
HTTPbis Working Group R. Fielding, Ed.
Internet-Draft Adobe
Obsoletes: 2616 (if approved) J. Reschke, Ed.
Updates: 2817 (if approved) greenbytes
Intended status: Standards Track October 4, 2012
Expires: April 7, 2013

Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content
draft-ietf-httpbis-p2-semantics-21

Abstract

 The Hypertext Transfer Protocol (HTTP) is an application-level
 protocol for distributed, collaborative, hypertext information
 systems. This document defines the semantics of HTTP/1.1 messages,
 as expressed by request methods, request header fields, response
 status codes, and response header fields, along with the payload of
 messages (metadata and body content) and mechanisms for content
 negotiation.

Editorial Note (To be removed by RFC Editor)

 Discussion of this draft takes place on the HTTPBIS working group
 mailing list (ietf-http-wg@w3.org), which is archived at
 <http://lists.w3.org/Archives/Public/ietf-http-wg/>.

 The current issues list is at
 <http://tools.ietf.org/wg/httpbis/trac/report/3> and related
 documents (including fancy diffs) can be found at
 <http://tools.ietf.org/wg/httpbis/>.

 The changes in this draft are summarized in Appendix F.41.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Fielding & Reschke Expires April 7, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2817
http://lists.w3.org/Archives/Public/ietf-http-wg/
http://tools.ietf.org/wg/httpbis/trac/report/3
http://tools.ietf.org/wg/httpbis/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 This Internet-Draft will expire on April 7, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 7
1.1. Conformance and Error Handling 7
1.2. Syntax Notation . 7

2. Resource . 8
3. Representation . 8
3.1. Representation Metadata 8
3.1.1. Data Type . 9
3.1.2. Data Encoding . 12
3.1.3. Audience Language 14
3.1.4. Identification 15

3.2. Representation Data 18
3.3. Payload Semantics . 18
3.4. Content Negotiation 19
3.4.1. Proactive Negotiation 20
3.4.2. Reactive Negotiation 21

4. Product Tokens . 22
5. Request Methods . 22

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Fielding & Reschke Expires April 7, 2013 [Page 2]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

5.1. Overview . 22
5.2. Common Method Properties 24
5.2.1. Safe Methods . 24
5.2.2. Idempotent Methods 25
5.2.3. Cacheable Methods 25

5.3. Method Definitions 25
5.3.1. GET . 25
5.3.2. HEAD . 26
5.3.3. POST . 27
5.3.4. PUT . 28
5.3.5. DELETE . 30
5.3.6. CONNECT . 30
5.3.7. OPTIONS . 32
5.3.8. TRACE . 33

6. Request Header Fields . 33
6.1. Controls . 33
6.1.1. Max-Forwards . 34
6.1.2. Expect . 34

6.2. Conditionals . 37
6.3. Content Negotiation 38
6.3.1. Quality Values 38
6.3.2. Accept . 38
6.3.3. Accept-Charset 41
6.3.4. Accept-Encoding 41
6.3.5. Accept-Language 42

6.4. Authentication Credentials 44
6.5. Context . 44
6.5.1. From . 44
6.5.2. Referer . 45
6.5.3. User-Agent . 45

7. Response Status Codes . 46
7.1. Overview of Status Codes 47
7.2. Informational 1xx . 49
7.2.1. 100 Continue . 49
7.2.2. 101 Switching Protocols 49

7.3. Successful 2xx . 50
7.3.1. 200 OK . 50
7.3.2. 201 Created . 50
7.3.3. 202 Accepted . 51
7.3.4. 203 Non-Authoritative Information 51
7.3.5. 204 No Content 51
7.3.6. 205 Reset Content 52

7.4. Redirection 3xx . 52
7.4.1. 300 Multiple Choices 54
7.4.2. 301 Moved Permanently 54
7.4.3. 302 Found . 55
7.4.4. 303 See Other . 55
7.4.5. 305 Use Proxy . 56

Fielding & Reschke Expires April 7, 2013 [Page 3]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

7.4.6. 306 (Unused) . 56
7.4.7. 307 Temporary Redirect 56

7.5. Client Error 4xx . 56
7.5.1. 400 Bad Request 56
7.5.2. 402 Payment Required 56
7.5.3. 403 Forbidden . 57
7.5.4. 404 Not Found . 57
7.5.5. 405 Method Not Allowed 57
7.5.6. 406 Not Acceptable 57
7.5.7. 408 Request Timeout 58
7.5.8. 409 Conflict . 58
7.5.9. 410 Gone . 58
7.5.10. 411 Length Required 59
7.5.11. 413 Request Representation Too Large 59
7.5.12. 414 URI Too Long 59
7.5.13. 415 Unsupported Media Type 59
7.5.14. 417 Expectation Failed 60
7.5.15. 426 Upgrade Required 60

7.6. Server Error 5xx . 60
7.6.1. 500 Internal Server Error 60
7.6.2. 501 Not Implemented 60
7.6.3. 502 Bad Gateway 61
7.6.4. 503 Service Unavailable 61
7.6.5. 504 Gateway Timeout 61
7.6.6. 505 HTTP Version Not Supported 61

8. Response Header Fields 61
8.1. Control Data . 62
8.1.1. Origination Date 62
8.1.2. Location . 65
8.1.3. Retry-After . 66

8.2. Selected Representation Header Fields 67
8.2.1. Vary . 67

8.3. Authentication Challenges 68
8.4. Informative . 68
8.4.1. Allow . 69
8.4.2. Server . 69

9. IANA Considerations . 70
9.1. Method Registry . 70
9.1.1. Procedure . 70
9.1.2. Considerations for New Methods 70
9.1.3. Registrations . 71

9.2. Status Code Registry 71
9.2.1. Procedure . 71
9.2.2. Considerations for New Status Codes 71
9.2.3. Registrations . 72

9.3. Header Field Registry 73
9.3.1. Considerations for New Header Fields 74
9.3.2. Registrations . 75

Fielding & Reschke Expires April 7, 2013 [Page 4]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

9.4. Content Coding Registry 76
9.4.1. Procedure . 76
9.4.2. Registrations . 77

10. Security Considerations 77
10.1. Transfer of Sensitive Information 77
10.2. Encoding Sensitive Information in URIs 78

 10.3. Location Header Fields: Spoofing and Information
 Leakage . 79

10.4. Security Considerations for CONNECT 79
10.5. Privacy Issues Connected to Accept Header Fields 79

11. Acknowledgments . 80
12. References . 80
12.1. Normative References 80
12.2. Informative References 81

Appendix A. Differences between HTTP and MIME 83
A.1. MIME-Version . 84
A.2. Conversion to Canonical Form 84
A.3. Conversion of Date Formats 84
A.4. Introduction of Content-Encoding 85
A.5. No Content-Transfer-Encoding 85
A.6. MHTML and Line Length Limitations 85

Appendix B. Additional Features 85
Appendix C. Changes from RFC 2616 86
Appendix D. Imported ABNF 88
Appendix E. Collected ABNF 88
Appendix F. Change Log (to be removed by RFC Editor before

 publication) . 91
F.1. Since RFC 2616 . 91
F.2. Since draft-ietf-httpbis-p2-semantics-00 91
F.3. Since draft-ietf-httpbis-p3-payload-00 92
F.4. Since draft-ietf-httpbis-p2-semantics-01 93
F.5. Since draft-ietf-httpbis-p3-payload-01 93
F.6. Since draft-ietf-httpbis-p2-semantics-02 93
F.7. Since draft-ietf-httpbis-p3-payload-02 94
F.8. Since draft-ietf-httpbis-p2-semantics-03 95
F.9. Since draft-ietf-httpbis-p3-payload-03 95
F.10. Since draft-ietf-httpbis-p2-semantics-04 95
F.11. Since draft-ietf-httpbis-p3-payload-04 96
F.12. Since draft-ietf-httpbis-p2-semantics-05 96
F.13. Since draft-ietf-httpbis-p3-payload-05 96
F.14. Since draft-ietf-httpbis-p2-semantics-06 97
F.15. Since draft-ietf-httpbis-p3-payload-06 97
F.16. Since draft-ietf-httpbis-p2-semantics-07 97
F.17. Since draft-ietf-httpbis-p3-payload-07 98
F.18. Since draft-ietf-httpbis-p2-semantics-08 99
F.19. Since draft-ietf-httpbis-p3-payload-08 99
F.20. Since draft-ietf-httpbis-p2-semantics-09 99
F.21. Since draft-ietf-httpbis-p3-payload-09 99

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-07
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-07
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-08
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-08
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-09
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-09

Fielding & Reschke Expires April 7, 2013 [Page 5]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

F.22. Since draft-ietf-httpbis-p2-semantics-10 100
F.23. Since draft-ietf-httpbis-p3-payload-10 100
F.24. Since draft-ietf-httpbis-p2-semantics-11 101
F.25. Since draft-ietf-httpbis-p3-payload-11 101
F.26. Since draft-ietf-httpbis-p2-semantics-12 101
F.27. Since draft-ietf-httpbis-p3-payload-12 103
F.28. Since draft-ietf-httpbis-p2-semantics-13 103
F.29. Since draft-ietf-httpbis-p3-payload-13 103
F.30. Since draft-ietf-httpbis-p2-semantics-14 103
F.31. Since draft-ietf-httpbis-p3-payload-14 104
F.32. Since draft-ietf-httpbis-p2-semantics-15 104
F.33. Since draft-ietf-httpbis-p3-payload-15 104
F.34. Since draft-ietf-httpbis-p2-semantics-16 104
F.35. Since draft-ietf-httpbis-p3-payload-16 104
F.36. Since draft-ietf-httpbis-p2-semantics-17 105
F.37. Since draft-ietf-httpbis-p3-payload-17 105
F.38. Since draft-ietf-httpbis-p2-semantics-18 105
F.39. Since draft-ietf-httpbis-p3-payload-18 106

 F.40. Since draft-ietf-httpbis-p2-semantics-19 and
draft-ietf-httpbis-p3-payload-19 106

F.41. Since draft-ietf-httpbis-p2-semantics-20 107
 Index . 107

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-10
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-10
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-11
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-11
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-12
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-12
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-13
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-13
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-14
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-14
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-15
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-15
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-16
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-16
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-17
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-17
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-18
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-18
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-20

Fielding & Reschke Expires April 7, 2013 [Page 6]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

1. Introduction

 Each Hypertext Transfer Protocol (HTTP) message is either a request
 or a response. A server listens on a connection for a request,
 parses each message received, interprets the message semantics in
 relation to the identified request target, and responds to that
 request with one or more response messages. A client constructs
 request messages to communicate specific intentions, and examines
 received responses to see if the intentions were carried out and
 determine how to interpret the results. This document defines
 HTTP/1.1 request and response semantics in terms of the architecture
 defined in [Part1].

 HTTP provides a uniform interface for interacting with a resource
 (Section 2), regardless of its type, nature, or implementation, and
 for transferring content in message payloads in the form of a
 representation (Section 3).

 HTTP semantics include the intentions defined by each request method
 (Section 5), extensions to those semantics that might be described in
 request header fields (Section 6), the meaning of status codes to
 indicate a machine-readable response (Section 7), and the meaning of
 other control data and resource metadata that might be given in
 response header fields (Section 8).

 This document also defines representation metadata that describe how
 a payload is intended to be interpreted by a recipient, the request
 header fields that might influence content selection, and the various
 selection algorithms that are collectively referred to as "content
 negotiation" (Section 3.4).

1.1. Conformance and Error Handling

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Conformance criteria and considerations regarding error handling are
 defined in Section 2.5 of [Part1].

1.2. Syntax Notation

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234] with the list rule extension defined in Section

1.2 of [Part1]. Appendix D describes rules imported from other
 documents. Appendix E shows the collected ABNF with the list rule
 expanded.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234

Fielding & Reschke Expires April 7, 2013 [Page 7]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

2. Resource

 The target of each HTTP request is called a resource. HTTP does not
 limit the nature of a resource; it merely defines an interface that
 might be used to interact with resources. Each resource is
 identified by a Uniform Resource Identifier (URI), as described in
 Section 2.7 of [Part1].

 When a client constructs an HTTP/1.1 request message, it sends the
 "target URI" in one of various forms, as defined in (Section 5.3 of
 [Part1]). When a request is received, the server reconstructs an
 "effective request URI" for the target resource (Section 5.5 of
 [Part1]).

 One design goal of HTTP is to separate resource identification from
 request semantics, which is made possible by vesting the request
 semantics in the request method (Section 5) and a few request-
 modifying header fields (Section 6). Resource owners SHOULD NOT
 include request semantics within a URI, such as by specifying an
 action to invoke within the path or query components of the effective
 request URI, unless those semantics are disabled when they are
 inconsistent with the request method.

3. Representation

 If we consider that a resource could be anything, and that the
 uniform interface provided by HTTP is similar to a window through
 which one can observe and act upon such a thing only through the
 communication of messages to some independent actor on the other
 side, then we need an abstraction to represent ("take the place of")
 the current or desired state of that thing in our communications. We
 call that abstraction a "representation" [REST].

 For the purposes of HTTP, a representation is information that
 reflects the current or desired state of a given resource, in a
 format that can be readily communicated via the protocol, consisting
 of a set of representation metadata and a potentially unbounded
 stream of representation data.

3.1. Representation Metadata

 Representation header fields provide metadata about the
 representation. When a message includes a payload body, the
 representation header fields describe how to interpret the
 representation data enclosed in the payload body. In a response to a
 HEAD request, the representation header fields describe the
 representation data that would have been enclosed in the payload body
 if the same request had been a GET.

Fielding & Reschke Expires April 7, 2013 [Page 8]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 The following header fields are defined to convey representation
 metadata:

 +-------------------+------------------------+
 | Header Field Name | Defined in... |
 +-------------------+------------------------+
Content-Type	Section 3.1.1.5
Content-Encoding	Section 3.1.2.2
Content-Language	Section 3.1.3.2
Content-Location	Section 3.1.4.2
Expires	Section 7.3 of [Part6]
 +-------------------+------------------------+

3.1.1. Data Type

3.1.1.1. Media Types

 HTTP uses Internet Media Types [RFC2046] in the Content-Type
 (Section 3.1.1.5) and Accept (Section 6.3.2) header fields in order
 to provide open and extensible data typing and type negotiation.

 media-type = type "/" subtype *(OWS ";" OWS parameter)
 type = token
 subtype = token

 The type/subtype MAY be followed by parameters in the form of
 attribute/value pairs.

 parameter = attribute "=" value
 attribute = token
 value = word

 The type, subtype, and parameter attribute names are case-
 insensitive. Parameter values might or might not be case-sensitive,
 depending on the semantics of the parameter name. The presence or
 absence of a parameter might be significant to the processing of a
 media-type, depending on its definition within the media type
 registry.

 A parameter value that matches the token production can be
 transmitted as either a token or within a quoted-string. The quoted
 and unquoted values are equivalent.

 Media-type values are registered with the Internet Assigned Number
 Authority (IANA). The media type registration process is outlined in
 [RFC4288]. Use of non-registered media types is discouraged.

https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc4288

Fielding & Reschke Expires April 7, 2013 [Page 9]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

3.1.1.2. Character Encodings (charset)

 HTTP uses charset names to indicate the character encoding of a
 textual representation.

 A character encoding is identified by a case-insensitive token. The
 complete set of tokens is defined by the IANA Character Set registry
 (<http://www.iana.org/assignments/character-sets>).

 charset = token

 Although HTTP allows an arbitrary token to be used as a charset
 value, any token that has a predefined value within the IANA
 Character Set registry MUST represent the character encoding defined
 by that registry. Applications SHOULD limit their use of character
 encodings to those defined within the IANA registry.

 HTTP uses charset in two contexts: within an Accept-Charset request
 header field (in which the charset value is an unquoted token) and as
 the value of a parameter in a Content-Type header field (within a
 request or response), in which case the parameter value of the
 charset parameter can be quoted.

 Implementers need to be aware of IETF character set requirements
 [RFC3629] [RFC2277].

3.1.1.3. Canonicalization and Text Defaults

 Internet media types are registered with a canonical form. A
 representation transferred via HTTP messages MUST be in the
 appropriate canonical form prior to its transmission except for
 "text" types, as defined in the next paragraph.

 When in canonical form, media subtypes of the "text" type use CRLF as
 the text line break. HTTP relaxes this requirement and allows the
 transport of text media with plain CR or LF alone representing a line
 break when it is done consistently for an entire representation.
 HTTP applications MUST accept CRLF, bare CR, and bare LF as
 indicating a line break in text media received via HTTP. In
 addition, if the text is in a character encoding that does not use
 octets 13 and 10 for CR and LF respectively, as is the case for some
 multi-byte character encodings, HTTP allows the use of whatever octet
 sequences are defined by that character encoding to represent the
 equivalent of CR and LF for line breaks. This flexibility regarding
 line breaks applies only to text media in the payload body; a bare CR
 or LF MUST NOT be substituted for CRLF within any of the HTTP control
 structures (such as header fields and multipart boundaries).

http://www.iana.org/assignments/character-sets
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc2277

Fielding & Reschke Expires April 7, 2013 [Page 10]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 If a representation is encoded with a content-coding, the underlying
 data MUST be in a form defined above prior to being encoded.

3.1.1.4. Multipart Types

 MIME provides for a number of "multipart" types -- encapsulations of
 one or more representations within a single message body. All
 multipart types share a common syntax, as defined in Section 5.1.1 of
 [RFC2046], and include a boundary parameter as part of the media type
 value. The message body is itself a protocol element; a sender MUST
 generate only CRLF to represent line breaks between body-parts.

 In general, HTTP treats a multipart message body no differently than
 any other media type: strictly as payload. HTTP does not use the
 multipart boundary as an indicator of message body length. In all
 other respects, an HTTP user agent SHOULD follow the same or similar
 behavior as a MIME user agent would upon receipt of a multipart type.
 The MIME header fields within each body-part of a multipart message
 body do not have any significance to HTTP beyond that defined by
 their MIME semantics.

 A recipient MUST treat an unrecognized multipart subtype as being
 equivalent to "multipart/mixed".

 Note: The "multipart/form-data" type has been specifically defined
 for carrying form data suitable for processing via the POST
 request method, as described in [RFC2388].

3.1.1.5. Content-Type

 The "Content-Type" header field indicates the media type of the
 representation, which defines both the data format and how that data
 SHOULD be processed by the recipient (within the scope of the request
 method semantics) after any Content-Encoding is decoded. For
 responses to the HEAD method, the media type is that which would have
 been sent had the request been a GET.

 Content-Type = media-type

 Media types are defined in Section 3.1.1.1. An example of the field
 is

 Content-Type: text/html; charset=ISO-8859-4

 A sender SHOULD include a Content-Type header field in a message
 containing a payload body, defining the media type of the enclosed
 representation, unless the intended media type is unknown to the
 sender. If a Content-Type header field is not present, recipients

https://datatracker.ietf.org/doc/html/rfc2046#section-5.1.1
https://datatracker.ietf.org/doc/html/rfc2046#section-5.1.1
https://datatracker.ietf.org/doc/html/rfc2388

Fielding & Reschke Expires April 7, 2013 [Page 11]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 MAY either assume a media type of "application/octet-stream"
 ([RFC2046], Section 4.5.1) or examine the representation data to
 determine its type.

 In practice, resource owners do not always properly configure their
 origin server to provide the correct Content-Type for a given
 representation, with the result that some clients will examine a
 payload's content and override the specified type. Clients that do
 so risk drawing incorrect conclusions, which might expose additional
 security risks (e.g., "privilege escalation"). Furthermore, it is
 impossible to determine the sender's intent by examining the data
 format: many data formats match multiple media types that differ only
 in processing semantics. Implementers are encouraged to provide a
 means of disabling such "content sniffing" when it is used.

3.1.2. Data Encoding

3.1.2.1. Content Codings

 Content coding values indicate an encoding transformation that has
 been or can be applied to a representation. Content codings are
 primarily used to allow a representation to be compressed or
 otherwise usefully transformed without losing the identity of its
 underlying media type and without loss of information. Frequently,
 the representation is stored in coded form, transmitted directly, and
 only decoded by the recipient.

 content-coding = token

 All content-coding values are case-insensitive and SHOULD be
 registered within the HTTP Content Coding registry, as defined in

Section 9.4. They are used in the Accept-Encoding (Section 6.3.4)
 and Content-Encoding (Section 3.1.2.2) header fields.

 The following content-coding values are defined by this
 specification:

 compress (and x-compress): See Section 4.2.1 of [Part1].

 deflate: See Section 4.2.2 of [Part1].

 gzip (and x-gzip): See Section 4.2.3 of [Part1].

3.1.2.2. Content-Encoding

 The "Content-Encoding" header field indicates what content codings
 have been applied to the representation, beyond those inherent in the
 media type, and thus what decoding mechanisms have to be applied in

https://datatracker.ietf.org/doc/html/rfc2046#section-4.5.1

Fielding & Reschke Expires April 7, 2013 [Page 12]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 order to obtain data in the media type referenced by the Content-Type
 header field. Content-Encoding is primarily used to allow a
 representation's data to be compressed without losing the identity of
 its underlying media type.

 Content-Encoding = 1#content-coding

 An example of its use is

 Content-Encoding: gzip

 If multiple encodings have been applied to a representation, the
 content codings MUST be listed in the order in which they were
 applied. Additional information about the encoding parameters MAY be
 provided by other header fields not defined by this specification.

 Unlike Transfer-Encoding (Section 3.3.1 of [Part1]), the codings
 listed in Content-Encoding are a characteristic of the
 representation; the representation is defined in terms of the coded
 form, and all other metadata about the representation is about the
 coded form unless otherwise noted in the metadata definition.
 Typically, the representation is only decoded just prior to rendering
 or analogous usage.

 A transforming proxy MAY modify the content coding if the new coding
 is known to be acceptable to the recipient, unless the "no-transform"
 cache-control directive is present in the message.

 If the media type includes an inherent encoding, such as a data
 format that is always compressed, then that encoding would not be
 restated as a Content-Encoding even if it happens to be the same
 algorithm as one of the content codings. Such a content coding would
 only be listed if, for some bizarre reason, it is applied a second
 time to form the representation. Likewise, an origin server might
 choose to publish the same payload data as multiple representations
 that differ only in whether the coding is defined as part of Content-
 Type or Content-Encoding, since some user agents will behave
 differently in their handling of each response (e.g., open a "Save as
 ..." dialog instead of automatic decompression and rendering of
 content).

 If the content-coding of a representation in a request message is not
 acceptable to the origin server, the server SHOULD respond with a
 status code of 415 (Unsupported Media Type).

Fielding & Reschke Expires April 7, 2013 [Page 13]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

3.1.3. Audience Language

3.1.3.1. Language Tags

 A language tag, as defined in [RFC5646], identifies a natural
 language spoken, written, or otherwise conveyed by human beings for
 communication of information to other human beings. Computer
 languages are explicitly excluded. HTTP uses language tags within
 the Accept-Language and Content-Language fields.

 In summary, a language tag is composed of one or more parts: A
 primary language subtag followed by a possibly empty series of
 subtags:

 language-tag = <Language-Tag, defined in [RFC5646], Section 2.1>

 White space is not allowed within the tag and all tags are case-
 insensitive. The name space of language subtags is administered by
 the IANA (see
 <http://www.iana.org/assignments/language-subtag-registry>).

 Example tags include:

 en, en-US, es-419, az-Arab, x-pig-latin, man-Nkoo-GN

 See [RFC5646] for further information.

3.1.3.2. Content-Language

 The "Content-Language" header field describes the natural language(s)
 of the intended audience for the representation. Note that this
 might not be equivalent to all the languages used within the
 representation.

 Content-Language = 1#language-tag

 Language tags are defined in Section 3.1.3.1. The primary purpose of
 Content-Language is to allow a user to identify and differentiate
 representations according to the user's own preferred language.
 Thus, if the content is intended only for a Danish-literate audience,
 the appropriate field is

 Content-Language: da

 If no Content-Language is specified, the default is that the content
 is intended for all language audiences. This might mean that the
 sender does not consider it to be specific to any natural language,
 or that the sender does not know for which language it is intended.

https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/rfc5646#section-2.1
http://www.iana.org/assignments/language-subtag-registry
https://datatracker.ietf.org/doc/html/rfc5646

Fielding & Reschke Expires April 7, 2013 [Page 14]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Multiple languages MAY be listed for content that is intended for
 multiple audiences. For example, a rendition of the "Treaty of
 Waitangi", presented simultaneously in the original Maori and English
 versions, would call for

 Content-Language: mi, en

 However, just because multiple languages are present within a
 representation does not mean that it is intended for multiple
 linguistic audiences. An example would be a beginner's language
 primer, such as "A First Lesson in Latin", which is clearly intended
 to be used by an English-literate audience. In this case, the
 Content-Language would properly only include "en".

 Content-Language MAY be applied to any media type -- it is not
 limited to textual documents.

3.1.4. Identification

3.1.4.1. Identifying a Representation

 When a complete or partial representation is transferred in a message
 payload, it is often desirable for the sender to supply, or the
 recipient to determine, an identifier for a resource corresponding to
 that representation.

 The following rules are used to determine such a URI for the payload
 of a request message:

 o If the request has a Content-Location header field, then the
 sender asserts that the payload is a representation of the
 resource identified by the Content-Location field-value. However,
 such an assertion cannot be trusted unless it can be verified by
 other means (not defined by HTTP). The information might still be
 useful for revision history links.

 o Otherwise, the payload is unidentified.

 The following rules, to be applied in order until a match is found,
 are used to determine such a URI for the payload of a response
 message:

 1. If the request is GET or HEAD and the response status code is 200
 (OK), 204 (No Content), 206 (Partial Content), or 304 (Not
 Modified), the payload's identifier is the effective request URI
 (Section 5.5 of [Part1]).

Fielding & Reschke Expires April 7, 2013 [Page 15]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 2. If the request is GET or HEAD and the response status code is 203
 (Non-Authoritative Information), the payload is a potentially
 modified representation of the target resource; as such, the
 effective request URI might only act as an identifier for the
 payload's representation when a request is made via the same
 chain of intermediaries.

 3. If the response has a Content-Location header field and its
 field-value is a reference to the same URI as the effective
 request URI, the payload's identifier is the effective request
 URI.

 4. If the response has a Content-Location header field and its
 field-value is a reference to a URI different from the effective
 request URI, then the sender asserts that the payload is a
 representation of the resource identified by the Content-Location
 field-value. However, such an assertion cannot be trusted unless
 it can be verified by other means (not defined by HTTP).

 5. Otherwise, the payload is unidentified.

3.1.4.2. Content-Location

 The "Content-Location" header field references a URI that can be used
 as a specific identifier for the representation in this message
 payload. In other words, if one were to perform a GET on this URI at
 the time of this message's generation, then a 200 (OK) response would
 contain the same representation that is enclosed as payload in this
 message.

 Content-Location = absolute-URI / partial-URI

 The Content-Location value is not a replacement for the effective
 Request URI (Section 5.5 of [Part1]). It is representation metadata.
 It has the same syntax and semantics as the header field of the same
 name defined for MIME body parts in Section 4 of [RFC2557]. However,
 its appearance in an HTTP message has some special implications for
 HTTP recipients.

 If Content-Location is included in a 2xx (Successful) response
 message and its value refers (after conversion to absolute form) to a
 URI that is the same as the effective request URI, then the response
 payload SHOULD be considered a current representation of that
 resource. For a GET or HEAD request, this is the same as the default
 semantics when no Content-Location is provided by the server. For a
 state-changing request like PUT or POST, it implies that the server's
 response contains the new representation of that resource, thereby
 distinguishing it from representations that might only report about

https://datatracker.ietf.org/doc/html/rfc2557#section-4

Fielding & Reschke Expires April 7, 2013 [Page 16]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 the action (e.g., "It worked!"). This allows authoring applications
 to update their local copies without the need for a subsequent GET
 request.

 If Content-Location is included in a 2xx (Successful) response
 message and its field-value refers to a URI that differs from the
 effective request URI, then the origin server claims that the field-
 value is an identifier for the payload's representation. Such a
 claim can only be trusted if both identifiers share the same resource
 owner, which cannot be programmatically determined via HTTP.

 o For a response to a GET or HEAD request, this is an indication
 that the effective request URI identifies a resource that is
 subject to content negotiation and the Content-Location field-
 value is a more specific identifier for the selected
 representation.

 o For a 201 (Created) response to a state-changing method, a
 Content-Location field-value that is identical to the Location
 field-value indicates that this payload is a current
 representation of the newly created resource.

 o Otherwise, such a Content-Location indicates that this payload is
 a representation reporting on the requested action's status and
 that the same report is available (for future access with GET) at
 the given URI. For example, a purchase transaction made via a
 POST request might include a receipt document as the payload of
 the 200 (OK) response; the Content-Location field-value provides
 an identifier for retrieving a copy of that same receipt in the
 future.

 If Content-Location is included in a request message, then it MAY be
 interpreted by the origin server as an indication of where the user
 agent originally obtained the content of the enclosed representation
 (prior to any subsequent modification of the content by that user
 agent). In other words, the user agent is providing the same
 representation metadata that it received with the original
 representation. However, such interpretation MUST NOT be used to
 alter the semantics of the method requested by the client. For
 example, if a client makes a PUT request on a negotiated resource and
 the origin server accepts that PUT (without redirection), then the
 new set of values for that resource is expected to be consistent with
 the one representation supplied in that PUT; the Content-Location
 cannot be used as a form of reverse content selection that identifies
 only one of the negotiated representations to be updated. If the
 user agent had wanted the latter semantics, it would have applied the
 PUT directly to the Content-Location URI.

Fielding & Reschke Expires April 7, 2013 [Page 17]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 A Content-Location field received in a request message is transitory
 information that SHOULD NOT be saved with other representation
 metadata for use in later responses. The Content-Location's value
 might be saved for use in other contexts, such as within source links
 or other metadata.

 A cache cannot assume that a representation with a Content-Location
 different from the URI used to retrieve it can be used to respond to
 later requests on that Content-Location URI.

3.2. Representation Data

 The representation data associated with an HTTP message is either
 provided as the payload body of the message or referred to by the
 message semantics and the effective request URI. The representation
 data is in a format and encoding defined by the representation
 metadata header fields.

 The data type of the representation data is determined via the header
 fields Content-Type and Content-Encoding. These define a two-layer,
 ordered encoding model:

 representation-data := Content-Encoding(Content-Type(bits))

3.3. Payload Semantics

 Some HTTP messages transfer a complete or partial representation as
 the message "payload". In some cases, a payload might only contain
 the associated representation's header fields (e.g., responses to
 HEAD) or only some part(s) of the representation data (e.g., the 206
 (Partial Content) status code).

 The purpose of a payload in a request is defined by the method
 semantics. In a response, the payload's purpose is defined by both
 the request method and the response status code.

 For example, a representation in the payload of a PUT request
 (Section 5.3.4) represents the desired state of the target resource
 if the request is successfully applied, whereas a representation in
 the payload of a POST request (Section 5.3.3) represents an anonymous
 resource for providing data to be processed, such as the information
 that a user entered within an HTML form.

 Likewise, the payload of a 200 (OK) response to GET (Section 5.3.1)
 contains a representation of the target resource, as observed at the
 time of the message origination date (Section 8.1.1.2), whereas the
 same status code in a response to POST might contain either a
 representation of the processing result or a current representation

Fielding & Reschke Expires April 7, 2013 [Page 18]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 of the target resource after applying the processing. Response
 messages with an error status code usually contain a representation
 that describes the error and what next steps are suggested for
 resolving it.

 Header fields that specifically describe the payload, rather than the
 associated representation, are referred to as "payload header
 fields". Payload header fields are defined in other parts of this
 specification, due to their impact on message parsing.

 +-------------------+--------------------------+
 | Header Field Name | Defined in... |
 +-------------------+--------------------------+
Content-Length	Section 3.3.2 of [Part1]
Content-Range	Section 5.2 of [Part5]
Transfer-Encoding	Section 3.3.1 of [Part1]
 +-------------------+--------------------------+

3.4. Content Negotiation

 HTTP responses include a representation which contains information
 for interpretation, whether by a human user or for further
 processing. Often, the server has different ways of representing the
 same information; for example, in different formats, languages, or
 using different character encodings.

 HTTP clients and their users might have different or variable
 capabilities, characteristics or preferences which would influence
 which representation, among those available from the server, would be
 best for the server to deliver. For this reason, HTTP provides
 mechanisms for "content negotiation" -- a process of allowing
 selection of a representation of a given resource, when more than one
 is available.

 This specification defines two patterns of content negotiation;
 "proactive", where the server selects the representation based upon
 the client's stated preferences, and "reactive" negotiation, where
 the server provides a list of representations for the client to
 choose from, based upon their metadata. In addition, there are other
 patterns: some applications use an "active content" pattern, where
 the server returns active content which runs on the client and, based
 on client available parameters, selects additional resources to
 invoke. "Transparent Content Negotiation" ([RFC2295]) has also been
 proposed.

 These patterns are all widely used, and have trade-offs in
 applicability and practicality. In particular, when the number of
 preferences or capabilities to be expressed by a client are large

https://datatracker.ietf.org/doc/html/rfc2295

Fielding & Reschke Expires April 7, 2013 [Page 19]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 (such as when many different formats are supported by a user-agent),
 proactive negotiation becomes unwieldy, and might not be appropriate.
 Conversely, when the number of representations to choose from is very
 large, reactive negotiation might not be appropriate.

 Note that, in all cases, the supplier of representations has the
 responsibility for determining which representations might be
 considered to be the "same information".

3.4.1. Proactive Negotiation

 If the selection of the best representation for a response is made by
 an algorithm located at the server, it is called proactive
 negotiation. Selection is based on the available representations of
 the response (the dimensions over which it can vary; e.g., language,
 content-coding, etc.) and the contents of particular header fields in
 the request message or on other information pertaining to the request
 (such as the network address of the client).

 Proactive negotiation is advantageous when the algorithm for
 selecting from among the available representations is difficult to
 describe to the user agent, or when the server desires to send its
 "best guess" to the client along with the first response (hoping to
 avoid the round-trip delay of a subsequent request if the "best
 guess" is good enough for the user). In order to improve the
 server's guess, the user agent MAY include request header fields
 (Accept, Accept-Language, Accept-Encoding, etc.) which describe its
 preferences for such a response.

 Proactive negotiation has disadvantages:

 1. It is impossible for the server to accurately determine what
 might be "best" for any given user, since that would require
 complete knowledge of both the capabilities of the user agent and
 the intended use for the response (e.g., does the user want to
 view it on screen or print it on paper?).

 2. Having the user agent describe its capabilities in every request
 can be both very inefficient (given that only a small percentage
 of responses have multiple representations) and a potential
 violation of the user's privacy.

 3. It complicates the implementation of an origin server and the
 algorithms for generating responses to a request.

 4. It might limit a public cache's ability to use the same response
 for multiple user's requests.

Fielding & Reschke Expires April 7, 2013 [Page 20]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Proactive negotiation allows the user agent to specify its
 preferences, but it cannot expect responses to always honor them.
 For example, the origin server might not implement proactive
 negotiation, or it might decide that sending a response that doesn't
 conform to them is better than sending a 406 (Not Acceptable)
 response.

 HTTP/1.1 includes the following header fields for enabling proactive
 negotiation through description of user agent capabilities and user
 preferences: Accept (Section 6.3.2), Accept-Charset (Section 6.3.3),
 Accept-Encoding (Section 6.3.4), Accept-Language (Section 6.3.5), and
 User-Agent (Section 6.5.3). However, an origin server is not limited
 to these dimensions and MAY vary the response based on any aspect of
 the request, including aspects of the connection (e.g., IP address)
 or information within extension header fields not defined by this
 specification.

 Note: In practice, User-Agent based negotiation is fragile,
 because new clients might not be recognized.

 The Vary header field (Section 8.2.1) can be used to express the
 parameters the server uses to select a representation that is subject
 to proactive negotiation.

3.4.2. Reactive Negotiation

 With reactive negotiation, selection of the best representation for a
 response is performed by the user agent after receiving an initial
 response from the origin server. Selection is based on a list of the
 available representations of the response included within the header
 fields or body of the initial response, with each representation
 identified by its own URI. Selection from among the representations
 can be performed automatically (if the user agent is capable of doing
 so) or manually by the user selecting from a generated (possibly
 hypertext) menu.

 Reactive negotiation is advantageous when the response would vary
 over commonly-used dimensions (such as type, language, or encoding),
 when the origin server is unable to determine a user agent's
 capabilities from examining the request, and generally when public
 caches are used to distribute server load and reduce network usage.

 Reactive negotiation suffers from the disadvantage of needing a
 second request to obtain the best alternate representation. This
 second request is only efficient when caching is used. In addition,
 this specification does not define any mechanism for supporting
 automatic selection, though it also does not prevent any such
 mechanism from being developed as an extension and used within

Fielding & Reschke Expires April 7, 2013 [Page 21]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 HTTP/1.1.

 This specification defines the 300 (Multiple Choices) and 406 (Not
 Acceptable) status codes for enabling reactive negotiation when the
 server is unwilling or unable to provide a varying response using
 proactive negotiation.

4. Product Tokens

 Product tokens are used to allow communicating applications to
 identify themselves by software name and version. Most fields using
 product tokens also allow sub-products which form a significant part
 of the application to be listed, separated by whitespace. By
 convention, the products are listed in order of their significance
 for identifying the application.

 product = token ["/" product-version]
 product-version = token

 Examples:

 User-Agent: CERN-LineMode/2.15 libwww/2.17b3
 Server: Apache/0.8.4

 Product tokens SHOULD be short and to the point. They MUST NOT be
 used for advertising or other non-essential information. Although
 any token octet MAY appear in a product-version, this token SHOULD
 only be used for a version identifier (i.e., successive versions of
 the same product SHOULD only differ in the product-version portion of
 the product value).

5. Request Methods

5.1. Overview

 The request method token is the primary source of request semantics;
 it indicates the purpose for which the client has made this request
 and what is expected by the client as a successful result. The
 request semantics MAY be further specialized by the semantics of some
 header fields when present in a request (Section 6) if those
 additional semantics do not conflict with the method.

 method = token

 HTTP was originally designed to be usable as an interface to
 distributed object systems. The request method was envisioned as
 applying semantics to a target resource in much the same way as
 invoking a defined method on an identified object would apply

Fielding & Reschke Expires April 7, 2013 [Page 22]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 semantics. The method token is case-sensitive because it might be
 used as a gateway to object-based systems with case-sensitive method
 names.

 Unlike distributed objects, the standardized request methods in HTTP
 are not resource-specific, since uniform interfaces provide for
 better visibility and reuse in network-based systems [REST]. Once
 defined, a standardized method MUST have the same semantics when
 applied to any resource, though each resource determines for itself
 whether those semantics are implemented or allowed.

 This specification defines a number of standardized methods that are
 commonly used in HTTP, as outlined by the following table. By
 convention, standardized methods are defined in all-uppercase ASCII
 letters.

 +---------+---+-------+
 | Method | Description | Sec. |
 +---------+---+-------+
GET	Transfer a current representation of the target	5.3.1
	resource.	
HEAD	Same as GET, but do not include a message body	5.3.2
	in the response.	
POST	Perform resource-specific processing on the	5.3.3
	request payload.	
PUT	Replace all current representations of the	5.3.4
	target resource with the request payload.	
DELETE	Remove all current representations of the	5.3.5
	target resource.	
CONNECT	Establish a tunnel to the server identified by	5.3.6
	the target resource.	
OPTIONS	Describe the communication options for the	5.3.7
	target resource.	
TRACE	Perform a message loop-back test along the path	5.3.8
	to the target resource.	
 +---------+---+-------+

 The methods GET and HEAD MUST be supported by all general-purpose
 servers. All other methods are OPTIONAL. When implemented, a server
 MUST implement the above methods according to the semantics defined
 for them in Section 5.3.

 Additional methods MAY be used in HTTP; many have already been
 standardized outside the scope of this specification and registered
 within the HTTP Method Registry maintained by IANA, as defined in

Section 9.1.

 The set of methods allowed by a target resource can be listed in an

Fielding & Reschke Expires April 7, 2013 [Page 23]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Allow header field (Section 8.4.1). However, the set of allowed
 methods can change dynamically. When a request message is received
 that is unrecognized or not implemented by an origin server, the
 origin server SHOULD respond with the 501 (Not Implemented) status
 code. When a request message is received that is known by an origin
 server but not allowed for the target resource, the origin server
 SHOULD respond with the 405 (Method Not Allowed) status code.

5.2. Common Method Properties

5.2.1. Safe Methods

 Request methods are considered "safe" if their defined semantics are
 essentially read-only; i.e., the client does not request, and does
 not expect, any state change on the origin server as a result of
 applying a safe method to a target resource. Likewise, reasonable
 use of a safe method is not expected to cause any harm, loss of
 property, or unusual burden on the origin server.

 This definition of safe methods does not prevent an implementation
 from including behavior that is potentially harmful, not entirely
 read-only, or which causes side-effects while invoking a safe method.
 What is important, however, is that the client did not request that
 additional behavior and cannot be held accountable for it. For
 example, most servers append request information to access log files
 at the completion of every response, regardless of the method, and
 that is considered safe even though the log storage might become full
 and crash the server. Likewise, a safe request initiated by
 selecting an advertisement on the Web will often have the side-effect
 of charging an advertising account.

 The GET, HEAD, OPTIONS, and TRACE request methods are defined to be
 safe.

 The purpose of distinguishing between safe and unsafe methods is to
 allow automated retrieval processes (spiders) and cache performance
 optimization (pre-fetching) to work without fear of causing harm. In
 addition, it allows a user agent to apply appropriate constraints on
 the automated use of unsafe methods when processing potentially
 untrusted content.

 A user agent SHOULD distinguish between safe and unsafe methods when
 presenting potential actions to a user, such that the user can be
 made aware of an unsafe action before it is requested.

 When a resource is constructed such that parameters within the
 effective request URI have the effect of selecting an action, it is
 the resource owner's responsibility to ensure that the action is

Fielding & Reschke Expires April 7, 2013 [Page 24]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 consistent with the request method semantics. For example, it is
 common for Web-based content editing software to use actions within
 query parameters, such as "page?do=delete". If the purpose of such a
 resource is to perform an unsafe action, then the resource MUST
 disable or disallow that action when it is accessed using a safe
 request method. Failure to do so will result in unfortunate side-
 effects when automated processes perform a GET on every URI reference
 for the sake of link maintenance, pre-fetching, building a search
 index, etc.

5.2.2. Idempotent Methods

 Request methods are considered "idempotent" if the intended effect of
 multiple identical requests is the same as for a single request.
 PUT, DELETE, and all safe request methods are idempotent.

 Like the definition of safe, the idempotent property only applies to
 what has been requested by the user; a server is free to log each
 request separately, retain a revision control history, or implement
 other non-idempotent side-effects for each idempotent request.

 Idempotent methods are distinguished because the request can be
 repeated automatically if a communication failure occurs before the
 client is able to read the server's response. For example, if a
 client sends a PUT request and the underlying connection is closed
 before any response is received, then it can establish a new
 connection and retry the idempotent request because it knows that
 repeating the request will have the same effect even if the original
 request succeeded. Note, however, that repeated failures would
 indicate a problem within the server.

5.2.3. Cacheable Methods

 Request methods are considered "cacheable" if it is possible and
 useful to answer a current client request with a stored response from
 a prior request. GET and HEAD are defined to be cacheable. In
 general, safe methods that do not depend on a current or
 authoritative response are cacheable, though the overwhelming
 majority of caches only support GET and HEAD. HTTP requirements for
 cache behavior and cacheable responses are defined in [Part6].

5.3. Method Definitions

5.3.1. GET

 The GET method requests transfer of a current representation of the
 target resource.

Fielding & Reschke Expires April 7, 2013 [Page 25]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 If the target resource is a data-producing process, it is the
 produced data which shall be returned as the representation in the
 response and not the source text of the process, unless that text
 happens to be the output of the process.

 The semantics of the GET method change to a "conditional GET" if the
 request message includes an If-Modified-Since, If-Unmodified-Since,
 If-Match, If-None-Match, or If-Range header field ([Part4]). A
 conditional GET requests that the representation be transferred only
 under the circumstances described by the conditional header field(s).
 The conditional GET request is intended to reduce unnecessary network
 usage by allowing cached representations to be refreshed without
 requiring multiple requests or transferring data already held by the
 client.

 The semantics of the GET method change to a "partial GET" if the
 request message includes a Range header field ([Part5]). A partial
 GET requests that only part of the representation be transferred, as
 described in Section 5.4 of [Part5]. The partial GET request is
 intended to reduce unnecessary network usage by allowing partially-
 retrieved representations to be completed without transferring data
 already held by the client.

 A payload within a GET request message has no defined semantics;
 sending a payload body on a GET request might cause some existing
 implementations to reject the request.

 The response to a GET request is cacheable and MAY be used to satisfy
 subsequent GET and HEAD requests (see [Part6]).

 See Section 10.2 for security considerations when used for forms.

5.3.2. HEAD

 The HEAD method is identical to GET except that the server MUST NOT
 return a message body in the response. The metadata contained in the
 HTTP header fields in response to a HEAD request SHOULD be identical
 to the information sent in response to a GET request. This method
 can be used for obtaining metadata about the representation implied
 by the request without transferring the representation data. This
 method is often used for testing hypertext links for validity,
 accessibility, and recent modification.

 The response to a HEAD request is cacheable and MAY be used to
 satisfy a subsequent HEAD request. It also has potential side
 effects on previously stored responses to GET; see Section 5 of
 [Part6].

Fielding & Reschke Expires April 7, 2013 [Page 26]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 A payload within a HEAD request message has no defined semantics;
 sending a payload body on a HEAD request might cause some existing
 implementations to reject the request.

5.3.3. POST

 The POST method requests that the origin server accept the
 representation enclosed in the request as data to be processed by the
 target resource. POST is designed to allow a uniform method to cover
 the following functions:

 o Annotation of existing resources;

 o Posting a message to a bulletin board, newsgroup, mailing list, or
 similar group of articles;

 o Providing a block of data, such as the result of submitting a
 form, to a data-handling process;

 o Extending a database through an append operation.

 The actual function performed by the POST method is determined by the
 server and is usually dependent on the effective request URI.

 The action performed by the POST method might not result in a
 resource that can be identified by a URI. In this case, either 200
 (OK) or 204 (No Content) is the appropriate response status code,
 depending on whether or not the response includes a representation
 that describes the result.

 If a resource has been created on the origin server, the response
 SHOULD be 201 (Created) and contain a representation which describes
 the status of the request and refers to the new resource, and a
 Location header field (see Section 8.1.2).

 Responses to POST requests are only cacheable when they include
 explicit freshness information (see Section 4.1.1 of [Part6]). A
 cached POST response with a Content-Location header field (see

Section 3.1.4.2) whose value is the effective Request URI MAY be used
 to satisfy subsequent GET and HEAD (not POST) requests.

 Note that POST caching is not widely implemented. However, the 303
 (See Other) response can be used to direct the user agent to retrieve
 a cacheable representation of the resource.

Fielding & Reschke Expires April 7, 2013 [Page 27]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

5.3.4. PUT

 The PUT method requests that the state of the target resource be
 created or replaced with the state defined by the representation
 enclosed in the request message payload. A successful PUT of a given
 representation would suggest that a subsequent GET on that same
 target resource will result in an equivalent representation being
 returned in a 200 (OK) response. However, there is no guarantee that
 such a state change will be observable, since the target resource
 might be acted upon by other user agents in parallel, or might be
 subject to dynamic processing by the origin server, before any
 subsequent GET is received. A successful response only implies that
 the user agent's intent was achieved at the time of its processing by
 the origin server.

 If the target resource does not have a current representation and the
 PUT successfully creates one, then the origin server MUST inform the
 user agent by sending a 201 (Created) response. If the target
 resource does have a current representation and that representation
 is successfully modified in accordance with the state of the enclosed
 representation, then either a 200 (OK) or 204 (No Content) response
 SHOULD be sent to indicate successful completion of the request.

 Unrecognized header fields SHOULD be ignored (i.e., not saved as part
 of the resource state).

 An origin server SHOULD verify that the PUT representation is
 consistent with any constraints which the server has for the target
 resource that cannot or will not be changed by the PUT. This is
 particularly important when the origin server uses internal
 configuration information related to the URI in order to set the
 values for representation metadata on GET responses. When a PUT
 representation is inconsistent with the target resource, the origin
 server SHOULD either make them consistent, by transforming the
 representation or changing the resource configuration, or respond
 with an appropriate error message containing sufficient information
 to explain why the representation is unsuitable. The 409 (Conflict)
 or 415 (Unsupported Media Type) status codes are suggested, with the
 latter being specific to constraints on Content-Type values.

 For example, if the target resource is configured to always have a
 Content-Type of "text/html" and the representation being PUT has a
 Content-Type of "image/jpeg", then the origin server SHOULD do one
 of:

 a. reconfigure the target resource to reflect the new media type;

Fielding & Reschke Expires April 7, 2013 [Page 28]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 b. transform the PUT representation to a format consistent with that
 of the resource before saving it as the new resource state; or,

 c. reject the request with a 415 (Unsupported Media Type) response
 indicating that the target resource is limited to "text/html",
 perhaps including a link to a different resource that would be a
 suitable target for the new representation.

 HTTP does not define exactly how a PUT method affects the state of an
 origin server beyond what can be expressed by the intent of the user
 agent request and the semantics of the origin server response. It
 does not define what a resource might be, in any sense of that word,
 beyond the interface provided via HTTP. It does not define how
 resource state is "stored", nor how such storage might change as a
 result of a change in resource state, nor how the origin server
 translates resource state into representations. Generally speaking,
 all implementation details behind the resource interface are
 intentionally hidden by the server.

 The fundamental difference between the POST and PUT methods is
 highlighted by the different intent for the target resource. The
 target resource in a POST request is intended to handle the enclosed
 representation as a data-accepting process, such as for a gateway to
 some other protocol or a document that accepts annotations. In
 contrast, the target resource in a PUT request is intended to take
 the enclosed representation as a new or replacement value. Hence,
 the intent of PUT is idempotent and visible to intermediaries, even
 though the exact effect is only known by the origin server.

 Proper interpretation of a PUT request presumes that the user agent
 knows what target resource is desired. A service that is intended to
 select a proper URI on behalf of the client, after receiving a state-
 changing request, SHOULD be implemented using the POST method rather
 than PUT. If the origin server will not make the requested PUT state
 change to the target resource and instead wishes to have it applied
 to a different resource, such as when the resource has been moved to
 a different URI, then the origin server MUST send a 301 (Moved
 Permanently) response; the user agent MAY then make its own decision
 regarding whether or not to redirect the request.

 A PUT request applied to the target resource MAY have side-effects on
 other resources. For example, an article might have a URI for
 identifying "the current version" (a resource) which is separate from
 the URIs identifying each particular version (different resources
 that at one point shared the same state as the current version
 resource). A successful PUT request on "the current version" URI
 might therefore create a new version resource in addition to changing
 the state of the target resource, and might also cause links to be

Fielding & Reschke Expires April 7, 2013 [Page 29]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 added between the related resources.

 An origin server SHOULD reject any PUT request that contains a
 Content-Range header field (Section 5.2 of [Part5]), since it might
 be misinterpreted as partial content (or might be partial content
 that is being mistakenly PUT as a full representation). Partial
 content updates are possible by targeting a separately identified
 resource with state that overlaps a portion of the larger resource,
 or by using a different method that has been specifically defined for
 partial updates (for example, the PATCH method defined in [RFC5789]).

 Responses to the PUT method are not cacheable. If a PUT request
 passes through a cache that has one or more stored responses for the
 effective request URI, those stored responses will be invalidated
 (see Section 6 of [Part6]).

5.3.5. DELETE

 The DELETE method requests that the origin server delete the target
 resource. This method MAY be overridden by human intervention (or
 other means) on the origin server. The client cannot be guaranteed
 that the operation has been carried out, even if the status code
 returned from the origin server indicates that the action has been
 completed successfully. However, the server SHOULD NOT indicate
 success unless, at the time the response is given, it intends to
 delete the resource or move it to an inaccessible location.

 A successful response SHOULD be 200 (OK) if the response includes a
 representation describing the status, 202 (Accepted) if the action
 has not yet been enacted, or 204 (No Content) if the action has been
 enacted but the response does not include a representation.

 A payload within a DELETE request message has no defined semantics;
 sending a payload body on a DELETE request might cause some existing
 implementations to reject the request.

 Responses to the DELETE method are not cacheable. If a DELETE
 request passes through a cache that has one or more stored responses
 for the effective request URI, those stored responses will be
 invalidated (see Section 6 of [Part6]).

5.3.6. CONNECT

 The CONNECT method requests that the proxy establish a tunnel to the
 request-target and, if successful, thereafter restrict its behavior
 to blind forwarding of packets until the connection is closed.

 When using CONNECT, the request-target MUST use the authority form

https://datatracker.ietf.org/doc/html/rfc5789

Fielding & Reschke Expires April 7, 2013 [Page 30]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 (Section 5.3 of [Part1]); i.e., the request-target consists of only
 the host name and port number of the tunnel destination, separated by
 a colon. For example,

 CONNECT server.example.com:80 HTTP/1.1
 Host: server.example.com:80

 Any 2xx (Successful) response to a CONNECT request indicates that the
 proxy has established a connection to the requested host and port,
 and has switched to tunneling the current connection to that server
 connection. The tunneled data from the server begins immediately
 after the blank line that concludes the successful response's header
 block.

 A server SHOULD NOT send any Transfer-Encoding or Content-Length
 header fields in a successful response. A client MUST ignore any
 Content-Length or Transfer-Encoding header fields received in a
 successful response.

 Any response other than a successful response indicates that the
 tunnel has not yet been formed and that the connection remains
 governed by HTTP.

 Proxy authentication might be used to establish the authority to
 create a tunnel:

 CONNECT server.example.com:80 HTTP/1.1
 Host: server.example.com:80
 Proxy-Authorization: basic aGVsbG86d29ybGQ=

 A payload within a CONNECT request message has no defined semantics;
 sending a payload body on a CONNECT request might cause some existing
 implementations to reject the request.

 Similar to a pipelined HTTP/1.1 request, data to be tunneled from
 client to server MAY be sent immediately after the request (before a
 response is received). The usual caveats also apply: data can be
 discarded if the eventual response is negative, and the connection
 can be reset with no response if more than one TCP segment is
 outstanding.

 It might be the case that the proxy itself can only reach the
 requested origin server through another proxy. In this case, the
 first proxy SHOULD make a CONNECT request of that next proxy,
 requesting a tunnel to the authority. A proxy MUST NOT respond with
 any 2xx status code unless it has either a direct or tunnel

Fielding & Reschke Expires April 7, 2013 [Page 31]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 connection established to the authority.

 If at any point either one of the peers gets disconnected, any
 outstanding data that came from that peer will be passed to the other
 one, and after that also the other connection will be terminated by
 the proxy. If there is outstanding data to that peer undelivered,
 that data will be discarded.

 An origin server which receives a CONNECT request for itself MAY
 respond with a 2xx status code to indicate that a connection is
 established. However, most origin servers do not implement CONNECT.

5.3.7. OPTIONS

 The OPTIONS method requests information about the communication
 options available on the request/response chain identified by the
 effective request URI. This method allows a client to determine the
 options and/or requirements associated with a resource, or the
 capabilities of a server, without implying a resource action or
 initiating a resource retrieval.

 Responses to the OPTIONS method are not cacheable.

 If the OPTIONS request includes a payload, then the media type MUST
 be indicated by a Content-Type field. Although this specification
 does not define any use for such a body, future extensions to HTTP
 might use the OPTIONS body to make more detailed queries on the
 server.

 If the request-target (Section 5.3 of [Part1]) is an asterisk ("*"),
 the OPTIONS request is intended to apply to the server in general
 rather than to a specific resource. Since a server's communication
 options typically depend on the resource, the "*" request is only
 useful as a "ping" or "no-op" type of method; it does nothing beyond
 allowing the client to test the capabilities of the server. For
 example, this can be used to test a proxy for HTTP/1.1 conformance
 (or lack thereof).

 If the request-target is not an asterisk, the OPTIONS request applies
 only to the options that are available when communicating with that
 resource.

 A 200 (OK) response SHOULD include any header fields that indicate
 optional features implemented by the server and applicable to that
 resource (e.g., Allow), possibly including extensions not defined by
 this specification. The response payload, if any, SHOULD also
 include information about the communication options. The format for
 such a payload is not defined by this specification, but might be

Fielding & Reschke Expires April 7, 2013 [Page 32]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 defined by future extensions to HTTP. Content negotiation MAY be
 used to select the appropriate representation. If no payload body is
 included, the response MUST include a Content-Length field with a
 field-value of "0".

 The Max-Forwards header field MAY be used to target a specific proxy
 in the request chain (see Section 6.1.1). If no Max-Forwards field
 is present in the request, then the forwarded request MUST NOT
 include a Max-Forwards field.

5.3.8. TRACE

 The TRACE method requests a remote, application-level loop-back of
 the request message. The final recipient of the request SHOULD
 reflect the message received back to the client as the message body
 of a 200 (OK) response. The final recipient is either the origin
 server or the first proxy to receive a Max-Forwards value of zero (0)
 in the request (see Section 6.1.1). A TRACE request MUST NOT include
 a message body.

 TRACE allows the client to see what is being received at the other
 end of the request chain and use that data for testing or diagnostic
 information. The value of the Via header field (Section 5.7 of
 [Part1]) is of particular interest, since it acts as a trace of the
 request chain. Use of the Max-Forwards header field allows the
 client to limit the length of the request chain, which is useful for
 testing a chain of proxies forwarding messages in an infinite loop.

 If the request is valid, the response SHOULD have a Content-Type of
 "message/http" (see Section 7.3.1 of [Part1]) and contain a message
 body that encloses a copy of the entire request message. Responses
 to the TRACE method are not cacheable.

6. Request Header Fields

 A client sends request header fields to provide more information
 about the request context, make the request conditional based on the
 target resource state, suggest preferred formats for the response,
 supply authentication credentials, or modify the expected request
 processing. These fields act as request modifiers, similar to the
 parameters on a programming language method invocation.

6.1. Controls

 Controls are request header fields that direct specific handling of
 the request.

Fielding & Reschke Expires April 7, 2013 [Page 33]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 +-------------------+------------------------+
 | Header Field Name | Defined in... |
 +-------------------+------------------------+
Host	Section 5.4 of [Part1]
Max-Forwards	Section 6.1.1
Expect	Section 6.1.2
Range	Section 5.4 of [Part5]
 +-------------------+------------------------+

6.1.1. Max-Forwards

 The "Max-Forwards" header field provides a mechanism with the TRACE
 (Section 5.3.8) and OPTIONS (Section 5.3.7) methods to limit the
 number of times that the request is forwarded by proxies. This can
 be useful when the client is attempting to trace a request which
 appears to be failing or looping mid-chain.

 Max-Forwards = 1*DIGIT

 The Max-Forwards value is a decimal integer indicating the remaining
 number of times this request message can be forwarded.

 Each recipient of a TRACE or OPTIONS request containing a Max-
 Forwards header field MUST check and update its value prior to
 forwarding the request. If the received value is zero (0), the
 recipient MUST NOT forward the request; instead, it MUST respond as
 the final recipient. If the received Max-Forwards value is greater
 than zero, then the forwarded message MUST contain an updated Max-
 Forwards field with a value decremented by one (1).

 The Max-Forwards header field MAY be ignored for all other request
 methods.

6.1.2. Expect

 The "Expect" header field is used to indicate that particular server
 behaviors are required by the client.

 Expect = 1#expectation

 expectation = expect-name [BWS "=" BWS expect-value]
 *(OWS ";" [OWS expect-param])
 expect-param = expect-name [BWS "=" BWS expect-value]

 expect-name = token
 expect-value = token / quoted-string

 If all received Expect header field(s) are syntactically valid but

Fielding & Reschke Expires April 7, 2013 [Page 34]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 contain an expectation that the recipient does not understand or
 cannot comply with, the recipient MUST respond with a 417
 (Expectation Failed) status code. A recipient of a syntactically
 invalid Expectation header field MUST respond with a 4xx status code
 other than 417.

 The only expectation defined by this specification is:

 100-continue

 The "100-continue" expectation is defined below. It does not
 support any expect-params.

 Comparison is case-insensitive for names (expect-name), and case-
 sensitive for values (expect-value).

 The Expect mechanism is hop-by-hop: the above requirements apply to
 any server, including proxies. However, the Expect header field
 itself is end-to-end; it MUST be forwarded if the request is
 forwarded.

 Many older HTTP/1.0 and HTTP/1.1 applications do not understand the
 Expect header field.

6.1.2.1. Use of the 100 (Continue) Status

 The purpose of the 100 (Continue) status code (Section 7.2.1) is to
 allow a client that is sending a request message with a payload to
 determine if the origin server is willing to accept the request
 (based on the request header fields) before the client sends the
 payload body. In some cases, it might either be inappropriate or
 highly inefficient for the client to send the payload body if the
 server will reject the message without looking at the body.

 Requirements for HTTP/1.1 clients:

 o If a client will wait for a 100 (Continue) response before sending
 the payload body, it MUST send an Expect header field with the
 "100-continue" expectation.

 o A client MUST NOT send an Expect header field with the "100-
 continue" expectation if it does not intend to send a payload
 body.

 Because of the presence of older implementations, the protocol allows
 ambiguous situations in which a client might send "Expect: 100-
 continue" without receiving either a 417 (Expectation Failed) or a
 100 (Continue) status code. Therefore, when a client sends this

Fielding & Reschke Expires April 7, 2013 [Page 35]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 header field to an origin server (possibly via a proxy) from which it
 has never seen a 100 (Continue) status code, the client SHOULD NOT
 wait for an indefinite period before sending the payload body.

 Requirements for HTTP/1.1 origin servers:

 o Upon receiving a request which includes an Expect header field
 with the "100-continue" expectation, an origin server MUST either
 respond with 100 (Continue) status code and continue to read from
 the input stream, or respond with a final status code. The origin
 server MUST NOT wait for the payload body before sending the 100
 (Continue) response. If it responds with a final status code, it
 MAY close the transport connection or it MAY continue to read and
 discard the rest of the request. It MUST NOT perform the request
 method if it returns a final status code.

 o An origin server SHOULD NOT send a 100 (Continue) response if the
 request message does not include an Expect header field with the
 "100-continue" expectation, and MUST NOT send a 100 (Continue)
 response if such a request comes from an HTTP/1.0 (or earlier)
 client. There is an exception to this rule: for compatibility
 with [RFC2068], a server MAY send a 100 (Continue) status code in
 response to an HTTP/1.1 PUT or POST request that does not include
 an Expect header field with the "100-continue" expectation. This
 exception, the purpose of which is to minimize any client
 processing delays associated with an undeclared wait for 100
 (Continue) status code, applies only to HTTP/1.1 requests, and not
 to requests with any other HTTP-version value.

 o An origin server MAY omit a 100 (Continue) response if it has
 already received some or all of the payload body for the
 corresponding request.

 o An origin server that sends a 100 (Continue) response MUST
 ultimately send a final status code, once the payload body is
 received and processed, unless it terminates the transport
 connection prematurely.

 o If an origin server receives a request that does not include an
 Expect header field with the "100-continue" expectation, the
 request includes a payload body, and the server responds with a
 final status code before reading the entire payload body from the
 transport connection, then the server SHOULD NOT close the
 transport connection until it has read the entire request, or
 until the client closes the connection. Otherwise, the client
 might not reliably receive the response message. However, this
 requirement ought not be construed as preventing a server from
 defending itself against denial-of-service attacks, or from badly

https://datatracker.ietf.org/doc/html/rfc2068

Fielding & Reschke Expires April 7, 2013 [Page 36]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 broken client implementations.

 Requirements for HTTP/1.1 proxies:

 o If a proxy receives a request that includes an Expect header field
 with the "100-continue" expectation, and the proxy either knows
 that the next-hop server complies with HTTP/1.1 or higher, or does
 not know the HTTP version of the next-hop server, it MUST forward
 the request, including the Expect header field.

 o If the proxy knows that the version of the next-hop server is
 HTTP/1.0 or lower, it MUST NOT forward the request, and it MUST
 respond with a 417 (Expectation Failed) status code.

 o Proxies SHOULD maintain a record of the HTTP version numbers
 received from recently-referenced next-hop servers.

 o A proxy MUST NOT forward a 100 (Continue) response if the request
 message was received from an HTTP/1.0 (or earlier) client and did
 not include an Expect header field with the "100-continue"
 expectation. This requirement overrides the general rule for
 forwarding of 1xx responses (see Section 7.2.1).

6.2. Conditionals

 Conditionals are request header fields that indicate a precondition
 to be tested before applying the method semantics to the target
 resource. Each precondition is based on metadata that is expected to
 change if the selected representation of the target resource is
 changed. The HTTP/1.1 conditional request mechanisms are defined in
 [Part4].

 +---------------------+------------------------+
 | Header Field Name | Defined in... |
 +---------------------+------------------------+
If-Match	Section 3.1 of [Part4]
If-None-Match	Section 3.2 of [Part4]
If-Modified-Since	Section 3.3 of [Part4]
If-Unmodified-Since	Section 3.4 of [Part4]
If-Range	Section 5.3 of [Part5]
 +---------------------+------------------------+

Fielding & Reschke Expires April 7, 2013 [Page 37]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

6.3. Content Negotiation

 +-------------------+---------------+
 | Header Field Name | Defined in... |
 +-------------------+---------------+
Accept	Section 6.3.2
Accept-Charset	Section 6.3.3
Accept-Encoding	Section 6.3.4
Accept-Language	Section 6.3.5
 +-------------------+---------------+

6.3.1. Quality Values

 Many of the request header fields for proactive content negotiation
 use a common parameter, named "q" (case-insensitive), to assign a
 relative "weight" to the preference for that associated kind of
 content. This weight is referred to as a "quality value" (or
 "qvalue") because the same parameter name is often used within server
 configurations to assign a weight to the relative quality of the
 various representations that can be selected for a resource.

 The weight is normalized to a real number in the range 0 through 1,
 where 0.001 is the least preferred and 1 is the most preferred; a
 value of 0 means "not acceptable". If no "q" parameter is present,
 the default weight is 1.

 weight = OWS ";" OWS "q=" qvalue
 qvalue = ("0" ["." 0*3DIGIT])
 / ("1" ["." 0*3("0")])

 A sender of qvalue MUST NOT generate more than three digits after the
 decimal point. User configuration of these values ought to be
 limited in the same fashion.

6.3.2. Accept

 The "Accept" header field can be used by user agents to specify
 response media types that are acceptable. Accept header fields can
 be used to indicate that the request is specifically limited to a
 small set of desired types, as in the case of a request for an in-
 line image.

Fielding & Reschke Expires April 7, 2013 [Page 38]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Accept = #(media-range [accept-params])

 media-range = ("*/*"
 / (type "/" "*")
 / (type "/" subtype)
) *(OWS ";" OWS parameter)
 accept-params = weight *(accept-ext)
 accept-ext = OWS ";" OWS token ["=" word]

 The asterisk "*" character is used to group media types into ranges,
 with "*/*" indicating all media types and "type/*" indicating all
 subtypes of that type. The media-range MAY include media type
 parameters that are applicable to that range.

 Each media-range MAY be followed by one or more accept-params,
 beginning with the "q" parameter for indicating a relative weight, as
 defined in Section 6.3.1. The first "q" parameter (if any) separates
 the media-range parameter(s) from the accept-params.

 Note: Use of the "q" parameter name to separate media type
 parameters from Accept extension parameters is due to historical
 practice. Although this prevents any media type parameter named
 "q" from being used with a media range, such an event is believed
 to be unlikely given the lack of any "q" parameters in the IANA
 media type registry and the rare usage of any media type
 parameters in Accept. Future media types are discouraged from
 registering any parameter named "q".

 The example

 Accept: audio/*; q=0.2, audio/basic

 SHOULD be interpreted as "I prefer audio/basic, but send me any audio
 type if it is the best available after an 80% mark-down in quality".

 A request without any Accept header field implies that the user agent
 will accept any media type in response. If an Accept header field is
 present in a request and none of the available representations for
 the response have a media type that is listed as acceptable, the
 origin server MAY either honor the Accept header field by sending a
 406 (Not Acceptable) response or disregard the Accept header field by
 treating the response as if it is not subject to content negotiation.

 A more elaborate example is

 Accept: text/plain; q=0.5, text/html,
 text/x-dvi; q=0.8, text/x-c

Fielding & Reschke Expires April 7, 2013 [Page 39]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Verbally, this would be interpreted as "text/html and text/x-c are
 the preferred media types, but if they do not exist, then send the
 text/x-dvi representation, and if that does not exist, send the text/
 plain representation".

 Media ranges can be overridden by more specific media ranges or
 specific media types. If more than one media range applies to a
 given type, the most specific reference has precedence. For example,

 Accept: text/*, text/plain, text/plain;format=flowed, */*

 have the following precedence:

 1. text/plain;format=flowed

 2. text/plain

 3. text/*

 4. */*

 The media type quality factor associated with a given type is
 determined by finding the media range with the highest precedence
 which matches that type. For example,

 Accept: text/*;q=0.3, text/html;q=0.7, text/html;level=1,
 text/html;level=2;q=0.4, */*;q=0.5

 would cause the following values to be associated:

 +-------------------+---------------+
 | Media Type | Quality Value |
 +-------------------+---------------+
text/html;level=1	1
text/html	0.7
text/plain	0.3
image/jpeg	0.5
text/html;level=2	0.4
text/html;level=3	0.7
 +-------------------+---------------+

 Note: A user agent might be provided with a default set of quality
 values for certain media ranges. However, unless the user agent is a
 closed system which cannot interact with other rendering agents, this
 default set ought to be configurable by the user.

Fielding & Reschke Expires April 7, 2013 [Page 40]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

6.3.3. Accept-Charset

 The "Accept-Charset" header field can be used by user agents to
 indicate what character encodings are acceptable in a response
 payload. This field allows clients capable of understanding more
 comprehensive or special-purpose character encodings to signal that
 capability to a server which is capable of representing documents in
 those character encodings.

 Accept-Charset = 1#((charset / "*") [weight])

 Character encoding values (a.k.a., charsets) are described in
Section 3.1.1.2. Each charset MAY be given an associated quality

 value which represents the user's preference for that charset, as
 defined in Section 6.3.1. An example is

 Accept-Charset: iso-8859-5, unicode-1-1;q=0.8

 The special value "*", if present in the Accept-Charset field,
 matches every character encoding which is not mentioned elsewhere in
 the Accept-Charset field. If no "*" is present in an Accept-Charset
 field, then any character encodings not explicitly mentioned in the
 field are considered "not acceptable" to the client.

 A request without any Accept-Charset header field implies that the
 user agent will accept any character encoding in response.

 If an Accept-Charset header field is present in a request and none of
 the available representations for the response have a character
 encoding that is listed as acceptable, the origin server MAY either
 honor the Accept-Charset header field by sending a 406 (Not
 Acceptable) response or disregard the Accept-Charset header field by
 treating the response as if it is not subject to content negotiation.

6.3.4. Accept-Encoding

 The "Accept-Encoding" header field can be used by user agents to
 indicate what response content-codings (Section 3.1.2.1) are
 acceptable in the response. An "identity" token is used as a synonym
 for "no encoding" in order to communicate when no encoding is
 preferred.

 Accept-Encoding = #(codings [weight])
 codings = content-coding / "identity" / "*"

 Each codings value MAY be given an associated quality value which
 represents the preference for that encoding, as defined in

Section 6.3.1.

Fielding & Reschke Expires April 7, 2013 [Page 41]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 For example,

 Accept-Encoding: compress, gzip
 Accept-Encoding:
 Accept-Encoding: *
 Accept-Encoding: compress;q=0.5, gzip;q=1.0
 Accept-Encoding: gzip;q=1.0, identity; q=0.5, *;q=0

 A server tests whether a content-coding for a given representation is
 acceptable, according to an Accept-Encoding field, using these rules:

 1. The special "*" symbol in an Accept-Encoding field matches any
 available content-coding not explicitly listed in the header
 field.

 2. If the representation has no content-coding, then it is
 acceptable by default unless specifically excluded by the Accept-
 Encoding field stating either "identity;q=0" or "*;q=0" without a
 more specific entry for "identity".

 3. If the representation's content-coding is one of the content-
 codings listed in the Accept-Encoding field, then it is
 acceptable unless it is accompanied by a qvalue of 0. (As
 defined in Section 6.3.1, a qvalue of 0 means "not acceptable".)

 4. If multiple content-codings are acceptable, then the acceptable
 content-coding with the highest non-zero qvalue is preferred.

 An Accept-Encoding header field with a combined field-value that is
 empty implies that the user agent does not want any content-coding in
 response. If an Accept-Encoding header field is present in a request
 and none of the available representations for the response have a
 content-coding that is listed as acceptable, the origin server SHOULD
 send a response without any content-coding.

 A request without an Accept-Encoding header field implies that the
 user agent will accept any content-coding in response.

 Note: Most HTTP/1.0 applications do not recognize or obey qvalues
 associated with content-codings. This means that qvalues will not
 work and are not permitted with x-gzip or x-compress.

6.3.5. Accept-Language

 The "Accept-Language" header field can be used by user agents to
 indicate the set of natural languages that are preferred in the
 response. Language tags are defined in Section 3.1.3.1.

Fielding & Reschke Expires April 7, 2013 [Page 42]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Accept-Language = 1#(language-range [weight])
 language-range =
 <language-range, defined in [RFC4647], Section 2.1>

 Each language-range can be given an associated quality value which
 represents an estimate of the user's preference for the languages
 specified by that range, as defined in Section 6.3.1. For example,

 Accept-Language: da, en-gb;q=0.8, en;q=0.7

 would mean: "I prefer Danish, but will accept British English and
 other types of English". (see also Section 2.3 of [RFC4647])

 For matching, Section 3 of [RFC4647] defines several matching
 schemes. Implementations can offer the most appropriate matching
 scheme for their requirements.

 Note: The "Basic Filtering" scheme ([RFC4647], Section 3.3.1) is
 identical to the matching scheme that was previously defined in

Section 14.4 of [RFC2616].

 It might be contrary to the privacy expectations of the user to send
 an Accept-Language header field with the complete linguistic
 preferences of the user in every request. For a discussion of this
 issue, see Section 10.5.

 As intelligibility is highly dependent on the individual user, it is
 recommended that client applications make the choice of linguistic
 preference available to the user. If the choice is not made
 available, then the Accept-Language header field MUST NOT be given in
 the request.

 Note: When making the choice of linguistic preference available to
 the user, we remind implementers of the fact that users are not
 familiar with the details of language matching as described above,
 and ought to be provided appropriate guidance. As an example,
 users might assume that on selecting "en-gb", they will be served
 any kind of English document if British English is not available.
 A user agent might suggest in such a case to add "en" to get the
 best matching behavior.

https://datatracker.ietf.org/doc/html/rfc4647#section-2.1
https://datatracker.ietf.org/doc/html/rfc4647#section-2.3
https://datatracker.ietf.org/doc/html/rfc4647#section-3
https://datatracker.ietf.org/doc/html/rfc4647#section-3.3.1
https://datatracker.ietf.org/doc/html/rfc2616#section-14.4

Fielding & Reschke Expires April 7, 2013 [Page 43]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

6.4. Authentication Credentials

 +---------------------+------------------------+
 | Header Field Name | Defined in... |
 +---------------------+------------------------+
 | Authorization | Section 4.1 of [Part7] |
 | Proxy-Authorization | Section 4.3 of [Part7] |
 +---------------------+------------------------+

6.5. Context

 +-------------------+------------------------+
 | Header Field Name | Defined in... |
 +-------------------+------------------------+
From	Section 6.5.1
Referer	Section 6.5.2
TE	Section 4.3 of [Part1]
User-Agent	Section 6.5.3
 +-------------------+------------------------+

6.5.1. From

 The "From" header field, if given, SHOULD contain an Internet e-mail
 address for the human user who controls the requesting user agent.
 The address SHOULD be machine-usable, as defined by "mailbox" in

Section 3.4 of [RFC5322]:

 From = mailbox

 mailbox = <mailbox, defined in [RFC5322], Section 3.4>

 An example is:

 From: webmaster@example.org

 This header field MAY be used for logging purposes and as a means for
 identifying the source of invalid or unwanted requests. It SHOULD
 NOT be used as an insecure form of access protection. The
 interpretation of this field is that the request is being performed
 on behalf of the person given, who accepts responsibility for the
 method performed. In particular, robot agents SHOULD include this
 header field so that the person responsible for running the robot can
 be contacted if problems occur on the receiving end.

 The Internet e-mail address in this field MAY be separate from the
 Internet host which issued the request. For example, when a request
 is passed through a proxy the original issuer's address SHOULD be
 used.

https://datatracker.ietf.org/doc/html/rfc5322#section-3.4
https://datatracker.ietf.org/doc/html/rfc5322#section-3.4

Fielding & Reschke Expires April 7, 2013 [Page 44]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 The client SHOULD NOT send the From header field without the user's
 approval, as it might conflict with the user's privacy interests or
 their site's security policy. It is strongly recommended that the
 user be able to disable, enable, and modify the value of this field
 at any time prior to a request.

6.5.2. Referer

 The "Referer" [sic] header field allows the client to specify the URI
 of the resource from which the target URI was obtained (the
 "referrer", although the header field is misspelled.).

 The Referer header field allows servers to generate lists of back-
 links to resources for interest, logging, optimized caching, etc. It
 also allows obsolete or mistyped links to be traced for maintenance.
 Some servers use Referer as a means of controlling where they allow
 links from (so-called "deep linking"), but legitimate requests do not
 always contain a Referer header field.

 If the target URI was obtained from a source that does not have its
 own URI (e.g., input from the user keyboard), the Referer field MUST
 either be sent with the value "about:blank", or not be sent at all.
 Note that this requirement does not apply to sources with non-HTTP
 URIs (e.g., FTP).

 Referer = absolute-URI / partial-URI

 Example:

 Referer: http://www.example.org/hypertext/Overview.html

 If the field value is a relative URI, it SHOULD be interpreted
 relative to the effective request URI. The URI MUST NOT include a
 fragment. See Section 10.2 for security considerations.

6.5.3. User-Agent

 The "User-Agent" header field contains information about the user
 agent originating the request. User agents SHOULD include this field
 with requests.

 Typically, it is used for statistical purposes, the tracing of
 protocol violations, and tailoring responses to avoid particular user
 agent limitations.

 The field can contain multiple product tokens (Section 4) and
 comments (Section 3.2 of [Part1]) identifying the agent and its
 significant subproducts. By convention, the product tokens are

Fielding & Reschke Expires April 7, 2013 [Page 45]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 listed in order of their significance for identifying the
 application.

 Because this field is usually sent on every request a user agent
 makes, implementations are encouraged not to include needlessly fine-
 grained detail, and to limit (or even prohibit) the addition of
 subproducts by third parties. Overly long and detailed User-Agent
 field values make requests larger and can also be used to identify
 ("fingerprint") the user against their wishes.

 Likewise, implementations are encouraged not to use the product
 tokens of other implementations in order to declare compatibility
 with them, as this circumvents the purpose of the field. Finally,
 they are encouraged not to use comments to identify products; doing
 so makes the field value more difficult to parse.

 User-Agent = product *(RWS (product / comment))

 Example:

 User-Agent: CERN-LineMode/2.15 libwww/2.17b3

7. Response Status Codes

 The status-code element is a 3-digit integer result code of the
 attempt to understand and satisfy the request.

 HTTP status codes are extensible. HTTP applications are not required
 to understand the meaning of all registered status codes, though such
 understanding is obviously desirable. However, applications MUST
 understand the class of any status code, as indicated by the first
 digit, and treat any unrecognized response as being equivalent to the
 x00 status code of that class, with the exception that an
 unrecognized response MUST NOT be cached. For example, if an
 unrecognized status code of 431 is received by the client, it can
 safely assume that there was something wrong with its request and
 treat the response as if it had received a 400 status code. In such
 cases, user agents SHOULD present to the user the representation
 enclosed with the response, since that representation is likely to
 include human-readable information which will explain the unusual
 status.

 The first digit of the status-code defines the class of response.
 The last two digits do not have any categorization role. There are 5
 values for the first digit:

 o 1xx (Informational): Request received, continuing process

Fielding & Reschke Expires April 7, 2013 [Page 46]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 o 2xx (Successful): The action was successfully received,
 understood, and accepted

 o 3xx (Redirection): Further action needs to be taken in order to
 complete the request

 o 4xx (Client Error): The request contains bad syntax or cannot be
 fulfilled

 o 5xx (Server Error): The server failed to fulfill an apparently
 valid request

 For most status codes the response can carry a payload, in which case
 a Content-Type header field indicates the payload's media type
 (Section 3.1.1.5).

7.1. Overview of Status Codes

 The status codes listed below are defined in this specification,
 Section 4 of [Part4], Section 3 of [Part5], and Section 3 of [Part7].
 The reason phrases listed here are only recommendations -- they can
 be replaced by local equivalents without affecting the protocol.

Fielding & Reschke Expires April 7, 2013 [Page 47]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 +-------------+------------------------------+----------------------+
 | status-code | reason-phrase | Defined in... |
 +-------------+------------------------------+----------------------+
100	Continue	Section 7.2.1
101	Switching Protocols	Section 7.2.2
200	OK	Section 7.3.1
201	Created	Section 7.3.2
202	Accepted	Section 7.3.3
203	Non-Authoritative	Section 7.3.4
	Information	
204	No Content	Section 7.3.5
205	Reset Content	Section 7.3.6
206	Partial Content	Section 3.1 of
		[Part5]
300	Multiple Choices	Section 7.4.1
301	Moved Permanently	Section 7.4.2
302	Found	Section 7.4.3
303	See Other	Section 7.4.4
304	Not Modified	Section 4.1 of
		[Part4]
305	Use Proxy	Section 7.4.5
307	Temporary Redirect	Section 7.4.7
400	Bad Request	Section 7.5.1
401	Unauthorized	Section 3.1 of
		[Part7]
402	Payment Required	Section 7.5.2
403	Forbidden	Section 7.5.3
404	Not Found	Section 7.5.4
405	Method Not Allowed	Section 7.5.5
406	Not Acceptable	Section 7.5.6
407	Proxy Authentication	Section 3.2 of
	Required	[Part7]
408	Request Time-out	Section 7.5.7
409	Conflict	Section 7.5.8
410	Gone	Section 7.5.9
411	Length Required	Section 7.5.10
412	Precondition Failed	Section 4.2 of
		[Part4]
413	Request Representation Too	Section 7.5.11
	Large	
414	URI Too Long	Section 7.5.12
415	Unsupported Media Type	Section 7.5.13
416	Requested range not	Section 3.2 of
	satisfiable	[Part5]
417	Expectation Failed	Section 7.5.14
426	Upgrade Required	Section 7.5.15
500	Internal Server Error	Section 7.6.1
501	Not Implemented	Section 7.6.2

Fielding & Reschke Expires April 7, 2013 [Page 48]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

502	Bad Gateway	Section 7.6.3
503	Service Unavailable	Section 7.6.4
504	Gateway Time-out	Section 7.6.5
505	HTTP Version not supported	Section 7.6.6
 +-------------+------------------------------+----------------------+

 Note that this list is not exhaustive -- it does not include
 extension status codes defined in other specifications.

7.2. Informational 1xx

 This class of status code indicates a provisional response,
 consisting only of the status-line and optional header fields, and is
 terminated by an empty line. There are no required header fields for
 this class of status code. Since HTTP/1.0 did not define any 1xx
 status codes, servers MUST NOT send a 1xx response to an HTTP/1.0
 client except under experimental conditions.

 A client MUST be prepared to accept one or more 1xx status responses
 prior to a regular response, even if the client does not expect a 100
 (Continue) status message. Unexpected 1xx status responses MAY be
 ignored by a user agent.

 Proxies MUST forward 1xx responses, unless the connection between the
 proxy and its client has been closed, or unless the proxy itself
 requested the generation of the 1xx response. (For example, if a
 proxy adds an "Expect: 100-continue" field when it forwards a
 request, then it need not forward the corresponding 100 (Continue)
 response(s).)

7.2.1. 100 Continue

 The client SHOULD continue with its request. This interim response
 is used to inform the client that the initial part of the request has
 been received and has not yet been rejected by the server. The
 client SHOULD continue by sending the remainder of the request or, if
 the request has already been completed, ignore this response. The
 server MUST send a final response after the request has been
 completed. See Section 6.1.2.1 for detailed discussion of the use
 and handling of this status code.

7.2.2. 101 Switching Protocols

 The server understands and is willing to comply with the client's
 request, via the Upgrade message header field (Section 6.3 of
 [Part1]), for a change in the application protocol being used on this
 connection. The server will switch protocols to those defined by the
 response's Upgrade header field immediately after the empty line

Fielding & Reschke Expires April 7, 2013 [Page 49]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 which terminates the 101 response.

 The protocol SHOULD be switched only when it is advantageous to do
 so. For example, switching to a newer version of HTTP is
 advantageous over older versions, and switching to a real-time,
 synchronous protocol might be advantageous when delivering resources
 that use such features.

7.3. Successful 2xx

 This class of status code indicates that the client's request was
 successfully received, understood, and accepted.

7.3.1. 200 OK

 The request has succeeded. The payload returned with the response is
 dependent on the method used in the request, for example:

 GET a representation of the target resource is sent in the response;

 HEAD the same representation as GET, except without the message
 body;

 POST a representation describing or containing the result of the
 action;

 TRACE a representation containing the request message as received by
 the end server.

 Caches MAY use a heuristic (see Section 4.1.2 of [Part6]) to
 determine freshness for 200 responses.

7.3.2. 201 Created

 The request has been fulfilled and has resulted in one or more new
 resources being created.

 Newly created resources are typically linked to from the response
 payload, with the most relevant URI also being carried in the
 Location header field. If the newly created resource's URI is the
 same as the Effective Request URI, this information can be omitted
 (e.g., in the case of a response to a PUT request).

 The origin server MUST create the resource(s) before returning the
 201 status code. If the action cannot be carried out immediately,
 the server SHOULD respond with 202 (Accepted) response instead.

 A 201 response MAY contain an ETag response header field indicating

Fielding & Reschke Expires April 7, 2013 [Page 50]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 the current value of the entity-tag for the representation of the
 resource identified by the Location header field or, in case the
 Location header field was omitted, by the Effective Request URI (see
 Section 2.3 of [Part4]).

7.3.3. 202 Accepted

 The request has been accepted for processing, but the processing has
 not been completed. The request might or might not eventually be
 acted upon, as it might be disallowed when processing actually takes
 place. There is no facility for re-sending a status code from an
 asynchronous operation such as this.

 The 202 response is intentionally non-committal. Its purpose is to
 allow a server to accept a request for some other process (perhaps a
 batch-oriented process that is only run once per day) without
 requiring that the user agent's connection to the server persist
 until the process is completed. The representation returned with
 this response SHOULD include an indication of the request's current
 status and either a pointer to a status monitor or some estimate of
 when the user can expect the request to be fulfilled.

7.3.4. 203 Non-Authoritative Information

 The representation in the response has been transformed or otherwise
 modified by a transforming proxy (Section 2.3 of [Part1]). Note that
 the behavior of transforming intermediaries is controlled by the no-
 transform Cache-Control directive (Section 7.2 of [Part6]).

 This status code is only appropriate when the response status code
 would have been 200 (OK) otherwise. When the status code before
 transformation would have been different, the 214 Transformation
 Applied warn-code (Section 7.5 of [Part6]) is appropriate.

 Caches MAY use a heuristic (see Section 4.1.2 of [Part6]) to
 determine freshness for 203 responses.

7.3.5. 204 No Content

 The 204 (No Content) status code indicates that the server has
 successfully fulfilled the request and that there is no additional
 content to return in the response payload body. Metadata in the
 response header fields refer to the target resource and its current
 representation after the requested action.

 For example, if a 204 status code is received in response to a PUT
 request and the response contains an ETag header field, then the PUT
 was successful and the ETag field-value contains the entity-tag for

Fielding & Reschke Expires April 7, 2013 [Page 51]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 the new representation of that target resource.

 The 204 response allows a server to indicate that the action has been
 successfully applied to the target resource while implying that the
 user agent SHOULD NOT traverse away from its current "document view"
 (if any). The server assumes that the user agent will provide some
 indication of the success to its user, in accord with its own
 interface, and apply any new or updated metadata in the response to
 the active representation.

 For example, a 204 status code is commonly used with document editing
 interfaces corresponding to a "save" action, such that the document
 being saved remains available to the user for editing. It is also
 frequently used with interfaces that expect automated data transfers
 to be prevalent, such as within distributed version control systems.

 The 204 response MUST NOT include a message body, and thus is always
 terminated by the first empty line after the header fields.

7.3.6. 205 Reset Content

 The server has fulfilled the request and the user agent SHOULD reset
 the document view which caused the request to be sent. This response
 is primarily intended to allow input for actions to take place via
 user input, followed by a clearing of the form in which the input is
 given so that the user can easily initiate another input action.

 The message body included with the response MUST be empty. Note that
 receivers still need to parse the response according to the algorithm
 defined in Section 3.3 of [Part1].

7.4. Redirection 3xx

 This class of status code indicates that further action needs to be
 taken by the user agent in order to fulfill the request. If the
 required action involves a subsequent HTTP request, it MAY be carried
 out by the user agent without interaction with the user if and only
 if the method used in the second request is known to be "safe", as
 defined in Section 5.2.1.

 There are several types of redirects:

 1. Redirects of the request to another URI, either temporarily or
 permanently. The new URI is specified in the Location header
 field. In this specification, the status codes 301 (Moved
 Permanently), 302 (Found), and 307 (Temporary Redirect) fall
 under this category.

Fielding & Reschke Expires April 7, 2013 [Page 52]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 2. Redirection to a new location that represents an indirect
 response to the request, such as the result of a POST operation
 to be retrieved with a subsequent GET request. This is status
 code 303 (See Other).

 3. Redirection offering a choice of matching resources for use by
 reactive content negotiation (Section 3.4.2). This is status
 code 300 (Multiple Choices).

 4. Other kinds of redirection, such as to a cached result (status
 code 304 (Not Modified), see Section 4.1 of [Part4]).

 Note: In HTTP/1.0, only the status codes 301 (Moved Permanently)
 and 302 (Found) were defined for the first type of redirect, and
 the second type did not exist at all ([RFC1945], Section 9.3).
 However it turned out that web forms using POST expected redirects
 to change the operation for the subsequent request to retrieval
 (GET). To address this use case, HTTP/1.1 introduced the second
 type of redirect with the status code 303 (See Other) ([RFC2068],
 Section 10.3.4). As user agents did not change their behavior to
 maintain backwards compatibility, the first revision of HTTP/1.1
 added yet another status code, 307 (Temporary Redirect), for which
 the backwards compatibility problems did not apply ([RFC2616],
 Section 10.3.8). Over 10 years later, most user agents still do
 method rewriting for status codes 301 and 302, therefore this
 specification makes that behavior conformant in case the original
 request was POST.

 A Location header field on a 3xx response indicates that a client MAY
 automatically redirect to the URI provided; see Section 8.1.2.

 Note that for methods not known to be "safe", as defined in
Section 5.2.1, automatic redirection needs to done with care, since

 the redirect might change the conditions under which the request was
 issued.

 Clients SHOULD detect and intervene in cyclical redirections (i.e.,
 "infinite" redirection loops).

 Note: An earlier version of this specification recommended a
 maximum of five redirections ([RFC2068], Section 10.3). Content
 developers need to be aware that some clients might implement such
 a fixed limitation.

https://datatracker.ietf.org/doc/html/rfc1945#section-9.3
https://datatracker.ietf.org/doc/html/rfc2068#section-10.3.4
https://datatracker.ietf.org/doc/html/rfc2068#section-10.3.4
https://datatracker.ietf.org/doc/html/rfc2616#section-10.3.8
https://datatracker.ietf.org/doc/html/rfc2616#section-10.3.8
https://datatracker.ietf.org/doc/html/rfc2068#section-10.3

Fielding & Reschke Expires April 7, 2013 [Page 53]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

7.4.1. 300 Multiple Choices

 The target resource has more than one representation, each with its
 own specific location, and reactive negotiation information
 (Section 3.4) is being provided so that the user (or user agent) can
 select a preferred representation by redirecting its request to that
 location.

 Unless it was a HEAD request, the response SHOULD include a
 representation containing a list of representation metadata and
 location(s) from which the user or user agent can choose the one most
 appropriate. Depending upon the format and the capabilities of the
 user agent, selection of the most appropriate choice MAY be performed
 automatically. However, this specification does not define any
 standard for such automatic selection.

 If the server has a preferred choice of representation, it SHOULD
 include the specific URI for that representation in the Location
 field; user agents MAY use the Location field value for automatic
 redirection.

 Caches MAY use a heuristic (see Section 4.1.2 of [Part6]) to
 determine freshness for 300 responses.

7.4.2. 301 Moved Permanently

 The target resource has been assigned a new permanent URI and any
 future references to this resource SHOULD use one of the returned
 URIs. Clients with link editing capabilities ought to automatically
 re-link references to the effective request URI to one or more of the
 new references returned by the server, where possible.

 Caches MAY use a heuristic (see Section 4.1.2 of [Part6]) to
 determine freshness for 301 responses.

 The new permanent URI SHOULD be given by the Location field in the
 response. A response payload can contain a short hypertext note with
 a hyperlink to the new URI(s).

 Note: For historic reasons, user agents MAY change the request
 method from POST to GET for the subsequent request. If this
 behavior is undesired, status code 307 (Temporary Redirect) can be
 used instead.

Fielding & Reschke Expires April 7, 2013 [Page 54]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

7.4.3. 302 Found

 The target resource resides temporarily under a different URI. Since
 the redirection might be altered on occasion, the client SHOULD
 continue to use the effective request URI for future requests.

 The temporary URI SHOULD be given by the Location field in the
 response. A response payload can contain a short hypertext note with
 a hyperlink to the new URI(s).

 Note: For historic reasons, user agents MAY change the request
 method from POST to GET for the subsequent request. If this
 behavior is undesired, status code 307 (Temporary Redirect) can be
 used instead.

7.4.4. 303 See Other

 The 303 status code indicates that the server is redirecting the user
 agent to a different resource, as indicated by a URI in the Location
 header field, that is intended to provide an indirect response to the
 original request. In order to satisfy the original request, a user
 agent SHOULD perform a retrieval request using the Location URI (a
 GET or HEAD request if using HTTP), which can itself be redirected
 further, and present the eventual result as an answer to the original
 request. Note that the new URI in the Location header field is not
 considered equivalent to the effective request URI.

 This status code is generally applicable to any HTTP method. It is
 primarily used to allow the output of a POST action to redirect the
 user agent to a selected resource, since doing so provides the
 information corresponding to the POST response in a form that can be
 separately identified, bookmarked, and cached independent of the
 original request.

 A 303 response to a GET request indicates that the requested resource
 does not have a representation of its own that can be transferred by
 the server over HTTP. The Location URI indicates a resource that is
 descriptive of the target resource, such that the follow-on
 representation might be useful to recipients without implying that it
 adequately represents the target resource. Note that answers to the
 questions of what can be represented, what representations are
 adequate, and what might be a useful description are outside the
 scope of HTTP and thus entirely determined by the URI owner(s).

 Except for responses to a HEAD request, the representation of a 303
 response SHOULD contain a short hypertext note with a hyperlink to
 the Location URI.

Fielding & Reschke Expires April 7, 2013 [Page 55]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

7.4.5. 305 Use Proxy

 The 305 status code was defined in a previous version of this
 specification (see Appendix C), and is now deprecated.

7.4.6. 306 (Unused)

 The 306 status code was used in a previous version of the
 specification, is no longer used, and the code is reserved.

7.4.7. 307 Temporary Redirect

 The target resource resides temporarily under a different URI. Since
 the redirection can change over time, the client SHOULD continue to
 use the effective request URI for future requests.

 The temporary URI SHOULD be given by the Location field in the
 response. A response payload can contain a short hypertext note with
 a hyperlink to the new URI(s).

 Note: This status code is similar to 302 (Found), except that it
 does not allow rewriting the request method from POST to GET.
 This specification defines no equivalent counterpart for 301
 (Moved Permanently) ([status-308], however, defines the status
 code 308 (Permanent Redirect) for this purpose).

7.5. Client Error 4xx

 The 4xx class of status code is intended for cases in which the
 client seems to have erred. Except when responding to a HEAD
 request, the server SHOULD include a representation containing an
 explanation of the error situation, and whether it is a temporary or
 permanent condition. These status codes are applicable to any
 request method. User agents SHOULD display any included
 representation to the user.

7.5.1. 400 Bad Request

 The server cannot or will not process the request, due to a client
 error (e.g., malformed syntax).

7.5.2. 402 Payment Required

 This code is reserved for future use.

Fielding & Reschke Expires April 7, 2013 [Page 56]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

7.5.3. 403 Forbidden

 The server understood the request, but refuses to authorize it.
 Providing different user authentication credentials might be
 successful, but any credentials that were provided in the request are
 insufficient. The request SHOULD NOT be repeated with the same
 credentials.

 If the request method was not HEAD and the server wishes to make
 public why the request has not been fulfilled, it SHOULD describe the
 reason for the refusal in the representation. If the server does not
 wish to make this information available to the client, the status
 code 404 (Not Found) MAY be used instead.

7.5.4. 404 Not Found

 The server has not found anything matching the effective request URI.
 No indication is given of whether the condition is temporary or
 permanent. The 410 (Gone) status code SHOULD be used if the server
 knows, through some internally configurable mechanism, that an old
 resource is permanently unavailable and has no forwarding address.
 This status code is commonly used when the server does not wish to
 reveal exactly why the request has been refused, or when no other
 response is applicable.

7.5.5. 405 Method Not Allowed

 The method specified in the request-line is not allowed for the
 target resource. The response MUST include an Allow header field
 containing a list of valid methods for the requested resource.

7.5.6. 406 Not Acceptable

 The resource identified by the request is only capable of generating
 response representations which have content characteristics not
 acceptable according to the Accept and Accept-* header fields sent in
 the request.

 Unless it was a HEAD request, the response SHOULD include a
 representation containing a list of available representation
 characteristics and location(s) from which the user or user agent can
 choose the one most appropriate. Depending upon the format and the
 capabilities of the user agent, selection of the most appropriate
 choice MAY be performed automatically. However, this specification
 does not define any standard for such automatic selection.

Fielding & Reschke Expires April 7, 2013 [Page 57]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Note: HTTP/1.1 servers are allowed to return responses which are
 not acceptable according to the accept header fields sent in the
 request. In some cases, this might even be preferable to sending
 a 406 response. User agents are encouraged to inspect the header
 fields of an incoming response to determine if it is acceptable.

 If the response could be unacceptable, a user agent SHOULD
 temporarily stop receipt of more data and query the user for a
 decision on further actions.

7.5.7. 408 Request Timeout

 The client did not produce a request within the time that the server
 was prepared to wait. The client MAY repeat the request without
 modifications at any later time.

7.5.8. 409 Conflict

 The request could not be completed due to a conflict with the current
 state of the resource. This code is only allowed in situations where
 it is expected that the user might be able to resolve the conflict
 and resubmit the request. The payload SHOULD include enough
 information for the user to recognize the source of the conflict.
 Ideally, the response representation would include enough information
 for the user or user agent to fix the problem; however, that might
 not be possible and is not required.

 Conflicts are most likely to occur in response to a PUT request. For
 example, if versioning were being used and the representation being
 PUT included changes to a resource which conflict with those made by
 an earlier (third-party) request, the server might use the 409
 response to indicate that it can't complete the request. In this
 case, the response representation would likely contain a list of the
 differences between the two versions.

7.5.9. 410 Gone

 The target resource is no longer available at the server and no
 forwarding address is known. This condition is expected to be
 considered permanent. Clients with link editing capabilities SHOULD
 delete references to the effective request URI after user approval.
 If the server does not know, or has no facility to determine, whether
 or not the condition is permanent, the status code 404 (Not Found)
 SHOULD be used instead.

 The 410 response is primarily intended to assist the task of web
 maintenance by notifying the recipient that the resource is
 intentionally unavailable and that the server owners desire that

Fielding & Reschke Expires April 7, 2013 [Page 58]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 remote links to that resource be removed. Such an event is common
 for limited-time, promotional services and for resources belonging to
 individuals no longer working at the server's site. It is not
 necessary to mark all permanently unavailable resources as "gone" or
 to keep the mark for any length of time -- that is left to the
 discretion of the server owner.

 Caches MAY use a heuristic (see Section 4.1.2 of [Part6]) to
 determine freshness for 410 responses.

7.5.10. 411 Length Required

 The server refuses to accept the request without a defined Content-
 Length. The client MAY repeat the request if it adds a valid
 Content-Length header field containing the length of the message body
 in the request message.

7.5.11. 413 Request Representation Too Large

 The server is refusing to process a request because the request
 representation is larger than the server is willing or able to
 process. The server MAY close the connection to prevent the client
 from continuing the request.

 If the condition is temporary, the server SHOULD include a Retry-
 After header field to indicate that it is temporary and after what
 time the client MAY try again.

7.5.12. 414 URI Too Long

 The server is refusing to service the request because the effective
 request URI is longer than the server is willing to interpret. This
 rare condition is only likely to occur when a client has improperly
 converted a POST request to a GET request with long query
 information, when the client has descended into a URI "black hole" of
 redirection (e.g., a redirected URI prefix that points to a suffix of
 itself), or when the server is under attack by a client attempting to
 exploit security holes present in some servers using fixed-length
 buffers for reading or manipulating the request-target.

7.5.13. 415 Unsupported Media Type

 The server is refusing to service the request because the request
 payload is in a format not supported by this request method on the
 target resource.

Fielding & Reschke Expires April 7, 2013 [Page 59]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

7.5.14. 417 Expectation Failed

 The expectation given in an Expect header field (see Section 6.1.2)
 could not be met by this server, or, if the server is a proxy, the
 server has unambiguous evidence that the request could not be met by
 the next-hop server.

7.5.15. 426 Upgrade Required

 The request can not be completed without a prior protocol upgrade.
 This response MUST include an Upgrade header field (Section 6.3 of
 [Part1]) specifying the required protocols.

 Example:

 HTTP/1.1 426 Upgrade Required
 Upgrade: HTTP/3.0
 Connection: Upgrade
 Content-Length: 53
 Content-Type: text/plain

 This service requires use of the HTTP/3.0 protocol.

 The server SHOULD include a message body in the 426 response which
 indicates in human readable form the reason for the error and
 describes any alternative courses which might be available to the
 user.

7.6. Server Error 5xx

 Response status codes beginning with the digit "5" indicate cases in
 which the server is aware that it has erred or is incapable of
 performing the request. Except when responding to a HEAD request,
 the server SHOULD include a representation containing an explanation
 of the error situation, and whether it is a temporary or permanent
 condition. User agents SHOULD display any included representation to
 the user. These response codes are applicable to any request method.

7.6.1. 500 Internal Server Error

 The server encountered an unexpected condition which prevented it
 from fulfilling the request.

7.6.2. 501 Not Implemented

 The server does not support the functionality required to fulfill the
 request. This is the appropriate response when the server does not
 recognize the request method and is not capable of supporting it for

Fielding & Reschke Expires April 7, 2013 [Page 60]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 any resource.

7.6.3. 502 Bad Gateway

 The server, while acting as a gateway or proxy, received an invalid
 response from the upstream server it accessed in attempting to
 fulfill the request.

7.6.4. 503 Service Unavailable

 The server is currently unable to handle the request due to a
 temporary overloading or maintenance of the server.

 The implication is that this is a temporary condition which will be
 alleviated after some delay. If known, the length of the delay MAY
 be indicated in a Retry-After header field (Section 8.1.3). If no
 Retry-After is given, the client SHOULD handle the response as it
 would for a 500 (Internal Server Error) response.

 Note: The existence of the 503 status code does not imply that a
 server has to use it when becoming overloaded. Some servers might
 wish to simply refuse the connection.

7.6.5. 504 Gateway Timeout

 The server, while acting as a gateway or proxy, did not receive a
 timely response from the upstream server specified by the URI (e.g.,
 HTTP, FTP, LDAP) or some other auxiliary server (e.g., DNS) it needed
 to access in attempting to complete the request.

 Note to implementers: some deployed proxies are known to return
 400 (Bad Request) or 500 (Internal Server Error) when DNS lookups
 time out.

7.6.6. 505 HTTP Version Not Supported

 The server does not support, or refuses to support, the protocol
 version that was used in the request message. The server is
 indicating that it is unable or unwilling to complete the request
 using the same major version as the client, as described in Section

2.6 of [Part1], other than with this error message. The response
 SHOULD contain a representation describing why that version is not
 supported and what other protocols are supported by that server.

8. Response Header Fields

 The response header fields allow the server to pass additional
 information about the response which cannot be placed in the status-

Fielding & Reschke Expires April 7, 2013 [Page 61]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 line. These header fields give information about the server and
 about further access to the target resource (Section 5.5 of [Part1]).

8.1. Control Data

 Response header fields can supply control data that supplements the
 status code or instructs the client where to go next.

 +-------------------+------------------------+
 | Header Field Name | Defined in... |
 +-------------------+------------------------+
Age	Section 7.1 of [Part6]
Date	Section 8.1.1.2
Location	Section 8.1.2
Retry-After	Section 8.1.3
 +-------------------+------------------------+

8.1.1. Origination Date

8.1.1.1. Date/Time Formats

 HTTP applications have historically allowed three different formats
 for date/time stamps. However, the preferred format is a fixed-
 length subset of that defined by [RFC1123]:

 Sun, 06 Nov 1994 08:49:37 GMT ; RFC 1123

 The other formats are described here only for compatibility with
 obsolete implementations.

 Sunday, 06-Nov-94 08:49:37 GMT ; obsolete RFC 850 format
 Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format

 HTTP/1.1 clients and servers that parse a date value MUST accept all
 three formats (for compatibility with HTTP/1.0), though they MUST
 only generate the RFC 1123 format for representing HTTP-date values
 in header fields.

 All HTTP date/time stamps MUST be represented in Greenwich Mean Time
 (GMT), without exception. For the purposes of HTTP, GMT is exactly
 equal to UTC (Coordinated Universal Time). This is indicated in the
 first two formats by the inclusion of "GMT" as the three-letter
 abbreviation for time zone, and MUST be assumed when reading the
 asctime format. HTTP-date is case sensitive and MUST NOT include
 additional whitespace beyond that specifically included as SP in the
 grammar.

 HTTP-date = rfc1123-date / obs-date

https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc850
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc1123

Fielding & Reschke Expires April 7, 2013 [Page 62]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Preferred format:

rfc1123-date = day-name "," SP date1 SP time-of-day SP GMT
 ; fixed length subset of the format defined in
 ; Section 5.2.14 of [RFC1123]

 day-name = %x4D.6F.6E ; "Mon", case-sensitive
 / %x54.75.65 ; "Tue", case-sensitive
 / %x57.65.64 ; "Wed", case-sensitive
 / %x54.68.75 ; "Thu", case-sensitive
 / %x46.72.69 ; "Fri", case-sensitive
 / %x53.61.74 ; "Sat", case-sensitive
 / %x53.75.6E ; "Sun", case-sensitive

 date1 = day SP month SP year
 ; e.g., 02 Jun 1982

 day = 2DIGIT
 month = %x4A.61.6E ; "Jan", case-sensitive
 / %x46.65.62 ; "Feb", case-sensitive
 / %x4D.61.72 ; "Mar", case-sensitive
 / %x41.70.72 ; "Apr", case-sensitive
 / %x4D.61.79 ; "May", case-sensitive
 / %x4A.75.6E ; "Jun", case-sensitive
 / %x4A.75.6C ; "Jul", case-sensitive
 / %x41.75.67 ; "Aug", case-sensitive
 / %x53.65.70 ; "Sep", case-sensitive
 / %x4F.63.74 ; "Oct", case-sensitive
 / %x4E.6F.76 ; "Nov", case-sensitive
 / %x44.65.63 ; "Dec", case-sensitive
 year = 4DIGIT

 GMT = %x47.4D.54 ; "GMT", case-sensitive

 time-of-day = hour ":" minute ":" second
 ; 00:00:00 - 23:59:59

 hour = 2DIGIT
 minute = 2DIGIT
 second = 2DIGIT

 The semantics of day-name, day, month, year, and time-of-day are the
 same as those defined for the RFC 5322 constructs with the
 corresponding name ([RFC5322], Section 3.3).

 Obsolete formats:

 obs-date = rfc850-date / asctime-date

https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc1123#section-5.2.14
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322#section-3.3
https://datatracker.ietf.org/doc/html/rfc850

Fielding & Reschke Expires April 7, 2013 [Page 63]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

rfc850-date = day-name-l "," SP date2 SP time-of-day SP GMT
 date2 = day "-" month "-" 2DIGIT
 ; day-month-year (e.g., 02-Jun-82)

 day-name-l = %x4D.6F.6E.64.61.79 ; "Monday", case-sensitive
 / %x54.75.65.73.64.61.79 ; "Tuesday", case-sensitive
 / %x57.65.64.6E.65.73.64.61.79 ; "Wednesday", case-sensitive
 / %x54.68.75.72.73.64.61.79 ; "Thursday", case-sensitive
 / %x46.72.69.64.61.79 ; "Friday", case-sensitive
 / %x53.61.74.75.72.64.61.79 ; "Saturday", case-sensitive
 / %x53.75.6E.64.61.79 ; "Sunday", case-sensitive

 asctime-date = day-name SP date3 SP time-of-day SP year
 date3 = month SP (2DIGIT / (SP 1DIGIT))
 ; month day (e.g., Jun 2)

 Note: Recipients of date values are encouraged to be robust in
 accepting date values that might have been sent by non-HTTP
 applications, as is sometimes the case when retrieving or posting
 messages via proxies/gateways to SMTP or NNTP.

 Note: HTTP requirements for the date/time stamp format apply only
 to their usage within the protocol stream. Clients and servers
 are not required to use these formats for user presentation,
 request logging, etc.

8.1.1.2. Date

 The "Date" header field represents the date and time at which the
 message was originated, having the same semantics as the Origination
 Date Field (orig-date) defined in Section 3.6.1 of [RFC5322]. The
 field value is an HTTP-date, as defined in Section 8.1.1.1; it MUST
 be sent in rfc1123-date format.

 Date = HTTP-date

 An example is

 Date: Tue, 15 Nov 1994 08:12:31 GMT

 Origin servers MUST include a Date header field in all responses,
 except in these cases:

 1. If the response status code is 100 (Continue) or 101 (Switching
 Protocols), the response MAY include a Date header field, at the
 server's option.

https://datatracker.ietf.org/doc/html/rfc850
https://datatracker.ietf.org/doc/html/rfc5322#section-3.6.1
https://datatracker.ietf.org/doc/html/rfc1123

Fielding & Reschke Expires April 7, 2013 [Page 64]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 2. If the response status code conveys a server error, e.g., 500
 (Internal Server Error) or 503 (Service Unavailable), and it is
 inconvenient or impossible to generate a valid Date.

 3. If the server does not have a clock that can provide a reasonable
 approximation of the current time, its responses MUST NOT include
 a Date header field.

 A received message that does not have a Date header field MUST be
 assigned one by the recipient if the message will be cached by that
 recipient.

 Clients can use the Date header field as well; in order to keep
 request messages small, they are advised not to include it when it
 doesn't convey any useful information (as is usually the case for
 requests that do not contain a payload).

 The HTTP-date sent in a Date header field SHOULD NOT represent a date
 and time subsequent to the generation of the message. It SHOULD
 represent the best available approximation of the date and time of
 message generation, unless the implementation has no means of
 generating a reasonably accurate date and time. In theory, the date
 ought to represent the moment just before the payload is generated.
 In practice, the date can be generated at any time during the message
 origination without affecting its semantic value.

8.1.2. Location

 The "Location" header field MAY be sent in responses to refer to a
 specific resource in accordance with the semantics of the status
 code.

 Location = URI-reference

 For 201 (Created) responses, the Location is the URI of the new
 resource which was created by the request. For 3xx (Redirection)
 responses, the location SHOULD indicate the server's preferred URI
 for automatic redirection to the resource.

 The field value consists of a single URI-reference. When it has the
 form of a relative reference ([RFC3986], Section 4.2), the final
 value is computed by resolving it against the effective request URI
 ([RFC3986], Section 5). If the original URI, as navigated to by the
 user agent, did contain a fragment identifier, and the final value
 does not, then the original URI's fragment identifier is added to the
 final value.

https://datatracker.ietf.org/doc/html/rfc3986#section-4.2
https://datatracker.ietf.org/doc/html/rfc3986#section-5

Fielding & Reschke Expires April 7, 2013 [Page 65]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 For example, the original URI "http://www.example.org/~tim", combined
 with a field value given as:

 Location: /pub/WWW/People.html#tim

 would result in a final value of
 "http://www.example.org/pub/WWW/People.html#tim"

 An original URI "http://www.example.org/index.html#larry", combined
 with a field value given as:

 Location: http://www.example.net/index.html

 would result in a final value of
 "http://www.example.net/index.html#larry", preserving the original
 fragment identifier.

 Note: Some recipients attempt to recover from Location fields that
 are not valid URI references. This specification does not mandate
 or define such processing, but does allow it.

 There are circumstances in which a fragment identifier in a Location
 URI would not be appropriate. For instance, when it appears in a 201
 (Created) response, where the Location header field specifies the URI
 for the entire created resource.

 Note: The Content-Location header field (Section 3.1.4.2) differs
 from Location in that the Content-Location identifies the most
 specific resource corresponding to the enclosed representation.
 It is therefore possible for a response to contain header fields
 for both Location and Content-Location.

8.1.3. Retry-After

 The header "Retry-After" field can be used with a 503 (Service
 Unavailable) response to indicate how long the service is expected to
 be unavailable to the requesting client. This field MAY also be used
 with any 3xx (Redirection) response to indicate the minimum time the
 user-agent is asked to wait before issuing the redirected request.

 The value of this field can be either an HTTP-date or an integer
 number of seconds (in decimal) after the time of the response.

 Retry-After = HTTP-date / delta-seconds

 Time spans are non-negative decimal integers, representing time in
 seconds.

Fielding & Reschke Expires April 7, 2013 [Page 66]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 delta-seconds = 1*DIGIT

 Two examples of its use are

 Retry-After: Fri, 31 Dec 1999 23:59:59 GMT
 Retry-After: 120

 In the latter example, the delay is 2 minutes.

8.2. Selected Representation Header Fields

 We use the term "selected representation" to refer to the the current
 representation of a target resource that would have been selected in
 a successful response if the same request had used the method GET and
 excluded any conditional request header fields.

 Additional header fields define metadata about the selected
 representation, which might differ from the representation included
 in the message for responses to some state-changing methods. The
 following header fields are defined as selected representation
 metadata:

 +-------------------+------------------------+
 | Header Field Name | Defined in... |
 +-------------------+------------------------+
ETag	Section 2.3 of [Part4]
Last-Modified	Section 2.2 of [Part4]
Vary	Section 8.2.1
 +-------------------+------------------------+

8.2.1. Vary

 The "Vary" header field conveys the set of header fields that were
 used to select the representation.

 Caches use this information as part of determining whether a stored
 response can be used to satisfy a given request (Section 4.3 of
 [Part6]).

 In uncacheable or stale responses, the Vary field value advises the
 user agent about the criteria that were used to select the
 representation.

 Vary = "*" / 1#field-name

 The set of header fields named by the Vary field value is known as
 the selecting header fields.

Fielding & Reschke Expires April 7, 2013 [Page 67]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 A server SHOULD include a Vary header field with any cacheable
 response that is subject to proactive negotiation. Doing so allows a
 cache to properly interpret future requests on that resource and
 informs the user agent about the presence of negotiation on that
 resource. A server MAY include a Vary header field with a non-
 cacheable response that is subject to proactive negotiation, since
 this might provide the user agent with useful information about the
 dimensions over which the response varies at the time of the
 response.

 A Vary field value of "*" signals that unspecified parameters not
 limited to the header fields (e.g., the network address of the
 client), play a role in the selection of the response representation;
 therefore, a cache cannot determine whether this response is
 appropriate. A proxy MUST NOT generate the "*" value.

 The field-names given are not limited to the set of standard header
 fields defined by this specification. Field names are case-
 insensitive.

8.3. Authentication Challenges

 Authentication challenges indicate what mechanisms are available for
 the client to provide authentication credentials in future requests.

 +--------------------+------------------------+
 | Header Field Name | Defined in... |
 +--------------------+------------------------+
 | WWW-Authenticate | Section 4.4 of [Part7] |
 | Proxy-Authenticate | Section 4.2 of [Part7] |
 +--------------------+------------------------+

8.4. Informative

 The remaining response header fields provide more information about
 the target resource for potential use in later requests.

 +-------------------+------------------------+
 | Header Field Name | Defined in... |
 +-------------------+------------------------+
Accept-Ranges	Section 5.1 of [Part5]
Allow	Section 8.4.1
Server	Section 8.4.2
 +-------------------+------------------------+

Fielding & Reschke Expires April 7, 2013 [Page 68]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

8.4.1. Allow

 The "Allow" header field lists the set of methods advertised as
 supported by the target resource. The purpose of this field is
 strictly to inform the recipient of valid request methods associated
 with the resource.

 Allow = #method

 Example of use:

 Allow: GET, HEAD, PUT

 The actual set of allowed methods is defined by the origin server at
 the time of each request.

 A proxy MUST NOT modify the Allow header field -- it does not need to
 understand all the methods specified in order to handle them
 according to the generic message handling rules.

8.4.2. Server

 The "Server" header field contains information about the software
 used by the origin server to handle the request.

 The field can contain multiple product tokens (Section 4) and
 comments (Section 3.2 of [Part1]) identifying the server and any
 significant subproducts. The product tokens are listed in order of
 their significance for identifying the application.

 Server = product *(RWS (product / comment))

 Example:

 Server: CERN/3.0 libwww/2.17

 If the response is being forwarded through a proxy, the proxy
 application MUST NOT modify the Server header field. Instead, it
 MUST include a Via field (as described in Section 5.7 of [Part1]).

 Note: Revealing the specific software version of the server might
 allow the server machine to become more vulnerable to attacks
 against software that is known to contain security holes. Server
 implementers are encouraged to make this field a configurable
 option.

Fielding & Reschke Expires April 7, 2013 [Page 69]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

9. IANA Considerations

9.1. Method Registry

 The HTTP Method Registry defines the name space for the request
 method token (Section 5). The method registry is maintained at
 <http://www.iana.org/assignments/http-methods>.

9.1.1. Procedure

 HTTP method registrations MUST include the following fields:

 o Method Name (see Section 5)

 o Safe ("yes" or "no", see Section 5.2.1)

 o Idempotent ("yes" or "no", see Section 5.2.2)

 o Pointer to specification text

 Values to be added to this name space require IETF Review (see
[RFC5226], Section 4.1).

9.1.2. Considerations for New Methods

 Standardized methods are generic; that is, they are potentially
 applicable to any resource, not just one particular media type, kind
 of resource, or application. As such, it is preferred that new
 methods be registered in a document that isn't specific to a single
 application or data format, since orthogonal technologies deserve
 orthogonal specification.

 Since message parsing (Section 3.3 of [Part1]) needs to be
 independent of method semantics (aside from responses to HEAD),
 definitions of new methods cannot change the parsing algorithm or
 prohibit the presence of a message body on either the request or the
 response message. Definitions of new methods can specify that only a
 zero-length message body is allowed by requiring a Content-Length
 header field with a value of "0".

 New method definitions need to indicate whether they are safe
 (Section 5.2.1), idempotent (Section 5.2.2), cacheable
 (Section 5.2.3), and what semantics are to be associated with the
 payload body if any is present in the request. If a method is
 cacheable, the method definition ought to describe how, and under
 what conditions, a cache can store a response and use it to satisfy a
 subsequent request.

http://www.iana.org/assignments/http-methods
https://datatracker.ietf.org/doc/html/rfc5226#section-4.1

Fielding & Reschke Expires April 7, 2013 [Page 70]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

9.1.3. Registrations

 The HTTP Method Registry shall be populated with the registrations
 below:

 +---------+------+------------+---------------+
 | Method | Safe | Idempotent | Reference |
 +---------+------+------------+---------------+
CONNECT	no	no	Section 5.3.6
DELETE	no	yes	Section 5.3.5
GET	yes	yes	Section 5.3.1
HEAD	yes	yes	Section 5.3.2
OPTIONS	yes	yes	Section 5.3.7
POST	no	no	Section 5.3.3
PUT	no	yes	Section 5.3.4
TRACE	yes	yes	Section 5.3.8
 +---------+------+------------+---------------+

9.2. Status Code Registry

 The HTTP Status Code Registry defines the name space for the response
 status-code token (Section 7). The status code registry is
 maintained at <http://www.iana.org/assignments/http-status-codes>.

 This section replaces the registration procedure for HTTP Status
 Codes previously defined in Section 7.1 of [RFC2817].

9.2.1. Procedure

 Values to be added to the HTTP status code name space require IETF
 Review (see [RFC5226], Section 4.1).

9.2.2. Considerations for New Status Codes

 When it is necessary to express semantics for a response that are not
 defined by current status codes, a new status code can be registered.
 HTTP status codes are generic; they are potentially applicable to any
 resource, not just one particular media type, "type" of resource, or
 application. As such, it is preferred that new status codes be
 registered in a document that isn't specific to a single application.

 New status codes are required to fall under one of the categories
 defined in Section 7. To allow existing parsers to properly handle
 them, new status codes cannot disallow a payload, although they can
 mandate a zero-length payload body.

 A definition for a new status code ought to explain the request
 conditions that produce a response containing that status code (e.g.,

http://www.iana.org/assignments/http-status-codes
https://datatracker.ietf.org/doc/html/rfc2817#section-7.1
https://datatracker.ietf.org/doc/html/rfc5226#section-4.1

Fielding & Reschke Expires April 7, 2013 [Page 71]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 combinations of request header fields and/or method(s)) along with
 any dependencies on response header fields (e.g., what fields are
 required and what fields can modify the semantics). A response that
 can transfer a payload ought to specify expected cache behavior
 (e.g., cacheability and freshness criteria, as described in [Part6])
 and whether the payload has any implied association with an
 identified resource (Section 3.1.4.1).

9.2.3. Registrations

 The HTTP Status Code Registry shall be updated with the registrations
 below:

Fielding & Reschke Expires April 7, 2013 [Page 72]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 +-------+----------------------------------+----------------+
 | Value | Description | Reference |
 +-------+----------------------------------+----------------+
100	Continue	Section 7.2.1
101	Switching Protocols	Section 7.2.2
200	OK	Section 7.3.1
201	Created	Section 7.3.2
202	Accepted	Section 7.3.3
203	Non-Authoritative Information	Section 7.3.4
204	No Content	Section 7.3.5
205	Reset Content	Section 7.3.6
300	Multiple Choices	Section 7.4.1
301	Moved Permanently	Section 7.4.2
302	Found	Section 7.4.3
303	See Other	Section 7.4.4
305	Use Proxy	Section 7.4.5
306	(Unused)	Section 7.4.6
307	Temporary Redirect	Section 7.4.7
400	Bad Request	Section 7.5.1
402	Payment Required	Section 7.5.2
403	Forbidden	Section 7.5.3
404	Not Found	Section 7.5.4
405	Method Not Allowed	Section 7.5.5
406	Not Acceptable	Section 7.5.6
408	Request Timeout	Section 7.5.7
409	Conflict	Section 7.5.8
410	Gone	Section 7.5.9
411	Length Required	Section 7.5.10
413	Request Representation Too Large	Section 7.5.11
414	URI Too Long	Section 7.5.12
415	Unsupported Media Type	Section 7.5.13
417	Expectation Failed	Section 7.5.14
426	Upgrade Required	Section 7.5.15
500	Internal Server Error	Section 7.6.1
501	Not Implemented	Section 7.6.2
502	Bad Gateway	Section 7.6.3
503	Service Unavailable	Section 7.6.4
504	Gateway Timeout	Section 7.6.5
505	HTTP Version Not Supported	Section 7.6.6
 +-------+----------------------------------+----------------+

9.3. Header Field Registry

 HTTP header fields are registered within the Message Header Field
 Registry located at <http://www.iana.org/assignments/message-headers/

message-header-index.html>, as defined by [RFC3864].

http://www.iana.org/assignments/message-headers/message-header-index.html
http://www.iana.org/assignments/message-headers/message-header-index.html
https://datatracker.ietf.org/doc/html/rfc3864

Fielding & Reschke Expires April 7, 2013 [Page 73]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

9.3.1. Considerations for New Header Fields

 Header fields are key:value pairs that can be used to communicate
 data about the message, its payload, the target resource, or the
 connection (i.e., control data). See Section 3.2 of [Part1] for a
 general definition of header field syntax in HTTP messages.

 The requirements for header field names are defined in Section 4.1 of
 [RFC3864]. Authors of specifications defining new fields are advised
 to keep the name as short as practical, and not to prefix them with
 "X-" if they are to be registered (either immediately or in the
 future).

 New header field values typically have their syntax defined using
 ABNF ([RFC5234]), using the extension defined in Appendix B of
 [Part1] as necessary, and are usually constrained to the range of
 ASCII characters. Header fields needing a greater range of
 characters can use an encoding such as the one defined in [RFC5987].

 Because commas (",") are used as a generic delimiter between field-
 values, they need to be treated with care if they are allowed in the
 field-value's payload. Typically, components that might contain a
 comma are protected with double-quotes using the quoted-string ABNF
 production (Section 3.2.4 of [Part1]).

 For example, a textual date and a URI (either of which might contain
 a comma) could be safely carried in field-values like these:

 Example-URI-Field: "http://example.com/a.html,foo",
 "http://without-a-comma.example.com/"
 Example-Date-Field: "Sat, 04 May 1996", "Wed, 14 Sep 2005"

 Note that double-quote delimiters almost always are used with the
 quoted-string production; using a different syntax inside double-
 quotes will likely cause unnecessary confusion.

 Many header fields use a format including (case-insensitively) named
 parameters (for instance, Content-Type, defined in Section 3.1.1.5).
 Allowing both unquoted (token) and quoted (quoted-string) syntax for
 the parameter value enables recipients to use existing parser
 components. When allowing both forms, the meaning of a parameter
 value ought to be independent of the syntax used for it (for an
 example, see the notes on parameter handling for media types in

Section 3.1.1.1).

 Authors of specifications defining new header fields are advised to
 consider documenting:

https://datatracker.ietf.org/doc/html/rfc3864#section-4.1
https://datatracker.ietf.org/doc/html/rfc3864#section-4.1
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5987

Fielding & Reschke Expires April 7, 2013 [Page 74]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 o Whether the field is a single value, or whether it can be a list
 (delimited by commas; see Section 3.2 of [Part1]).

 If it does not use the list syntax, document how to treat messages
 where the header field occurs multiple times (a sensible default
 would be to ignore the header field, but this might not always be
 the right choice).

 Note that intermediaries and software libraries might combine
 multiple header field instances into a single one, despite the
 header field not allowing this. A robust format enables
 recipients to discover these situations (good example: "Content-
 Type", as the comma can only appear inside quoted strings; bad
 example: "Location", as a comma can occur inside a URI).

 o Under what conditions the header field can be used; e.g., only in
 responses or requests, in all messages, only on responses to a
 particular request method.

 o Whether it is appropriate to list the field-name in the Connection
 header field (i.e., if the header field is to be hop-by-hop, see
 Section 6.1 of [Part1]).

 o Under what conditions intermediaries are allowed to modify the
 header field's value, insert or delete it.

 o How the header field might interact with caching (see [Part6]).

 o Whether the header field is useful or allowable in trailers (see
 Section 4.1 of [Part1]).

 o Whether the header field ought to be preserved across redirects.

9.3.2. Registrations

 The Message Header Field Registry shall be updated with the following
 permanent registrations:

Fielding & Reschke Expires April 7, 2013 [Page 75]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 +-------------------+----------+----------+-----------------+
 | Header Field Name | Protocol | Status | Reference |
 +-------------------+----------+----------+-----------------+
Accept	http	standard	Section 6.3.2
Accept-Charset	http	standard	Section 6.3.3
Accept-Encoding	http	standard	Section 6.3.4
Accept-Language	http	standard	Section 6.3.5
Allow	http	standard	Section 8.4.1
Content-Encoding	http	standard	Section 3.1.2.2
Content-Language	http	standard	Section 3.1.3.2
Content-Location	http	standard	Section 3.1.4.2
Content-Type	http	standard	Section 3.1.1.5
Date	http	standard	Section 8.1.1.2
Expect	http	standard	Section 6.1.2
From	http	standard	Section 6.5.1
Location	http	standard	Section 8.1.2
MIME-Version	http	standard	Appendix A.1
Max-Forwards	http	standard	Section 6.1.1
Referer	http	standard	Section 6.5.2
Retry-After	http	standard	Section 8.1.3
Server	http	standard	Section 8.4.2
User-Agent	http	standard	Section 6.5.3
Vary	http	standard	Section 8.2.1
 +-------------------+----------+----------+-----------------+

 The change controller for the above registrations is: "IETF
 (iesg@ietf.org) - Internet Engineering Task Force".

9.4. Content Coding Registry

 The HTTP Content Coding Registry defines the name space for content
 coding names (Section 4.2 of [Part1]). The content coding registry
 is maintained at <http://www.iana.org/assignments/http-parameters>.

9.4.1. Procedure

 Content Coding registrations MUST include the following fields:

 o Name

 o Description

 o Pointer to specification text

 Names of content codings MUST NOT overlap with names of transfer
 codings (Section 4 of [Part1]), unless the encoding transformation is
 identical (as is the case for the compression codings defined in
 Section 4.2 of [Part1]).

http://www.iana.org/assignments/http-parameters

Fielding & Reschke Expires April 7, 2013 [Page 76]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Values to be added to this name space require IETF Review (see
Section 4.1 of [RFC5226]), and MUST conform to the purpose of content

 coding defined in this section.

9.4.2. Registrations

 The HTTP Content Codings Registry shall be updated with the
 registrations below:

 +----------+--+---------------+
 | Name | Description | Reference |
 +----------+--+---------------+
compress	UNIX "compress" program method	Section 4.2.1
		of [Part1]
deflate	"deflate" compression mechanism	Section 4.2.2
	([RFC1951]) used inside the "zlib"	of [Part1]
	data format ([RFC1950])	
gzip	Same as GNU zip [RFC1952]	Section 4.2.3
		of [Part1]
identity	reserved (synonym for "no encoding" in	Section 6.3.4
	Accept-Encoding header field)	
 +----------+--+---------------+

10. Security Considerations

 This section is meant to inform application developers, information
 providers, and users of the security limitations in HTTP/1.1 as
 described by this document. The discussion does not include
 definitive solutions to the problems revealed, though it does make
 some suggestions for reducing security risks.

10.1. Transfer of Sensitive Information

 Like any generic data transfer protocol, HTTP cannot regulate the
 content of the data that is transferred, nor is there any a priori
 method of determining the sensitivity of any particular piece of
 information within the context of any given request. Therefore,
 applications SHOULD supply as much control over this information as
 possible to the provider of that information. Four header fields are
 worth special mention in this context: Server, Via, Referer and From.

 Revealing the specific software version of the server might allow the
 server machine to become more vulnerable to attacks against software
 that is known to contain security holes. Implementers SHOULD make
 the Server header field a configurable option.

 Proxies which serve as a portal through a network firewall SHOULD
 take special precautions regarding the transfer of header information

https://datatracker.ietf.org/doc/html/rfc5226#section-4.1
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/rfc1952

Fielding & Reschke Expires April 7, 2013 [Page 77]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 that identifies the hosts behind the firewall. In particular, they
 SHOULD remove, or replace with sanitized versions, any Via fields
 generated behind the firewall.

 The Referer header field allows reading patterns to be studied and
 reverse links drawn. Although it can be very useful, its power can
 be abused if user details are not separated from the information
 contained in the Referer. Even when the personal information has
 been removed, the Referer header field might indicate a private
 document's URI whose publication would be inappropriate.

 The information sent in the From field might conflict with the user's
 privacy interests or their site's security policy, and hence it
 SHOULD NOT be transmitted without the user being able to disable,
 enable, and modify the contents of the field. The user MUST be able
 to set the contents of this field within a user preference or
 application defaults configuration.

 We suggest, though do not require, that a convenient toggle interface
 be provided for the user to enable or disable the sending of From and
 Referer information.

 The User-Agent (Section 6.5.3) or Server (Section 8.4.2) header
 fields can sometimes be used to determine that a specific client or
 server has a particular security hole which might be exploited.
 Unfortunately, this same information is often used for other valuable
 purposes for which HTTP currently has no better mechanism.

 Furthermore, the User-Agent header field might contain enough entropy
 to be used, possibly in conjunction with other material, to uniquely
 identify the user.

 Some request methods, like TRACE (Section 5.3.8), expose information
 that was sent in request header fields within the body of their
 response. Clients SHOULD be careful with sensitive information, like
 Cookies, Authorization credentials, and other header fields that
 might be used to collect data from the client.

10.2. Encoding Sensitive Information in URIs

 Because the source of a link might be private information or might
 reveal an otherwise private information source, it is strongly
 recommended that the user be able to select whether or not the
 Referer field is sent. For example, a browser client could have a
 toggle switch for browsing openly/anonymously, which would
 respectively enable/disable the sending of Referer and From
 information.

Fielding & Reschke Expires April 7, 2013 [Page 78]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Clients SHOULD NOT include a Referer header field in a (non-secure)
 HTTP request if the referring page was transferred with a secure
 protocol.

 Authors of services SHOULD NOT use GET-based forms for the submission
 of sensitive data because that data will be placed in the request-
 target. Many existing servers, proxies, and user agents log or
 display the request-target in places where it might be visible to
 third parties. Such services can use POST-based form submission
 instead.

10.3. Location Header Fields: Spoofing and Information Leakage

 If a single server supports multiple organizations that do not trust
 one another, then it MUST check the values of Location and Content-
 Location header fields in responses that are generated under control
 of said organizations to make sure that they do not attempt to
 invalidate resources over which they have no authority.

 Furthermore, appending the fragment identifier from one URI to
 another one obtained from a Location header field might leak
 confidential information to the target server -- although the
 fragment identifier is not transmitted in the final request, it might
 be visible to the user agent through other means, such as scripting.

10.4. Security Considerations for CONNECT

 Since tunneled data is opaque to the proxy, there are additional
 risks to tunneling to other well-known or reserved ports. A HTTP
 client CONNECTing to port 25 could relay spam via SMTP, for example.
 As such, proxies SHOULD restrict CONNECT access to a small number of
 known ports.

10.5. Privacy Issues Connected to Accept Header Fields

 Accept header fields can reveal information about the user to all
 servers which are accessed. The Accept-Language header field in
 particular can reveal information the user would consider to be of a
 private nature, because the understanding of particular languages is
 often strongly correlated to the membership of a particular ethnic
 group. User agents which offer the option to configure the contents
 of an Accept-Language header field to be sent in every request are
 strongly encouraged to let the configuration process include a
 message which makes the user aware of the loss of privacy involved.

 An approach that limits the loss of privacy would be for a user agent
 to omit the sending of Accept-Language header fields by default, and
 to ask the user whether or not to start sending Accept-Language

Fielding & Reschke Expires April 7, 2013 [Page 79]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 header fields to a server if it detects, by looking for any Vary
 header fields generated by the server, that such sending could
 improve the quality of service.

 Elaborate user-customized accept header fields sent in every request,
 in particular if these include quality values, can be used by servers
 as relatively reliable and long-lived user identifiers. Such user
 identifiers would allow content providers to do click-trail tracking,
 and would allow collaborating content providers to match cross-server
 click-trails or form submissions of individual users. Note that for
 many users not behind a proxy, the network address of the host
 running the user agent will also serve as a long-lived user
 identifier. In environments where proxies are used to enhance
 privacy, user agents ought to be conservative in offering accept
 header field configuration options to end users. As an extreme
 privacy measure, proxies could filter the accept header fields in
 relayed requests. General purpose user agents which provide a high
 degree of header field configurability SHOULD warn users about the
 loss of privacy which can be involved.

11. Acknowledgments

 See Section 9 of [Part1].

12. References

12.1. Normative References

 [Part1] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Message Syntax and
 Routing", draft-ietf-httpbis-p1-messaging-21 (work in
 progress), October 2012.

 [Part4] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Conditional Requests",

draft-ietf-httpbis-p4-conditional-21 (work in
 progress), October 2012.

 [Part5] Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed.,
 "Hypertext Transfer Protocol (HTTP/1.1): Range
 Requests", draft-ietf-httpbis-p5-range-21 (work in
 progress), October 2012.

 [Part6] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

draft-ietf-httpbis-p6-cache-21 (work in progress),
 October 2012.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p1-messaging-21
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-21
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p5-range-21
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p6-cache-21

Fielding & Reschke Expires April 7, 2013 [Page 80]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 [Part7] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext
 Transfer Protocol (HTTP/1.1): Authentication",

draft-ietf-httpbis-p7-auth-21 (work in progress),
 October 2012.

 [RFC1950] Deutsch, L. and J-L. Gailly, "ZLIB Compressed Data
 Format Specification version 3.3", RFC 1950, May 1996.

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format
 Specification version 1.3", RFC 1951, May 1996.

 [RFC1952] Deutsch, P., Gailly, J-L., Adler, M., Deutsch, L., and
 G. Randers-Pehrson, "GZIP file format specification
 version 4.3", RFC 1952, May 1996.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet
 Mail Extensions (MIME) Part One: Format of Internet
 Message Bodies", RFC 2045, November 1996.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet
 Mail Extensions (MIME) Part Two: Media Types",

RFC 2046, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter,
 "Uniform Resource Identifier (URI): Generic Syntax",
 STD 66, RFC 3986, January 2005.

 [RFC4647] Phillips, A., Ed. and M. Davis, Ed., "Matching of
 Language Tags", BCP 47, RFC 4647, September 2006.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", STD 68, RFC 5234,
 January 2008.

 [RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for
 Identifying Languages", BCP 47, RFC 5646,
 September 2009.

12.2. Informative References

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", Doctoral
 Dissertation, University of California, Irvine ,
 September 2000,
 <http://roy.gbiv.com/pubs/dissertation/top.htm>.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p7-auth-21
https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1952
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc4647
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc5646
http://roy.gbiv.com/pubs/dissertation/top.htm

Fielding & Reschke Expires April 7, 2013 [Page 81]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 [RFC1123] Braden, R., "Requirements for Internet Hosts -
 Application and Support", STD 3, RFC 1123,
 October 1989.

 [RFC1945] Berners-Lee, T., Fielding, R., and H. Nielsen,
 "Hypertext Transfer Protocol -- HTTP/1.0", RFC 1945,
 May 1996.

 [RFC2049] Freed, N. and N. Borenstein, "Multipurpose Internet
 Mail Extensions (MIME) Part Five: Conformance Criteria
 and Examples", RFC 2049, November 1996.

 [RFC2068] Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and
 T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2068, January 1997.

 [RFC2076] Palme, J., "Common Internet Message Headers", RFC 2076,
 February 1997.

 [RFC2277] Alvestrand, H., "IETF Policy on Character Sets and
 Languages", BCP 18, RFC 2277, January 1998.

 [RFC2295] Holtman, K. and A. Mutz, "Transparent Content
 Negotiation in HTTP", RFC 2295, March 1998.

 [RFC2388] Masinter, L., "Returning Values from Forms: multipart/
 form-data", RFC 2388, August 1998.

 [RFC2557] Palme, F., Hopmann, A., Shelness, N., and E. Stefferud,
 "MIME Encapsulation of Aggregate Documents, such as
 HTML (MHTML)", RFC 2557, March 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2817] Khare, R. and S. Lawrence, "Upgrading to TLS Within
 HTTP/1.1", RFC 2817, May 2000.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90,

RFC 3864, September 2004.

 [RFC4288] Freed, N. and J. Klensin, "Media Type Specifications
 and Registration Procedures", BCP 13, RFC 4288,

https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc2049
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2076
https://datatracker.ietf.org/doc/html/bcp18
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc2295
https://datatracker.ietf.org/doc/html/rfc2388
https://datatracker.ietf.org/doc/html/rfc2557
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2817
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/bcp90
https://datatracker.ietf.org/doc/html/rfc3864
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc4288

Fielding & Reschke Expires April 7, 2013 [Page 82]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 December 2005.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing
 an IANA Considerations Section in RFCs", BCP 26,

RFC 5226, May 2008.

 [RFC5322] Resnick, P., "Internet Message Format", RFC 5322,
 October 2008.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, March 2010.

 [RFC5987] Reschke, J., "Character Set and Language Encoding for
 Hypertext Transfer Protocol (HTTP) Header Field
 Parameters", RFC 5987, August 2010.

 [RFC6151] Turner, S. and L. Chen, "Updated Security
 Considerations for the MD5 Message-Digest and the HMAC-
 MD5 Algorithms", RFC 6151, March 2011.

 [RFC6266] Reschke, J., "Use of the Content-Disposition Header
 Field in the Hypertext Transfer Protocol (HTTP)",

RFC 6266, June 2011.

 [status-308] Reschke, J., "The Hypertext Transfer Protocol (HTTP)
 Status Code 308 (Permanent Redirect)",

draft-reschke-http-status-308-07 (work in progress),
 March 2012.

Appendix A. Differences between HTTP and MIME

 HTTP/1.1 uses many of the constructs defined for Internet Mail
 ([RFC5322]) and the Multipurpose Internet Mail Extensions (MIME
 [RFC2045]) to allow a message body to be transmitted in an open
 variety of representations and with extensible mechanisms. However,

RFC 2045 discusses mail, and HTTP has a few features that are
 different from those described in MIME. These differences were
 carefully chosen to optimize performance over binary connections, to
 allow greater freedom in the use of new media types, to make date
 comparisons easier, and to acknowledge the practice of some early
 HTTP servers and clients.

 This appendix describes specific areas where HTTP differs from MIME.
 Proxies and gateways to strict MIME environments SHOULD be aware of
 these differences and provide the appropriate conversions where
 necessary. Proxies and gateways from MIME environments to HTTP also
 need to be aware of the differences because some conversions might be
 required.

https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc5987
https://datatracker.ietf.org/doc/html/rfc6151
https://datatracker.ietf.org/doc/html/rfc6266
https://datatracker.ietf.org/doc/html/draft-reschke-http-status-308-07
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2045

Fielding & Reschke Expires April 7, 2013 [Page 83]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

A.1. MIME-Version

 HTTP is not a MIME-compliant protocol. However, HTTP/1.1 messages
 MAY include a single MIME-Version header field to indicate what
 version of the MIME protocol was used to construct the message. Use
 of the MIME-Version header field indicates that the message is in
 full conformance with the MIME protocol (as defined in [RFC2045]).
 Proxies/gateways are responsible for ensuring full conformance (where
 possible) when exporting HTTP messages to strict MIME environments.

 MIME-Version = 1*DIGIT "." 1*DIGIT

 MIME version "1.0" is the default for use in HTTP/1.1. However,
 HTTP/1.1 message parsing and semantics are defined by this document
 and not the MIME specification.

A.2. Conversion to Canonical Form

 MIME requires that an Internet mail body-part be converted to
 canonical form prior to being transferred, as described in Section 4
 of [RFC2049]. Section 3.1.1.3 of this document describes the forms
 allowed for subtypes of the "text" media type when transmitted over
 HTTP. [RFC2046] requires that content with a type of "text"
 represent line breaks as CRLF and forbids the use of CR or LF outside
 of line break sequences. HTTP allows CRLF, bare CR, and bare LF to
 indicate a line break within text content when a message is
 transmitted over HTTP.

 Where it is possible, a proxy or gateway from HTTP to a strict MIME
 environment SHOULD translate all line breaks within the text media
 types described in Section 3.1.1.3 of this document to the RFC 2049
 canonical form of CRLF. Note, however, that this might be
 complicated by the presence of a Content-Encoding and by the fact
 that HTTP allows the use of some character encodings which do not use
 octets 13 and 10 to represent CR and LF, respectively, as is the case
 for some multi-byte character encodings.

 Conversion will break any cryptographic checksums applied to the
 original content unless the original content is already in canonical
 form. Therefore, the canonical form is recommended for any content
 that uses such checksums in HTTP.

A.3. Conversion of Date Formats

 HTTP/1.1 uses a restricted set of date formats (Section 8.1.1.1) to
 simplify the process of date comparison. Proxies and gateways from
 other protocols SHOULD ensure that any Date header field present in a
 message conforms to one of the HTTP/1.1 formats and rewrite the date

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2049#section-4
https://datatracker.ietf.org/doc/html/rfc2049#section-4
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2049

Fielding & Reschke Expires April 7, 2013 [Page 84]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 if necessary.

A.4. Introduction of Content-Encoding

 MIME does not include any concept equivalent to HTTP/1.1's Content-
 Encoding header field. Since this acts as a modifier on the media
 type, proxies and gateways from HTTP to MIME-compliant protocols MUST
 either change the value of the Content-Type header field or decode
 the representation before forwarding the message. (Some experimental
 applications of Content-Type for Internet mail have used a media-type
 parameter of ";conversions=<content-coding>" to perform a function
 equivalent to Content-Encoding. However, this parameter is not part
 of the MIME standards).

A.5. No Content-Transfer-Encoding

 HTTP does not use the Content-Transfer-Encoding field of MIME.
 Proxies and gateways from MIME-compliant protocols to HTTP MUST
 remove any Content-Transfer-Encoding prior to delivering the response
 message to an HTTP client.

 Proxies and gateways from HTTP to MIME-compliant protocols are
 responsible for ensuring that the message is in the correct format
 and encoding for safe transport on that protocol, where "safe
 transport" is defined by the limitations of the protocol being used.
 Such a proxy or gateway SHOULD label the data with an appropriate
 Content-Transfer-Encoding if doing so will improve the likelihood of
 safe transport over the destination protocol.

A.6. MHTML and Line Length Limitations

 HTTP implementations which share code with MHTML [RFC2557]
 implementations need to be aware of MIME line length limitations.
 Since HTTP does not have this limitation, HTTP does not fold long
 lines. MHTML messages being transported by HTTP follow all
 conventions of MHTML, including line length limitations and folding,
 canonicalization, etc., since HTTP transports all message-bodies as
 payload (see Section 3.1.1.4) and does not interpret the content or
 any MIME header lines that might be contained therein.

Appendix B. Additional Features

 [RFC1945] and [RFC2068] document protocol elements used by some
 existing HTTP implementations, but not consistently and correctly
 across most HTTP/1.1 applications. Implementers are advised to be
 aware of these features, but cannot rely upon their presence in, or
 interoperability with, other HTTP/1.1 applications. Some of these
 describe proposed experimental features, and some describe features

https://datatracker.ietf.org/doc/html/rfc2557
https://datatracker.ietf.org/doc/html/rfc2068

Fielding & Reschke Expires April 7, 2013 [Page 85]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 that experimental deployment found lacking that are now addressed in
 the base HTTP/1.1 specification.

 A number of other header fields, such as Content-Disposition and
 Title, from SMTP and MIME are also often implemented (see [RFC6266]
 and [RFC2076]).

Appendix C. Changes from RFC 2616

 Remove base URI setting semantics for "Content-Location" due to poor
 implementation support, which was caused by too many broken servers
 emitting bogus Content-Location header fields, and also the
 potentially undesirable effect of potentially breaking relative links
 in content-negotiated resources. (Section 3.1.4.2)

 Clarify definition of POST. (Section 5.3.3)

 Remove requirement to handle all Content-* header fields; ban use of
 Content-Range with PUT. (Section 5.3.4)

 Take over definition of CONNECT method from [RFC2817].
 (Section 5.3.6)

 Restrict "Max-Forwards" header field to OPTIONS and TRACE
 (previously, extension methods could have used it as well).
 (Section 6.1.1)

 The ABNF for the "Expect" header field has been both fixed (allowing
 parameters for value-less expectations as well) and simplified
 (allowing trailing semicolons after "100-continue" when they were
 invalid before). (Section 6.1.2)

 Remove ISO-8859-1 special-casing in Accept-Charset. (Section 6.3.3)

 Allow "Referer" field value of "about:blank" as alternative to not
 specifying it. (Section 6.5.2)

 Broadened the definition of 203 (Non-Authoritative Information) to
 include cases of payload transformations as well. (Section 7.3.4)

 Status codes 301, 302, and 307: removed the normative requirements on
 both response payloads and user interaction. (Section 7.4)

 Failed to consider that there are many other request methods that are
 safe to automatically redirect, and further that the user agent is
 able to make that determination based on the request method
 semantics. Furthermore, allow user agents to rewrite the method from
 POST to GET for status codes 301 and 302. (Sections 7.4.2, 7.4.3 and

https://datatracker.ietf.org/doc/html/rfc6266
https://datatracker.ietf.org/doc/html/rfc2076
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2817

Fielding & Reschke Expires April 7, 2013 [Page 86]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 7.4.7)

 Deprecate 305 (Use Proxy) status code, because user agents did not
 implement it. It used to indicate that the target resource needs to
 be accessed through the proxy given by the Location field. The
 Location field gave the URI of the proxy. The recipient was expected
 to repeat this single request via the proxy. (Section 7.4.5)

 Define status 426 (Upgrade Required) (this was incorporated from
 [RFC2817]). (Section 7.5.15)

 Correct syntax of "Location" header field to allow URI references
 (including relative references and fragments), as referred symbol
 "absoluteURI" wasn't what was expected, and add some clarifications
 as to when use of fragments would not be appropriate.
 (Section 8.1.2)

 Reclassify "Allow" as response header field, removing the option to
 specify it in a PUT request. Relax the server requirement on the
 contents of the Allow header field and remove requirement on clients
 to always trust the header field value. (Section 8.4.1)

 In the description of the "Server" header field, the "Via" field was
 described as a SHOULD. The requirement was and is stated correctly
 in the description of the Via header field in Section 5.7 of [Part1].
 (Section 8.4.2)

 Clarify contexts that charset is used in. (Section 3.1.1.2)

 Remove the default character encoding of "ISO-8859-1" for text media
 types; the default now is whatever the media type definition says.
 (Section 3.1.1.3)

 Registration of Content Codings now requires IETF Review
 (Section 9.4)

 Remove definition of "Content-MD5 header" field because it was
 inconsistently implemented with respect to partial responses, and
 also because of known deficiencies in the hash algorithm itself (see
 [RFC6151] for details).

 Introduce Method Registry. (Section 9.1)

 Take over the Status Code Registry, previously defined in Section 7.1
 of [RFC2817]. (Section 9.2)

 Remove reference to non-existant identity transfer-coding value
 tokens. (Appendix A.5)

https://datatracker.ietf.org/doc/html/rfc2817
https://datatracker.ietf.org/doc/html/rfc6151
https://datatracker.ietf.org/doc/html/rfc2817#section-7.1
https://datatracker.ietf.org/doc/html/rfc2817#section-7.1

Fielding & Reschke Expires April 7, 2013 [Page 87]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Remove discussion of Content-Disposition header field, it is now
 defined by [RFC6266]. (Appendix B)

Appendix D. Imported ABNF

 The following core rules are included by reference, as defined in
Appendix B.1 of [RFC5234]: ALPHA (letters), CR (carriage return),

 CRLF (CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double
 quote), HEXDIG (hexadecimal 0-9/A-F/a-f), HTAB (horizontal tab), LF
 (line feed), OCTET (any 8-bit sequence of data), SP (space), and
 VCHAR (any visible US-ASCII character).

 The rules below are defined in [Part1]:

 BWS = <BWS, defined in [Part1], Section 3.2.1>
 OWS = <OWS, defined in [Part1], Section 3.2.1>
 RWS = <RWS, defined in [Part1], Section 3.2.1>
 URI-reference = <URI-reference, defined in [Part1], Section 2.7>
 absolute-URI = <absolute-URI, defined in [Part1], Section 2.7>
 comment = <comment, defined in [Part1], Section 3.2.4>
 field-name = <comment, defined in [Part1], Section 3.2>
 partial-URI = <partial-URI, defined in [Part1], Section 2.7>
 quoted-string = <quoted-string, defined in [Part1], Section 3.2.4>
 token = <token, defined in [Part1], Section 3.2.4>
 word = <word, defined in [Part1], Section 3.2.4>

Appendix E. Collected ABNF

 Accept = [("," / (media-range [accept-params])) *(OWS "," [
 OWS (media-range [accept-params])])]
 Accept-Charset = *("," OWS) ((charset / "*") [weight]) *(OWS
 "," [OWS ((charset / "*") [weight])])
 Accept-Encoding = [("," / (codings [weight])) *(OWS "," [OWS
 (codings [weight])])]
 Accept-Language = *("," OWS) (language-range [weight]) *(OWS
 "," [OWS (language-range [weight])])
 Allow = [("," / method) *(OWS "," [OWS method])]

 BWS = <BWS, defined in [Part1], Section 3.2.1>

 Content-Encoding = *("," OWS) content-coding *(OWS "," [OWS
 content-coding])
 Content-Language = *("," OWS) language-tag *(OWS "," [OWS
 language-tag])
 Content-Location = absolute-URI / partial-URI
 Content-Type = media-type

 Date = HTTP-date

https://datatracker.ietf.org/doc/html/rfc6266
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B.1

Fielding & Reschke Expires April 7, 2013 [Page 88]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Expect = *("," OWS) expectation *(OWS "," [OWS expectation])

 From = mailbox

 GMT = %x47.4D.54 ; GMT

 HTTP-date = rfc1123-date / obs-date

 Location = URI-reference

 MIME-Version = 1*DIGIT "." 1*DIGIT
 Max-Forwards = 1*DIGIT

 OWS = <OWS, defined in [Part1], Section 3.2.1>

 RWS = <RWS, defined in [Part1], Section 3.2.1>
 Referer = absolute-URI / partial-URI
 Retry-After = HTTP-date / delta-seconds

 Server = product *(RWS (product / comment))

 URI-reference = <URI-reference, defined in [Part1], Section 2.7>
 User-Agent = product *(RWS (product / comment))

 Vary = "*" / (*("," OWS) field-name *(OWS "," [OWS field-name]
))

 absolute-URI = <absolute-URI, defined in [Part1], Section 2.7>
 accept-ext = OWS ";" OWS token ["=" word]
 accept-params = weight *accept-ext
 asctime-date = day-name SP date3 SP time-of-day SP year
 attribute = token

 charset = token
 codings = content-coding / "identity" / "*"
 comment = <comment, defined in [Part1], Section 3.2.4>
 content-coding = token

 date1 = day SP month SP year
 date2 = day "-" month "-" 2DIGIT
 date3 = month SP (2DIGIT / (SP DIGIT))
 day = 2DIGIT

https://datatracker.ietf.org/doc/html/rfc1123

Fielding & Reschke Expires April 7, 2013 [Page 89]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 day-name = %x4D.6F.6E ; Mon
 / %x54.75.65 ; Tue
 / %x57.65.64 ; Wed
 / %x54.68.75 ; Thu
 / %x46.72.69 ; Fri
 / %x53.61.74 ; Sat
 / %x53.75.6E ; Sun
 day-name-l = %x4D.6F.6E.64.61.79 ; Monday
 / %x54.75.65.73.64.61.79 ; Tuesday
 / %x57.65.64.6E.65.73.64.61.79 ; Wednesday
 / %x54.68.75.72.73.64.61.79 ; Thursday
 / %x46.72.69.64.61.79 ; Friday
 / %x53.61.74.75.72.64.61.79 ; Saturday
 / %x53.75.6E.64.61.79 ; Sunday
 delta-seconds = 1*DIGIT

 expect-name = token
 expect-param = expect-name [BWS "=" BWS expect-value]
 expect-value = token / quoted-string
 expectation = expect-name [BWS "=" BWS expect-value] *(OWS ";" [
 OWS expect-param])

 field-name = <comment, defined in [Part1], Section 3.2>

 hour = 2DIGIT

 language-range = <language-range, defined in [RFC4647], Section 2.1>
 language-tag = <Language-Tag, defined in [RFC5646], Section 2.1>

 mailbox = <mailbox, defined in [RFC5322], Section 3.4>
 media-range = ("*/*" / (type "/*") / (type "/" subtype)) *(OWS
 ";" OWS parameter)
 media-type = type "/" subtype *(OWS ";" OWS parameter)
 method = token
 minute = 2DIGIT
 month = %x4A.61.6E ; Jan
 / %x46.65.62 ; Feb
 / %x4D.61.72 ; Mar
 / %x41.70.72 ; Apr
 / %x4D.61.79 ; May
 / %x4A.75.6E ; Jun
 / %x4A.75.6C ; Jul
 / %x41.75.67 ; Aug
 / %x53.65.70 ; Sep
 / %x4F.63.74 ; Oct
 / %x4E.6F.76 ; Nov
 / %x44.65.63 ; Dec

https://datatracker.ietf.org/doc/html/rfc4647#section-2.1
https://datatracker.ietf.org/doc/html/rfc5646#section-2.1
https://datatracker.ietf.org/doc/html/rfc5322#section-3.4

Fielding & Reschke Expires April 7, 2013 [Page 90]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 obs-date = rfc850-date / asctime-date

 parameter = attribute "=" value
 partial-URI = <partial-URI, defined in [Part1], Section 2.7>
 product = token ["/" product-version]
 product-version = token

 quoted-string = <quoted-string, defined in [Part1], Section 3.2.4>
 qvalue = ("0" ["." *3DIGIT]) / ("1" ["." *3"0"])

rfc1123-date = day-name "," SP date1 SP time-of-day SP GMT
rfc850-date = day-name-l "," SP date2 SP time-of-day SP GMT

 second = 2DIGIT
 subtype = token

 time-of-day = hour ":" minute ":" second
 token = <token, defined in [Part1], Section 3.2.4>
 type = token

 value = word

 weight = OWS ";" OWS "q=" qvalue
 word = <word, defined in [Part1], Section 3.2.4>

 year = 4DIGIT

Appendix F. Change Log (to be removed by RFC Editor before publication)

F.1. Since RFC 2616

 Extracted relevant partitions from [RFC2616].

F.2. Since draft-ietf-httpbis-p2-semantics-00

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/5>: "Via is a MUST"
 (<http://purl.org/NET/http-errata#via-must>)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/6>: "Fragments
 allowed in Location"
 (<http://purl.org/NET/http-errata#location-fragments>)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/10>: "Safe Methods
 vs Redirection" (<http://purl.org/NET/http-errata#saferedirect>)

https://datatracker.ietf.org/doc/html/rfc850
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc850
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-00
http://tools.ietf.org/wg/httpbis/trac/ticket/5
http://purl.org/NET/http-errata#via-must
http://tools.ietf.org/wg/httpbis/trac/ticket/6
http://purl.org/NET/http-errata#location-fragments
http://tools.ietf.org/wg/httpbis/trac/ticket/10
http://purl.org/NET/http-errata#saferedirect

Fielding & Reschke Expires April 7, 2013 [Page 91]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/17>: "Revise
 description of the POST method"
 (<http://purl.org/NET/http-errata#post>)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/35>: "Normative and
 Informative references"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/42>: "RFC2606
 Compliance"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/65>: "Informative
 references"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/84>: "Redundant
 cross-references"

 Other changes:

 o Move definitions of 304 and 412 condition codes to [Part4]

F.3. Since draft-ietf-httpbis-p3-payload-00

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/8>: "Media Type
 Registrations" (<http://purl.org/NET/http-errata#media-reg>)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/14>: "Clarification
 regarding quoting of charset values"
 (<http://purl.org/NET/http-errata#charactersets>)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/16>: "Remove
 'identity' token references"
 (<http://purl.org/NET/http-errata#identity>)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/25>: "Accept-
 Encoding BNF"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/35>: "Normative and
 Informative references"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/46>: "RFC1700
 references"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/55>: "Updating to
RFC4288"

http://tools.ietf.org/wg/httpbis/trac/ticket/17
http://purl.org/NET/http-errata#post
http://tools.ietf.org/wg/httpbis/trac/ticket/35
http://tools.ietf.org/wg/httpbis/trac/ticket/42
https://datatracker.ietf.org/doc/html/rfc2606
http://tools.ietf.org/wg/httpbis/trac/ticket/65
http://tools.ietf.org/wg/httpbis/trac/ticket/84
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-00
http://tools.ietf.org/wg/httpbis/trac/ticket/8
http://purl.org/NET/http-errata#media-reg
http://tools.ietf.org/wg/httpbis/trac/ticket/14
http://purl.org/NET/http-errata#charactersets
http://tools.ietf.org/wg/httpbis/trac/ticket/16
http://purl.org/NET/http-errata#identity
http://tools.ietf.org/wg/httpbis/trac/ticket/25
http://tools.ietf.org/wg/httpbis/trac/ticket/35
http://tools.ietf.org/wg/httpbis/trac/ticket/46
https://datatracker.ietf.org/doc/html/rfc1700
http://tools.ietf.org/wg/httpbis/trac/ticket/55
https://datatracker.ietf.org/doc/html/rfc4288

Fielding & Reschke Expires April 7, 2013 [Page 92]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/65>: "Informative
 references"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/66>: "ISO-8859-1
 Reference"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/68>: "Encoding
 References Normative"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/86>: "Normative up-
 to-date references"

F.4. Since draft-ietf-httpbis-p2-semantics-01

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/21>: "PUT side
 effects"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/91>: "Duplicate Host
 header requirements"

 Ongoing work on ABNF conversion
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

 o Move "Product Tokens" section (back) into Part 1, as "token" is
 used in the definition of the Upgrade header field.

 o Add explicit references to BNF syntax and rules imported from
 other parts of the specification.

 o Copy definition of delta-seconds from Part6 instead of referencing
 it.

F.5. Since draft-ietf-httpbis-p3-payload-01

 Ongoing work on ABNF conversion
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

 o Add explicit references to BNF syntax and rules imported from
 other parts of the specification.

F.6. Since draft-ietf-httpbis-p2-semantics-02

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/24>: "Requiring
 Allow in 405 responses"

http://tools.ietf.org/wg/httpbis/trac/ticket/65
http://tools.ietf.org/wg/httpbis/trac/ticket/66
http://tools.ietf.org/wg/httpbis/trac/ticket/68
http://tools.ietf.org/wg/httpbis/trac/ticket/86
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-01
http://tools.ietf.org/wg/httpbis/trac/ticket/21
http://tools.ietf.org/wg/httpbis/trac/ticket/91
http://tools.ietf.org/wg/httpbis/trac/ticket/36
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-01
http://tools.ietf.org/wg/httpbis/trac/ticket/36
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-02
http://tools.ietf.org/wg/httpbis/trac/ticket/24

Fielding & Reschke Expires April 7, 2013 [Page 93]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/59>: "Status Code
 Registry"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/61>: "Redirection
 vs. Location"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/70>: "Cacheability
 of 303 response"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/76>: "305 Use Proxy"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/105>:
 "Classification for Allow header field"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/112>: "PUT - 'store
 under' vs 'store at'"

 Ongoing work on IANA Message Header Field Registration
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/40>):

 o Reference RFC 3984, and update header field registrations for
 header fields defined in this document.

 Ongoing work on ABNF conversion
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

 o Replace string literals when the string really is case-sensitive
 (method).

F.7. Since draft-ietf-httpbis-p3-payload-02

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/67>: "Quoting
 Charsets"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/105>:
 "Classification for Allow header field"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/115>: "missing
 default for qvalue in description of Accept-Encoding"

 Ongoing work on IANA Message Header Field Registration
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/40>):

 o Reference RFC 3984, and update header field registrations for
 header fields defined in this document.

http://tools.ietf.org/wg/httpbis/trac/ticket/59
http://tools.ietf.org/wg/httpbis/trac/ticket/61
http://tools.ietf.org/wg/httpbis/trac/ticket/70
http://tools.ietf.org/wg/httpbis/trac/ticket/76
http://tools.ietf.org/wg/httpbis/trac/ticket/105
http://tools.ietf.org/wg/httpbis/trac/ticket/112
http://tools.ietf.org/wg/httpbis/trac/ticket/40
https://datatracker.ietf.org/doc/html/rfc3984
http://tools.ietf.org/wg/httpbis/trac/ticket/36
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-02
http://tools.ietf.org/wg/httpbis/trac/ticket/67
http://tools.ietf.org/wg/httpbis/trac/ticket/105
http://tools.ietf.org/wg/httpbis/trac/ticket/115
http://tools.ietf.org/wg/httpbis/trac/ticket/40
https://datatracker.ietf.org/doc/html/rfc3984

Fielding & Reschke Expires April 7, 2013 [Page 94]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

F.8. Since draft-ietf-httpbis-p2-semantics-03

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/98>: "OPTIONS
 payload bodies"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/119>: "Description
 of CONNECT should refer to RFC2817"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/125>: "Location
 Content-Location reference request/response mixup"

 Ongoing work on Method Registry
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/72>):

 o Added initial proposal for registration process, plus initial
 content (non-HTTP/1.1 methods to be added by a separate
 specification).

F.9. Since draft-ietf-httpbis-p3-payload-03

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/67>: "Quoting
 Charsets"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/113>: "language tag
 matching (Accept-Language) vs RFC4647"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/121>: "RFC 1806 has
 been replaced by RFC2183"

 Other changes:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/68>: "Encoding
 References Normative" -- rephrase the annotation and reference

BCP97.

F.10. Since draft-ietf-httpbis-p2-semantics-04

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/103>: "Content-*"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/132>: "RFC 2822 is
 updated by RFC 5322"

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-03
http://tools.ietf.org/wg/httpbis/trac/ticket/98
http://tools.ietf.org/wg/httpbis/trac/ticket/119
https://datatracker.ietf.org/doc/html/rfc2817
http://tools.ietf.org/wg/httpbis/trac/ticket/125
http://tools.ietf.org/wg/httpbis/trac/ticket/72
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-03
http://tools.ietf.org/wg/httpbis/trac/ticket/67
http://tools.ietf.org/wg/httpbis/trac/ticket/113
https://datatracker.ietf.org/doc/html/rfc4647
http://tools.ietf.org/wg/httpbis/trac/ticket/121
https://datatracker.ietf.org/doc/html/rfc1806
https://datatracker.ietf.org/doc/html/rfc2183
http://tools.ietf.org/wg/httpbis/trac/ticket/68
https://datatracker.ietf.org/doc/html/bcp97
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-04
http://tools.ietf.org/wg/httpbis/trac/ticket/103
http://tools.ietf.org/wg/httpbis/trac/ticket/132
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc5322

Fielding & Reschke Expires April 7, 2013 [Page 95]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Ongoing work on ABNF conversion
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

 o Use "/" instead of "|" for alternatives.

 o Introduce new ABNF rules for "bad" whitespace ("BWS"), optional
 whitespace ("OWS") and required whitespace ("RWS").

 o Rewrite ABNFs to spell out whitespace rules, factor out header
 field value format definitions.

F.11. Since draft-ietf-httpbis-p3-payload-04

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/132>: "RFC 2822 is
 updated by RFC 5322"

 Ongoing work on ABNF conversion
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

 o Use "/" instead of "|" for alternatives.

 o Introduce new ABNF rules for "bad" whitespace ("BWS"), optional
 whitespace ("OWS") and required whitespace ("RWS").

 o Rewrite ABNFs to spell out whitespace rules, factor out header
 field value format definitions.

F.12. Since draft-ietf-httpbis-p2-semantics-05

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/94>: "reason-phrase
 BNF"

 Final work on ABNF conversion
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

 o Add appendix containing collected and expanded ABNF, reorganize
 ABNF introduction.

F.13. Since draft-ietf-httpbis-p3-payload-05

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/118>: "Join
 "Differences Between HTTP Entities and RFC 2045 Entities"?"

http://tools.ietf.org/wg/httpbis/trac/ticket/36
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-04
http://tools.ietf.org/wg/httpbis/trac/ticket/132
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc5322
http://tools.ietf.org/wg/httpbis/trac/ticket/36
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-05
http://tools.ietf.org/wg/httpbis/trac/ticket/94
http://tools.ietf.org/wg/httpbis/trac/ticket/36
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-05
http://tools.ietf.org/wg/httpbis/trac/ticket/118
https://datatracker.ietf.org/doc/html/rfc2045

Fielding & Reschke Expires April 7, 2013 [Page 96]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Final work on ABNF conversion
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

 o Add appendix containing collected and expanded ABNF, reorganize
 ABNF introduction.

 Other changes:

 o Move definition of quality values into Part 1.

F.14. Since draft-ietf-httpbis-p2-semantics-06

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/144>: "Clarify when
 Referer is sent"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/164>: "status codes
 vs methods"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/170>: "Do not
 require "updates" relation for specs that register status codes or
 method names"

F.15. Since draft-ietf-httpbis-p3-payload-06

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/80>: "Content-
 Location isn't special"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/155>: "Content
 Sniffing"

F.16. Since draft-ietf-httpbis-p2-semantics-07

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/27>: "Idempotency"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/33>: "TRACE security
 considerations"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/110>: "Clarify rules
 for determining what entities a response carries"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/140>: "update note
 citing RFC 1945 and 2068"

http://tools.ietf.org/wg/httpbis/trac/ticket/36
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-06
http://tools.ietf.org/wg/httpbis/trac/ticket/144
http://tools.ietf.org/wg/httpbis/trac/ticket/164
http://tools.ietf.org/wg/httpbis/trac/ticket/170
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-06
http://tools.ietf.org/wg/httpbis/trac/ticket/80
http://tools.ietf.org/wg/httpbis/trac/ticket/155
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-07
http://tools.ietf.org/wg/httpbis/trac/ticket/27
http://tools.ietf.org/wg/httpbis/trac/ticket/33
http://tools.ietf.org/wg/httpbis/trac/ticket/110
http://tools.ietf.org/wg/httpbis/trac/ticket/140
https://datatracker.ietf.org/doc/html/rfc1945

Fielding & Reschke Expires April 7, 2013 [Page 97]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/182>: "update note
 about redirect limit"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/191>: "Location
 header field ABNF should use 'URI'"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/192>: "fragments in
 Location vs status 303"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/198>: "move IANA
 registrations for optional status codes"

 Partly resolved issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/171>: "Are OPTIONS
 and TRACE safe?"

F.17. Since draft-ietf-httpbis-p3-payload-07

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/13>: "Updated
 reference for language tags"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/110>: "Clarify rules
 for determining what entities a response carries"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/154>: "Content-
 Location base-setting problems"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/155>: "Content
 Sniffing"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/188>: "pick IANA
 policy (RFC5226) for Transfer Coding / Content Coding"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/189>: "move
 definitions of gzip/deflate/compress to part 1"

 Partly resolved issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/148>: "update IANA
 requirements wrt Transfer-Coding values" (add the IANA
 Considerations subsection)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/149>: "update IANA
 requirements wrt Content-Coding values" (add the IANA
 Considerations subsection)

http://tools.ietf.org/wg/httpbis/trac/ticket/182
http://tools.ietf.org/wg/httpbis/trac/ticket/191
http://tools.ietf.org/wg/httpbis/trac/ticket/192
http://tools.ietf.org/wg/httpbis/trac/ticket/198
http://tools.ietf.org/wg/httpbis/trac/ticket/171
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-07
http://tools.ietf.org/wg/httpbis/trac/ticket/13
http://tools.ietf.org/wg/httpbis/trac/ticket/110
http://tools.ietf.org/wg/httpbis/trac/ticket/154
http://tools.ietf.org/wg/httpbis/trac/ticket/155
http://tools.ietf.org/wg/httpbis/trac/ticket/188
https://datatracker.ietf.org/doc/html/rfc5226
http://tools.ietf.org/wg/httpbis/trac/ticket/189
http://tools.ietf.org/wg/httpbis/trac/ticket/148
http://tools.ietf.org/wg/httpbis/trac/ticket/149

Fielding & Reschke Expires April 7, 2013 [Page 98]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

F.18. Since draft-ietf-httpbis-p2-semantics-08

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/10>: "Safe Methods
 vs Redirection" (we missed the introduction to the 3xx status
 codes when fixing this previously)

F.19. Since draft-ietf-httpbis-p3-payload-08

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/81>: "Content
 Negotiation for media types"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/181>: "Accept-
 Language: which RFC4647 filtering?"

F.20. Since draft-ietf-httpbis-p2-semantics-09

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/43>: "Fragment
 combination / precedence during redirects"

 Partly resolved issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/185>: "Location
 header field payload handling"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/196>: "Term for the
 requested resource's URI"

F.21. Since draft-ietf-httpbis-p3-payload-09

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/122>: "MIME-Version
 not listed in P1, general header fields"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/143>: "IANA registry
 for content/transfer encodings"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/155>: "Content
 Sniffing"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/200>: "use of term
 "word" when talking about header field structure"

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-08
http://tools.ietf.org/wg/httpbis/trac/ticket/10
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-08
http://tools.ietf.org/wg/httpbis/trac/ticket/81
http://tools.ietf.org/wg/httpbis/trac/ticket/181
https://datatracker.ietf.org/doc/html/rfc4647
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-09
http://tools.ietf.org/wg/httpbis/trac/ticket/43
http://tools.ietf.org/wg/httpbis/trac/ticket/185
http://tools.ietf.org/wg/httpbis/trac/ticket/196
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-09
http://tools.ietf.org/wg/httpbis/trac/ticket/122
http://tools.ietf.org/wg/httpbis/trac/ticket/143
http://tools.ietf.org/wg/httpbis/trac/ticket/155
http://tools.ietf.org/wg/httpbis/trac/ticket/200

Fielding & Reschke Expires April 7, 2013 [Page 99]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Partly resolved issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/196>: "Term for the
 requested resource's URI"

F.22. Since draft-ietf-httpbis-p2-semantics-10

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/69>: "Clarify
 'Requested Variant'"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/109>: "Clarify
 entity / representation / variant terminology"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/139>: "Methods and
 Caching"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/190>: "OPTIONS vs
 Max-Forwards"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/199>: "Status codes
 and caching"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/220>: "consider
 removing the 'changes from 2068' sections"

F.23. Since draft-ietf-httpbis-p3-payload-10

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/69>: "Clarify
 'Requested Variant'"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/80>: "Content-
 Location isn't special"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/90>: "Delimiting
 messages with multipart/byteranges"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/109>: "Clarify
 entity / representation / variant terminology"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/136>: "confusing
 req. language for Content-Location"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/167>: "Content-
 Location on 304 responses"

http://tools.ietf.org/wg/httpbis/trac/ticket/196
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-10
http://tools.ietf.org/wg/httpbis/trac/ticket/69
http://tools.ietf.org/wg/httpbis/trac/ticket/109
http://tools.ietf.org/wg/httpbis/trac/ticket/139
http://tools.ietf.org/wg/httpbis/trac/ticket/190
http://tools.ietf.org/wg/httpbis/trac/ticket/199
http://tools.ietf.org/wg/httpbis/trac/ticket/220
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-10
http://tools.ietf.org/wg/httpbis/trac/ticket/69
http://tools.ietf.org/wg/httpbis/trac/ticket/80
http://tools.ietf.org/wg/httpbis/trac/ticket/90
http://tools.ietf.org/wg/httpbis/trac/ticket/109
http://tools.ietf.org/wg/httpbis/trac/ticket/136
http://tools.ietf.org/wg/httpbis/trac/ticket/167

Fielding & Reschke Expires April 7, 2013 [Page 100]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/183>: "'requested
 resource' in content-encoding definition"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/220>: "consider
 removing the 'changes from 2068' sections"

 Partly resolved issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/178>: "Content-MD5
 and partial responses"

F.24. Since draft-ietf-httpbis-p2-semantics-11

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/229>:
 "Considerations for new status codes"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/230>:
 "Considerations for new methods"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/232>: "User-Agent
 guidelines" (relating to the 'User-Agent' header field)

F.25. Since draft-ietf-httpbis-p3-payload-11

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/123>: "Factor out
 Content-Disposition"

F.26. Since draft-ietf-httpbis-p2-semantics-12

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/43>: "Fragment
 combination / precedence during redirects" (added warning about
 having a fragid on the redirect might cause inconvenience in some
 cases)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/79>: "Content-* vs.
 PUT"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/88>: "205 Bodies"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/102>: "Understanding
 Content-* on non-PUT requests"

http://tools.ietf.org/wg/httpbis/trac/ticket/183
http://tools.ietf.org/wg/httpbis/trac/ticket/220
http://tools.ietf.org/wg/httpbis/trac/ticket/178
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-11
http://tools.ietf.org/wg/httpbis/trac/ticket/229
http://tools.ietf.org/wg/httpbis/trac/ticket/230
http://tools.ietf.org/wg/httpbis/trac/ticket/232
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-11
http://tools.ietf.org/wg/httpbis/trac/ticket/123
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-12
http://tools.ietf.org/wg/httpbis/trac/ticket/43
http://tools.ietf.org/wg/httpbis/trac/ticket/79
http://tools.ietf.org/wg/httpbis/trac/ticket/88
http://tools.ietf.org/wg/httpbis/trac/ticket/102

Fielding & Reschke Expires April 7, 2013 [Page 101]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/103>: "Content-*"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/104>: "Header field
 type defaulting"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/112>: "PUT - 'store
 under' vs 'store at'"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/137>: "duplicate
 ABNF for reason-phrase"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/180>: "Note special
 status of Content-* prefix in header field registration
 procedures"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/203>: "Max-Forwards
 vs extension methods"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/213>: "What is the
 value space of HTTP status codes?" (actually fixed in

draft-ietf-httpbis-p2-semantics-11)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/224>: "Header Field
 Classification"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/225>: "PUT side
 effect: invalidation or just stale?"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/226>: "proxies not
 supporting certain methods"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/239>: "Migrate
 CONNECT from RFC2817 to p2"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/240>: "Migrate
 Upgrade details from RFC2817"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/267>: "clarify PUT
 semantics'"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/275>: "duplicate
 ABNF for 'Method'"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/276>: "untangle
 ABNFs for header fields"

http://tools.ietf.org/wg/httpbis/trac/ticket/103
http://tools.ietf.org/wg/httpbis/trac/ticket/104
http://tools.ietf.org/wg/httpbis/trac/ticket/112
http://tools.ietf.org/wg/httpbis/trac/ticket/137
http://tools.ietf.org/wg/httpbis/trac/ticket/180
http://tools.ietf.org/wg/httpbis/trac/ticket/203
http://tools.ietf.org/wg/httpbis/trac/ticket/213
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-11
http://tools.ietf.org/wg/httpbis/trac/ticket/224
http://tools.ietf.org/wg/httpbis/trac/ticket/225
http://tools.ietf.org/wg/httpbis/trac/ticket/226
http://tools.ietf.org/wg/httpbis/trac/ticket/239
https://datatracker.ietf.org/doc/html/rfc2817
http://tools.ietf.org/wg/httpbis/trac/ticket/240
https://datatracker.ietf.org/doc/html/rfc2817
http://tools.ietf.org/wg/httpbis/trac/ticket/267
http://tools.ietf.org/wg/httpbis/trac/ticket/275
http://tools.ietf.org/wg/httpbis/trac/ticket/276

Fielding & Reschke Expires April 7, 2013 [Page 102]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

F.27. Since draft-ietf-httpbis-p3-payload-12

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/224>: "Header Field
 Classification"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/276>: "untangle
 ABNFs for header fields"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/277>: "potentially
 misleading MAY in media-type def"

F.28. Since draft-ietf-httpbis-p2-semantics-13

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/276>: "untangle
 ABNFs for header fields"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/251>: "message body
 in CONNECT request"

F.29. Since draft-ietf-httpbis-p3-payload-13

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/20>: "Default
 charsets for text media types"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/178>: "Content-MD5
 and partial responses"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/276>: "untangle
 ABNFs for header fields"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/281>: "confusing
 undefined parameter in media range example"

F.30. Since draft-ietf-httpbis-p2-semantics-14

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/255>: "Clarify
 status code for rate limiting"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/294>: "clarify 403
 forbidden"

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-12
http://tools.ietf.org/wg/httpbis/trac/ticket/224
http://tools.ietf.org/wg/httpbis/trac/ticket/276
http://tools.ietf.org/wg/httpbis/trac/ticket/277
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-13
http://tools.ietf.org/wg/httpbis/trac/ticket/276
http://tools.ietf.org/wg/httpbis/trac/ticket/251
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-13
http://tools.ietf.org/wg/httpbis/trac/ticket/20
http://tools.ietf.org/wg/httpbis/trac/ticket/178
http://tools.ietf.org/wg/httpbis/trac/ticket/276
http://tools.ietf.org/wg/httpbis/trac/ticket/281
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-14
http://tools.ietf.org/wg/httpbis/trac/ticket/255
http://tools.ietf.org/wg/httpbis/trac/ticket/294

Fielding & Reschke Expires April 7, 2013 [Page 103]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/296>: "Clarify 203
 Non-Authoritative Information"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/298>: "update
 default reason phrase for 413"

F.31. Since draft-ietf-httpbis-p3-payload-14

 None.

F.32. Since draft-ietf-httpbis-p2-semantics-15

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/285>: "Strength of
 requirements on Accept re: 406"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/303>: "400 response
 isn't generic"

F.33. Since draft-ietf-httpbis-p3-payload-15

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/285>: "Strength of
 requirements on Accept re: 406"

F.34. Since draft-ietf-httpbis-p2-semantics-16

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/160>: "Redirects and
 non-GET methods"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/186>: "Document
 HTTP's error-handling philosophy"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/231>:
 "Considerations for new header fields"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/310>: "clarify 303
 redirect on HEAD"

F.35. Since draft-ietf-httpbis-p3-payload-16

 Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/296
http://tools.ietf.org/wg/httpbis/trac/ticket/298
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-14
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-15
http://tools.ietf.org/wg/httpbis/trac/ticket/285
http://tools.ietf.org/wg/httpbis/trac/ticket/303
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-15
http://tools.ietf.org/wg/httpbis/trac/ticket/285
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-16
http://tools.ietf.org/wg/httpbis/trac/ticket/160
http://tools.ietf.org/wg/httpbis/trac/ticket/186
http://tools.ietf.org/wg/httpbis/trac/ticket/231
http://tools.ietf.org/wg/httpbis/trac/ticket/310
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-16

Fielding & Reschke Expires April 7, 2013 [Page 104]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/186>: "Document
 HTTP's error-handling philosophy"

F.36. Since draft-ietf-httpbis-p2-semantics-17

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/185>: "Location
 header field payload handling"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/255>: "Clarify
 status code for rate limiting" (change backed out because a new
 status code is being defined for this purpose)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/312>: "should there
 be a permanent variant of 307"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/325>: "When are
 Location's semantics triggered?"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/327>: "'expect'
 grammar missing OWS"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/329>: "header field
 considerations: quoted-string vs use of double quotes"

F.37. Since draft-ietf-httpbis-p3-payload-17

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/323>: "intended
 maturity level vs normative references"

F.38. Since draft-ietf-httpbis-p2-semantics-18

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/227>: "Combining
 HEAD responses"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/238>: "Requirements
 for user intervention during redirects"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/250>: "message-body
 in CONNECT response"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/295>: "Applying
 original fragment to 'plain' redirected URI"

http://tools.ietf.org/wg/httpbis/trac/ticket/186
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-17
http://tools.ietf.org/wg/httpbis/trac/ticket/185
http://tools.ietf.org/wg/httpbis/trac/ticket/255
http://tools.ietf.org/wg/httpbis/trac/ticket/312
http://tools.ietf.org/wg/httpbis/trac/ticket/325
http://tools.ietf.org/wg/httpbis/trac/ticket/327
http://tools.ietf.org/wg/httpbis/trac/ticket/329
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-17
http://tools.ietf.org/wg/httpbis/trac/ticket/323
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-18
http://tools.ietf.org/wg/httpbis/trac/ticket/227
http://tools.ietf.org/wg/httpbis/trac/ticket/238
http://tools.ietf.org/wg/httpbis/trac/ticket/250
http://tools.ietf.org/wg/httpbis/trac/ticket/295

Fielding & Reschke Expires April 7, 2013 [Page 105]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/302>: "Misplaced
 text on connection handling in p2"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/331>: "clarify that
 201 doesn't require Location header fields"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/332>: "relax
 requirements on hypertext in 3/4/5xx error responses"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/333>: "example for
 426 response should have a payload"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/336>: "drop
 indirection entries for status codes"

F.39. Since draft-ietf-httpbis-p3-payload-18

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/330>: "is ETag a
 representation header field?"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/338>: "Content-
 Location doesn't constrain the cardinality of representations"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/346>: "make IANA
 policy definitions consistent"

F.40. Since draft-ietf-httpbis-p2-semantics-19 and
draft-ietf-httpbis-p3-payload-19

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/312>: "should there
 be a permanent variant of 307"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/347>: "clarify that
 201 can imply *multiple* resources were created"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/351>: "merge P2 and
 P3"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/361>: "ABNF
 requirements for recipients"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/364>: "Capturing
 more information in the method registry"

http://tools.ietf.org/wg/httpbis/trac/ticket/302
http://tools.ietf.org/wg/httpbis/trac/ticket/331
http://tools.ietf.org/wg/httpbis/trac/ticket/332
http://tools.ietf.org/wg/httpbis/trac/ticket/333
http://tools.ietf.org/wg/httpbis/trac/ticket/336
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-18
http://tools.ietf.org/wg/httpbis/trac/ticket/330
http://tools.ietf.org/wg/httpbis/trac/ticket/338
http://tools.ietf.org/wg/httpbis/trac/ticket/346
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-19
http://tools.ietf.org/wg/httpbis/trac/ticket/312
http://tools.ietf.org/wg/httpbis/trac/ticket/347
http://tools.ietf.org/wg/httpbis/trac/ticket/351
http://tools.ietf.org/wg/httpbis/trac/ticket/361
http://tools.ietf.org/wg/httpbis/trac/ticket/364

Fielding & Reschke Expires April 7, 2013 [Page 106]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/368>: "note
 introduction of new IANA registries as normative changes"

F.41. Since draft-ietf-httpbis-p2-semantics-20

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/378>: "is 'q=' case-
 sensitive?"

 Other changes:

 o Conformance criteria and considerations regarding error handling
 are now defined in Part 1.

 o Properly explain what HTTP semantics are and why. Rewrite
 introductory description of methods. Rewrite definition of "safe"
 to be more operable and weaken the original same-origin
 restrictions to be more consistent with modern UAs. Rewrite
 definition of "idempotent", add definition of "cacheable".

 o Conneg terminology change: "server-driven" => "proactive" (UA
 sends Accept* fields), "agent-driven" => "reactive" (UA waits for
 300/Alternatives)

 o Move description of "100-continue" from Part 1 over here.

 o Move definition of "Vary" header field from Part 6 over here.

 o Rewrite definition of "representation".

Index

 1
 1xx Informational (status code class) 49

 2
 2xx Successful (status code class) 50

 3
 3xx Redirection (status code class) 52

 4
 4xx Client Error (status code class) 56

 5
 5xx Server Error (status code class) 60

http://tools.ietf.org/wg/httpbis/trac/ticket/368
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-20
http://tools.ietf.org/wg/httpbis/trac/ticket/378

Fielding & Reschke Expires April 7, 2013 [Page 107]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 1
 100 Continue (status code) 49
 100-continue (expect value) 35
 101 Switching Protocols (status code) 49

 2
 200 OK (status code) 50
 201 Created (status code) 50
 202 Accepted (status code) 51
 203 Non-Authoritative Information (status code) 51
 204 No Content (status code) 51
 205 Reset Content (status code) 52

 3
 300 Multiple Choices (status code) 54
 301 Moved Permanently (status code) 54
 302 Found (status code) 55
 303 See Other (status code) 55
 305 Use Proxy (status code) 56
 306 (Unused) (status code) 56
 307 Temporary Redirect (status code) 56

 4
 400 Bad Request (status code) 56
 402 Payment Required (status code) 56
 403 Forbidden (status code) 57
 404 Not Found (status code) 57
 405 Method Not Allowed (status code) 57
 406 Not Acceptable (status code) 57
 408 Request Timeout (status code) 58
 409 Conflict (status code) 58
 410 Gone (status code) 58
 411 Length Required (status code) 59
 413 Request Representation Too Large (status code) 59
 414 URI Too Long (status code) 59
 415 Unsupported Media Type (status code) 59
 417 Expectation Failed (status code) 60
 426 Upgrade Required (status code) 60

 5
 500 Internal Server Error (status code) 60
 501 Not Implemented (status code) 60
 502 Bad Gateway (status code) 61
 503 Service Unavailable (status code) 61
 504 Gateway Timeout (status code) 61
 505 HTTP Version Not Supported (status code) 61

 A

Fielding & Reschke Expires April 7, 2013 [Page 108]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Accept header field 38
 Accept-Charset header field 41
 Accept-Encoding header field 41
 Accept-Language header field 42
 Allow header field 69

 C
 cacheable 25
 compress (content coding) 12
 CONNECT method 30
 content coding 12
 content negotiation 7
 Content-Encoding header field 12
 Content-Language header field 14
 Content-Location header field 16
 Content-Transfer-Encoding header field 85
 Content-Type header field 11

 D
 Date header field 64
 deflate (content coding) 12
 DELETE method 30

 E
 Expect header field 34
 Expect Values
 100-continue 35

 F
 From header field 44

 G
 GET method 25
 Grammar
 Accept 39
 Accept-Charset 41
 Accept-Encoding 41
 accept-ext 39
 Accept-Language 43
 accept-params 39
 Allow 69
 asctime-date 64
 attribute 9
 charset 10
 codings 41
 content-coding 12
 Content-Encoding 13
 Content-Language 14

Fielding & Reschke Expires April 7, 2013 [Page 109]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 Content-Location 16
 Content-Type 11
 Date 64
 date1 63
 day 63
 day-name 63
 day-name-l 63
 delta-seconds 66
 Expect 34
 expect-name 34
 expect-param 34
 expect-value 34
 expectation 34
 From 44
 GMT 63
 hour 63
 HTTP-date 62
 language-range 43
 language-tag 14
 Location 65
 Max-Forwards 34
 media-range 39
 media-type 9
 method 22
 MIME-Version 84
 minute 63
 month 63
 obs-date 63
 parameter 9
 product 22
 product-version 22
 qvalue 38
 Referer 45
 Retry-After 66

rfc850-date 64
rfc1123-date 63

 second 63
 Server 69
 subtype 9
 time-of-day 63
 type 9
 User-Agent 46
 value 9
 Vary 67
 weight 38
 year 63
 gzip (content coding) 12

https://datatracker.ietf.org/doc/html/rfc850
https://datatracker.ietf.org/doc/html/rfc1123

Fielding & Reschke Expires April 7, 2013 [Page 110]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 H
 HEAD method 26

 I
 idempotent 25

 L
 Location header field 65

 M
 Max-Forwards header field 34
 MIME-Version header field 84

 O
 OPTIONS method 32

 P
 payload 18
 POST method 27
 PUT method 28

 R
 Referer header field 45
 representation 8
 Retry-After header field 66

 S
 safe 24
 selected representation 67
 Server header field 69
 Status Codes Classes
 1xx Informational 49
 2xx Successful 50
 3xx Redirection 52
 4xx Client Error 56
 5xx Server Error 60

 T
 TRACE method 33

 U
 User-Agent header field 45

 V
 Vary header field 67

 X
 x-compress (content coding) 12

Fielding & Reschke Expires April 7, 2013 [Page 111]

Internet-Draft HTTP/1.1 Semantics and Content October 2012

 x-gzip (content coding) 12

Authors' Addresses

 Roy T. Fielding (editor)
 Adobe Systems Incorporated
 345 Park Ave
 San Jose, CA 95110
 USA

 EMail: fielding@gbiv.com
 URI: http://roy.gbiv.com/

 Julian F. Reschke (editor)
 greenbytes GmbH
 Hafenweg 16
 Muenster, NW 48155
 Germany

 EMail: julian.reschke@greenbytes.de
 URI: http://greenbytes.de/tech/webdav/

http://roy.gbiv.com/
http://greenbytes.de/tech/webdav/

Fielding & Reschke Expires April 7, 2013 [Page 112]

