
HTTPbis Working Group R. Fielding, Ed.

Internet-Draft Adobe

Obsoletes: 2616 (if approved) J. Gettys

Intended status: Standards Track Alcatel-Lucent

Expires: September 15, 2011 J. Mogul

HP

H. Frystyk

Microsoft

L. Masinter

Adobe

P. Leach

Microsoft

T. Berners-Lee

W3C/MIT

Y. Lafon, Ed.

W3C

J. F. Reschke, Ed.

greenbytes

March 14, 2011

HTTP/1.1, part 3: Message Payload and Content Negotiation

draft-ietf-httpbis-p3-payload-13

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-level protocol

for distributed, collaborative, hypermedia information systems. HTTP

has been in use by the World Wide Web global information initiative

since 1990. This document is Part 3 of the seven-part specification

that defines the protocol referred to as "HTTP/1.1" and, taken

together, obsoletes RFC 2616. Part 3 defines HTTP message content,

metadata, and content negotiation.

Editorial Note (To be removed by RFC Editor)

Discussion of this draft should take place on the HTTPBIS working group

mailing list (ietf-http-wg@w3.org). The current issues list is at

http://tools.ietf.org/wg/httpbis/trac/report/3 and related documents

(including fancy diffs) can be found at http://tools.ietf.org/wg/

httpbis/.

The changes in this draft are summarized in Appendix Appendix E.14.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

http://tools.ietf.org/wg/httpbis/trac/report/3
http://tools.ietf.org/wg/httpbis/
http://tools.ietf.org/wg/httpbis/

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on September 15, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November 10,

2008. The person(s) controlling the copyright in some of this material

may not have granted the IETF Trust the right to allow modifications of

such material outside the IETF Standards Process. Without obtaining an

adequate license from the person(s) controlling the copyright in such

materials, this document may not be modified outside the IETF Standards

Process, and derivative works of it may not be created outside the IETF

Standards Process, except to format it for publication as an RFC or to

translate it into languages other than English.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Requirements

1.3. Syntax Notation

1.3.1. Core Rules

1.3.2. ABNF Rules defined in other Parts of the Specification

2. Protocol Parameters

2.1. Character Encodings (charset)

2.1.1. Missing Charset

*

*

*

*

*

*

*

*

*

2.2. Content Codings

2.2.1. Content Coding Registry

2.3. Media Types

2.3.1. Canonicalization and Text Defaults

2.3.2. Multipart Types

2.4. Language Tags

3. Payload

3.1. Payload Header Fields

3.2. Payload Body

4. Representation

4.1. Representation Header Fields

4.2. Representation Data

5. Content Negotiation

5.1. Server-driven Negotiation

5.2. Agent-driven Negotiation

6. Header Field Definitions

6.1. Accept

6.2. Accept-Charset

6.3. Accept-Encoding

6.4. Accept-Language

6.5. Content-Encoding

6.6. Content-Language

6.7. Content-Location

6.8. Content-MD5

6.9. Content-Type

7. IANA Considerations

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

7.1. Header Field Registration

7.2. Content Coding Registry

8. Security Considerations

8.1. Privacy Issues Connected to Accept Header Fields

9. Acknowledgments

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Differences between HTTP and MIME

Appendix A.1. MIME-Version

Appendix A.2. Conversion to Canonical Form

Appendix A.3. Conversion of Date Formats

Appendix A.4. Introduction of Content-Encoding

Appendix A.5. No Content-Transfer-Encoding

Appendix A.6. Introduction of Transfer-Encoding

Appendix A.7. MHTML and Line Length Limitations

Appendix B. Additional Features

Appendix C. Changes from RFC 2616

Appendix D. Collected ABNF

Appendix E. Change Log (to be removed by RFC Editor before

publication)

Appendix E.1. Since RFC 2616

Appendix E.2. Since draft-ietf-httpbis-p3-payload-00

Appendix E.3. Since draft-ietf-httpbis-p3-payload-01

Appendix E.4. Since draft-ietf-httpbis-p3-payload-02

Appendix E.5. Since draft-ietf-httpbis-p3-payload-03

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Appendix E.6. Since draft-ietf-httpbis-p3-payload-04

Appendix E.7. Since draft-ietf-httpbis-p3-payload-05

Appendix E.8. Since draft-ietf-httpbis-p3-payload-06

Appendix E.9. Since draft-ietf-httpbis-p3-payload-07

Appendix E.10. Since draft-ietf-httpbis-p3-payload-08

Appendix E.11. Since draft-ietf-httpbis-p3-payload-09

Appendix E.12. Since draft-ietf-httpbis-p3-payload-10

Appendix E.13. Since draft-ietf-httpbis-p3-payload-11

Appendix E.14. Since draft-ietf-httpbis-p3-payload-12

Index

Authors' Addresses

1. Introduction

This document defines HTTP/1.1 message payloads (a.k.a., content), the

associated metadata header fields that define how the payload is

intended to be interpreted by a recipient, the request header fields

that might influence content selection, and the various selection

algorithms that are collectively referred to as HTTP content

negotiation.

This document is currently disorganized in order to minimize the

changes between drafts and enable reviewers to see the smaller errata

changes. A future draft will reorganize the sections to better reflect

the content. In particular, the sections on entities will be renamed

payload and moved to the first half of the document, while the sections

on content negotiation and associated request header fields will be

moved to the second half. The current mess reflects how widely

dispersed these topics and associated requirements had become in

[RFC2616].

1.1. Terminology

This specification uses a number of terms to refer to the roles played

by participants in, and objects of, the HTTP communication.

The mechanism for selecting the appropriate representation when

servicing a request. The representation in any response can be

negotiated (including error responses).

*

*

*

*

*

*

*

*

*

*

*

*

1.2. Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

An implementation is not compliant if it fails to satisfy one or more

of the "MUST" or "REQUIRED" level requirements for the protocols it

implements. An implementation that satisfies all the "MUST" or

"REQUIRED" level and all the "SHOULD" level requirements for its

protocols is said to be "unconditionally compliant"; one that satisfies

all the "MUST" level requirements but not all the "SHOULD" level

requirements for its protocols is said to be "conditionally compliant".

1.3. Syntax Notation

This specification uses the ABNF syntax defined in Section 1.2 of

[Part1] (which extends the syntax defined in [RFC5234] with a list

rule). Appendix Appendix D shows the collected ABNF, with the list rule

expanded.

The following core rules are included by reference, as defined in

[RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF

(CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double quote),

HEXDIG (hexadecimal 0-9/A-F/a-f), LF (line feed), OCTET (any 8-bit

sequence of data), SP (space), VCHAR (any visible USASCII character),

and WSP (whitespace).

1.3.1. Core Rules

The core rules below are defined in Section 1.2.2 of [Part1]:

 token = <token, defined in [Part1], Section 1.2.2>

 word = <word, defined in [Part1], Section 1.2.2>

 OWS = <OWS, defined in [Part1], Section 1.2.2>

1.3.2. ABNF Rules defined in other Parts of the Specification

The ABNF rules below are defined in other parts:

 absolute-URI = <absolute-URI, defined in [Part1], Section 2.6>

 partial-URI = <partial-URI, defined in [Part1], Section 2.6>

 qvalue = <qvalue, defined in [Part1], Section 6.4>

2. Protocol Parameters

2.1. Character Encodings (charset)

HTTP uses charset names to indicate the character encoding of a textual

representation.

A character encoding is identified by a case-insensitive token. The

complete set of tokens is defined by the IANA Character Set registry

(http://www.iana.org/assignments/character-sets).

 charset = token

Although HTTP allows an arbitrary token to be used as a charset value,

any token that has a predefined value within the IANA Character Set

registry MUST represent the character encoding defined by that

registry. Applications SHOULD limit their use of character encodings to

those defined within the IANA registry.

HTTP uses charset in two contexts: within an Accept-Charset request

header field (in which the charset value is an unquoted token) and as

the value of a parameter in a Content-Type header field (within a

request or response), in which case the parameter value of the charset

parameter can be quoted.

Implementors need to be aware of IETF character set requirements

[RFC3629] [RFC2277].

2.1.1. Missing Charset

Some HTTP/1.0 software has interpreted a Content-Type header field

without charset parameter incorrectly to mean "recipient should guess".

Senders wishing to defeat this behavior MAY include a charset parameter

even when the charset is ISO-8859-1 ([ISO-8859-1]) and SHOULD do so

when it is known that it will not confuse the recipient.

Unfortunately, some older HTTP/1.0 clients did not deal properly with

an explicit charset parameter. HTTP/1.1 recipients MUST respect the

charset label provided by the sender; and those user agents that have a

provision to "guess" a charset MUST use the charset from the content-

type field if they support that charset, rather than the recipient's

preference, when initially displaying a document. See Section 2.3.1.

2.2. Content Codings

Content coding values indicate an encoding transformation that has been

or can be applied to a representation. Content codings are primarily

used to allow a representation to be compressed or otherwise usefully

transformed without losing the identity of its underlying media type

and without loss of information. Frequently, the representation is

stored in coded form, transmitted directly, and only decoded by the

recipient.

 content-coding = token

All content-coding values are case-insensitive. HTTP/1.1 uses content-

coding values in the Accept-Encoding (Section 6.3) and Content-Encoding

(Section 6.5) header fields. Although the value describes the content-

coding, what is more important is that it indicates what decoding

mechanism will be required to remove the encoding.

http://www.iana.org/assignments/character-sets

compress

See Section 6.2.2.1 of [Part1].

deflate

See Section 6.2.2.2 of [Part1].

gzip

See Section 6.2.2.3 of [Part1].

identity

The default (identity) encoding; the use of no transformation

whatsoever. This content-coding is used only in the Accept-

Encoding header field, and SHOULD NOT be used in the Content-

Encoding header field.

2.2.1. Content Coding Registry

The HTTP Content Coding Registry defines the name space for the content

coding names.

Registrations MUST include the following fields:

Name

Description

Pointer to specification text

Names of content codings MUST NOT overlap with names of transfer

codings (Section 6.2 of [Part1]), unless the encoding transformation is

identical (as it is the case for the compression codings defined in

Section 6.2.2 of [Part1]).

Values to be added to this name space require a specification (see

"Specification Required" in Section 4.1 of [RFC5226]), and MUST conform

to the purpose of content coding defined in this section.

The registry itself is maintained at http://www.iana.org/assignments/

http-parameters.

2.3. Media Types

HTTP uses Internet Media Types [RFC2046] in the Content-Type (Section

6.9) and Accept (Section 6.1) header fields in order to provide open

and extensible data typing and type negotiation.

 media-type = type "/" subtype *(OWS ";" OWS parameter)

 type = token

 subtype = token

*

*

*

*

*

*

*

http://www.iana.org/assignments/http-parameters
http://www.iana.org/assignments/http-parameters

The type/subtype MAY be followed by parameters in the form of

attribute/value pairs.

 parameter = attribute "=" value

 attribute = token

 value = word

The type, subtype, and parameter attribute names are case-insensitive.

Parameter values might or might not be case-sensitive, depending on the

semantics of the parameter name. The presence or absence of a parameter

might be significant to the processing of a media-type, depending on

its definition within the media type registry.

A parameter value that matches the token [core.rules] production can be

transmitted as either a token or within a quoted-string. The quoted and

unquoted values are equivalent.

Note that some older HTTP applications do not recognize media type

parameters. When sending data to older HTTP applications,

implementations SHOULD only use media type parameters when they are

required by that type/subtype definition.

Media-type values are registered with the Internet Assigned Number

Authority (IANA). The media type registration process is outlined in

[RFC4288]. Use of non-registered media types is discouraged.

2.3.1. Canonicalization and Text Defaults

Internet media types are registered with a canonical form. A

representation transferred via HTTP messages MUST be in the appropriate

canonical form prior to its transmission except for "text" types, as

defined in the next paragraph.

When in canonical form, media subtypes of the "text" type use CRLF as

the text line break. HTTP relaxes this requirement and allows the

transport of text media with plain CR or LF alone representing a line

break when it is done consistently for an entire representation. HTTP

applications MUST accept CRLF, bare CR, and bare LF as indicating a

line break in text media received via HTTP. In addition, if the text is

in a character encoding that does not use octets 13 and 10 for CR and

LF respectively, as is the case for some multi-byte character

encodings, HTTP allows the use of whatever octet sequences are defined

by that character encoding to represent the equivalent of CR and LF for

line breaks. This flexibility regarding line breaks applies only to

text media in the payload body; a bare CR or LF MUST NOT be substituted

for CRLF within any of the HTTP control structures (such as header

fields and multipart boundaries).

If a representation is encoded with a content-coding, the underlying

data MUST be in a form defined above prior to being encoded.

The "charset" parameter is used with some media types to define the

character encoding (Section 2.1) of the data. When no explicit charset

parameter is provided by the sender, media subtypes of the "text" type

are defined to have a default charset value of "ISO-8859-1" when

received via HTTP. Data in character encodings other than "ISO-8859-1"

or its subsets MUST be labeled with an appropriate charset value. See

Section 2.1.1 for compatibility problems.

2.3.2. Multipart Types

MIME provides for a number of "multipart" types — encapsulations of one

or more representations within a single message-body. All multipart

types share a common syntax, as defined in Section 5.1.1 of [RFC2046],

and MUST include a boundary parameter as part of the media type value.

The message body is itself a protocol element and MUST therefore use

only CRLF to represent line breaks between body-parts.

In general, HTTP treats a multipart message-body no differently than

any other media type: strictly as payload. HTTP does not use the

multipart boundary as an indicator of message-body length. In all other

respects, an HTTP user agent SHOULD follow the same or similar behavior

as a MIME user agent would upon receipt of a multipart type. The MIME

header fields within each body-part of a multipart message-body do not

have any significance to HTTP beyond that defined by their MIME

semantics.

If an application receives an unrecognized multipart subtype, the

application MUST treat it as being equivalent to "multipart/mixed".

Note: The "multipart/form-data" type has been specifically

defined for carrying form data suitable for processing via the

POST request method, as described in [RFC2388].

2.4. Language Tags

A language tag, as defined in [RFC5646], identifies a natural language

spoken, written, or otherwise conveyed by human beings for

communication of information to other human beings. Computer languages

are explicitly excluded. HTTP uses language tags within the Accept-

Language and Content-Language fields.

In summary, a language tag is composed of one or more parts: A primary

language subtag followed by a possibly empty series of subtags:

 language-tag = <Language-Tag, defined in [RFC5646], Section 2.1>

White space is not allowed within the tag and all tags are case-

insensitive. The name space of language subtags is administered by the

IANA (see http://www.iana.org/assignments/language-subtag-registry).

Example tags include:

 en, en-US, es-419, az-Arab, x-pig-latin, man-Nkoo-GN

See [RFC5646] for further information.

*

http://www.iana.org/assignments/language-subtag-registry

3. Payload

HTTP messages MAY transfer a payload if not otherwise restricted by the

request method or response status code. The payload consists of

metadata, in the form of header fields, and data, in the form of the

sequence of octets in the message-body after any transfer-coding has

been decoded.

A "payload" in HTTP is always a partial or complete representation of

some resource. We use separate terms for payload and representation

because some messages contain only the associated representation's

header fields (e.g., responses to HEAD) or only some part(s) of the

representation (e.g., the 206 status code).

3.1. Payload Header Fields

HTTP header fields that specifically define the payload, rather than

the associated representation, are referred to as "payload header

fields". The following payload header fields are defined by HTTP/1.1:

Header Field Name Defined in...

Content-Length Section 9.2 of [Part1]

Content-MD5 Section 6.8

Content-Range Section 5.2 of [Part5]

3.2. Payload Body

A payload body is only present in a message when a message-body is

present, as described in Section 3.3 of [Part1]. The payload body is

obtained from the message-body by decoding any Transfer-Encoding that

might have been applied to ensure safe and proper transfer of the

message.

4. Representation

A "representation" is information in a format that can be readily

communicated from one party to another. A resource representation is

information that reflects the state of that resource, as observed at

some point in the past (e.g., in a response to GET) or to be desired at

some point in the future (e.g., in a PUT request).

Most, but not all, representations transferred via HTTP are intended to

be a representation of the target resource (the resource identified by

the effective request URI). The precise semantics of a representation

are determined by the type of message (request or response), the

request method, the response status code, and the representation

metadata. For example, the above semantic is true for the

representation in any 200 (OK) response to GET and for the

representation in any PUT request. A 200 response to PUT, in contrast,

contains either a representation that describes the successful action

or a representation of the target resource, with the latter indicated

by a Content-Location header field with the same value as the effective

request URI. Likewise, response messages with an error status code

usually contain a representation that describes the error and what next

steps are suggested for resolving it.

4.1. Representation Header Fields

Representation header fields define metadata about the representation

data enclosed in the message-body or, if no message-body is present,

about the representation that would have been transferred in a 200

response to a simultaneous GET request with the same effective request

URI.

The following header fields are defined as representation metadata:

Header Field Name Defined in...

Content-Encoding Section 6.5

Content-Language Section 6.6

Content-Location Section 6.7

Content-Type Section 6.9

Expires Section 3.3 of [Part6]

Last-Modified Section 6.6 of [Part4]

4.2. Representation Data

The representation body associated with an HTTP message is either

provided as the payload body of the message or referred to by the

message semantics and the effective request URI. The representation

data is in a format and encoding defined by the representation metadata

header fields.

The data type of the representation data is determined via the header

fields Content-Type and Content-Encoding. These define a two-layer,

ordered encoding model:

 representation-data := Content-Encoding(Content-Type(bits))

Content-Type specifies the media type of the underlying data, which

defines both the data format and how that data SHOULD be processed by

the recipient (within the scope of the request method semantics). Any

HTTP/1.1 message containing a payload body SHOULD include a Content-

Type header field defining the media type of the associated

representation unless that metadata is unknown to the sender. If the

Content-Type header field is not present, it indicates that the sender

does not know the media type of the representation; recipients MAY

either assume that the media type is "application/octet-stream"

([RFC2046], Section 4.5.1) or examine the content to determine its

type.

In practice, resource owners do not always properly configure their

origin server to provide the correct Content-Type for a given

representation, with the result that some clients will examine a

response body's content and override the specified type. Clients that

do so risk drawing incorrect conclusions, which might expose additional

security risks (e.g., "privilege escalation"). Furthermore, it is

impossible to determine the sender's intent by examining the data

format: many data formats match multiple media types that differ only

in processing semantics. Implementers are encouraged to provide a means

of disabling such "content sniffing" when it is used.

Content-Encoding is used to indicate any additional content codings

applied to the data, usually for the purpose of data compression, that

are a property of the representation. If Content-Encoding is not

present, then there is no additional encoding beyond that defined by

the Content-Type.

5. Content Negotiation

HTTP responses include a representation which contains information for

interpretation, whether by a human user or for further processing.

Often, the server has different ways of representing the same

information; for example, in different formats, languages, or using

different character encodings.

HTTP clients and their users might have different or variable

capabilities, characteristics or preferences which would influence

which representation, among those available from the server, would be

best for the server to deliver. For this reason, HTTP provides

mechanisms for "content negotiation" — a process of allowing selection

of a representation of a given resource, when more than one is

available.

This specification defines two patterns of content negotiation;

"server-driven", where the server selects the representation based upon

the client's stated preferences, and "agent-driven" negotiation, where

the server provides a list of representations for the client to choose

from, based upon their metadata. In addition, there are other patterns:

some applications use an "active content" pattern, where the server

returns active content which runs on the client and, based on client

available parameters, selects additional resources to invoke.

"Transparent Content Negotiation" ([RFC2295]) has also been proposed.

These patterns are all widely used, and have trade-offs in

applicability and practicality. In particular, when the number of

preferences or capabilities to be expressed by a client are large (such

as when many different formats are supported by a user-agent), server-

driven negotiation becomes unwieldy, and might not be appropriate.

Conversely, when the number of representations to choose from is very

large, agent-driven negotiation might not be appropriate.

Note that in all cases, the supplier of representations has the

responsibility for determining which representations might be

considered to be the "same information".

5.1. Server-driven Negotiation

If the selection of the best representation for a response is made by

an algorithm located at the server, it is called server-driven

negotiation. Selection is based on the available representations of the

response (the dimensions over which it can vary; e.g., language,

content-coding, etc.) and the contents of particular header fields in

the request message or on other information pertaining to the request

(such as the network address of the client).

Server-driven negotiation is advantageous when the algorithm for

selecting from among the available representations is difficult to

describe to the user agent, or when the server desires to send its

"best guess" to the client along with the first response (hoping to

avoid the round-trip delay of a subsequent request if the "best guess"

is good enough for the user). In order to improve the server's guess,

the user agent MAY include request header fields (Accept, Accept-

Language, Accept-Encoding, etc.) which describe its preferences for

such a response.

Server-driven negotiation has disadvantages:

It is impossible for the server to accurately determine what

might be "best" for any given user, since that would require

complete knowledge of both the capabilities of the user agent

and the intended use for the response (e.g., does the user want

to view it on screen or print it on paper?).

Having the user agent describe its capabilities in every

request can be both very inefficient (given that only a small

percentage of responses have multiple representations) and a

potential violation of the user's privacy.

It complicates the implementation of an origin server and the

algorithms for generating responses to a request.

It might limit a public cache's ability to use the same

response for multiple user's requests.

HTTP/1.1 includes the following header fields for enabling server-

driven negotiation through description of user agent capabilities and

user preferences: Accept (Section 6.1), Accept-Charset (Section 6.2),

Accept-Encoding (Section 6.3), Accept-Language (Section 6.4), and User-

Agent (Section 9.9 of [Part2]). However, an origin server is not

limited to these dimensions and MAY vary the response based on any

aspect of the request, including aspects of the connection (e.g., IP

address) or information within extension header fields not defined by

this specification.

Note: In practice, User-Agent based negotiation is fragile,

because new clients might not be recognized.

1.

2.

3.

4.

*

The Vary header field (Section 3.5 of [Part6]) can be used to express

the parameters the server uses to select a representation that is

subject to server-driven negotiation.

5.2. Agent-driven Negotiation

With agent-driven negotiation, selection of the best representation for

a response is performed by the user agent after receiving an initial

response from the origin server. Selection is based on a list of the

available representations of the response included within the header

fields or body of the initial response, with each representation

identified by its own URI. Selection from among the representations can

be performed automatically (if the user agent is capable of doing so)

or manually by the user selecting from a generated (possibly hypertext)

menu.

Agent-driven negotiation is advantageous when the response would vary

over commonly-used dimensions (such as type, language, or encoding),

when the origin server is unable to determine a user agent's

capabilities from examining the request, and generally when public

caches are used to distribute server load and reduce network usage.

Agent-driven negotiation suffers from the disadvantage of needing a

second request to obtain the best alternate representation. This second

request is only efficient when caching is used. In addition, this

specification does not define any mechanism for supporting automatic

selection, though it also does not prevent any such mechanism from

being developed as an extension and used within HTTP/1.1.

This specification defines the 300 (Multiple Choices) and 406 (Not

Acceptable) status codes for enabling agent-driven negotiation when the

server is unwilling or unable to provide a varying response using

server-driven negotiation.

6. Header Field Definitions

This section defines the syntax and semantics of HTTP/1.1 header fields

related to the payload of messages.

6.1. Accept

The "Accept" header field can be used by user agents to specify

response media types that are acceptable. Accept header fields can be

used to indicate that the request is specifically limited to a small

set of desired types, as in the case of a request for an in-line image.

 Accept = "Accept" ":" OWS Accept-v

 Accept-v = #(media-range [accept-params])

 media-range = ("*/*"

 / (type "/" "*")

 / (type "/" subtype)

) *(OWS ";" OWS parameter)

 accept-params = OWS ";" OWS "q=" qvalue *(accept-ext)

 accept-ext = OWS ";" OWS token ["=" word]

The asterisk "*" character is used to group media types into ranges,

with "*/*" indicating all media types and "type/*" indicating all

subtypes of that type. The media-range MAY include media type

parameters that are applicable to that range.

Each media-range MAY be followed by one or more accept-params,

beginning with the "q" parameter for indicating a relative quality

factor. The first "q" parameter (if any) separates the media-range

parameter(s) from the accept-params. Quality factors allow the user or

user agent to indicate the relative degree of preference for that

media-range, using the qvalue scale from 0 to 1 (Section 6.4 of

[Part1]). The default value is q=1.

Note: Use of the "q" parameter name to separate media type

parameters from Accept extension parameters is due to historical

practice. Although this prevents any media type parameter named

"q" from being used with a media range, such an event is believed

to be unlikely given the lack of any "q" parameters in the IANA

media type registry and the rare usage of any media type

parameters in Accept. Future media types are discouraged from

registering any parameter named "q".

The example

 Accept: audio/*; q=0.2, audio/basic

SHOULD be interpreted as "I prefer audio/basic, but send me any audio

type if it is the best available after an 80% mark-down in quality".

If no Accept header field is present, then it is assumed that the

client accepts all media types. If an Accept header field is present,

and if the server cannot send a response which is acceptable according

to the combined Accept field value, then the server SHOULD send a 406

(Not Acceptable) response.

A more elaborate example is

 Accept: text/plain; q=0.5, text/html,

 text/x-dvi; q=0.8, text/x-c

Verbally, this would be interpreted as "text/html and text/x-c are the

preferred media types, but if they do not exist, then send the text/x-

*

dvi representation, and if that does not exist, send the text/plain

representation".

Media ranges can be overridden by more specific media ranges or

specific media types. If more than one media range applies to a given

type, the most specific reference has precedence. For example,

 Accept: text/*, text/html, text/html;level=1, */*

have the following precedence:

text/html;level=1

text/html

text/*

/

The media type quality factor associated with a given type is

determined by finding the media range with the highest precedence which

matches that type. For example,

 Accept: text/*;q=0.3, text/html;q=0.7, text/html;level=1,

 text/html;level=2;q=0.4, */*;q=0.5

would cause the following values to be associated:

Media Type Quality Value

text/html;level=1 1

text/html 0.7

text/plain 0.3

image/jpeg 0.5

text/html;level=2 0.4

text/html;level=3 0.7

Note: A user agent might be provided with a default set of quality

values for certain media ranges. However, unless the user agent is a

closed system which cannot interact with other rendering agents, this

default set ought to be configurable by the user.

6.2. Accept-Charset

The "Accept-Charset" header field can be used by user agents to

indicate what character encodings are acceptable in a response payload.

This field allows clients capable of understanding more comprehensive

or special-purpose character encodings to signal that capability to a

server which is capable of representing documents in those character

encodings.

1.

2.

3.

4.

 Accept-Charset = "Accept-Charset" ":" OWS

 Accept-Charset-v

 Accept-Charset-v = 1#((charset / "*")

 [OWS ";" OWS "q=" qvalue])

Character encoding values (a.k.a., charsets) are described in Section

2.1. Each charset MAY be given an associated quality value which

represents the user's preference for that charset. The default value is

q=1. An example is

 Accept-Charset: iso-8859-5, unicode-1-1;q=0.8

The special value "*", if present in the Accept-Charset field, matches

every character encoding (including ISO-8859-1) which is not mentioned

elsewhere in the Accept-Charset field. If no "*" is present in an

Accept-Charset field, then all character encodings not explicitly

mentioned get a quality value of 0, except for ISO-8859-1, which gets a

quality value of 1 if not explicitly mentioned.

If no Accept-Charset header field is present, the default is that any

character encoding is acceptable. If an Accept-Charset header field is

present, and if the server cannot send a response which is acceptable

according to the Accept-Charset header field, then the server SHOULD

send an error response with the 406 (Not Acceptable) status code,

though the sending of an unacceptable response is also allowed.

6.3. Accept-Encoding

The "Accept-Encoding" header field can be used by user agents to

indicate what response content-codings (Section 2.2) are acceptable in

the response.

 Accept-Encoding = "Accept-Encoding" ":" OWS

 Accept-Encoding-v

 Accept-Encoding-v =

 #(codings [OWS ";" OWS "q=" qvalue])

 codings = (content-coding / "*")

Each codings value MAY be given an associated quality value which

represents the preference for that encoding. The default value is q=1.

Examples of its use are:

 Accept-Encoding: compress, gzip

 Accept-Encoding:

 Accept-Encoding: *

 Accept-Encoding: compress;q=0.5, gzip;q=1.0

 Accept-Encoding: gzip;q=1.0, identity; q=0.5, *;q=0

A server tests whether a content-coding is acceptable, according to an

Accept-Encoding field, using these rules:

If the content-coding is one of the content-codings listed in

the Accept-Encoding field, then it is acceptable, unless it is

accompanied by a qvalue of 0. (As defined in Section 6.4 of

[Part1], a qvalue of 0 means "not acceptable".)

The special "*" symbol in an Accept-Encoding field matches any

available content-coding not explicitly listed in the header

field.

If multiple content-codings are acceptable, then the acceptable

content-coding with the highest non-zero qvalue is preferred.

The "identity" content-coding is always acceptable, unless

specifically refused because the Accept-Encoding field includes

"identity;q=0", or because the field includes "*;q=0" and does

not explicitly include the "identity" content-coding. If the

Accept-Encoding field-value is empty, then only the "identity"

encoding is acceptable.

If an Accept-Encoding field is present in a request, and if the server

cannot send a response which is acceptable according to the Accept-

Encoding header field, then the server SHOULD send an error response

with the 406 (Not Acceptable) status code.

If no Accept-Encoding field is present in a request, the server MAY

assume that the client will accept any content coding. In this case, if

"identity" is one of the available content-codings, then the server

SHOULD use the "identity" content-coding, unless it has additional

information that a different content-coding is meaningful to the

client.

Note: If the request does not include an Accept-Encoding field,

and if the "identity" content-coding is unavailable, then

content-codings commonly understood by HTTP/1.0 clients (i.e.,

"gzip" and "compress") are preferred; some older clients

improperly display messages sent with other content-codings. The

server might also make this decision based on information about

the particular user-agent or client.

Note: Most HTTP/1.0 applications do not recognize or obey qvalues

associated with content-codings. This means that qvalues will not

work and are not permitted with x-gzip or x-compress.

6.4. Accept-Language

The "Accept-Language" header field can be used by user agents to

indicate the set of natural languages that are preferred in the

response. Language tags are defined in Section 2.4.

1.

2.

3.

4.

*

*

 Accept-Language = "Accept-Language" ":" OWS

 Accept-Language-v

 Accept-Language-v =

 1#(language-range [OWS ";" OWS "q=" qvalue])

 language-range =

 <language-range, defined in [RFC4647], Section 2.1>

Each language-range can be given an associated quality value which

represents an estimate of the user's preference for the languages

specified by that range. The quality value defaults to "q=1". For

example,

 Accept-Language: da, en-gb;q=0.8, en;q=0.7

would mean: "I prefer Danish, but will accept British English and other

types of English". (see also Section 2.3 of [RFC4647])

For matching, Section 3 of [RFC4647] defines several matching schemes.

Implementations can offer the most appropriate matching scheme for

their requirements.

Note: The "Basic Filtering" scheme ([RFC4647], Section 3.3.1) is

identical to the matching scheme that was previously defined in

Section 14.4 of [RFC2616].

It might be contrary to the privacy expectations of the user to send an

Accept-Language header field with the complete linguistic preferences

of the user in every request. For a discussion of this issue, see

Section 8.1.

As intelligibility is highly dependent on the individual user, it is

recommended that client applications make the choice of linguistic

preference available to the user. If the choice is not made available,

then the Accept-Language header field MUST NOT be given in the request.

Note: When making the choice of linguistic preference available

to the user, we remind implementors of the fact that users are

not familiar with the details of language matching as described

above, and ought to be provided appropriate guidance. As an

example, users might assume that on selecting "en-gb", they will

be served any kind of English document if British English is not

available. A user agent might suggest in such a case to add "en"

to get the best matching behavior.

6.5. Content-Encoding

The "Content-Encoding" header field indicates what content-codings have

been applied to the representation, and thus what decoding mechanisms

must be applied in order to obtain the media-type referenced by the

Content-Type header field. Content-Encoding is primarily used to allow

a representation to be compressed without losing the identity of its

underlying media type.

*

*

 Content-Encoding = "Content-Encoding" ":" OWS Content-Encoding-v

 Content-Encoding-v = 1#content-coding

Content codings are defined in Section 2.2. An example of its use is

 Content-Encoding: gzip

The content-coding is a characteristic of the representation.

Typically, the representation body is stored with this encoding and is

only decoded before rendering or analogous usage. However, a

transforming proxy MAY modify the content-coding if the new coding is

known to be acceptable to the recipient, unless the "no-transform"

cache-control directive is present in the message.

If the content-coding of a representation is not "identity", then the

representation metadata MUST include a Content-Encoding header field

(Section 6.5) that lists the non-identity content-coding(s) used.

If the content-coding of a representation in a request message is not

acceptable to the origin server, the server SHOULD respond with a

status code of 415 (Unsupported Media Type).

If multiple encodings have been applied to a representation, the

content codings MUST be listed in the order in which they were applied.

Additional information about the encoding parameters MAY be provided by

other header fields not defined by this specification.

6.6. Content-Language

The "Content-Language" header field describes the natural language(s)

of the intended audience for the representation. Note that this might

not be equivalent to all the languages used within the representation.

 Content-Language = "Content-Language" ":" OWS Content-Language-v

 Content-Language-v = 1#language-tag

Language tags are defined in Section 2.4. The primary purpose of

Content-Language is to allow a user to identify and differentiate

representations according to the user's own preferred language. Thus,

if the body content is intended only for a Danish-literate audience,

the appropriate field is

 Content-Language: da

If no Content-Language is specified, the default is that the content is

intended for all language audiences. This might mean that the sender

does not consider it to be specific to any natural language, or that

the sender does not know for which language it is intended.

Multiple languages MAY be listed for content that is intended for

multiple audiences. For example, a rendition of the "Treaty of

Waitangi", presented simultaneously in the original Maori and English

versions, would call for

 Content-Language: mi, en

However, just because multiple languages are present within a

representation does not mean that it is intended for multiple

linguistic audiences. An example would be a beginner's language primer,

such as "A First Lesson in Latin", which is clearly intended to be used

by an English-literate audience. In this case, the Content-Language

would properly only include "en".

Content-Language MAY be applied to any media type — it is not limited

to textual documents.

6.7. Content-Location

The "Content-Location" header field supplies a URI that can be used as

a specific identifier for the representation in this message. In other

words, if one were to perform a GET on this URI at the time of this

message's generation, then a 200 response would contain the same

representation that is enclosed as payload in this message.

 Content-Location = "Content-Location" ":" OWS

 Content-Location-v

 Content-Location-v =

 absolute-URI / partial-URI

The Content-Location value is not a replacement for the effective

Request URI (Section 4.3 of [Part1]). It is representation metadata. It

has the same syntax and semantics as the header field of the same name

defined for MIME body parts in Section 4 of [RFC2557]. However, its

appearance in an HTTP message has some special implications for HTTP

recipients.

If Content-Location is included in a response message and its value is

the same as the effective request URI, then the response payload SHOULD

be considered the current representation of that resource. For a GET or

HEAD request, this is the same as the default semantics when no

Content-Location is provided by the server. For a state-changing

request like PUT or POST, it implies that the server's response

contains the new representation of that resource, thereby

distinguishing it from representations that might only report about the

action (e.g., "It worked!"). This allows authoring applications to

update their local copies without the need for a subsequent GET

request.

If Content-Location is included in a response message and its value

differs from the effective request URI, then the origin server is

informing recipients that this representation has its own, presumably

more specific, identifier. For a GET or HEAD request, this is an

indication that the effective request URI identifies a resource that is

subject to content negotiation and the representation selected for this

response can also be found at the identified URI. For other methods,

such a Content-Location indicates that this representation contains a

report on the action's status and the same report is available (for

future access with GET) at the given URI. For example, a purchase

transaction made via a POST request might include a receipt document as

the payload of the 200 response; the Content-Location value provides an

identifier for retrieving a copy of that same receipt in the future.

If Content-Location is included in a request message, then it MAY be

interpreted by the origin server as an indication of where the user

agent originally obtained the content of the enclosed representation

(prior to any subsequent modification of the content by that user

agent). In other words, the user agent is providing the same

representation metadata that it received with the original

representation. However, such interpretation MUST NOT be used to alter

the semantics of the method requested by the client. For example, if a

client makes a PUT request on a negotiated resource and the origin

server accepts that PUT (without redirection), then the new set of

values for that resource is expected to be consistent with the one

representation supplied in that PUT; the Content-Location cannot be

used as a form of reverse content selection that identifies only one of

the negotiated representations to be updated. If the user agent had

wanted the latter semantics, it would have applied the PUT directly to

the Content-Location URI.

A Content-Location field received in a request message is transitory

information that SHOULD NOT be saved with other representation metadata

for use in later responses. The Content-Location's value might be saved

for use in other contexts, such as within source links or other

metadata.

A cache cannot assume that a representation with a Content-Location

different from the URI used to retrieve it can be used to respond to

later requests on that Content-Location URI.

If the Content-Location value is a partial URI, the partial URI is

interpreted relative to the effective request URI.

6.8. Content-MD5

The "Content-MD5" header field, as defined in [RFC1864], is an MD5

digest of the payload body that provides an end-to-end message

integrity check (MIC) of the payload body (the message-body after any

transfer-coding is decoded). Note that a MIC is good for detecting

accidental modification of the payload body in transit, but is not

proof against malicious attacks.

 Content-MD5 = "Content-MD5" ":" OWS Content-MD5-v

 Content-MD5-v = <base64 of 128 bit MD5 digest as per [RFC1864]>

The Content-MD5 header field MAY be generated by an origin server or

client to function as an integrity check of the payload body. Only

origin servers or user agents MAY generate the Content-MD5 header

field; proxies MUST NOT generate it, as this would defeat its value as

an end-to-end integrity check. Any recipient MAY check that the digest

value in this header field matches a corresponding digest calculated on

payload body as received.

The MD5 digest is computed based on the content of the payload body,

including any content-coding, but not including any transfer-coding

applied to the message-body because such transfer-codings might be

applied or removed anywhere along the request/response chain. If the

message is received with a transfer-coding, that encoding MUST be

decoded prior to checking the Content-MD5 value against the received

payload.

HTTP extends RFC 1864 to permit the digest to be computed for MIME

composite media-types (e.g., multipart/* and message/rfc822), but this

does not change how the digest is computed as defined in the preceding

paragraph.

There are several consequences of this. The payload for composite types

MAY contain many body-parts, each with its own MIME and HTTP header

fields (including Content-MD5, Content-Transfer-Encoding, and Content-

Encoding header fields). If a body-part has a Content-Transfer-Encoding

or Content-Encoding header field, it is assumed that the content of the

body-part has had the encoding applied, and the body-part is included

in the Content-MD5 digest as is — i.e., after the application. The

Transfer-Encoding header field is not allowed within body-parts.

Conversion of all line breaks to CRLF MUST NOT be done before computing

or checking the digest: the line break convention used in the text

actually transmitted MUST be left unaltered when computing the digest.

Note: While the definition of Content-MD5 is exactly the same for

HTTP as in RFC 1864 for MIME entity-bodies, there are several

ways in which the application of Content-MD5 to HTTP entity-

bodies differs from its application to MIME entity-bodies. One is

that HTTP, unlike MIME, does not use Content-Transfer-Encoding,

and does use Transfer-Encoding and Content-Encoding. Another is

that HTTP more frequently uses binary content types than MIME, so

it is worth noting that, in such cases, the byte order used to

compute the digest is the transmission byte order defined for the

type. Lastly, HTTP allows transmission of text types with any of

several line break conventions and not just the canonical form

using CRLF.

6.9. Content-Type

The "Content-Type" header field indicates the media type of the

representation. In the case of responses to the HEAD method, the media

type is that which would have been sent had the request been a GET.

 Content-Type = "Content-Type" ":" OWS Content-Type-v

 Content-Type-v = media-type

Media types are defined in Section 2.3. An example of the field is

*

 Content-Type: text/html; charset=ISO-8859-4

Further discussion of Content-Type is provided in Section 4.2.

7. IANA Considerations

7.1. Header Field Registration

The Message Header Field Registry located at http://www.iana.org/

assignments/message-headers/message-header-index.html shall be updated

with the permanent registrations below (see [RFC3864]):

Header Field Name Protocol Status Reference

Accept http standard Section 6.1

Accept-Charset http standard Section 6.2

Accept-Encoding http standard Section 6.3

Accept-Language http standard Section 6.4

Content-Encoding http standard Section 6.5

Content-Language http standard Section 6.6

Content-Location http standard Section 6.7

Content-MD5 http standard Section 6.8

Content-Type http standard Section 6.9

MIME-Version http standard Appendix Appendix A.1

The change controller is: "IETF (iesg@ietf.org) - Internet Engineering

Task Force".

7.2. Content Coding Registry

The registration procedure for HTTP Content Codings is now defined by

Section 2.2.1 of this document.

The HTTP Content Codings Registry located at http://www.iana.org/

assignments/http-parameters shall be updated with the registration

below:

Name Description Reference

compress UNIX "compress" program method
Section 6.2.2.1

of [Part1]

deflate

"deflate" compression mechanism

([RFC1951]) used inside the "zlib" data

format ([RFC1950])

Section 6.2.2.2

of [Part1]

gzip Same as GNU zip [RFC1952]
Section 6.2.2.3

of [Part1]

identity No transformation Section 2.2

http://www.iana.org/assignments/message-headers/message-header-index.html
http://www.iana.org/assignments/message-headers/message-header-index.html
http://www.iana.org/assignments/http-parameters
http://www.iana.org/assignments/http-parameters

8. Security Considerations

This section is meant to inform application developers, information

providers, and users of the security limitations in HTTP/1.1 as

described by this document. The discussion does not include definitive

solutions to the problems revealed, though it does make some

suggestions for reducing security risks.

8.1. Privacy Issues Connected to Accept Header Fields

Accept headers fields can reveal information about the user to all

servers which are accessed. The Accept-Language header field in

particular can reveal information the user would consider to be of a

private nature, because the understanding of particular languages is

often strongly correlated to the membership of a particular ethnic

group. User agents which offer the option to configure the contents of

an Accept-Language header field to be sent in every request are

strongly encouraged to let the configuration process include a message

which makes the user aware of the loss of privacy involved.

An approach that limits the loss of privacy would be for a user agent

to omit the sending of Accept-Language header fields by default, and to

ask the user whether or not to start sending Accept-Language header

fields to a server if it detects, by looking for any Vary header fields

generated by the server, that such sending could improve the quality of

service.

Elaborate user-customized accept header fields sent in every request,

in particular if these include quality values, can be used by servers

as relatively reliable and long-lived user identifiers. Such user

identifiers would allow content providers to do click-trail tracking,

and would allow collaborating content providers to match cross-server

click-trails or form submissions of individual users. Note that for

many users not behind a proxy, the network address of the host running

the user agent will also serve as a long-lived user identifier. In

environments where proxies are used to enhance privacy, user agents

ought to be conservative in offering accept header configuration

options to end users. As an extreme privacy measure, proxies could

filter the accept header fields in relayed requests. General purpose

user agents which provide a high degree of header configurability

SHOULD warn users about the loss of privacy which can be involved.

9. Acknowledgments

10. References

10.1. Normative References

[ISO-8859-1]

International Organization for Standardization,

"Information technology -- 8-bit single-byte coded

graphic character sets -- Part 1: Latin alphabet No.

1 ", ISO/IEC 8859-1:1998, 1998.

[Part1]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y.

and J. F. Reschke, "HTTP/1.1, part 1: URIs,

Connections, and Message Parsing", Internet-Draft

draft-ietf-httpbis-p1-messaging-13, March 2011.

[Part2]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y.

and J. F. Reschke, "HTTP/1.1, part 2: Message

Semantics", Internet-Draft draft-ietf-httpbis-p2-

semantics-13, March 2011.

[Part4]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y.

and J. F. Reschke, "HTTP/1.1, part 4: Conditional

Requests", Internet-Draft draft-ietf-httpbis-p4-

conditional-13, March 2011.

[Part5]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y.

and J. F. Reschke, "HTTP/1.1, part 5: Range Requests

and Partial Responses", Internet-Draft draft-ietf-

httpbis-p5-range-13, March 2011.

[Part6]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y.,

Nottingham, M. and J. F. Reschke, "HTTP/1.1, part 6:

Caching", Internet-Draft draft-ietf-httpbis-p6-

cache-13, March 2011.

[RFC1864]
Myers, J. and M. Rose, "The Content-MD5 Header

Field", RFC 1864, October 1995.

[RFC1950]

Deutsch, L.P. and J-L. Gailly, "ZLIB Compressed Data

Format Specification version 3.3", RFC 1950, May

1996.

RFC 1950 is an Informational RFC, thus it might be

less stable than this specification. On the other

hand, this downward reference was present since the

publication of RFC 2068 in 1997 (

[RFC1951]

Deutsch, P., "DEFLATE Compressed Data Format

Specification version 1.3", RFC 1951, May 1996.

RFC 1951 is an Informational RFC, thus it might be

less stable than this specification. On the other

hand, this downward reference was present since the

publication of RFC 2068 in 1997 (

[RFC1952]

Deutsch, P., Gailly, J-L., Adler, M., Deutsch, L.P.

and G. Randers-Pehrson, "GZIP file format

specification version 4.3", RFC 1952, May 1996.

RFC 1952 is an Informational RFC, thus it might be

less stable than this specification. On the other

http://tools.ietf.org/html/draft-ietf-httpbis-p1-messaging-13
http://tools.ietf.org/html/draft-ietf-httpbis-p1-messaging-13
http://tools.ietf.org/html/draft-ietf-httpbis-p2-semantics-13
http://tools.ietf.org/html/draft-ietf-httpbis-p2-semantics-13
http://tools.ietf.org/html/draft-ietf-httpbis-p4-conditional-13
http://tools.ietf.org/html/draft-ietf-httpbis-p4-conditional-13
http://tools.ietf.org/html/draft-ietf-httpbis-p5-range-13
http://tools.ietf.org/html/draft-ietf-httpbis-p5-range-13
http://tools.ietf.org/html/draft-ietf-httpbis-p6-cache-13
http://tools.ietf.org/html/draft-ietf-httpbis-p6-cache-13
http://tools.ietf.org/html/rfc1864
http://tools.ietf.org/html/rfc1864
http://tools.ietf.org/html/rfc1950
http://tools.ietf.org/html/rfc1950
http://tools.ietf.org/html/rfc1951
http://tools.ietf.org/html/rfc1951
http://tools.ietf.org/html/rfc1952
http://tools.ietf.org/html/rfc1952

hand, this downward reference was present since the

publication of RFC 2068 in 1997 (

[RFC2045]

Freed, N. and N.S. Borenstein, "Multipurpose

Internet Mail Extensions (MIME) Part One: Format of

Internet Message Bodies", RFC 2045, November 1996.

[RFC2046]

Freed, N. and N. Borenstein, "Multipurpose Internet

Mail Extensions (MIME) Part Two: Media Types", RFC

2046, November 1996.

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC4647]
Phillips, A. and M. Davis, "Matching of Language

Tags", BCP 47, RFC 4647, September 2006.

[RFC5234]

Crocker, D. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234,

January 2008.

[RFC5646]
Phillips, A. and M. Davis, "Tags for Identifying

Languages", BCP 47, RFC 5646, September 2009.

10.2. Informative References

[RFC1945]

Berners-Lee, T., Fielding, R.T. and H.F. Nielsen,

"Hypertext Transfer Protocol -- HTTP/1.0", RFC 1945,

May 1996.

[RFC2049]

Freed, N. and N.S. Borenstein, "Multipurpose Internet

Mail Extensions (MIME) Part Five: Conformance Criteria

and Examples", RFC 2049, November 1996.

[RFC2068]

Fielding, R., Gettys, J., Mogul, J., Nielsen, H. and T.

Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1",

RFC 2068, January 1997.

[RFC2076]
Palme, J., "Common Internet Message Headers", RFC 2076,

February 1997.

[RFC2277]
Alvestrand, H.T., "IETF Policy on Character Sets and

Languages", BCP 18, RFC 2277, January 1998.

[RFC2295]
Holtman, K. and A.H. Mutz, "Transparent Content

Negotiation in HTTP", RFC 2295, March 1998.

[RFC2388]
Masinter, L., "Returning Values from Forms: multipart/

form-data", RFC 2388, August 1998.

[RFC2557]

Palme, F., Hopmann, A., Shelness, N. and E. Stefferud,

"MIME Encapsulation of Aggregate Documents, such as

HTML (MHTML)", RFC 2557, March 1999.

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC3629]
Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, November 2003.

[RFC3864]

Klyne, G., Nottingham, M. and J. Mogul, "Registration

Procedures for Message Header Fields", BCP 90, RFC

3864, September 2004.

http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc4647
http://tools.ietf.org/html/rfc4647
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc2049
http://tools.ietf.org/html/rfc2049
http://tools.ietf.org/html/rfc2049
http://tools.ietf.org/html/rfc2068
http://tools.ietf.org/html/rfc2076
http://tools.ietf.org/html/rfc2277
http://tools.ietf.org/html/rfc2277
http://tools.ietf.org/html/rfc2295
http://tools.ietf.org/html/rfc2295
http://tools.ietf.org/html/rfc2388
http://tools.ietf.org/html/rfc2388
http://tools.ietf.org/html/rfc2557
http://tools.ietf.org/html/rfc2557
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3864
http://tools.ietf.org/html/rfc3864

[RFC4288]

Freed, N. and J. Klensin, "Media Type Specifications

and Registration Procedures", BCP 13, RFC 4288,

December 2005.

[RFC5226]

Narten, T. and H. Alvestrand, "Guidelines for Writing

an IANA Considerations Section in RFCs", BCP 26, RFC

5226, May 2008.

[RFC5322]
Resnick, P., "Internet Message Format", RFC 5322,

October 2008.

[BCP97]

Klensin, J. and S. Hartman, "Handling Normative

References to Standards-Track Documents", BCP 97, RFC

4897, June 2007.

Appendix A. Differences between HTTP and MIME

HTTP/1.1 uses many of the constructs defined for Internet Mail

([RFC5322]) and the Multipurpose Internet Mail Extensions (MIME

[RFC2045]) to allow a message-body to be transmitted in an open variety

of representations and with extensible mechanisms. However, RFC 2045

discusses mail, and HTTP has a few features that are different from

those described in MIME. These differences were carefully chosen to

optimize performance over binary connections, to allow greater freedom

in the use of new media types, to make date comparisons easier, and to

acknowledge the practice of some early HTTP servers and clients.

This appendix describes specific areas where HTTP differs from MIME.

Proxies and gateways to strict MIME environments SHOULD be aware of

these differences and provide the appropriate conversions where

necessary. Proxies and gateways from MIME environments to HTTP also

need to be aware of the differences because some conversions might be

required.

Appendix A.1. MIME-Version

HTTP is not a MIME-compliant protocol. However, HTTP/1.1 messages MAY

include a single MIME-Version header field to indicate what version of

the MIME protocol was used to construct the message. Use of the MIME-

Version header field indicates that the message is in full compliance

with the MIME protocol (as defined in [RFC2045]). Proxies/gateways are

responsible for ensuring full compliance (where possible) when

exporting HTTP messages to strict MIME environments.

 MIME-Version = "MIME-Version" ":" OWS MIME-Version-v

 MIME-Version-v = 1*DIGIT "." 1*DIGIT

MIME version "1.0" is the default for use in HTTP/1.1. However, HTTP/

1.1 message parsing and semantics are defined by this document and not

the MIME specification.

http://tools.ietf.org/html/rfc4288
http://tools.ietf.org/html/rfc4288
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc4897
http://tools.ietf.org/html/rfc4897

Appendix A.2. Conversion to Canonical Form

MIME requires that an Internet mail body-part be converted to canonical

form prior to being transferred, as described in Section 4 of

[RFC2049]. Section 2.3.1 of this document describes the forms allowed

for subtypes of the "text" media type when transmitted over HTTP.

[RFC2046] requires that content with a type of "text" represent line

breaks as CRLF and forbids the use of CR or LF outside of line break

sequences. HTTP allows CRLF, bare CR, and bare LF to indicate a line

break within text content when a message is transmitted over HTTP.

Where it is possible, a proxy or gateway from HTTP to a strict MIME

environment SHOULD translate all line breaks within the text media

types described in Section 2.3.1 of this document to the RFC 2049

canonical form of CRLF. Note, however, that this might be complicated

by the presence of a Content-Encoding and by the fact that HTTP allows

the use of some character encodings which do not use octets 13 and 10

to represent CR and LF, respectively, as is the case for some multi-

byte character encodings.

Conversion will break any cryptographic checksums applied to the

original content unless the original content is already in canonical

form. Therefore, the canonical form is recommended for any content that

uses such checksums in HTTP.

Appendix A.3. Conversion of Date Formats

HTTP/1.1 uses a restricted set of date formats (Section 6.1 of [Part1])

to simplify the process of date comparison. Proxies and gateways from

other protocols SHOULD ensure that any Date header field present in a

message conforms to one of the HTTP/1.1 formats and rewrite the date if

necessary.

Appendix A.4. Introduction of Content-Encoding

MIME does not include any concept equivalent to HTTP/1.1's Content-

Encoding header field. Since this acts as a modifier on the media type,

proxies and gateways from HTTP to MIME-compliant protocols MUST either

change the value of the Content-Type header field or decode the

representation before forwarding the message. (Some experimental

applications of Content-Type for Internet mail have used a media-type

parameter of ";conversions=<content-coding>" to perform a function

equivalent to Content-Encoding. However, this parameter is not part of

the MIME standards).

Appendix A.5. No Content-Transfer-Encoding

HTTP does not use the Content-Transfer-Encoding field of MIME. Proxies

and gateways from MIME-compliant protocols to HTTP MUST remove any

Content-Transfer-Encoding prior to delivering the response message to

an HTTP client.

Proxies and gateways from HTTP to MIME-compliant protocols are

responsible for ensuring that the message is in the correct format and

encoding for safe transport on that protocol, where "safe transport" is

defined by the limitations of the protocol being used. Such a proxy or

gateway SHOULD label the data with an appropriate Content-Transfer-

Encoding if doing so will improve the likelihood of safe transport over

the destination protocol.

Appendix A.6. Introduction of Transfer-Encoding

HTTP/1.1 introduces the Transfer-Encoding header field (Section 9.7 of

[Part1]). Proxies/gateways MUST remove any transfer-coding prior to

forwarding a message via a MIME-compliant protocol.

Appendix A.7. MHTML and Line Length Limitations

HTTP implementations which share code with MHTML [RFC2557]

implementations need to be aware of MIME line length limitations. Since

HTTP does not have this limitation, HTTP does not fold long lines.

MHTML messages being transported by HTTP follow all conventions of

MHTML, including line length limitations and folding, canonicalization,

etc., since HTTP transports all message-bodies as payload (see Section

2.3.2) and does not interpret the content or any MIME header lines that

might be contained therein.

Appendix B. Additional Features

[RFC1945] and [RFC2068] document protocol elements used by some

existing HTTP implementations, but not consistently and correctly

across most HTTP/1.1 applications. Implementors are advised to be aware

of these features, but cannot rely upon their presence in, or

interoperability with, other HTTP/1.1 applications. Some of these

describe proposed experimental features, and some describe features

that experimental deployment found lacking that are now addressed in

the base HTTP/1.1 specification.

A number of other header fields, such as Content-Disposition and Title,

from SMTP and MIME are also often implemented (see [RFC2076]).

Appendix C. Changes from RFC 2616

Clarify contexts that charset is used in. (Section 2.1)

Remove base URI setting semantics for Content-Location due to poor

implementation support, which was caused by too many broken servers

emitting bogus Content-Location header fields, and also the potentially

undesirable effect of potentially breaking relative links in content-

negotiated resources. (Section 6.7)

Remove reference to non-existant identity transfer-coding value tokens.

(Appendix Appendix A.5)

Appendix D. Collected ABNF

Accept = "Accept:" OWS Accept-v

Accept-Charset = "Accept-Charset:" OWS Accept-Charset-v

Accept-Charset-v = *("," OWS) (charset / "*") [OWS ";" OWS "q="

 qvalue] *(OWS "," [OWS (charset / "*") [OWS ";" OWS "q="

 qvalue]])

Accept-Encoding = "Accept-Encoding:" OWS Accept-Encoding-v

Accept-Encoding-v = [("," / (codings [OWS ";" OWS "q=" qvalue])

) *(OWS "," [OWS codings [OWS ";" OWS "q=" qvalue]])]

Accept-Language = "Accept-Language:" OWS Accept-Language-v

Accept-Language-v = *("," OWS) language-range [OWS ";" OWS "q="

 qvalue] *(OWS "," [OWS language-range [OWS ";" OWS "q=" qvalue]

])

Accept-v = [("," / (media-range [accept-params])) *(OWS "," [

 OWS media-range [accept-params]])]

Content-Encoding = "Content-Encoding:" OWS Content-Encoding-v

Content-Encoding-v = *("," OWS) content-coding *(OWS "," [OWS

 content-coding])

Content-Language = "Content-Language:" OWS Content-Language-v

Content-Language-v = *("," OWS) language-tag *(OWS "," [OWS

 language-tag])

Content-Location = "Content-Location:" OWS Content-Location-v

Content-Location-v = absolute-URI / partial-URI

Content-MD5 = "Content-MD5:" OWS Content-MD5-v

Content-MD5-v = <base64 of 128 bit MD5 digest as per [RFC1864]>

Content-Type = "Content-Type:" OWS Content-Type-v

Content-Type-v = media-type

MIME-Version = "MIME-Version:" OWS MIME-Version-v

MIME-Version-v = 1*DIGIT "." 1*DIGIT

OWS = <OWS, defined in [Part1], Section 1.2.2>

absolute-URI = <absolute-URI, defined in [Part1], Section 2.6>

accept-ext = OWS ";" OWS token ["=" word]

accept-params = OWS ";" OWS "q=" qvalue *accept-ext

attribute = token

charset = token

codings = (content-coding / "*")

content-coding = token

language-range = <language-range, defined in [RFC4647], Section 2.1>

language-tag = <Language-Tag, defined in [RFC5646], Section 2.1>

media-range = ("*/*" / (type "/*") / (type "/" subtype)) *(OWS

 ";" OWS parameter)

media-type = type "/" subtype *(OWS ";" OWS parameter)

parameter = attribute "=" value

partial-URI = <partial-URI, defined in [Part1], Section 2.6>

qvalue = <qvalue, defined in [Part1], Section 6.4>

subtype = token

token = <token, defined in [Part1], Section 1.2.2>

type = token

value = word

word = <word, defined in [Part1], Section 1.2.2>

ABNF diagnostics:

; Accept defined but not used

; Accept-Charset defined but not used

; Accept-Encoding defined but not used

; Accept-Language defined but not used

; Content-Encoding defined but not used

; Content-Language defined but not used

; Content-Location defined but not used

; Content-MD5 defined but not used

; Content-Type defined but not used

; MIME-Version defined but not used

Appendix E. Change Log (to be removed by RFC Editor before publication)

Appendix E.1. Since RFC 2616

Extracted relevant partitions from [RFC2616].

Appendix E.2. Since draft-ietf-httpbis-p3-payload-00

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/8: "Media Type

Registrations" (http://purl.org/NET/http-errata#media-reg)

http://tools.ietf.org/wg/httpbis/trac/ticket/14: "Clarification

regarding quoting of charset values" (http://purl.org/NET/http-

errata#charactersets)

http://tools.ietf.org/wg/httpbis/trac/ticket/16: "Remove

'identity' token references" (http://purl.org/NET/http-

errata#identity)

http://tools.ietf.org/wg/httpbis/trac/ticket/25: "Accept-Encoding

BNF"

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/8
http://purl.org/NET/http-errata#media-reg
http://tools.ietf.org/wg/httpbis/trac/ticket/14
http://purl.org/NET/http-errata#charactersets
http://purl.org/NET/http-errata#charactersets
http://tools.ietf.org/wg/httpbis/trac/ticket/16
http://purl.org/NET/http-errata#identity
http://purl.org/NET/http-errata#identity
http://tools.ietf.org/wg/httpbis/trac/ticket/25

http://tools.ietf.org/wg/httpbis/trac/ticket/35: "Normative and

Informative references"

http://tools.ietf.org/wg/httpbis/trac/ticket/46: "RFC1700

references"

http://tools.ietf.org/wg/httpbis/trac/ticket/55: "Updating to

RFC4288"

http://tools.ietf.org/wg/httpbis/trac/ticket/65: "Informative

references"

http://tools.ietf.org/wg/httpbis/trac/ticket/66: "ISO-8859-1

Reference"

http://tools.ietf.org/wg/httpbis/trac/ticket/68: "Encoding

References Normative"

http://tools.ietf.org/wg/httpbis/trac/ticket/86: "Normative up-

to-date references"

Appendix E.3. Since draft-ietf-httpbis-p3-payload-01

Ongoing work on ABNF conversion (http://tools.ietf.org/wg/httpbis/trac/

ticket/36):

Add explicit references to BNF syntax and rules imported from

other parts of the specification.

Appendix E.4. Since draft-ietf-httpbis-p3-payload-02

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/67: "Quoting

Charsets"

http://tools.ietf.org/wg/httpbis/trac/ticket/105: "Classification

for Allow header"

http://tools.ietf.org/wg/httpbis/trac/ticket/115: "missing

default for qvalue in description of Accept-Encoding"

Ongoing work on IANA Message Header Field Registration (http://

tools.ietf.org/wg/httpbis/trac/ticket/40):

Reference RFC 3984, and update header field registrations for

headers defined in this document.

*

*

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/35
http://tools.ietf.org/wg/httpbis/trac/ticket/46
http://tools.ietf.org/wg/httpbis/trac/ticket/55
http://tools.ietf.org/wg/httpbis/trac/ticket/65
http://tools.ietf.org/wg/httpbis/trac/ticket/66
http://tools.ietf.org/wg/httpbis/trac/ticket/68
http://tools.ietf.org/wg/httpbis/trac/ticket/86
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/67
http://tools.ietf.org/wg/httpbis/trac/ticket/105
http://tools.ietf.org/wg/httpbis/trac/ticket/115
http://tools.ietf.org/wg/httpbis/trac/ticket/40
http://tools.ietf.org/wg/httpbis/trac/ticket/40

Appendix E.5. Since draft-ietf-httpbis-p3-payload-03

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/67: "Quoting

Charsets"

http://tools.ietf.org/wg/httpbis/trac/ticket/113: "language tag

matching (Accept-Language) vs RFC4647"

http://tools.ietf.org/wg/httpbis/trac/ticket/121: "RFC 1806 has

been replaced by RFC2183"

Other changes:

http://tools.ietf.org/wg/httpbis/trac/ticket/68: "Encoding

References Normative" — rephrase the annotation and reference

[BCP97].

Appendix E.6. Since draft-ietf-httpbis-p3-payload-04

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/132: "RFC 2822 is

updated by RFC 5322"

Ongoing work on ABNF conversion (http://tools.ietf.org/wg/httpbis/trac/

ticket/36):

Use "/" instead of "|" for alternatives.

Introduce new ABNF rules for "bad" whitespace ("BWS"), optional

whitespace ("OWS") and required whitespace ("RWS").

Rewrite ABNFs to spell out whitespace rules, factor out header

field value format definitions.

Appendix E.7. Since draft-ietf-httpbis-p3-payload-05

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/118: "Join

"Differences Between HTTP Entities and RFC 2045 Entities"?"

Final work on ABNF conversion (http://tools.ietf.org/wg/httpbis/trac/

ticket/36):

Add appendix containing collected and expanded ABNF, reorganize

ABNF introduction.

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/67
http://tools.ietf.org/wg/httpbis/trac/ticket/113
http://tools.ietf.org/wg/httpbis/trac/ticket/121
http://tools.ietf.org/wg/httpbis/trac/ticket/68
http://tools.ietf.org/wg/httpbis/trac/ticket/132
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/118
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/36

Other changes:

Move definition of quality values into Part 1.

Appendix E.8. Since draft-ietf-httpbis-p3-payload-06

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/80: "Content-

Location isn't special"

http://tools.ietf.org/wg/httpbis/trac/ticket/155: "Content

Sniffing"

Appendix E.9. Since draft-ietf-httpbis-p3-payload-07

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/13: "Updated

reference for language tags"

http://tools.ietf.org/wg/httpbis/trac/ticket/110: "Clarify rules

for determining what entities a response carries"

http://tools.ietf.org/wg/httpbis/trac/ticket/154: "Content-

Location base-setting problems"

http://tools.ietf.org/wg/httpbis/trac/ticket/155: "Content

Sniffing"

http://tools.ietf.org/wg/httpbis/trac/ticket/188: "pick IANA

policy (RFC5226) for Transfer Coding / Content Coding"

http://tools.ietf.org/wg/httpbis/trac/ticket/189: "move

definitions of gzip/deflate/compress to part 1"

Partly resolved issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/148: "update IANA

requirements wrt Transfer-Coding values" (add the IANA

Considerations subsection)

http://tools.ietf.org/wg/httpbis/trac/ticket/149: "update IANA

requirements wrt Content-Coding values" (add the IANA

Considerations subsection)

*

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/80
http://tools.ietf.org/wg/httpbis/trac/ticket/155
http://tools.ietf.org/wg/httpbis/trac/ticket/13
http://tools.ietf.org/wg/httpbis/trac/ticket/110
http://tools.ietf.org/wg/httpbis/trac/ticket/154
http://tools.ietf.org/wg/httpbis/trac/ticket/155
http://tools.ietf.org/wg/httpbis/trac/ticket/188
http://tools.ietf.org/wg/httpbis/trac/ticket/189
http://tools.ietf.org/wg/httpbis/trac/ticket/148
http://tools.ietf.org/wg/httpbis/trac/ticket/149

Appendix E.10. Since draft-ietf-httpbis-p3-payload-08

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/81: "Content

Negotiation for media types"

http://tools.ietf.org/wg/httpbis/trac/ticket/181: "Accept-

Language: which RFC4647 filtering?"

Appendix E.11. Since draft-ietf-httpbis-p3-payload-09

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/122: "MIME-Version

not listed in P1, general header fields"

http://tools.ietf.org/wg/httpbis/trac/ticket/143: "IANA registry

for content/transfer encodings"

http://tools.ietf.org/wg/httpbis/trac/ticket/155: "Content

Sniffing"

http://tools.ietf.org/wg/httpbis/trac/ticket/200: "use of term

"word" when talking about header structure"

Partly resolved issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/196: "Term for the

requested resource's URI"

Appendix E.12. Since draft-ietf-httpbis-p3-payload-10

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/69: "Clarify

'Requested Variant'"

http://tools.ietf.org/wg/httpbis/trac/ticket/80: "Content-

Location isn't special"

http://tools.ietf.org/wg/httpbis/trac/ticket/90: "Delimiting

messages with multipart/byteranges"

http://tools.ietf.org/wg/httpbis/trac/ticket/109: "Clarify entity

/ representation / variant terminology"

http://tools.ietf.org/wg/httpbis/trac/ticket/136: "confusing req.

language for Content-Location"

*

*

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/81
http://tools.ietf.org/wg/httpbis/trac/ticket/181
http://tools.ietf.org/wg/httpbis/trac/ticket/122
http://tools.ietf.org/wg/httpbis/trac/ticket/143
http://tools.ietf.org/wg/httpbis/trac/ticket/155
http://tools.ietf.org/wg/httpbis/trac/ticket/200
http://tools.ietf.org/wg/httpbis/trac/ticket/196
http://tools.ietf.org/wg/httpbis/trac/ticket/69
http://tools.ietf.org/wg/httpbis/trac/ticket/80
http://tools.ietf.org/wg/httpbis/trac/ticket/90
http://tools.ietf.org/wg/httpbis/trac/ticket/109
http://tools.ietf.org/wg/httpbis/trac/ticket/136

http://tools.ietf.org/wg/httpbis/trac/ticket/167: "Content-

Location on 304 responses"

http://tools.ietf.org/wg/httpbis/trac/ticket/183: "'requested

resource' in content-encoding definition"

http://tools.ietf.org/wg/httpbis/trac/ticket/220: "consider

removing the 'changes from 2068' sections"

Partly resolved issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/178: "Content-MD5

and partial responses"

Appendix E.13. Since draft-ietf-httpbis-p3-payload-11

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/123: "Factor out

Content-Disposition"

Appendix E.14. Since draft-ietf-httpbis-p3-payload-12

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/224: "Header

Classification"

http://tools.ietf.org/wg/httpbis/trac/ticket/276: "untangle ABNFs

for header fields"

http://tools.ietf.org/wg/httpbis/trac/ticket/277: "potentially

misleading MAY in media-type def"

Index

C

Coding Format

gzip

compress

identity

deflate

compress (Coding Format)

content negotiation

D

deflate (Coding Format)

G

gzip (Coding Format)

I

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/167
http://tools.ietf.org/wg/httpbis/trac/ticket/183
http://tools.ietf.org/wg/httpbis/trac/ticket/220
http://tools.ietf.org/wg/httpbis/trac/ticket/178
http://tools.ietf.org/wg/httpbis/trac/ticket/123
http://tools.ietf.org/wg/httpbis/trac/ticket/224
http://tools.ietf.org/wg/httpbis/trac/ticket/276
http://tools.ietf.org/wg/httpbis/trac/ticket/277

identity (Coding Format)

Authors' Addresses

Roy T. Fielding editor Fielding Adobe Systems Incorporated 345 Park

Ave San Jose, CA 95110 USA EMail: fielding@gbiv.com URI: http://

roy.gbiv.com/

Jim Gettys Gettys Alcatel-Lucent Bell Labs 21 Oak Knoll Road

Carlisle, MA 01741 USA EMail: jg@freedesktop.org URI: http://

gettys.wordpress.com/

Jeffrey C. Mogul Mogul Hewlett-Packard Company HP Labs, Large Scale

Systems Group 1501 Page Mill Road, MS 1177 Palo Alto, CA 94304 USA

EMail: JeffMogul@acm.org

Henrik Frystyk Nielsen Frystyk Microsoft Corporation

1 Microsoft Way Redmond, WA 98052 USA EMail: henrikn@microsoft.com

Larry Masinter Masinter Adobe Systems Incorporated 345 Park Ave San

Jose, CA 95110 USA EMail: LMM@acm.org URI: http://

larry.masinter.net/

Paul J. Leach Leach Microsoft Corporation 1 Microsoft Way Redmond,

WA 98052 EMail: paulle@microsoft.com

Tim Berners-Lee Berners-Lee World Wide Web Consortium MIT Computer

Science and Artificial Intelligence Laboratory The Stata Center,

Building 32 32 Vassar Street Cambridge, MA 02139 USA EMail:

timbl@w3.org URI: http://www.w3.org/People/Berners-Lee/

Yves Lafon editor Lafon World Wide Web Consortium W3C / ERCIM 2004,

rte des Lucioles Sophia-Antipolis, AM 06902 France EMail:

ylafon@w3.org URI: http://www.raubacapeu.net/people/yves/

Julian F. Reschke editor Reschke greenbytes GmbH Hafenweg 16

Muenster, NW 48155 Germany Phone: +49 251 2807760 EMail:

julian.reschke@greenbytes.de URI: http://greenbytes.de/tech/webdav/

http://roy.gbiv.com/
http://roy.gbiv.com/
http://gettys.wordpress.com/
http://gettys.wordpress.com/
http://larry.masinter.net/
http://larry.masinter.net/
http://www.w3.org/People/Berners-Lee/
http://www.raubacapeu.net/people/yves/
http://greenbytes.de/tech/webdav/

	Abstract
	Editorial Note (To be removed by RFC Editor)
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Requirements
	1.3. Syntax Notation
	1.3.1. Core Rules
	1.3.2. ABNF Rules defined in other Parts of the Specification
	2. Protocol Parameters
	2.1. Character Encodings (charset)
	2.1.1. Missing Charset
	2.2. Content Codings
	2.2.1. Content Coding Registry
	2.3. Media Types
	2.3.1. Canonicalization and Text Defaults
	2.3.2. Multipart Types
	2.4. Language Tags
	3. Payload
	3.1. Payload Header Fields
	3.2. Payload Body
	4. Representation
	4.1. Representation Header Fields
	4.2. Representation Data
	5. Content Negotiation
	5.1. Server-driven Negotiation
	5.2. Agent-driven Negotiation
	6. Header Field Definitions
	6.1. Accept
	6.2. Accept-Charset
	6.3. Accept-Encoding
	6.4. Accept-Language
	6.5. Content-Encoding
	6.6. Content-Language
	6.7. Content-Location
	6.8. Content-MD5
	6.9. Content-Type
	7. IANA Considerations
	7.1. Header Field Registration
	7.2. Content Coding Registry
	8. Security Considerations
	8.1. Privacy Issues Connected to Accept Header Fields
	9. Acknowledgments
	10. References
	10.1. Normative References
	10.2. Informative References
	Appendix A. Differences between HTTP and MIME
	Appendix A.1. MIME-Version
	Appendix A.2. Conversion to Canonical Form
	Appendix A.3. Conversion of Date Formats
	Appendix A.4. Introduction of Content-Encoding
	Appendix A.5. No Content-Transfer-Encoding
	Appendix A.6. Introduction of Transfer-Encoding
	Appendix A.7. MHTML and Line Length Limitations
	Appendix B. Additional Features
	Appendix C. Changes from RFC 2616
	Appendix D. Collected ABNF
	Appendix E. Change Log (to be removed by RFC Editor before publication)
	Appendix E.1. Since RFC 2616
	Appendix E.2. Since draft-ietf-httpbis-p3-payload-00
	Appendix E.3. Since draft-ietf-httpbis-p3-payload-01
	Appendix E.4. Since draft-ietf-httpbis-p3-payload-02
	Appendix E.5. Since draft-ietf-httpbis-p3-payload-03
	Appendix E.6. Since draft-ietf-httpbis-p3-payload-04
	Appendix E.7. Since draft-ietf-httpbis-p3-payload-05
	Appendix E.8. Since draft-ietf-httpbis-p3-payload-06
	Appendix E.9. Since draft-ietf-httpbis-p3-payload-07
	Appendix E.10. Since draft-ietf-httpbis-p3-payload-08
	Appendix E.11. Since draft-ietf-httpbis-p3-payload-09
	Appendix E.12. Since draft-ietf-httpbis-p3-payload-10
	Appendix E.13. Since draft-ietf-httpbis-p3-payload-11
	Appendix E.14. Since draft-ietf-httpbis-p3-payload-12
	Index
	Authors' Addresses

