
HTTPbis Working Group R. Fielding, Ed.

Internet-Draft Adobe

Obsoletes: 2616 (if approved) J. Gettys

Intended status: Standards Track Alcatel-Lucent

Expires: October 20, 2011 J. Mogul

HP

H. Frystyk

Microsoft

L. Masinter

Adobe

P. Leach

Microsoft

T. Berners-Lee

W3C/MIT

Y. Lafon, Ed.

W3C

J. F. Reschke, Ed.

greenbytes

April 18, 2011

HTTP/1.1, part 4: Conditional Requests

draft-ietf-httpbis-p4-conditional-14

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-level protocol

for distributed, collaborative, hypermedia information systems. HTTP

has been in use by the World Wide Web global information initiative

since 1990. This document is Part 4 of the seven-part specification

that defines the protocol referred to as "HTTP/1.1" and, taken

together, obsoletes RFC 2616. Part 4 defines request header fields for

indicating conditional requests and the rules for constructing

responses to those requests.

Editorial Note (To be removed by RFC Editor)

Discussion of this draft should take place on the HTTPBIS working group

mailing list (ietf-http-wg@w3.org), which is archived at http://

lists.w3.org/Archives/Public/ietf-http-wg/.

The current issues list is at http://tools.ietf.org/wg/httpbis/trac/

report/3 and related documents (including fancy diffs) can be found at

http://tools.ietf.org/wg/httpbis/.

The changes in this draft are summarized in Appendix Appendix C.15.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

http://lists.w3.org/Archives/Public/ietf-http-wg/
http://lists.w3.org/Archives/Public/ietf-http-wg/
http://tools.ietf.org/wg/httpbis/trac/report/3
http://tools.ietf.org/wg/httpbis/trac/report/3
http://tools.ietf.org/wg/httpbis/

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on October 20, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November 10,

2008. The person(s) controlling the copyright in some of this material

may not have granted the IETF Trust the right to allow modifications of

such material outside the IETF Standards Process. Without obtaining an

adequate license from the person(s) controlling the copyright in such

materials, this document may not be modified outside the IETF Standards

Process, and derivative works of it may not be created outside the IETF

Standards Process, except to format it for publication as an RFC or to

translate it into languages other than English.

Table of Contents

1. Introduction

1.1. Requirements

1.2. Syntax Notation

2. Resource State Metadata (Validators)

2.1. Last-Modified

2.1.1. Generation

2.1.2. Comparison

2.2. ETag

*

*

*

*

*

*

*

*

2.2.1. Generation

2.2.2. Weak versus Strong

2.2.3. Comparison

2.2.4. Rules for When to Use Entity-tags and Last-Modified Dates

2.2.5. Example: Entity-tags varying on Content-Negotiated

Resources

3. Precondition Header Fields

3.1. If-Match

3.2. If-None-Match

3.3. If-Modified-Since

3.4. If-Unmodified-Since

3.5. If-Range

4. Status Code Definitions

4.1. 304 Not Modified

4.2. 412 Precondition Failed

5. IANA Considerations

5.1. Status Code Registration

5.2. Header Field Registration

6. Security Considerations

7. Acknowledgments

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Changes from RFC 2616

Appendix B. Collected ABNF

Appendix C. Change Log (to be removed by RFC Editor before

publication)

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Appendix C.1. Since RFC 2616

Appendix C.2. Since draft-ietf-httpbis-p4-conditional-00

Appendix C.3. Since draft-ietf-httpbis-p4-conditional-01

Appendix C.4. Since draft-ietf-httpbis-p4-conditional-02

Appendix C.5. Since draft-ietf-httpbis-p4-conditional-03

Appendix C.6. Since draft-ietf-httpbis-p4-conditional-04

Appendix C.7. Since draft-ietf-httpbis-p4-conditional-05

Appendix C.8. Since draft-ietf-httpbis-p4-conditional-06

Appendix C.9. Since draft-ietf-httpbis-p4-conditional-07

Appendix C.10. Since draft-ietf-httpbis-p4-conditional-08

Appendix C.11. Since draft-ietf-httpbis-p4-conditional-09

Appendix C.12. Since draft-ietf-httpbis-p4-conditional-10

Appendix C.13. Since draft-ietf-httpbis-p4-conditional-11

Appendix C.14. Since draft-ietf-httpbis-p4-conditional-12

Appendix C.15. Since draft-ietf-httpbis-p4-conditional-13

Index

Authors' Addresses

1. Introduction

This document defines the HTTP/1.1 conditional request mechanisms,

including both response metadata that can be used to indicate or

observe changes to resource state and request header fields that

specify preconditions to be checked before performing the action given

by the request method. Conditional GET requests are the most efficient

mechanism for HTTP cache updates [Part6]. Conditionals can also be

applied to state-changing methods, such as PUT and DELETE, to prevent

the "lost update" problem: one client accidentally overwriting the work

of another client that has been acting in parallel.

Conditional request preconditions are based on the state of the target

resource as a whole (its current value set) or the state as observed in

a previously obtained representation (one value in that set). A

resource might have multiple current representations, each with its own

observable state. The conditional request mechanisms assume that the

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

mapping of requests to corresponding representations will be consistent

over time if the server intends to take advantage of conditionals.

Regardless, if the mapping is inconsistent and the server is unable to

select the appropriate representation, then no harm will result when

the precondition evaluates to false.

 We use the term "selected representation" to refer to the current

representation of the target resource that would have been selected in

a successful response if the same request had used the method GET and

had excluded all of the conditional request header fields. The

conditional request preconditions are evaluated by comparing the values

provided in the request header fields to the current metadata for the

selected representation.

1.1. Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

An implementation is not compliant if it fails to satisfy one or more

of the "MUST" or "REQUIRED" level requirements for the protocols it

implements. An implementation that satisfies all the "MUST" or

"REQUIRED" level and all the "SHOULD" level requirements for its

protocols is said to be "unconditionally compliant"; one that satisfies

all the "MUST" level requirements but not all the "SHOULD" level

requirements for its protocols is said to be "conditionally compliant".

1.2. Syntax Notation

This specification uses the ABNF syntax defined in Section 1.2 of

[Part1] (which extends the syntax defined in [RFC5234] with a list

rule). Appendix Appendix B shows the collected ABNF, with the list rule

expanded.

The following core rules are included by reference, as defined in

[RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF

(CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double quote),

HEXDIG (hexadecimal 0-9/A-F/a-f), LF (line feed), OCTET (any 8-bit

sequence of data), SP (space), VCHAR (any visible USASCII character),

and WSP (whitespace).

The ABNF rules below are defined in other parts:

 quoted-string = <quoted-string, defined in [Part1], Section 1.2.2>

 OWS = <OWS, defined in [Part1], Section 1.2.2>

 HTTP-date = <HTTP-date, defined in [Part1], Section 6.1>

2. Resource State Metadata (Validators)

This specification defines two forms of metadata that are commonly used

to observe resource state and test for preconditions: modification

dates and opaque entity tags. Additional metadata that reflects

resource state has been defined by various extensions of HTTP, such as

WebDAV [RFC4918], that are beyond the scope of this specification. A

resource metadata value is referred to as a "validator" when it is used

within a precondition.

2.1. Last-Modified

The "Last-Modified" header field indicates the date and time at which

the origin server believes the selected representation was last

modified.

 Last-Modified = HTTP-date

An example of its use is

 Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT

2.1.1. Generation

Origin servers SHOULD send Last-Modified for any selected

representation for which a last modification date can be reasonably and

consistently determined, since its use in conditional requests and

evaluating cache freshness ([Part6]) results in a substantial reduction

of HTTP traffic on the Internet and can be a significant factor in

improving service scalability and reliability.

A representation is typically the sum of many parts behind the resource

interface. The last-modified time would usually be the most recent time

that any of those parts were changed. How that value is determined for

any given resource is an implementation detail beyond the scope of this

specification. What matters to HTTP is how recipients of the Last-

Modified header field can use its value to make conditional requests

and test the validity of locally cached responses.

An origin server SHOULD obtain the Last-Modified value of the

representation as close as possible to the time that it generates the

Date field-value for its response. This allows a recipient to make an

accurate assessment of the representation's modification time,

especially if the representation changes near the time that the

response is generated.

An origin server with a clock MUST NOT send a Last-Modified date that

is later than the server's time of message origination (Date). If the

last modification time is derived from implementation-specific metadata

that evaluates to some time in the future, according to the origin

server's clock, then the origin server MUST replace that value with the

message origination date. This prevents a future modification date from

having an adverse impact on cache validation.

2.1.2. Comparison

A Last-Modified time, when used as a validator in a request, is

implicitly weak unless it is possible to deduce that it is strong,

using the following rules:

The validator is being compared by an origin server to the actual

current validator for the representation and,

That origin server reliably knows that the associated

representation did not change twice during the second covered by

the presented validator.

or

The validator is about to be used by a client in an If-Modified-

Since or If-Unmodified-Since header field, because the client has

a cache entry for the associated representation, and

That cache entry includes a Date value, which gives the time when

the origin server sent the original response, and

The presented Last-Modified time is at least 60 seconds before

the Date value.

or

The validator is being compared by an intermediate cache to the

validator stored in its cache entry for the representation, and

That cache entry includes a Date value, which gives the time when

the origin server sent the original response, and

The presented Last-Modified time is at least 60 seconds before

the Date value.

This method relies on the fact that if two different responses were

sent by the origin server during the same second, but both had the same

Last-Modified time, then at least one of those responses would have a

Date value equal to its Last-Modified time. The arbitrary 60-second

limit guards against the possibility that the Date and Last-Modified

values are generated from different clocks, or at somewhat different

times during the preparation of the response. An implementation MAY use

a value larger than 60 seconds, if it is believed that 60 seconds is

too short.

2.2. ETag

The ETag header field provides the current entity-tag for the selected

representation. An entity-tag is an opaque validator for

*

*

*

*

*

*

*

*

differentiating between multiple representations of the same resource,

regardless of whether those multiple representations are due to

resource state changes over time, content negotiation resulting in

multiple representations being valid at the same time, or both. An

entity-tag consists of an opaque quoted string, possibly prefixed by a

weakness indicator.

 ETag = entity-tag

 entity-tag = [weak] opaque-tag

 weak = %x57.2F ; "W/", case-sensitive

 opaque-tag = quoted-string

An entity-tag can be more reliable for validation than a modification

date in situations where it is inconvenient to store modification

dates, where the one-second resolution of HTTP date values is not

sufficient, or where modification dates are not consistently

maintained.

Examples:

 ETag: "xyzzy"

 ETag: W/"xyzzy"

 ETag: ""

2.2.1. Generation

The principle behind entity-tags is that only the service author knows

the implementation of a resource well enough to select the most

accurate and efficient validation mechanism for that resource, and that

any such mechanism can be mapped to a simple sequence of octets for

easy comparison. Since the value is opaque, there is no need for the

client to be aware of how each entity-tag is constructed.

For example, a resource that has implementation-specific versioning

applied to all changes might use an internal revision number, perhaps

combined with a variance identifier for content negotiation, to

accurately differentiate between representations. Other implementations

might use a stored hash of representation content, a combination of

various filesystem attributes, or a modification timestamp that has

sub-second resolution.

Origin servers SHOULD send ETag for any selected representation for

which detection of changes can be reasonably and consistently

determined, since the entity-tag's use in conditional requests and

evaluating cache freshness ([Part6]) can result in a substantial

reduction of HTTP network traffic and can be a significant factor in

improving service scalability and reliability.

2.2.2. Weak versus Strong

Since both origin servers and caches will compare two validators to

decide if they indicate the same or different representations, one

normally would expect that if the representation (including both

representation header fields and representation body) changes in any

way, then the associated validator would change as well. If this is

true, then we call that validator a "strong validator". One example of

a strong validator is an integer that is incremented in stable storage

every time a representation is changed.

However, there might be cases when a server prefers to change the

validator only when it desires cached representations to be

invalidated. For example, the representation of a weather report that

changes in content every second, based on dynamic measurements, might

be grouped into sets of equivalent representations (from the origin

server's perspective) in order to allow cached representations to be

valid for a reasonable period of time (perhaps adjusted dynamically

based on server load or weather quality). A validator that does not

always change when the representation changes is a "weak validator".

One can think of a strong validator as part of an identifier for a

specific representation, whereas a weak validator is part of an

identifier for a set of equivalent representations (where this notion

of equivalence is entirely governed by the origin server and beyond the

scope of this specification).

An entity-tag is normally a strong validator, but the protocol provides

a mechanism to tag an entity-tag as "weak".

A representation's modification time, if defined with only one-

second resolution, could be a weak validator, since it is

possible that the representation might be modified twice during a

single second.

Support for weak validators is optional. However, weak validators

allow for more efficient caching of equivalent objects; for

example, a hit counter on a site is probably good enough if it is

updated every few days or weeks, and any value during that period

is likely "good enough" to be equivalent.

A strong entity-tag MUST change whenever the associated representation

changes in any way. A weak entity-tag SHOULD change whenever the origin

server considers prior representations to be unacceptable as a

substitute for the current representation. In other words, a weak

entity tag SHOULD change whenever the origin server wants caches to

invalidate old responses.

A "strong entity-tag" MAY be shared by two representations of a

resource only if they are equivalent by octet equality.

A "weak entity-tag", indicated by the "W/" prefix, MAY be shared by two

representations of a resource. A weak entity-tag can only be used for

weak comparison.

Cache entries might persist for arbitrarily long periods, regardless of

expiration times. Thus, a cache might attempt to validate an entry

using a validator that it obtained in the distant past. A strong

entity-tag MUST be unique across all versions of all representations

*

*

associated with a particular resource over time. However, there is no

implication of uniqueness across entity-tags of different resources

(i.e., the same entity-tag value might be in use for representations of

multiple resources at the same time and does not imply that those

representations are equivalent).

2.2.3. Comparison

There are two entity-tag comparison functions, depending on whether the

comparison context allows the use of weak validators or not:

The strong comparison function: in order to be considered equal,

both opaque-tags MUST be identical character-by-character, and

both MUST NOT be weak.

The weak comparison function: in order to be considered equal,

both opaque-tags MUST be identical character-by-character, but

either or both of them MAY be tagged as "weak" without affecting

the result.

A "use" of a validator is either when a client generates a request and

includes the validator in a precondition, or when a server compares two

validators.

Strong validators are usable in any context. Weak validators are only

usable in contexts that do not depend on exact equality of a

representation. For example, either kind is usable for a normal

conditional GET.

The example below shows the results for a set of entity-tag pairs, and

both the weak and strong comparison function results:

ETag 1 ETag 2 Strong Comparison Weak Comparison

W/"1" W/"1" no match match

W/"1" W/"2" no match no match

W/"1" "1" no match match

"1" "1" match match

An entity-tag is strong unless it is explicitly tagged as weak.

2.2.4. Rules for When to Use Entity-tags and Last-Modified Dates

We adopt a set of rules and recommendations for origin servers,

clients, and caches regarding when various validator types ought to be

used, and for what purposes.

HTTP/1.1 origin servers:

SHOULD send an entity-tag validator unless it is not feasible to

generate one.

*

*

*

MAY send a weak entity-tag instead of a strong entity-tag, if

performance considerations support the use of weak entity-tags,

or if it is unfeasible to send a strong entity-tag.

SHOULD send a Last-Modified value if it is feasible to send one.

In other words, the preferred behavior for an HTTP/1.1 origin server is

to send both a strong entity-tag and a Last-Modified value.

HTTP/1.1 clients:

MUST use that entity-tag in any cache-conditional request (using

If-Match or If-None-Match) if an entity-tag has been provided by

the origin server.

SHOULD use the Last-Modified value in non-subrange cache-

conditional requests (using If-Modified-Since) if only a Last-

Modified value has been provided by the origin server.

MAY use the Last-Modified value in subrange cache-conditional

requests (using If-Unmodified-Since) if only a Last-Modified

value has been provided by an HTTP/1.0 origin server. The user

agent SHOULD provide a way to disable this, in case of

difficulty.

SHOULD use both validators in cache-conditional requests if both

an entity-tag and a Last-Modified value have been provided by the

origin server. This allows both HTTP/1.0 and HTTP/1.1 caches to

respond appropriately.

An HTTP/1.1 origin server, upon receiving a conditional request that

includes both a Last-Modified date (e.g., in an If-Modified-Since or

If-Unmodified-Since header field) and one or more entity-tags (e.g., in

an If-Match, If-None-Match, or If-Range header field) as cache

validators, MUST NOT return a response status code of 304 (Not

Modified) unless doing so is consistent with all of the conditional

header fields in the request.

An HTTP/1.1 caching proxy, upon receiving a conditional request that

includes both a Last-Modified date and one or more entity-tags as cache

validators, MUST NOT return a locally cached response to the client

unless that cached response is consistent with all of the conditional

header fields in the request.

Note: The general principle behind these rules is that HTTP/1.1

servers and clients ought to transmit as much non-redundant

information as is available in their responses and requests.

HTTP/1.1 systems receiving this information will make the most

conservative assumptions about the validators they receive.

HTTP/1.0 clients and caches might ignore entity-tags. Generally,

last-modified values received or used by these systems will

*

*

*

*

*

*

*

*

support transparent and efficient caching, and so HTTP/1.1 origin

servers should provide Last-Modified values. In those rare cases

where the use of a Last-Modified value as a validator by an HTTP/

1.0 system could result in a serious problem, then HTTP/1.1

origin servers should not provide one.

2.2.5. Example: Entity-tags varying on Content-Negotiated Resources

Consider a resource that is subject to content negotiation (Section 5

of [Part3]), and where the representations returned upon a GET request

vary based on the Accept-Encoding request header field (Section 6.3 of

[Part3]):

>> Request:

 GET /index HTTP/1.1

 Host: www.example.com

 Accept-Encoding: gzip

In this case, the response might or might not use the gzip content

coding. If it does not, the response might look like:

>> Response:

 HTTP/1.1 200 OK

 Date: Thu, 26 Mar 2010 00:05:00 GMT

 ETag: "123-a"

 Content-Length: 70

 Vary: Accept-Encoding

 Content-Type: text/plain

 Hello World!

 Hello World!

 Hello World!

 Hello World!

 Hello World!

An alternative representation that does use gzip content coding would

be:

>> Response:

 HTTP/1.1 200 OK

 Date: Thu, 26 Mar 2010 00:05:00 GMT

 ETag: "123-b"

 Content-Length: 43

 Vary: Accept-Encoding

 Content-Type: text/plain

 Content-Encoding: gzip

 ...binary data...

Note: Content codings are a property of the representation, so

therefore an entity-tag of an encoded representation must be

distinct from an unencoded representation to prevent conflicts

during cache updates and range requests. In contrast, transfer

codings (Section 6.2 of [Part1]) apply only during message

transfer and do not require distinct entity-tags.

3. Precondition Header Fields

This section defines the syntax and semantics of HTTP/1.1 header fields

for applying preconditions on requests.

3.1. If-Match

The "If-Match" header field MAY be used to make a request method

conditional on the current existence or value of an entity-tag for one

or more representations of the target resource. If-Match is generally

useful for resource update requests, such as PUT requests, as a means

for protecting against accidental overwrites when multiple clients are

acting in parallel on the same resource (i.e., the "lost update"

problem). An If-Match field-value of "*" places the precondition on the

existence of any current representation for the target resource.

 If-Match = "*" / 1#entity-tag

If any of the entity-tags listed in the If-Match field value match (as

per Section 2.2.3) the entity-tag of the selected representation for

the target resource, or if "*" is given and any current representation

exists for the target resource, then the server MAY perform the request

method as if the If-Match header field was not present.

If none of the entity-tags match, or if "*" is given and no current

representation exists, the server MUST NOT perform the requested

method. Instead, the server MUST respond with the 412 (Precondition

Failed) status code.

If the request would, without the If-Match header field, result in

anything other than a 2xx or 412 status code, then the If-Match header

field MUST be ignored.

Examples:

*

 If-Match: "xyzzy"

 If-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"

 If-Match: *

The result of a request having both an If-Match header field and either

an If-None-Match or an If-Modified-Since header fields is undefined by

this specification.

3.2. If-None-Match

The "If-None-Match" header field MAY be used to make a request method

conditional on not matching any of the current entity-tag values for

representations of the target resource. If-None-Match is primarily used

in conditional GET requests to enable efficient updates of cached

information with a minimum amount of transaction overhead. A client

that has one or more representations previously obtained from the

target resource can send If-None-Match with a list of the associated

entity-tags in the hope of receiving a 304 response if at least one of

those representations matches the selected representation.

If-None-Match MAY also be used with a value of "*" to prevent an unsafe

request method (e.g., PUT) from inadvertently modifying an existing

representation of the target resource when the client believes that the

resource does not have a current representation. This is a variation on

the "lost update" problem that might arise if more than one client

attempts to create an initial representation for the target resource.

 If-None-Match = "*" / 1#entity-tag

If any of the entity-tags listed in the If-None-Match field-value match

(as per Section 2.2.3) the entity-tag of the selected representation,

or if "*" is given and any current representation exists for that

resource, then the server MUST NOT perform the requested method.

Instead, if the request method was GET or HEAD, the server SHOULD

respond with a 304 (Not Modified) status code, including the cache-

related header fields (particularly ETag) of the selected

representation that has a matching entity-tag. For all other request

methods, the server MUST respond with a 412 (Precondition Failed)

status code.

If none of the entity-tags match, then the server MAY perform the

requested method as if the If-None-Match header field did not exist,

but MUST also ignore any If-Modified-Since header field(s) in the

request. That is, if no entity-tags match, then the server MUST NOT

return a 304 (Not Modified) response.

If the request would, without the If-None-Match header field, result in

anything other than a 2xx or 304 status code, then the If-None-Match

header field MUST be ignored. (See Section 2.2.4 for a discussion of

server behavior when both If-Modified-Since and If-None-Match appear in

the same request.)

Examples:

 If-None-Match: "xyzzy"

 If-None-Match: W/"xyzzy"

 If-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"

 If-None-Match: W/"xyzzy", W/"r2d2xxxx", W/"c3piozzzz"

 If-None-Match: *

The result of a request having both an If-None-Match header field and

either an If-Match or an If-Unmodified-Since header fields is undefined

by this specification.

3.3. If-Modified-Since

The "If-Modified-Since" header field MAY be used to make a request

method conditional by modification date: if the selected representation

has not been modified since the time specified in this field, then do

not perform the request method; instead, respond as detailed below.

 If-Modified-Since = HTTP-date

An example of the field is:

 If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

A GET method with an If-Modified-Since header field and no Range header

field requests that the selected representation be transferred only if

it has been modified since the date given by the If-Modified-Since

header field. The algorithm for determining this includes the following

cases:

If the request would normally result in anything other than a

200 (OK) status code, or if the passed If-Modified-Since date

is invalid, the response is exactly the same as for a normal

GET. A date which is later than the server's current time is

invalid.

If the selected representation has been modified since the If-

Modified-Since date, the response is exactly the same as for a

normal GET.

If the selected representation has not been modified since a

valid If-Modified-Since date, the server SHOULD return a 304

(Not Modified) response.

The purpose of this feature is to allow efficient updates of cached

information with a minimum amount of transaction overhead.

Note: The Range header field modifies the meaning of If-Modified-

Since; see Section 5.4 of [Part5] for full details.

1.

2.

3.

*

Note: If-Modified-Since times are interpreted by the server,

whose clock might not be synchronized with the client.

Note: When handling an If-Modified-Since header field, some

servers will use an exact date comparison function, rather than a

less-than function, for deciding whether to send a 304 (Not

Modified) response. To get best results when sending an If-

Modified-Since header field for cache validation, clients are

advised to use the exact date string received in a previous Last-

Modified header field whenever possible.

Note: If a client uses an arbitrary date in the If-Modified-Since

header field instead of a date taken from the Last-Modified

header field for the same request, the client needs to be aware

that this date is interpreted in the server's understanding of

time. Unsynchronized clocks and rounding problems, due to the

different encodings of time between the client and server, are

concerns. This includes the possibility of race conditions if the

document has changed between the time it was first requested and

the If-Modified-Since date of a subsequent request, and the

possibility of clock-skew-related problems if the If-Modified-

Since date is derived from the client's clock without correction

to the server's clock. Corrections for different time bases

between client and server are at best approximate due to network

latency.

The result of a request having both an If-Modified-Since header field

and either an If-Match or an If-Unmodified-Since header fields is

undefined by this specification.

3.4. If-Unmodified-Since

The "If-Unmodified-Since" header field MAY be used to make a request

method conditional by modification date: if the selected representation

has been modified since the time specified in this field, then the

server MUST NOT perform the requested operation and MUST instead

respond with the 412 (Precondition Failed) status code. If the selected

representation has not been modified since the time specified in this

field, the server SHOULD perform the request method as if the If-

Unmodified-Since header field were not present.

 If-Unmodified-Since = HTTP-date

An example of the field is:

 If-Unmodified-Since: Sat, 29 Oct 1994 19:43:31 GMT

If the request normally (i.e., without the If-Unmodified-Since header

field) would result in anything other than a 2xx or 412 status code,

the If-Unmodified-Since header field SHOULD be ignored.

*

*

*

If the specified date is invalid, the header field MUST be ignored.

The result of a request having both an If-Unmodified-Since header field

and either an If-None-Match or an If-Modified-Since header fields is

undefined by this specification.

3.5. If-Range

The If-Range header field provides a special conditional request

mechanism that is similar to If-Match and If-Unmodified-Since but

specific to HTTP range requests. If-Range is defined in Section 5.3 of

[Part5].

4. Status Code Definitions

4.1. 304 Not Modified

The 304 status code indicates that a conditional GET request has been

received and would have resulted in a 200 (OK) response if it were not

for the fact that the condition has evaluated to false. In other words,

there is no need for the server to transfer a representation of the

target resource because the client's request indicates that it already

has a valid representation, as indicated by the 304 response header

fields, and is therefore redirecting the client to make use of that

stored representation as if it were the payload of a 200 response. The

304 response MUST NOT contain a message-body, and thus is always

terminated by the first empty line after the header fields.

A 304 response MUST include a Date header field (Section 9.3 of

[Part1]) unless its omission is required by Section 9.3.1 of [Part1].

If a 200 response to the same request would have included any of the

header fields Cache-Control, Content-Location, ETag, Expires, Last-

Modified, or Vary, then those same header fields MUST be sent in a 304

response.

Since the goal of a 304 response is to minimize information transfer

when the recipient already has one or more cached representations, the

response SHOULD NOT include representation metadata other than the

above listed fields unless said metadata exists for the purpose of

guiding cache updates (e.g., future HTTP extensions).

If the recipient of a 304 response does not have a cached

representation corresponding to the entity-tag indicated by the 304

response, then the recipient MUST NOT use the 304 to update its own

cache. If this conditional request originated with an outbound client,

such as a user agent with its own cache sending a conditional GET to a

shared proxy, then the 304 response MAY be forwarded to the outbound

client. Otherwise, the recipient MUST disregard the 304 response and

repeat the request without any preconditions.

If a cache uses a received 304 response to update a cache entry, the

cache MUST update the entry to reflect any new field values given in

the response.

4.2. 412 Precondition Failed

The 412 status code indicates that one or more preconditions given in

the request header fields evaluated to false when tested on the server.

This response code allows the client to place preconditions on the

current resource state (its current representations and metadata) and

thus prevent the request method from being applied if the target

resource is in an unexpected state.

5. IANA Considerations

5.1. Status Code Registration

The HTTP Status Code Registry located at http://www.iana.org/

assignments/http-status-codes shall be updated with the registrations

below:

Value Description Reference

304 Not Modified Section 4.1

412 Precondition Failed Section 4.2

5.2. Header Field Registration

The Message Header Field Registry located at http://www.iana.org/

assignments/message-headers/message-header-index.html shall be updated

with the permanent registrations below (see [RFC3864]):

Header Field Name Protocol Status Reference

ETag http standard Section 2.2

If-Match http standard Section 3.1

If-Modified-Since http standard Section 3.3

If-None-Match http standard Section 3.2

If-Unmodified-Since http standard Section 3.4

Last-Modified http standard Section 2.1

The change controller is: "IETF (iesg@ietf.org) - Internet Engineering

Task Force".

6. Security Considerations

No additional security considerations have been identified beyond those

applicable to HTTP in general [Part1].

http://www.iana.org/assignments/http-status-codes
http://www.iana.org/assignments/http-status-codes
http://www.iana.org/assignments/message-headers/message-header-index.html
http://www.iana.org/assignments/message-headers/message-header-index.html

7. Acknowledgments

8. References

8.1. Normative References

[Part1]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y. and

J. F. Reschke, "HTTP/1.1, part 1: URIs, Connections,

and Message Parsing", Internet-Draft draft-ietf-

httpbis-p1-messaging-14, April 2011.

[Part3]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y. and

J. F. Reschke, "HTTP/1.1, part 3: Message Payload and

Content Negotiation", Internet-Draft draft-ietf-

httpbis-p3-payload-14, April 2011.

[Part5]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y. and

J. F. Reschke, "HTTP/1.1, part 5: Range Requests and

Partial Responses", Internet-Draft draft-ietf-httpbis-

p5-range-14, April 2011.

[Part6]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y.,

Nottingham, M. and J. F. Reschke, "HTTP/1.1, part 6:

Caching", Internet-Draft draft-ietf-httpbis-p6-

cache-14, April 2011.

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC5234]
Crocker, D. and P. Overell, "Augmented BNF for Syntax

Specifications: ABNF", STD 68, RFC 5234, January 2008.

8.2. Informative References

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC3864]

Klyne, G., Nottingham, M. and J. Mogul, "Registration

Procedures for Message Header Fields", BCP 90, RFC

3864, September 2004.

[RFC4918]

Dusseault, L.M., "HTTP Extensions for Web Distributed

Authoring and Versioning (WebDAV)", RFC 4918, June

2007.

Appendix A. Changes from RFC 2616

Allow weak entity-tags in all requests except range requests (Sections

2.2.2 and 3.2).

Change ABNF productions for header fields to only define the field

value. (Section 3)

http://tools.ietf.org/html/draft-ietf-httpbis-p1-messaging-14
http://tools.ietf.org/html/draft-ietf-httpbis-p1-messaging-14
http://tools.ietf.org/html/draft-ietf-httpbis-p3-payload-14
http://tools.ietf.org/html/draft-ietf-httpbis-p3-payload-14
http://tools.ietf.org/html/draft-ietf-httpbis-p5-range-14
http://tools.ietf.org/html/draft-ietf-httpbis-p5-range-14
http://tools.ietf.org/html/draft-ietf-httpbis-p6-cache-14
http://tools.ietf.org/html/draft-ietf-httpbis-p6-cache-14
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc3864
http://tools.ietf.org/html/rfc3864
http://tools.ietf.org/html/rfc4918
http://tools.ietf.org/html/rfc4918

Appendix B. Collected ABNF

ETag = entity-tag

HTTP-date = <HTTP-date, defined in [Part1], Section 6.1>

If-Match = "*" / (*("," OWS) entity-tag *(OWS "," [OWS

 entity-tag]))

If-Modified-Since = HTTP-date

If-None-Match = "*" / (*("," OWS) entity-tag *(OWS "," [OWS

 entity-tag]))

If-Unmodified-Since = HTTP-date

Last-Modified = HTTP-date

OWS = <OWS, defined in [Part1], Section 1.2.2>

entity-tag = [weak] opaque-tag

opaque-tag = quoted-string

quoted-string = <quoted-string, defined in [Part1], Section 1.2.2>

weak = %x57.2F ; W/

ABNF diagnostics:

; ETag defined but not used

; If-Match defined but not used

; If-Modified-Since defined but not used

; If-None-Match defined but not used

; If-Unmodified-Since defined but not used

; Last-Modified defined but not used

Appendix C. Change Log (to be removed by RFC Editor before publication)

Appendix C.1. Since RFC 2616

Extracted relevant partitions from [RFC2616].

Appendix C.2. Since draft-ietf-httpbis-p4-conditional-00

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/35: "Normative and

Informative references"

Other changes:

Move definitions of 304 and 412 condition codes from Part2.

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/35

Appendix C.3. Since draft-ietf-httpbis-p4-conditional-01

Ongoing work on ABNF conversion (http://tools.ietf.org/wg/httpbis/trac/

ticket/36):

Add explicit references to BNF syntax and rules imported from

other parts of the specification.

Appendix C.4. Since draft-ietf-httpbis-p4-conditional-02

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/116: "Weak ETags on

non-GET requests"

Ongoing work on IANA Message Header Field Registration (http://

tools.ietf.org/wg/httpbis/trac/ticket/40):

Reference RFC 3984, and update header field registrations for

header fields defined in this document.

Appendix C.5. Since draft-ietf-httpbis-p4-conditional-03

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/71: "Examples for

ETag matching"

http://tools.ietf.org/wg/httpbis/trac/ticket/124: "'entity value'

undefined"

http://tools.ietf.org/wg/httpbis/trac/ticket/126: "bogus 2068

Date header reference"

Appendix C.6. Since draft-ietf-httpbis-p4-conditional-04

Ongoing work on ABNF conversion (http://tools.ietf.org/wg/httpbis/trac/

ticket/36):

Use "/" instead of "|" for alternatives.

Introduce new ABNF rules for "bad" whitespace ("BWS"), optional

whitespace ("OWS") and required whitespace ("RWS").

Rewrite ABNFs to spell out whitespace rules, factor out header

field value format definitions.

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/116
http://tools.ietf.org/wg/httpbis/trac/ticket/40
http://tools.ietf.org/wg/httpbis/trac/ticket/40
http://tools.ietf.org/wg/httpbis/trac/ticket/71
http://tools.ietf.org/wg/httpbis/trac/ticket/124
http://tools.ietf.org/wg/httpbis/trac/ticket/126
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/36

Appendix C.7. Since draft-ietf-httpbis-p4-conditional-05

Final work on ABNF conversion (http://tools.ietf.org/wg/httpbis/trac/

ticket/36):

Add appendix containing collected and expanded ABNF, reorganize

ABNF introduction.

Appendix C.8. Since draft-ietf-httpbis-p4-conditional-06

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/153: "case-

sensitivity of etag weakness indicator"

Appendix C.9. Since draft-ietf-httpbis-p4-conditional-07

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/116: "Weak ETags on

non-GET requests" (If-Match still was defined to require strong

matching)

http://tools.ietf.org/wg/httpbis/trac/ticket/198: "move IANA

registrations for optional status codes"

Appendix C.10. Since draft-ietf-httpbis-p4-conditional-08

No significant changes.

Appendix C.11. Since draft-ietf-httpbis-p4-conditional-09

No significant changes.

Appendix C.12. Since draft-ietf-httpbis-p4-conditional-10

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/69: "Clarify

'Requested Variant'"

http://tools.ietf.org/wg/httpbis/trac/ticket/109: "Clarify entity

/ representation / variant terminology"

http://tools.ietf.org/wg/httpbis/trac/ticket/220: "consider

removing the 'changes from 2068' sections"

Appendix C.13. Since draft-ietf-httpbis-p4-conditional-11

None.

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/153
http://tools.ietf.org/wg/httpbis/trac/ticket/116
http://tools.ietf.org/wg/httpbis/trac/ticket/198
http://tools.ietf.org/wg/httpbis/trac/ticket/69
http://tools.ietf.org/wg/httpbis/trac/ticket/109
http://tools.ietf.org/wg/httpbis/trac/ticket/220

Appendix C.14. Since draft-ietf-httpbis-p4-conditional-12

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/224: "Header

Classification"

Appendix C.15. Since draft-ietf-httpbis-p4-conditional-13

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/89: "If-* and

entities"

http://tools.ietf.org/wg/httpbis/trac/ticket/101: "Definition of

validator weakness"

http://tools.ietf.org/wg/httpbis/trac/ticket/276: "untangle ABNFs

for header fields"

http://tools.ietf.org/wg/httpbis/trac/ticket/269: "ETags and

Quotes"

Index

S

selected representation

Authors' Addresses

Roy T. Fielding editor Fielding Adobe Systems Incorporated 345 Park

Ave San Jose, CA 95110 USA EMail: fielding@gbiv.com URI: http://

roy.gbiv.com/

Jim Gettys Gettys Alcatel-Lucent Bell Labs 21 Oak Knoll Road

Carlisle, MA 01741 USA EMail: jg@freedesktop.org URI: http://

gettys.wordpress.com/

Jeffrey C. Mogul Mogul Hewlett-Packard Company HP Labs, Large Scale

Systems Group 1501 Page Mill Road, MS 1177 Palo Alto, CA 94304 USA

EMail: JeffMogul@acm.org

Henrik Frystyk Nielsen Frystyk Microsoft Corporation

1 Microsoft Way Redmond, WA 98052 USA EMail: henrikn@microsoft.com

Larry Masinter Masinter Adobe Systems Incorporated 345 Park Ave San

Jose, CA 95110 USA EMail: LMM@acm.org URI: http://

larry.masinter.net/

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/224
http://tools.ietf.org/wg/httpbis/trac/ticket/89
http://tools.ietf.org/wg/httpbis/trac/ticket/101
http://tools.ietf.org/wg/httpbis/trac/ticket/276
http://tools.ietf.org/wg/httpbis/trac/ticket/269
http://roy.gbiv.com/
http://roy.gbiv.com/
http://gettys.wordpress.com/
http://gettys.wordpress.com/
http://larry.masinter.net/
http://larry.masinter.net/

Paul J. Leach Leach Microsoft Corporation 1 Microsoft Way Redmond,

WA 98052 EMail: paulle@microsoft.com

Tim Berners-Lee Berners-Lee World Wide Web Consortium MIT Computer

Science and Artificial Intelligence Laboratory The Stata Center,

Building 32 32 Vassar Street Cambridge, MA 02139 USA EMail:

timbl@w3.org URI: http://www.w3.org/People/Berners-Lee/

Yves Lafon editor Lafon World Wide Web Consortium W3C / ERCIM 2004,

rte des Lucioles Sophia-Antipolis, AM 06902 France EMail:

ylafon@w3.org URI: http://www.raubacapeu.net/people/yves/

Julian F. Reschke editor Reschke greenbytes GmbH Hafenweg 16

Muenster, NW 48155 Germany Phone: +49 251 2807760 EMail:

julian.reschke@greenbytes.de URI: http://greenbytes.de/tech/webdav/

http://www.w3.org/People/Berners-Lee/
http://www.raubacapeu.net/people/yves/
http://greenbytes.de/tech/webdav/

	Abstract
	Editorial Note (To be removed by RFC Editor)
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements
	1.2. Syntax Notation
	2. Resource State Metadata (Validators)
	2.1. Last-Modified
	2.1.1. Generation
	2.1.2. Comparison
	2.2. ETag
	2.2.1. Generation
	2.2.2. Weak versus Strong
	2.2.3. Comparison
	2.2.4. Rules for When to Use Entity-tags and Last-Modified Dates
	2.2.5. Example: Entity-tags varying on Content-Negotiated Resources
	3. Precondition Header Fields
	3.1. If-Match
	3.2. If-None-Match
	3.3. If-Modified-Since
	3.4. If-Unmodified-Since
	3.5. If-Range
	4. Status Code Definitions
	4.1. 304 Not Modified
	4.2. 412 Precondition Failed
	5. IANA Considerations
	5.1. Status Code Registration
	5.2. Header Field Registration
	6. Security Considerations
	7. Acknowledgments
	8. References
	8.1. Normative References
	8.2. Informative References
	Appendix A. Changes from RFC 2616
	Appendix B. Collected ABNF
	Appendix C. Change Log (to be removed by RFC Editor before publication)
	Appendix C.1. Since RFC 2616
	Appendix C.2. Since draft-ietf-httpbis-p4-conditional-00
	Appendix C.3. Since draft-ietf-httpbis-p4-conditional-01
	Appendix C.4. Since draft-ietf-httpbis-p4-conditional-02
	Appendix C.5. Since draft-ietf-httpbis-p4-conditional-03
	Appendix C.6. Since draft-ietf-httpbis-p4-conditional-04
	Appendix C.7. Since draft-ietf-httpbis-p4-conditional-05
	Appendix C.8. Since draft-ietf-httpbis-p4-conditional-06
	Appendix C.9. Since draft-ietf-httpbis-p4-conditional-07
	Appendix C.10. Since draft-ietf-httpbis-p4-conditional-08
	Appendix C.11. Since draft-ietf-httpbis-p4-conditional-09
	Appendix C.12. Since draft-ietf-httpbis-p4-conditional-10
	Appendix C.13. Since draft-ietf-httpbis-p4-conditional-11
	Appendix C.14. Since draft-ietf-httpbis-p4-conditional-12
	Appendix C.15. Since draft-ietf-httpbis-p4-conditional-13
	Index
	Authors' Addresses

