the URI
 for the entire created resource.

 Note: This specification does not define precedence rules for the
 case where the original URI, as navigated to by the user agent,
 and the Location header field value both contain fragment
 identifiers. Thus be aware that including fragment identifiers
 might inconvenience anyone relying on the semantics of the

https://datatracker.ietf.org/doc/html/rfc3986#section-4.2
https://datatracker.ietf.org/doc/html/rfc3986#section-5

Fielding, et al. Expires January 12, 2012 [Page 38]

Internet-Draft HTTP/1.1, Part 2 July 2011

 original URI's fragment identifier.

 Note: The Content-Location header field (Section 6.7 of [Part3])
 differs from Location in that the Content-Location identifies the
 most specific resource corresponding to the enclosed
 representation. It is therefore possible for a response to
 contain header fields for both Location and Content-Location.

9.5. Max-Forwards

 The "Max-Forwards" header field provides a mechanism with the TRACE
 (Section 7.8) and OPTIONS (Section 7.2) methods to limit the number
 of times that the request is forwarded by proxies. This can be
 useful when the client is attempting to trace a request which appears
 to be failing or looping in mid-chain.

 Max-Forwards = 1*DIGIT

 The Max-Forwards value is a decimal integer indicating the remaining
 number of times this request message can be forwarded.

 Each recipient of a TRACE or OPTIONS request containing a Max-
 Forwards header field MUST check and update its value prior to
 forwarding the request. If the received value is zero (0), the
 recipient MUST NOT forward the request; instead, it MUST respond as
 the final recipient. If the received Max-Forwards value is greater
 than zero, then the forwarded message MUST contain an updated Max-
 Forwards field with a value decremented by one (1).

 The Max-Forwards header field MAY be ignored for all other request
 methods.

9.6. Referer

 The "Referer" [sic] header field allows the client to specify the URI
 of the resource from which the effective request URI was obtained
 (the "referrer", although the header field is misspelled.).

 The Referer header field allows servers to generate lists of back-
 links to resources for interest, logging, optimized caching, etc. It
 also allows obsolete or mistyped links to be traced for maintenance.
 Some servers use Referer as a means of controlling where they allow
 links from (so-called "deep linking"), but legitimate requests do not
 always contain a Referer header field.

 If the effective request URI was obtained from a source that does not
 have its own URI (e.g., input from the user keyboard), the Referer
 field MUST either be sent with the value "about:blank", or not be

Fielding, et al. Expires January 12, 2012 [Page 39]

Internet-Draft HTTP/1.1, Part 2 July 2011

 sent at all. Note that this requirement does not apply to sources
 with non-HTTP URIs (e.g., FTP).

 Referer = absolute-URI / partial-URI

 Example:

 Referer: http://www.example.org/hypertext/Overview.html

 If the field value is a relative URI, it SHOULD be interpreted
 relative to the effective request URI. The URI MUST NOT include a
 fragment. See Section 11.2 for security considerations.

9.7. Retry-After

 The header "Retry-After" field can be used with a 503 (Service
 Unavailable) response to indicate how long the service is expected to
 be unavailable to the requesting client. This field MAY also be used
 with any 3xx (Redirection) response to indicate the minimum time the
 user-agent is asked wait before issuing the redirected request.

 The value of this field can be either an HTTP-date or an integer
 number of seconds (in decimal) after the time of the response.

 Retry-After = HTTP-date / delta-seconds

 Time spans are non-negative decimal integers, representing time in
 seconds.

 delta-seconds = 1*DIGIT

 Two examples of its use are

 Retry-After: Fri, 31 Dec 1999 23:59:59 GMT
 Retry-After: 120

 In the latter example, the delay is 2 minutes.

9.8. Server

 The "Server" header field contains information about the software
 used by the origin server to handle the request.

 The field can contain multiple product tokens (Section 6.3 of
 [Part1]) and comments (Section 3.2 of [Part1]) identifying the server
 and any significant subproducts. The product tokens are listed in
 order of their significance for identifying the application.

Fielding, et al. Expires January 12, 2012 [Page 40]

Internet-Draft HTTP/1.1, Part 2 July 2011

 Server = product *(RWS (product / comment))

 Example:

 Server: CERN/3.0 libwww/2.17

 If the response is being forwarded through a proxy, the proxy
 application MUST NOT modify the Server header field. Instead, it
 MUST include a Via field (as described in Section 9.9 of [Part1]).

 Note: Revealing the specific software version of the server might
 allow the server machine to become more vulnerable to attacks
 against software that is known to contain security holes. Server
 implementors are encouraged to make this field a configurable
 option.

9.9. User-Agent

 The "User-Agent" header field contains information about the user
 agent originating the request. User agents SHOULD include this field
 with requests.

 Typically, it is used for statistical purposes, the tracing of
 protocol violations, and tailoring responses to avoid particular user
 agent limitations.

 The field can contain multiple product tokens (Section 6.3 of
 [Part1]) and comments (Section 3.2 of [Part1]) identifying the agent
 and its significant subproducts. By convention, the product tokens
 are listed in order of their significance for identifying the
 application.

 Because this field is usually sent on every request a user agent
 makes, implementations are encouraged not to include needlessly fine-
 grained detail, and to limit (or even prohibit) the addition of
 subproducts by third parties. Overly long and detailed User-Agent
 field values make requests larger and can also be used to identify
 ("fingerprint") the user against their wishes.

 Likewise, implementations are encouraged not to use the product
 tokens of other implementations in order to declare compatibility
 with them, as this circumvents the purpose of the field. Finally,
 they are encouraged not to use comments to identify products; doing
 so makes the field value more difficult to parse.

 User-Agent = product *(RWS (product / comment))

 Example:

Fielding, et al. Expires January 12, 2012 [Page 41]

Internet-Draft HTTP/1.1, Part 2 July 2011

 User-Agent: CERN-LineMode/2.15 libwww/2.17b3

10. IANA Considerations

10.1. Method Registry

 The registration procedure for HTTP request methods is defined by
Section 2.2 of this document.

 The HTTP Method Registry shall be created at
 <http://www.iana.org/assignments/http-methods> and be populated with
 the registrations below:

 +---------+------+-------------+
 | Method | Safe | Reference |
 +---------+------+-------------+
CONNECT	no	Section 7.9
DELETE	no	Section 7.7
GET	yes	Section 7.3
HEAD	yes	Section 7.4
OPTIONS	yes	Section 7.2
POST	no	Section 7.5
PUT	no	Section 7.6
TRACE	yes	Section 7.8
 +---------+------+-------------+

10.2. Status Code Registry

 The registration procedure for HTTP Status Codes -- previously
 defined in Section 7.1 of [RFC2817] -- is now defined by Section 4.2
 of this document.

 The HTTP Status Code Registry located at
 <http://www.iana.org/assignments/http-status-codes> shall be updated
 with the registrations below:

http://www.iana.org/assignments/http-methods
https://datatracker.ietf.org/doc/html/rfc2817#section-7.1
http://www.iana.org/assignments/http-status-codes

Fielding, et al. Expires January 12, 2012 [Page 42]

Internet-Draft HTTP/1.1, Part 2 July 2011

 +-------+----------------------------------+----------------+
 | Value | Description | Reference |
 +-------+----------------------------------+----------------+
100	Continue	Section 8.1.1
101	Switching Protocols	Section 8.1.2
200	OK	Section 8.2.1
201	Created	Section 8.2.2
202	Accepted	Section 8.2.3
203	Non-Authoritative Information	Section 8.2.4
204	No Content	Section 8.2.5
205	Reset Content	Section 8.2.6
300	Multiple Choices	Section 8.3.1
301	Moved Permanently	Section 8.3.2
302	Found	Section 8.3.3
303	See Other	Section 8.3.4
305	Use Proxy	Section 8.3.6
306	(Unused)	Section 8.3.7
307	Temporary Redirect	Section 8.3.8
400	Bad Request	Section 8.4.1
402	Payment Required	Section 8.4.3
403	Forbidden	Section 8.4.4
404	Not Found	Section 8.4.5
405	Method Not Allowed	Section 8.4.6
406	Not Acceptable	Section 8.4.7
407	Proxy Authentication Required	Section 8.4.8
408	Request Timeout	Section 8.4.9
409	Conflict	Section 8.4.10
410	Gone	Section 8.4.11
411	Length Required	Section 8.4.12
413	Request Representation Too Large	Section 8.4.14
414	URI Too Long	Section 8.4.15
415	Unsupported Media Type	Section 8.4.16
417	Expectation Failed	Section 8.4.18
426	Upgrade Required	Section 8.4.19
500	Internal Server Error	Section 8.5.1
501	Not Implemented	Section 8.5.2
502	Bad Gateway	Section 8.5.3
503	Service Unavailable	Section 8.5.4
504	Gateway Timeout	Section 8.5.5
505	HTTP Version Not Supported	Section 8.5.6
 +-------+----------------------------------+----------------+

10.3. Header Field Registration

 The Message Header Field Registry located at <http://www.iana.org/
assignments/message-headers/message-header-index.html> shall be

 updated with the permanent registrations below (see [RFC3864]):

http://www.iana.org/assignments/message-headers/message-header-index.html
http://www.iana.org/assignments/message-headers/message-header-index.html
https://datatracker.ietf.org/doc/html/rfc3864

Fielding, et al. Expires January 12, 2012 [Page 43]

Internet-Draft HTTP/1.1, Part 2 July 2011

 +-------------------+----------+----------+-------------+
 | Header Field Name | Protocol | Status | Reference |
 +-------------------+----------+----------+-------------+
Allow	http	standard	Section 9.1
Expect	http	standard	Section 9.2
From	http	standard	Section 9.3
Location	http	standard	Section 9.4
Max-Forwards	http	standard	Section 9.5
Referer	http	standard	Section 9.6
Retry-After	http	standard	Section 9.7
Server	http	standard	Section 9.8
User-Agent	http	standard	Section 9.9
 +-------------------+----------+----------+-------------+

 The change controller is: "IETF (iesg@ietf.org) - Internet
 Engineering Task Force".

11. Security Considerations

 This section is meant to inform application developers, information
 providers, and users of the security limitations in HTTP/1.1 as
 described by this document. The discussion does not include
 definitive solutions to the problems revealed, though it does make
 some suggestions for reducing security risks.

11.1. Transfer of Sensitive Information

 Like any generic data transfer protocol, HTTP cannot regulate the
 content of the data that is transferred, nor is there any a priori
 method of determining the sensitivity of any particular piece of
 information within the context of any given request. Therefore,
 applications SHOULD supply as much control over this information as
 possible to the provider of that information. Four header fields are
 worth special mention in this context: Server, Via, Referer and From.

 Revealing the specific software version of the server might allow the
 server machine to become more vulnerable to attacks against software
 that is known to contain security holes. Implementors SHOULD make
 the Server header field a configurable option.

 Proxies which serve as a portal through a network firewall SHOULD
 take special precautions regarding the transfer of header information
 that identifies the hosts behind the firewall. In particular, they
 SHOULD remove, or replace with sanitized versions, any Via fields
 generated behind the firewall.

 The Referer header field allows reading patterns to be studied and
 reverse links drawn. Although it can be very useful, its power can

Fielding, et al. Expires January 12, 2012 [Page 44]

Internet-Draft HTTP/1.1, Part 2 July 2011

 be abused if user details are not separated from the information
 contained in the Referer. Even when the personal information has
 been removed, the Referer header field might indicate a private
 document's URI whose publication would be inappropriate.

 The information sent in the From field might conflict with the user's
 privacy interests or their site's security policy, and hence it
 SHOULD NOT be transmitted without the user being able to disable,
 enable, and modify the contents of the field. The user MUST be able
 to set the contents of this field within a user preference or
 application defaults configuration.

 We suggest, though do not require, that a convenient toggle interface
 be provided for the user to enable or disable the sending of From and
 Referer information.

 The User-Agent (Section 9.9) or Server (Section 9.8) header fields
 can sometimes be used to determine that a specific client or server
 have a particular security hole which might be exploited.
 Unfortunately, this same information is often used for other valuable
 purposes for which HTTP currently has no better mechanism.

 Furthermore, the User-Agent header field may contain enough entropy
 to be used, possibly in conjunction with other material, to uniquely
 identify the user.

 Some request methods, like TRACE (Section 7.8), expose information
 that was sent in request header fields within the body of their
 response. Clients SHOULD be careful with sensitive information, like
 Cookies, Authorization credentials, and other header fields that
 might be used to collect data from the client.

11.2. Encoding Sensitive Information in URIs

 Because the source of a link might be private information or might
 reveal an otherwise private information source, it is strongly
 recommended that the user be able to select whether or not the
 Referer field is sent. For example, a browser client could have a
 toggle switch for browsing openly/anonymously, which would
 respectively enable/disable the sending of Referer and From
 information.

 Clients SHOULD NOT include a Referer header field in a (non-secure)
 HTTP request if the referring page was transferred with a secure
 protocol.

 Authors of services SHOULD NOT use GET-based forms for the submission
 of sensitive data because that data will be placed in the request-

Fielding, et al. Expires January 12, 2012 [Page 45]

Internet-Draft HTTP/1.1, Part 2 July 2011

 target. Many existing servers, proxies, and user agents log or
 display the request-target in places where it might be visible to
 third parties. Such services can use POST-based form submission
 instead.

11.3. Location Headers and Spoofing

 If a single server supports multiple organizations that do not trust
 one another, then it MUST check the values of Location and Content-
 Location header fields in responses that are generated under control
 of said organizations to make sure that they do not attempt to
 invalidate resources over which they have no authority.

11.4. Security Considerations for CONNECT

 Since tunneled data is opaque to the proxy, there are additional
 risks to tunneling to other well-known or reserved ports. A HTTP
 client CONNECTing to port 25 could relay spam via SMTP, for example.
 As such, proxies SHOULD restrict CONNECT access to a small number of
 known ports.

12. Acknowledgments

13. References

13.1. Normative References

 [Part1] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
 and J. Reschke, Ed., "HTTP/1.1, part 1: URIs, Connections,
 and Message Parsing", draft-ietf-httpbis-p1-messaging-15
 (work in progress), July 2011.

 [Part3] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
 and J. Reschke, Ed., "HTTP/1.1, part 3: Message Payload
 and Content Negotiation", draft-ietf-httpbis-p3-payload-15
 (work in progress), July 2011.

 [Part4] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
 and J. Reschke, Ed., "HTTP/1.1, part 4: Conditional
 Requests", draft-ietf-httpbis-p4-conditional-15 (work in
 progress), July 2011.

 [Part5] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
 and J. Reschke, Ed., "HTTP/1.1, part 5: Range Requests and

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p1-messaging-15
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-15
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-15

Fielding, et al. Expires January 12, 2012 [Page 46]

Internet-Draft HTTP/1.1, Part 2 July 2011

 Partial Responses", draft-ietf-httpbis-p5-range-15 (work
 in progress), July 2011.

 [Part6] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
 Nottingham, M., Ed., and J. Reschke, Ed., "HTTP/1.1, part
 6: Caching", draft-ietf-httpbis-p6-cache-15 (work in
 progress), July 2011.

 [Part7] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
 and J. Reschke, Ed., "HTTP/1.1, part 7: Authentication",

draft-ietf-httpbis-p7-auth-15 (work in progress),
 July 2011.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

13.2. Informative References

 [RFC1945] Berners-Lee, T., Fielding, R., and H. Nielsen, "Hypertext
 Transfer Protocol -- HTTP/1.0", RFC 1945, May 1996.

 [RFC2068] Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and T.
 Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1",

RFC 2068, January 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2817] Khare, R. and S. Lawrence, "Upgrading to TLS Within
 HTTP/1.1", RFC 2817, May 2000.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 September 2004.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p5-range-15
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p6-cache-15
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p7-auth-15
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2817
https://datatracker.ietf.org/doc/html/bcp90
https://datatracker.ietf.org/doc/html/rfc3864
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226

Fielding, et al. Expires January 12, 2012 [Page 47]

Internet-Draft HTTP/1.1, Part 2 July 2011

 [RFC5322] Resnick, P., "Internet Message Format", RFC 5322,
 October 2008.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, March 2010.

Appendix A. Changes from RFC 2616

 This document takes over the Status Code Registry, previously defined
 in Section 7.1 of [RFC2817]. (Section 4.2)

 Clarify definition of POST. (Section 7.5)

 Remove requirement to handle all Content-* header fields; ban use of
 Content-Range with PUT. (Section 7.6)

 Take over definition of CONNECT method from [RFC2817]. (Section 7.9)

 Broadened the definition of 203 (Non-Authoritative Information) to
 include cases of payload transformations as well. (Section 8.2.4)

 Failed to consider that there are many other request methods that are
 safe to automatically redirect, and further that the user agent is
 able to make that determination based on the request method
 semantics. (Sections 8.3.2, 8.3.3 and 8.3.8)

 Deprecate 305 Use Proxy status code, because user agents did not
 implement it. It used to indicate that the target resource must be
 accessed through the proxy given by the Location field. The Location
 field gave the URI of the proxy. The recipient was expected to
 repeat this single request via the proxy. (Section 8.3.6)

 Define status 426 (Upgrade Required) (this was incorporated from
 [RFC2817]). (Section 8.4.19)

 Change ABNF productions for header fields to only define the field
 value. (Section 9)

 Reclassify "Allow" as response header field, removing the option to
 specify it in a PUT request. Relax the server requirement on the
 contents of the Allow header field and remove requirement on clients
 to always trust the header field value. (Section 9.1)

 Correct syntax of Location header field to allow URI references
 (including relative references and fragments), as referred symbol
 "absoluteURI" wasn't what was expected, and add some clarifications
 as to when use of fragments would not be appropriate. (Section 9.4)

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2817#section-7.1
https://datatracker.ietf.org/doc/html/rfc2817
https://datatracker.ietf.org/doc/html/rfc2817

Fielding, et al. Expires January 12, 2012 [Page 48]

Internet-Draft HTTP/1.1, Part 2 July 2011

 Restrict Max-Forwards header field to OPTIONS and TRACE (previously,
 extension methods could have used it as well). (Section 9.5)

 Allow Referer field value of "about:blank" as alternative to not
 specifying it. (Section 9.6)

 In the description of the Server header field, the Via field was
 described as a SHOULD. The requirement was and is stated correctly
 in the description of the Via header field in Section 9.9 of [Part1].
 (Section 9.8)

Appendix B. Collected ABNF

Fielding, et al. Expires January 12, 2012 [Page 49]

Internet-Draft HTTP/1.1, Part 2 July 2011

 Allow = [("," / Method) *(OWS "," [OWS Method])]

 Expect = *("," OWS) expectation *(OWS "," [OWS expectation])

 From = mailbox

 HTTP-date = <HTTP-date, defined in [Part1], Section 6.1>

 Location = URI-reference

 Max-Forwards = 1*DIGIT
 Method = token

 OWS = <OWS, defined in [Part1], Section 1.2.2>

 RWS = <RWS, defined in [Part1], Section 1.2.2>
 Reason-Phrase = *(WSP / VCHAR / obs-text)
 Referer = absolute-URI / partial-URI
 Retry-After = HTTP-date / delta-seconds

 Server = product *(RWS (product / comment))
 Status-Code = 3DIGIT

 URI-reference = <URI-reference, defined in [Part1], Section 2.7>
 User-Agent = product *(RWS (product / comment))

 absolute-URI = <absolute-URI, defined in [Part1], Section 2.7>

 comment = <comment, defined in [Part1], Section 3.2>

 delta-seconds = 1*DIGIT

 expect-params = ";" token ["=" (token / quoted-string)]
 expectation = "100-continue" / expectation-extension
 expectation-extension = token ["=" (token / quoted-string)
 *expect-params]

 mailbox = <mailbox, defined in [RFC5322], Section 3.4>

 obs-text = <obs-text, defined in [Part1], Section 1.2.2>

 partial-URI = <partial-URI, defined in [Part1], Section 2.7>
 product = <product, defined in [Part1], Section 6.3>

 quoted-string = <quoted-string, defined in [Part1], Section 1.2.2>

 token = <token, defined in [Part1], Section 1.2.2>

https://datatracker.ietf.org/doc/html/rfc5322#section-3.4

Fielding, et al. Expires January 12, 2012 [Page 50]

Internet-Draft HTTP/1.1, Part 2 July 2011

 ABNF diagnostics:

 ; Allow defined but not used
 ; Expect defined but not used
 ; From defined but not used
 ; Location defined but not used
 ; Max-Forwards defined but not used
 ; Reason-Phrase defined but not used
 ; Referer defined but not used
 ; Retry-After defined but not used
 ; Server defined but not used
 ; Status-Code defined but not used
 ; User-Agent defined but not used

Appendix C. Change Log (to be removed by RFC Editor before publication)

C.1. Since RFC 2616

 Extracted relevant partitions from [RFC2616].

C.2. Since draft-ietf-httpbis-p2-semantics-00

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/5>: "Via is a MUST"
 (<http://purl.org/NET/http-errata#via-must>)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/6>: "Fragments
 allowed in Location"
 (<http://purl.org/NET/http-errata#location-fragments>)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/10>: "Safe Methods
 vs Redirection" (<http://purl.org/NET/http-errata#saferedirect>)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/17>: "Revise
 description of the POST method"
 (<http://purl.org/NET/http-errata#post>)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/35>: "Normative and
 Informative references"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/42>: "RFC2606
 Compliance"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/65>: "Informative
 references"

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-00
http://tools.ietf.org/wg/httpbis/trac/ticket/5
http://purl.org/NET/http-errata#via-must
http://tools.ietf.org/wg/httpbis/trac/ticket/6
http://purl.org/NET/http-errata#location-fragments
http://tools.ietf.org/wg/httpbis/trac/ticket/10
http://purl.org/NET/http-errata#saferedirect
http://tools.ietf.org/wg/httpbis/trac/ticket/17
http://purl.org/NET/http-errata#post
http://tools.ietf.org/wg/httpbis/trac/ticket/35
http://tools.ietf.org/wg/httpbis/trac/ticket/42
https://datatracker.ietf.org/doc/html/rfc2606
http://tools.ietf.org/wg/httpbis/trac/ticket/65

Fielding, et al. Expires January 12, 2012 [Page 51]

Internet-Draft HTTP/1.1, Part 2 July 2011

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/84>: "Redundant
 cross-references"

 Other changes:

 o Move definitions of 304 and 412 condition codes to [Part4]

C.3. Since draft-ietf-httpbis-p2-semantics-01

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/21>: "PUT side
 effects"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/91>: "Duplicate Host
 header requirements"

 Ongoing work on ABNF conversion
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

 o Move "Product Tokens" section (back) into Part 1, as "token" is
 used in the definition of the Upgrade header field.

 o Add explicit references to BNF syntax and rules imported from
 other parts of the specification.

 o Copy definition of delta-seconds from Part6 instead of referencing
 it.

C.4. Since draft-ietf-httpbis-p2-semantics-02

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/24>: "Requiring
 Allow in 405 responses"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/59>: "Status Code
 Registry"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/61>: "Redirection
 vs. Location"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/70>: "Cacheability
 of 303 response"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/76>: "305 Use Proxy"

http://tools.ietf.org/wg/httpbis/trac/ticket/84
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-01
http://tools.ietf.org/wg/httpbis/trac/ticket/21
http://tools.ietf.org/wg/httpbis/trac/ticket/91
http://tools.ietf.org/wg/httpbis/trac/ticket/36
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-02
http://tools.ietf.org/wg/httpbis/trac/ticket/24
http://tools.ietf.org/wg/httpbis/trac/ticket/59
http://tools.ietf.org/wg/httpbis/trac/ticket/61
http://tools.ietf.org/wg/httpbis/trac/ticket/70
http://tools.ietf.org/wg/httpbis/trac/ticket/76

Fielding, et al. Expires January 12, 2012 [Page 52]

Internet-Draft HTTP/1.1, Part 2 July 2011

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/105>:
 "Classification for Allow header"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/112>: "PUT - 'store
 under' vs 'store at'"

 Ongoing work on IANA Message Header Field Registration
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/40>):

 o Reference RFC 3984, and update header field registrations for
 headers defined in this document.

 Ongoing work on ABNF conversion
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

 o Replace string literals when the string really is case-sensitive
 (method).

C.5. Since draft-ietf-httpbis-p2-semantics-03

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/98>: "OPTIONS
 request bodies"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/119>: "Description
 of CONNECT should refer to RFC2817"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/125>: "Location
 Content-Location reference request/response mixup"

 Ongoing work on Method Registry
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/72>):

 o Added initial proposal for registration process, plus initial
 content (non-HTTP/1.1 methods to be added by a separate
 specification).

C.6. Since draft-ietf-httpbis-p2-semantics-04

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/103>: "Content-*"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/132>: "RFC 2822 is
 updated by RFC 5322"

 Ongoing work on ABNF conversion

http://tools.ietf.org/wg/httpbis/trac/ticket/105
http://tools.ietf.org/wg/httpbis/trac/ticket/112
http://tools.ietf.org/wg/httpbis/trac/ticket/40
https://datatracker.ietf.org/doc/html/rfc3984
http://tools.ietf.org/wg/httpbis/trac/ticket/36
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-03
http://tools.ietf.org/wg/httpbis/trac/ticket/98
http://tools.ietf.org/wg/httpbis/trac/ticket/119
https://datatracker.ietf.org/doc/html/rfc2817
http://tools.ietf.org/wg/httpbis/trac/ticket/125
http://tools.ietf.org/wg/httpbis/trac/ticket/72
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-04
http://tools.ietf.org/wg/httpbis/trac/ticket/103
http://tools.ietf.org/wg/httpbis/trac/ticket/132
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc5322

Fielding, et al. Expires January 12, 2012 [Page 53]

Internet-Draft HTTP/1.1, Part 2 July 2011

 (<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

 o Use "/" instead of "|" for alternatives.

 o Introduce new ABNF rules for "bad" whitespace ("BWS"), optional
 whitespace ("OWS") and required whitespace ("RWS").

 o Rewrite ABNFs to spell out whitespace rules, factor out header
 field value format definitions.

C.7. Since draft-ietf-httpbis-p2-semantics-05

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/94>: "Reason-Phrase
 BNF"

 Final work on ABNF conversion
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

 o Add appendix containing collected and expanded ABNF, reorganize
 ABNF introduction.

C.8. Since draft-ietf-httpbis-p2-semantics-06

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/144>: "Clarify when
 Referer is sent"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/164>: "status codes
 vs methods"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/170>: "Do not
 require "updates" relation for specs that register status codes or
 method names"

C.9. Since draft-ietf-httpbis-p2-semantics-07

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/27>: "Idempotency"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/33>: "TRACE security
 considerations"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/110>: "Clarify rules
 for determining what entities a response carries"

http://tools.ietf.org/wg/httpbis/trac/ticket/36
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-05
http://tools.ietf.org/wg/httpbis/trac/ticket/94
http://tools.ietf.org/wg/httpbis/trac/ticket/36
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-06
http://tools.ietf.org/wg/httpbis/trac/ticket/144
http://tools.ietf.org/wg/httpbis/trac/ticket/164
http://tools.ietf.org/wg/httpbis/trac/ticket/170
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-07
http://tools.ietf.org/wg/httpbis/trac/ticket/27
http://tools.ietf.org/wg/httpbis/trac/ticket/33
http://tools.ietf.org/wg/httpbis/trac/ticket/110

Fielding, et al. Expires January 12, 2012 [Page 54]

Internet-Draft HTTP/1.1, Part 2 July 2011

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/140>: "update note
 citing RFC 1945 and 2068"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/182>: "update note
 about redirect limit"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/191>: "Location
 header ABNF should use 'URI'"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/192>: "fragments in
 Location vs status 303"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/198>: "move IANA
 registrations for optional status codes"

 Partly resolved issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/171>: "Are OPTIONS
 and TRACE safe?"

C.10. Since draft-ietf-httpbis-p2-semantics-08

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/10>: "Safe Methods
 vs Redirection" (we missed the introduction to the 3xx status
 codes when fixing this previously)

C.11. Since draft-ietf-httpbis-p2-semantics-09

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/43>: "Fragment
 combination / precedence during redirects"

 Partly resolved issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/185>: "Location
 header payload handling"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/196>: "Term for the
 requested resource's URI"

C.12. Since draft-ietf-httpbis-p2-semantics-10

 Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/140
https://datatracker.ietf.org/doc/html/rfc1945
http://tools.ietf.org/wg/httpbis/trac/ticket/182
http://tools.ietf.org/wg/httpbis/trac/ticket/191
http://tools.ietf.org/wg/httpbis/trac/ticket/192
http://tools.ietf.org/wg/httpbis/trac/ticket/198
http://tools.ietf.org/wg/httpbis/trac/ticket/171
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-08
http://tools.ietf.org/wg/httpbis/trac/ticket/10
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-09
http://tools.ietf.org/wg/httpbis/trac/ticket/43
http://tools.ietf.org/wg/httpbis/trac/ticket/185
http://tools.ietf.org/wg/httpbis/trac/ticket/196
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-10

Fielding, et al. Expires January 12, 2012 [Page 55]

Internet-Draft HTTP/1.1, Part 2 July 2011

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/69>: "Clarify
 'Requested Variant'"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/109>: "Clarify
 entity / representation / variant terminology"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/139>: "Methods and
 Caching"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/190>: "OPTIONS vs
 Max-Forwards"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/199>: "Status codes
 and caching"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/220>: "consider
 removing the 'changes from 2068' sections"

C.13. Since draft-ietf-httpbis-p2-semantics-11

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/229>:
 "Considerations for new status codes"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/230>:
 "Considerations for new methods"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/232>: "User-Agent
 guidelines" (relating to the 'User-Agent' header field)

C.14. Since draft-ietf-httpbis-p2-semantics-12

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/43>: "Fragment
 combination / precedence during redirects" (added warning about
 having a fragid on the redirect may cause inconvenience in some
 cases)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/79>: "Content-* vs.
 PUT"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/88>: "205 Bodies"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/102>: "Understanding
 Content-* on non-PUT requests"

http://tools.ietf.org/wg/httpbis/trac/ticket/69
http://tools.ietf.org/wg/httpbis/trac/ticket/109
http://tools.ietf.org/wg/httpbis/trac/ticket/139
http://tools.ietf.org/wg/httpbis/trac/ticket/190
http://tools.ietf.org/wg/httpbis/trac/ticket/199
http://tools.ietf.org/wg/httpbis/trac/ticket/220
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-11
http://tools.ietf.org/wg/httpbis/trac/ticket/229
http://tools.ietf.org/wg/httpbis/trac/ticket/230
http://tools.ietf.org/wg/httpbis/trac/ticket/232
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-12
http://tools.ietf.org/wg/httpbis/trac/ticket/43
http://tools.ietf.org/wg/httpbis/trac/ticket/79
http://tools.ietf.org/wg/httpbis/trac/ticket/88
http://tools.ietf.org/wg/httpbis/trac/ticket/102

Fielding, et al. Expires January 12, 2012 [Page 56]

Internet-Draft HTTP/1.1, Part 2 July 2011

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/103>: "Content-*"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/104>: "Header type
 defaulting"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/112>: "PUT - 'store
 under' vs 'store at'"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/137>: "duplicate
 ABNF for Reason-Phrase"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/180>: "Note special
 status of Content-* prefix in header registration procedures"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/203>: "Max-Forwards
 vs extension methods"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/213>: "What is the
 value space of HTTP status codes?" (actually fixed in

draft-ietf-httpbis-p2-semantics-11)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/224>: "Header
 Classification"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/225>: "PUT side
 effect: invalidation or just stale?"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/226>: "proxies not
 supporting certain methods"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/239>: "Migrate
 CONNECT from RFC2817 to p2"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/240>: "Migrate
 Upgrade details from RFC2817"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/267>: "clarify PUT
 semantics'"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/275>: "duplicate
 ABNF for 'Method'"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/276>: "untangle
 ABNFs for header fields"

http://tools.ietf.org/wg/httpbis/trac/ticket/103
http://tools.ietf.org/wg/httpbis/trac/ticket/104
http://tools.ietf.org/wg/httpbis/trac/ticket/112
http://tools.ietf.org/wg/httpbis/trac/ticket/137
http://tools.ietf.org/wg/httpbis/trac/ticket/180
http://tools.ietf.org/wg/httpbis/trac/ticket/203
http://tools.ietf.org/wg/httpbis/trac/ticket/213
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-11
http://tools.ietf.org/wg/httpbis/trac/ticket/224
http://tools.ietf.org/wg/httpbis/trac/ticket/225
http://tools.ietf.org/wg/httpbis/trac/ticket/226
http://tools.ietf.org/wg/httpbis/trac/ticket/239
https://datatracker.ietf.org/doc/html/rfc2817
http://tools.ietf.org/wg/httpbis/trac/ticket/240
https://datatracker.ietf.org/doc/html/rfc2817
http://tools.ietf.org/wg/httpbis/trac/ticket/267
http://tools.ietf.org/wg/httpbis/trac/ticket/275
http://tools.ietf.org/wg/httpbis/trac/ticket/276

Fielding, et al. Expires January 12, 2012 [Page 57]

Internet-Draft HTTP/1.1, Part 2 July 2011

C.15. Since draft-ietf-httpbis-p2-semantics-13

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/276>: "untangle
 ABNFs for header fields"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/251>: "message-body
 in CONNECT request"

C.16. Since draft-ietf-httpbis-p2-semantics-14

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/255>: "Clarify
 status code for rate limiting"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/294>: "clarify 403
 forbidden"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/296>: "Clarify 203
 Non-Authoritative Information"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/298>: "update
 default reason phrase for 413"

Index

 1
 100 Continue (status code) 23
 101 Switching Protocols (status code) 23

 2
 200 OK (status code) 24
 201 Created (status code) 24
 202 Accepted (status code) 25
 203 Non-Authoritative Information (status code) 25
 204 No Content (status code) 25
 205 Reset Content (status code) 26
 206 Partial Content (status code) 26

 3
 300 Multiple Choices (status code) 27
 301 Moved Permanently (status code) 27
 302 Found (status code) 28
 303 See Other (status code) 28
 304 Not Modified (status code) 29
 305 Use Proxy (status code) 29

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-13
http://tools.ietf.org/wg/httpbis/trac/ticket/276
http://tools.ietf.org/wg/httpbis/trac/ticket/251
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-14
http://tools.ietf.org/wg/httpbis/trac/ticket/255
http://tools.ietf.org/wg/httpbis/trac/ticket/294
http://tools.ietf.org/wg/httpbis/trac/ticket/296
http://tools.ietf.org/wg/httpbis/trac/ticket/298

Fielding, et al. Expires January 12, 2012 [Page 58]

Internet-Draft HTTP/1.1, Part 2 July 2011

 306 (Unused) (status code) 29
 307 Temporary Redirect (status code) 29

 4
 400 Bad Request (status code) 30
 401 Unauthorized (status code) 30
 402 Payment Required (status code) 30
 403 Forbidden (status code) 30
 404 Not Found (status code) 31
 405 Method Not Allowed (status code) 31
 406 Not Acceptable (status code) 31
 407 Proxy Authentication Required (status code) 32
 408 Request Timeout (status code) 32
 409 Conflict (status code) 32
 410 Gone (status code) 32
 411 Length Required (status code) 33
 412 Precondition Failed (status code) 33
 413 Request Representation Too Large (status code) 33
 414 URI Too Long (status code) 33
 415 Unsupported Media Type (status code) 34
 416 Requested Range Not Satisfiable (status code) 34
 417 Expectation Failed (status code) 34
 426 Upgrade Required (status code) 34

 5
 500 Internal Server Error (status code) 35
 501 Not Implemented (status code) 35
 502 Bad Gateway (status code) 35
 503 Service Unavailable (status code) 35
 504 Gateway Timeout (status code) 35
 505 HTTP Version Not Supported (status code) 36

 A
 Allow header field 36

 C
 CONNECT method 21

 D
 DELETE method 20

 E
 Expect header field 36

 F
 From header field 37

 G

Fielding, et al. Expires January 12, 2012 [Page 59]

Internet-Draft HTTP/1.1, Part 2 July 2011

 GET method 16
 Grammar
 Allow 36
 delta-seconds 40
 Expect 36
 expect-params 36
 expectation 36
 expectation-extension 36
 extension-code 10
 From 37
 Location 38
 Max-Forwards 39
 Method 7
 Reason-Phrase 10
 Referer 40
 Retry-After 40
 Server 40
 Status-Code 10
 User-Agent 41

 H
 HEAD method 17
 Header Fields
 Allow 36
 Expect 36
 From 37
 Location 38
 Max-Forwards 39
 Referer 39
 Retry-After 40
 Server 40
 User-Agent 41

 I
 Idempotent Methods 15

 L
 Location header field 38

 M
 Max-Forwards header field 39
 Methods
 CONNECT 21
 DELETE 20
 GET 16
 HEAD 17
 OPTIONS 15
 POST 17

Fielding, et al. Expires January 12, 2012 [Page 60]

Internet-Draft HTTP/1.1, Part 2 July 2011

 PUT 18
 TRACE 21

 O
 OPTIONS method 15

 P
 POST method 17
 PUT method 18

 R
 Referer header field 39
 Retry-After header field 40

 S
 Safe Methods 14
 Server header field 40
 Status Codes
 100 Continue 23
 101 Switching Protocols 23
 200 OK 24
 201 Created 24
 202 Accepted 25
 203 Non-Authoritative Information 25
 204 No Content 25
 205 Reset Content 26
 206 Partial Content 26
 300 Multiple Choices 27
 301 Moved Permanently 27
 302 Found 28
 303 See Other 28
 304 Not Modified 29
 305 Use Proxy 29
 306 (Unused) 29
 307 Temporary Redirect 29
 400 Bad Request 30
 401 Unauthorized 30
 402 Payment Required 30
 403 Forbidden 30
 404 Not Found 31
 405 Method Not Allowed 31
 406 Not Acceptable 31
 407 Proxy Authentication Required 32
 408 Request Timeout 32
 409 Conflict 32
 410 Gone 32
 411 Length Required 33
 412 Precondition Failed 33

Fielding, et al. Expires January 12, 2012 [Page 61]

Internet-Draft HTTP/1.1, Part 2 July 2011

 413 Request Representation Too Large 33
 414 URI Too Long 33
 415 Unsupported Media Type 34
 416 Requested Range Not Satisfiable 34
 417 Expectation Failed 34
 426 Upgrade Required 34
 500 Internal Server Error 35
 501 Not Implemented 35
 502 Bad Gateway 35
 503 Service Unavailable 35
 504 Gateway Timeout 35
 505 HTTP Version Not Supported 36

 T
 TRACE method 21

 U
 User-Agent header field 41

Authors' Addresses

 Roy T. Fielding (editor)
 Adobe Systems Incorporated
 345 Park Ave
 San Jose, CA 95110
 USA

 EMail: fielding@gbiv.com
 URI: http://roy.gbiv.com/

 Jim Gettys
 Alcatel-Lucent Bell Labs
 21 Oak Knoll Road
 Carlisle, MA 01741
 USA

 EMail: jg@freedesktop.org
 URI: http://gettys.wordpress.com/

http://roy.gbiv.com/
http://gettys.wordpress.com/

Fielding, et al. Expires January 12, 2012 [Page 62]

Internet-Draft HTTP/1.1, Part 2 July 2011

 Jeffrey C. Mogul
 Hewlett-Packard Company
 HP Labs, Large Scale Systems Group
 1501 Page Mill Road, MS 1177
 Palo Alto, CA 94304
 USA

 EMail: JeffMogul@acm.org

 Henrik Frystyk Nielsen
 Microsoft Corporation
 1 Microsoft Way
 Redmond, WA 98052
 USA

 EMail: henrikn@microsoft.com

 Larry Masinter
 Adobe Systems Incorporated
 345 Park Ave
 San Jose, CA 95110
 USA

 EMail: LMM@acm.org
 URI: http://larry.masinter.net/

 Paul J. Leach
 Microsoft Corporation
 1 Microsoft Way
 Redmond, WA 98052

 EMail: paulle@microsoft.com

 Tim Berners-Lee
 World Wide Web Consortium
 MIT Computer Science and Artificial Intelligence Laboratory
 The Stata Center, Building 32
 32 Vassar Street
 Cambridge, MA 02139
 USA

 EMail: timbl@w3.org
 URI: http://www.w3.org/People/Berners-Lee/

http://larry.masinter.net/
http://www.w3.org/People/Berners-Lee/

Fielding, et al. Expires January 12, 2012 [Page 63]

Internet-Draft HTTP/1.1, Part 2 July 2011

 Yves Lafon (editor)
 World Wide Web Consortium
 W3C / ERCIM
 2004, rte des Lucioles
 Sophia-Antipolis, AM 06902
 France

 EMail: ylafon@w3.org
 URI: http://www.raubacapeu.net/people/yves/

 Julian F. Reschke (editor)
 greenbytes GmbH
 Hafenweg 16
 Muenster, NW 48155
 Germany

 Phone: +49 251 2807760
 Fax: +49 251 2807761
 EMail: julian.reschke@greenbytes.de
 URI: http://greenbytes.de/tech/webdav/

http://www.raubacapeu.net/people/yves/
http://greenbytes.de/tech/webdav/

Fielding, et al. Expires January 12, 2012 [Page 64]

