
HTTPbis Working Group R. Fielding, Ed.
Internet-Draft Adobe
Obsoletes: 2616 (if approved) J. Gettys
Intended status: Standards Track Alcatel-Lucent
Expires: February 25, 2012 J. Mogul
 HP
 H. Frystyk
 Microsoft
 L. Masinter
 Adobe
 P. Leach
 Microsoft
 T. Berners-Lee
 W3C/MIT
 Y. Lafon, Ed.
 W3C
 J. Reschke, Ed.
 greenbytes
 August 24, 2011

HTTP/1.1, part 4: Conditional Requests
draft-ietf-httpbis-p4-conditional-16

Abstract

 The Hypertext Transfer Protocol (HTTP) is an application-level
 protocol for distributed, collaborative, hypertext information
 systems. HTTP has been in use by the World Wide Web global
 information initiative since 1990. This document is Part 4 of the
 seven-part specification that defines the protocol referred to as
 "HTTP/1.1" and, taken together, obsoletes RFC 2616.

 Part 4 defines request header fields for indicating conditional
 requests and the rules for constructing responses to those requests.

Editorial Note (To be removed by RFC Editor)

 Discussion of this draft should take place on the HTTPBIS working
 group mailing list (ietf-http-wg@w3.org), which is archived at
 <http://lists.w3.org/Archives/Public/ietf-http-wg/>.

 The current issues list is at
 <http://tools.ietf.org/wg/httpbis/trac/report/3> and related
 documents (including fancy diffs) can be found at
 <http://tools.ietf.org/wg/httpbis/>.

 The changes in this draft are summarized in Appendix C.17.

Fielding, et al. Expires February 25, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
http://lists.w3.org/Archives/Public/ietf-http-wg/
http://tools.ietf.org/wg/httpbis/trac/report/3
http://tools.ietf.org/wg/httpbis/

Internet-Draft HTTP/1.1, Part 4 August 2011

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 25, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 5
1.1. Requirements . 5

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Fielding, et al. Expires February 25, 2012 [Page 2]

Internet-Draft HTTP/1.1, Part 4 August 2011

1.2. Syntax Notation . 6
2. Validators . 6
2.1. Weak versus Strong . 6
2.2. Last-Modified . 8
2.2.1. Generation . 8
2.2.2. Comparison . 9

2.3. ETag . 10
2.3.1. Generation . 11
2.3.2. Comparison . 11

 2.3.3. Example: Entity-tags varying on Content-Negotiated
 Resources . 12
 2.4. Rules for When to Use Entity-tags and Last-Modified
 Dates . 13

3. Precondition Header Fields 14
3.1. If-Match . 14
3.2. If-None-Match . 15
3.3. If-Modified-Since . 17
3.4. If-Unmodified-Since 18
3.5. If-Range . 19

4. Status Code Definitions 19
4.1. 304 Not Modified . 19
4.2. 412 Precondition Failed 20

5. IANA Considerations . 20
5.1. Status Code Registration 20
5.2. Header Field Registration 20

6. Security Considerations 20
7. Acknowledgments . 21
8. References . 21
8.1. Normative References 21
8.2. Informative References 21

Appendix A. Changes from RFC 2616 22
Appendix B. Collected ABNF 22
Appendix C. Change Log (to be removed by RFC Editor before

 publication) . 23
C.1. Since RFC 2616 . 23
C.2. Since draft-ietf-httpbis-p4-conditional-00 23
C.3. Since draft-ietf-httpbis-p4-conditional-01 23
C.4. Since draft-ietf-httpbis-p4-conditional-02 23
C.5. Since draft-ietf-httpbis-p4-conditional-03 23
C.6. Since draft-ietf-httpbis-p4-conditional-04 24
C.7. Since draft-ietf-httpbis-p4-conditional-05 24
C.8. Since draft-ietf-httpbis-p4-conditional-06 24
C.9. Since draft-ietf-httpbis-p4-conditional-07 24
C.10. Since draft-ietf-httpbis-p4-conditional-08 24
C.11. Since draft-ietf-httpbis-p4-conditional-09 25
C.12. Since draft-ietf-httpbis-p4-conditional-10 25
C.13. Since draft-ietf-httpbis-p4-conditional-11 25
C.14. Since draft-ietf-httpbis-p4-conditional-12 25

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-03
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-06
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-07
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-08
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-09
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-10
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-11
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-12

Fielding, et al. Expires February 25, 2012 [Page 3]

Internet-Draft HTTP/1.1, Part 4 August 2011

C.15. Since draft-ietf-httpbis-p4-conditional-13 25
C.16. Since draft-ietf-httpbis-p4-conditional-14 26
C.17. Since draft-ietf-httpbis-p4-conditional-15 26

 Index . 26

Fielding, et al. Expires February 25, 2012 [Page 4]

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-13
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-14
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-15

Internet-Draft HTTP/1.1, Part 4 August 2011

1. Introduction

 This document defines the HTTP/1.1 conditional request mechanisms,
 including both metadata for indicating/observing changes in resource
 representations and request header fields that specify preconditions
 on that metadata be checked before performing the request method.
 Conditional GET requests are the most efficient mechanism for HTTP
 cache updates [Part6]. Conditionals can also be applied to state-
 changing methods, such as PUT and DELETE, to prevent the "lost
 update" problem: one client accidentally overwriting the work of
 another client that has been acting in parallel.

 Conditional request preconditions are based on the state of the
 target resource as a whole (its current value set) or the state as
 observed in a previously obtained representation (one value in that
 set). A resource might have multiple current representations, each
 with its own observable state. The conditional request mechanisms
 assume that the mapping of requests to corresponding representations
 will be consistent over time if the server intends to take advantage
 of conditionals. Regardless, if the mapping is inconsistent and the
 server is unable to select the appropriate representation, then no
 harm will result when the precondition evaluates to false.

 We use the term "selected representation" to refer to the current
 representation of the target resource that would have been selected
 in a successful response if the same request had used the method GET
 and had excluded all of the conditional request header fields. The
 conditional request preconditions are evaluated by comparing the
 values provided in the request header fields to the current metadata
 for the selected representation.

1.1. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 An implementation is not compliant if it fails to satisfy one or more
 of the "MUST" or "REQUIRED" level requirements for the protocols it
 implements. An implementation that satisfies all the "MUST" or
 "REQUIRED" level and all the "SHOULD" level requirements for its
 protocols is said to be "unconditionally compliant"; one that
 satisfies all the "MUST" level requirements but not all the "SHOULD"
 level requirements for its protocols is said to be "conditionally
 compliant".

https://datatracker.ietf.org/doc/html/rfc2119

Fielding, et al. Expires February 25, 2012 [Page 5]

Internet-Draft HTTP/1.1, Part 4 August 2011

1.2. Syntax Notation

 This specification uses the ABNF syntax defined in Section 1.2 of
 [Part1] (which extends the syntax defined in [RFC5234] with a list
 rule). Appendix B shows the collected ABNF, with the list rule
 expanded.

 The following core rules are included by reference, as defined in
[RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF

 (CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double quote),
 HEXDIG (hexadecimal 0-9/A-F/a-f), LF (line feed), OCTET (any 8-bit
 sequence of data), SP (space), VCHAR (any visible USASCII character),
 and WSP (whitespace).

 The ABNF rules below are defined in [Part1]:

 OWS = <OWS, defined in [Part1], Section 1.2.2>
 quoted-string = <quoted-string, defined in [Part1], Section 3.2.3>
 HTTP-date = <HTTP-date, defined in [Part1], Section 6.1>

2. Validators

 This specification defines two forms of metadata that are commonly
 used to observe resource state and test for preconditions:
 modification dates and opaque entity tags. Additional metadata that
 reflects resource state has been defined by various extensions of
 HTTP, such as WebDAV [RFC4918], that are beyond the scope of this
 specification. A resource metadata value is referred to as a
 "validator" when it is used within a precondition.

2.1. Weak versus Strong

 Validators come in two flavors: strong or weak. Weak validators are
 easy to generate but are far less useful for comparisons. Strong
 validators are ideal for comparisons but can be very difficult (and
 occasionally impossible) to generate efficiently. Rather than impose
 that all forms of resource adhere to the same strength of validator,
 HTTP exposes the type of validator in use and imposes restrictions on
 when weak validators can be used as preconditions.

 A "strong validator" is a representation metadata value that MUST be
 changed to a new, previously unused or guaranteed unique, value
 whenever a change occurs to the representation data such that a
 change would be observable in the payload body of a 200 response to
 GET. A strong validator MAY be changed for other reasons, such as
 when a semantically significant part of the representation metadata
 is changed (e.g., Content-Type), but it is in the best interests of
 the origin server to only change the value when it is necessary to

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc4918

Fielding, et al. Expires February 25, 2012 [Page 6]

Internet-Draft HTTP/1.1, Part 4 August 2011

 invalidate the stored responses held by remote caches and authoring
 tools. A strong validator MUST be unique across all representations
 of a given resource, such that no two representations of that
 resource share the same validator unless their payload body would be
 identical.

 Cache entries might persist for arbitrarily long periods, regardless
 of expiration times. Thus, a cache might attempt to validate an
 entry using a validator that it obtained in the distant past. A
 strong validator MUST be unique across all versions of all
 representations associated with a particular resource over time.
 However, there is no implication of uniqueness across representations
 of different resources (i.e., the same strong validator might be in
 use for representations of multiple resources at the same time and
 does not imply that those representations are equivalent).

 There are a variety of strong validators used in practice. The best
 are based on strict revision control, wherein each change to a
 representation always results in a unique node name and revision
 identifier being assigned before the representation is made
 accessible to GET. A cryptographic hash function applied to the
 representation data is also sufficient if the data is available prior
 to the response header fields being sent and the digest does not need
 to be recalculated every time a validation request is received.
 However, if a resource has distinct representations that differ only
 in their metadata, such as might occur with content negotiation over
 media types that happen to share the same data format, then a server
 SHOULD incorporate additional information in the validator to
 distinguish those representations and avoid confusing cache behavior.

 In contrast, a "weak validator" is a representation metadata value
 that might not be changed for every change to the representation
 data. This weakness might be due to limitations in how the value is
 calculated, such as clock resolution or an inability to ensure
 uniqueness for all possible representations of the resource, or due
 to a desire by the resource owner to group representations by some
 self-determined set of equivalency rather than unique sequences of
 data. A weak entity-tag SHOULD change whenever the origin server
 considers prior representations to be unacceptable as a substitute
 for the current representation. In other words, a weak entity-tag
 SHOULD change whenever the origin server wants caches to invalidate
 old responses.

 For example, the representation of a weather report that changes in
 content every second, based on dynamic measurements, might be grouped
 into sets of equivalent representations (from the origin server's
 perspective) with the same weak validator in order to allow cached
 representations to be valid for a reasonable period of time (perhaps

Fielding, et al. Expires February 25, 2012 [Page 7]

Internet-Draft HTTP/1.1, Part 4 August 2011

 adjusted dynamically based on server load or weather quality).
 Likewise, a representation's modification time, if defined with only
 one-second resolution, might be a weak validator if it is possible
 for the representation to be modified twice during a single second
 and retrieved between those modifications.

 A "use" of a validator occurs when either a client generates a
 request and includes the validator in a precondition or when a server
 compares two validators. Weak validators are only usable in contexts
 that do not depend on exact equality of a representation's payload
 body. Strong validators are usable and preferred for all conditional
 requests, including cache validation, partial content ranges, and
 "lost update" avoidance.

2.2. Last-Modified

 The "Last-Modified" header field indicates the date and time at which
 the origin server believes the selected representation was last
 modified.

 Last-Modified = HTTP-date

 An example of its use is

 Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT

2.2.1. Generation

 Origin servers SHOULD send Last-Modified for any selected
 representation for which a last modification date can be reasonably
 and consistently determined, since its use in conditional requests
 and evaluating cache freshness ([Part6]) results in a substantial
 reduction of HTTP traffic on the Internet and can be a significant
 factor in improving service scalability and reliability.

 A representation is typically the sum of many parts behind the
 resource interface. The last-modified time would usually be the most
 recent time that any of those parts were changed. How that value is
 determined for any given resource is an implementation detail beyond
 the scope of this specification. What matters to HTTP is how
 recipients of the Last-Modified header field can use its value to
 make conditional requests and test the validity of locally cached
 responses.

 An origin server SHOULD obtain the Last-Modified value of the
 representation as close as possible to the time that it generates the
 Date field-value for its response. This allows a recipient to make
 an accurate assessment of the representation's modification time,

Fielding, et al. Expires February 25, 2012 [Page 8]

Internet-Draft HTTP/1.1, Part 4 August 2011

 especially if the representation changes near the time that the
 response is generated.

 An origin server with a clock MUST NOT send a Last-Modified date that
 is later than the server's time of message origination (Date). If
 the last modification time is derived from implementation-specific
 metadata that evaluates to some time in the future, according to the
 origin server's clock, then the origin server MUST replace that value
 with the message origination date. This prevents a future
 modification date from having an adverse impact on cache validation.

2.2.2. Comparison

 A Last-Modified time, when used as a validator in a request, is
 implicitly weak unless it is possible to deduce that it is strong,
 using the following rules:

 o The validator is being compared by an origin server to the actual
 current validator for the representation and,

 o That origin server reliably knows that the associated
 representation did not change twice during the second covered by
 the presented validator.

 or

 o The validator is about to be used by a client in an If-Modified-
 Since, If-Unmodified-Since header field, because the client has a
 cache entry, or If-Range for the associated representation, and

 o That cache entry includes a Date value, which gives the time when
 the origin server sent the original response, and

 o The presented Last-Modified time is at least 60 seconds before the
 Date value.

 or

 o The validator is being compared by an intermediate cache to the
 validator stored in its cache entry for the representation, and

 o That cache entry includes a Date value, which gives the time when
 the origin server sent the original response, and

 o The presented Last-Modified time is at least 60 seconds before the
 Date value.

 This method relies on the fact that if two different responses were

Fielding, et al. Expires February 25, 2012 [Page 9]

Internet-Draft HTTP/1.1, Part 4 August 2011

 sent by the origin server during the same second, but both had the
 same Last-Modified time, then at least one of those responses would
 have a Date value equal to its Last-Modified time. The arbitrary 60-
 second limit guards against the possibility that the Date and Last-
 Modified values are generated from different clocks, or at somewhat
 different times during the preparation of the response. An
 implementation MAY use a value larger than 60 seconds, if it is
 believed that 60 seconds is too short.

2.3. ETag

 The ETag header field provides the current entity-tag for the
 selected representation. An entity-tag is an opaque validator for
 differentiating between multiple representations of the same
 resource, regardless of whether those multiple representations are
 due to resource state changes over time, content negotiation
 resulting in multiple representations being valid at the same time,
 or both. An entity-tag consists of an opaque quoted string, possibly
 prefixed by a weakness indicator.

 ETag = entity-tag

 entity-tag = [weak] opaque-tag
 weak = %x57.2F ; "W/", case-sensitive
 opaque-tag = quoted-string

 An entity-tag can be more reliable for validation than a modification
 date in situations where it is inconvenient to store modification
 dates, where the one-second resolution of HTTP date values is not
 sufficient, or where modification dates are not consistently
 maintained.

 Examples:

 ETag: "xyzzy"
 ETag: W/"xyzzy"
 ETag: ""

 An entity-tag can be either a weak or strong validator, with strong
 being the default. If an origin server provides an entity-tag for a
 representation and the generation of that entity-tag does not satisfy
 the requirements for a strong validator (Section 2.1), then that
 entity-tag MUST be marked as weak by prefixing its opaque value with
 "W/" (case-sensitive).

Fielding, et al. Expires February 25, 2012 [Page 10]

Internet-Draft HTTP/1.1, Part 4 August 2011

2.3.1. Generation

 The principle behind entity-tags is that only the service author
 knows the implementation of a resource well enough to select the most
 accurate and efficient validation mechanism for that resource, and
 that any such mechanism can be mapped to a simple sequence of octets
 for easy comparison. Since the value is opaque, there is no need for
 the client to be aware of how each entity-tag is constructed.

 For example, a resource that has implementation-specific versioning
 applied to all changes might use an internal revision number, perhaps
 combined with a variance identifier for content negotiation, to
 accurately differentiate between representations. Other
 implementations might use a stored hash of representation content, a
 combination of various filesystem attributes, or a modification
 timestamp that has sub-second resolution.

 Origin servers SHOULD send ETag for any selected representation for
 which detection of changes can be reasonably and consistently
 determined, since the entity-tag's use in conditional requests and
 evaluating cache freshness ([Part6]) can result in a substantial
 reduction of HTTP network traffic and can be a significant factor in
 improving service scalability and reliability.

2.3.2. Comparison

 There are two entity-tag comparison functions, depending on whether
 the comparison context allows the use of weak validators or not:

 o The strong comparison function: in order to be considered equal,
 both opaque-tags MUST be identical character-by-character, and
 both MUST NOT be weak.

 o The weak comparison function: in order to be considered equal,
 both opaque-tags MUST be identical character-by-character, but
 either or both of them MAY be tagged as "weak" without affecting
 the result.

 The example below shows the results for a set of entity-tag pairs,
 and both the weak and strong comparison function results:

 +--------+--------+-------------------+-----------------+
 | ETag 1 | ETag 2 | Strong Comparison | Weak Comparison |
 +--------+--------+-------------------+-----------------+
W/"1"	W/"1"	no match	match
W/"1"	W/"2"	no match	no match
W/"1"	"1"	no match	match

Fielding, et al. Expires February 25, 2012 [Page 11]

Internet-Draft HTTP/1.1, Part 4 August 2011

 | "1" | "1" | match | match |
 +--------+--------+-------------------+-----------------+

2.3.3. Example: Entity-tags varying on Content-Negotiated Resources

 Consider a resource that is subject to content negotiation (Section 5
 of [Part3]), and where the representations returned upon a GET
 request vary based on the Accept-Encoding request header field
 (Section 6.3 of [Part3]):

 >> Request:

 GET /index HTTP/1.1
 Host: www.example.com
 Accept-Encoding: gzip

 In this case, the response might or might not use the gzip content
 coding. If it does not, the response might look like:

 >> Response:

 HTTP/1.1 200 OK
 Date: Thu, 26 Mar 2010 00:05:00 GMT
 ETag: "123-a"
 Content-Length: 70
 Vary: Accept-Encoding
 Content-Type: text/plain

 Hello World!
 Hello World!
 Hello World!
 Hello World!
 Hello World!

 An alternative representation that does use gzip content coding would
 be:

Fielding, et al. Expires February 25, 2012 [Page 12]

Internet-Draft HTTP/1.1, Part 4 August 2011

 >> Response:

 HTTP/1.1 200 OK
 Date: Thu, 26 Mar 2010 00:05:00 GMT
 ETag: "123-b"
 Content-Length: 43
 Vary: Accept-Encoding
 Content-Type: text/plain
 Content-Encoding: gzip

 ...binary data...

 Note: Content codings are a property of the representation, so
 therefore an entity-tag of an encoded representation must be
 distinct from an unencoded representation to prevent conflicts
 during cache updates and range requests. In contrast, transfer
 codings (Section 6.2 of [Part1]) apply only during message
 transfer and do not require distinct entity-tags.

2.4. Rules for When to Use Entity-tags and Last-Modified Dates

 We adopt a set of rules and recommendations for origin servers,
 clients, and caches regarding when various validator types ought to
 be used, and for what purposes.

 HTTP/1.1 origin servers:

 o SHOULD send an entity-tag validator unless it is not feasible to
 generate one.

 o MAY send a weak entity-tag instead of a strong entity-tag, if
 performance considerations support the use of weak entity-tags, or
 if it is unfeasible to send a strong entity-tag.

 o SHOULD send a Last-Modified value if it is feasible to send one.

 In other words, the preferred behavior for an HTTP/1.1 origin server
 is to send both a strong entity-tag and a Last-Modified value.

 HTTP/1.1 clients:

 o MUST use that entity-tag in any cache-conditional request (using
 If-Match or If-None-Match) if an entity-tag has been provided by
 the origin server.

 o SHOULD use the Last-Modified value in non-subrange cache-
 conditional requests (using If-Modified-Since) if only a Last-
 Modified value has been provided by the origin server.

Fielding, et al. Expires February 25, 2012 [Page 13]

Internet-Draft HTTP/1.1, Part 4 August 2011

 o MAY use the Last-Modified value in subrange cache-conditional
 requests (using If-Unmodified-Since) if only a Last-Modified value
 has been provided by an HTTP/1.0 origin server. The user agent
 SHOULD provide a way to disable this, in case of difficulty.

 o SHOULD use both validators in cache-conditional requests if both
 an entity-tag and a Last-Modified value have been provided by the
 origin server. This allows both HTTP/1.0 and HTTP/1.1 caches to
 respond appropriately.

 An HTTP/1.1 origin server, upon receiving a conditional request that
 includes both a Last-Modified date (e.g., in an If-Modified-Since or
 If-Unmodified-Since header field) and one or more entity-tags (e.g.,
 in an If-Match, If-None-Match, or If-Range header field) as cache
 validators, MUST NOT return a response status code of 304 (Not
 Modified) unless doing so is consistent with all of the conditional
 header fields in the request.

 An HTTP/1.1 caching proxy, upon receiving a conditional request that
 includes both a Last-Modified date and one or more entity-tags as
 cache validators, MUST NOT return a locally cached response to the
 client unless that cached response is consistent with all of the
 conditional header fields in the request.

 Note: The general principle behind these rules is that HTTP/1.1
 servers and clients ought to transmit as much non-redundant
 information as is available in their responses and requests.
 HTTP/1.1 systems receiving this information will make the most
 conservative assumptions about the validators they receive.

 HTTP/1.0 clients and caches might ignore entity-tags. Generally,
 last-modified values received or used by these systems will
 support transparent and efficient caching, and so HTTP/1.1 origin
 servers should provide Last-Modified values. In those rare cases
 where the use of a Last-Modified value as a validator by an
 HTTP/1.0 system could result in a serious problem, then HTTP/1.1
 origin servers should not provide one.

3. Precondition Header Fields

 This section defines the syntax and semantics of HTTP/1.1 header
 fields for applying preconditions on requests.

3.1. If-Match

 The "If-Match" header field MAY be used to make a request method
 conditional on the current existence or value of an entity-tag for
 one or more representations of the target resource. If-Match is

Fielding, et al. Expires February 25, 2012 [Page 14]

Internet-Draft HTTP/1.1, Part 4 August 2011

 generally useful for resource update requests, such as PUT requests,
 as a means for protecting against accidental overwrites when multiple
 clients are acting in parallel on the same resource (i.e., the "lost
 update" problem). An If-Match field-value of "*" places the
 precondition on the existence of any current representation for the
 target resource.

 If-Match = "*" / 1#entity-tag

 If any of the entity-tags listed in the If-Match field value match
 (as per Section 2.3.2) the entity-tag of the selected representation
 for the target resource, or if "*" is given and any current
 representation exists for the target resource, then the server MAY
 perform the request method as if the If-Match header field was not
 present.

 If none of the entity-tags match, or if "*" is given and no current
 representation exists, the server MUST NOT perform the requested
 method. Instead, the server MUST respond with the 412 (Precondition
 Failed) status code.

 If the request would, without the If-Match header field, result in
 anything other than a 2xx or 412 status code, then the If-Match
 header field MUST be ignored.

 Examples:

 If-Match: "xyzzy"
 If-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
 If-Match: *

 The result of a request having both an If-Match header field and
 either an If-None-Match or an If-Modified-Since header fields is
 undefined by this specification.

3.2. If-None-Match

 The "If-None-Match" header field MAY be used to make a request method
 conditional on not matching any of the current entity-tag values for
 representations of the target resource. If-None-Match is primarily
 used in conditional GET requests to enable efficient updates of
 cached information with a minimum amount of transaction overhead. A
 client that has one or more representations previously obtained from
 the target resource can send If-None-Match with a list of the
 associated entity-tags in the hope of receiving a 304 response if at
 least one of those representations matches the selected
 representation.

Fielding, et al. Expires February 25, 2012 [Page 15]

Internet-Draft HTTP/1.1, Part 4 August 2011

 If-None-Match MAY also be used with a value of "*" to prevent an
 unsafe request method (e.g., PUT) from inadvertently modifying an
 existing representation of the target resource when the client
 believes that the resource does not have a current representation.
 This is a variation on the "lost update" problem that might arise if
 more than one client attempts to create an initial representation for
 the target resource.

 If-None-Match = "*" / 1#entity-tag

 If any of the entity-tags listed in the If-None-Match field-value
 match (as per Section 2.3.2) the entity-tag of the selected
 representation, or if "*" is given and any current representation
 exists for that resource, then the server MUST NOT perform the
 requested method. Instead, if the request method was GET or HEAD,
 the server SHOULD respond with a 304 (Not Modified) status code,
 including the cache-related header fields (particularly ETag) of the
 selected representation that has a matching entity-tag. For all
 other request methods, the server MUST respond with a 412
 (Precondition Failed) status code.

 If none of the entity-tags match, then the server MAY perform the
 requested method as if the If-None-Match header field did not exist,
 but MUST also ignore any If-Modified-Since header field(s) in the
 request. That is, if no entity-tags match, then the server MUST NOT
 return a 304 (Not Modified) response.

 If the request would, without the If-None-Match header field, result
 in anything other than a 2xx or 304 status code, then the If-None-
 Match header field MUST be ignored. (See Section 2.4 for a
 discussion of server behavior when both If-Modified-Since and If-
 None-Match appear in the same request.)

 Examples:

 If-None-Match: "xyzzy"
 If-None-Match: W/"xyzzy"
 If-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
 If-None-Match: W/"xyzzy", W/"r2d2xxxx", W/"c3piozzzz"
 If-None-Match: *

 The result of a request having both an If-None-Match header field and
 either an If-Match or an If-Unmodified-Since header fields is
 undefined by this specification.

Fielding, et al. Expires February 25, 2012 [Page 16]

Internet-Draft HTTP/1.1, Part 4 August 2011

3.3. If-Modified-Since

 The "If-Modified-Since" header field MAY be used to make a request
 method conditional by modification date: if the selected
 representation has not been modified since the time specified in this
 field, then do not perform the request method; instead, respond as
 detailed below.

 If-Modified-Since = HTTP-date

 An example of the field is:

 If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

 A GET method with an If-Modified-Since header field and no Range
 header field requests that the selected representation be transferred
 only if it has been modified since the date given by the If-Modified-
 Since header field. The algorithm for determining this includes the
 following cases:

 1. If the request would normally result in anything other than a 200
 (OK) status code, or if the passed If-Modified-Since date is
 invalid, the response is exactly the same as for a normal GET. A
 date which is later than the server's current time is invalid.

 2. If the selected representation has been modified since the If-
 Modified-Since date, the response is exactly the same as for a
 normal GET.

 3. If the selected representation has not been modified since a
 valid If-Modified-Since date, the server SHOULD return a 304 (Not
 Modified) response.

 The purpose of this feature is to allow efficient updates of cached
 information with a minimum amount of transaction overhead.

 Note: The Range header field modifies the meaning of If-Modified-
 Since; see Section 5.4 of [Part5] for full details.

 Note: If-Modified-Since times are interpreted by the server, whose
 clock might not be synchronized with the client.

 Note: When handling an If-Modified-Since header field, some
 servers will use an exact date comparison function, rather than a
 less-than function, for deciding whether to send a 304 (Not
 Modified) response. To get best results when sending an If-
 Modified-Since header field for cache validation, clients are
 advised to use the exact date string received in a previous Last-

Fielding, et al. Expires February 25, 2012 [Page 17]

Internet-Draft HTTP/1.1, Part 4 August 2011

 Modified header field whenever possible.

 Note: If a client uses an arbitrary date in the If-Modified-Since
 header field instead of a date taken from the Last-Modified header
 field for the same request, the client needs to be aware that this
 date is interpreted in the server's understanding of time.
 Unsynchronized clocks and rounding problems, due to the different
 encodings of time between the client and server, are concerns.
 This includes the possibility of race conditions if the document
 has changed between the time it was first requested and the If-
 Modified-Since date of a subsequent request, and the possibility
 of clock-skew-related problems if the If-Modified-Since date is
 derived from the client's clock without correction to the server's
 clock. Corrections for different time bases between client and
 server are at best approximate due to network latency.

 The result of a request having both an If-Modified-Since header field
 and either an If-Match or an If-Unmodified-Since header fields is
 undefined by this specification.

3.4. If-Unmodified-Since

 The "If-Unmodified-Since" header field MAY be used to make a request
 method conditional by modification date: if the selected
 representation has been modified since the time specified in this
 field, then the server MUST NOT perform the requested operation and
 MUST instead respond with the 412 (Precondition Failed) status code.
 If the selected representation has not been modified since the time
 specified in this field, the server SHOULD perform the request method
 as if the If-Unmodified-Since header field were not present.

 If-Unmodified-Since = HTTP-date

 An example of the field is:

 If-Unmodified-Since: Sat, 29 Oct 1994 19:43:31 GMT

 If the request normally (i.e., without the If-Unmodified-Since header
 field) would result in anything other than a 2xx or 412 status code,
 the If-Unmodified-Since header field SHOULD be ignored.

 If the specified date is invalid, the header field MUST be ignored.

 The result of a request having both an If-Unmodified-Since header
 field and either an If-None-Match or an If-Modified-Since header
 fields is undefined by this specification.

Fielding, et al. Expires February 25, 2012 [Page 18]

Internet-Draft HTTP/1.1, Part 4 August 2011

3.5. If-Range

 The If-Range header field provides a special conditional request
 mechanism that is similar to If-Match and If-Unmodified-Since but
 specific to HTTP range requests. If-Range is defined in Section 5.3
 of [Part5].

4. Status Code Definitions

4.1. 304 Not Modified

 The 304 status code indicates that a conditional GET request has been
 received and would have resulted in a 200 (OK) response if it were
 not for the fact that the condition has evaluated to false. In other
 words, there is no need for the server to transfer a representation
 of the target resource because the client's request indicates that it
 already has a valid representation, as indicated by the 304 response
 header fields, and is therefore redirecting the client to make use of
 that stored representation as if it were the payload of a 200
 response. The 304 response MUST NOT contain a message-body, and thus
 is always terminated by the first empty line after the header fields.

 A 304 response MUST include a Date header field (Section 9.3 of
 [Part1]) unless its omission is required by Section 9.3.1 of [Part1].
 If a 200 response to the same request would have included any of the
 header fields Cache-Control, Content-Location, ETag, Expires, Last-
 Modified, or Vary, then those same header fields MUST be sent in a
 304 response.

 Since the goal of a 304 response is to minimize information transfer
 when the recipient already has one or more cached representations,
 the response SHOULD NOT include representation metadata other than
 the above listed fields unless said metadata exists for the purpose
 of guiding cache updates (e.g., future HTTP extensions).

 If the recipient of a 304 response does not have a cached
 representation corresponding to the entity-tag indicated by the 304
 response, then the recipient MUST NOT use the 304 to update its own
 cache. If this conditional request originated with an outbound
 client, such as a user agent with its own cache sending a conditional
 GET to a shared proxy, then the 304 response MAY be forwarded to the
 outbound client. Otherwise, the recipient MUST disregard the 304
 response and repeat the request without any preconditions.

 If a cache uses a received 304 response to update a cache entry, the
 cache MUST update the entry to reflect any new field values given in
 the response.

Fielding, et al. Expires February 25, 2012 [Page 19]

Internet-Draft HTTP/1.1, Part 4 August 2011

4.2. 412 Precondition Failed

 The 412 status code indicates that one or more preconditions given in
 the request header fields evaluated to false when tested on the
 server. This response code allows the client to place preconditions
 on the current resource state (its current representations and
 metadata) and thus prevent the request method from being applied if
 the target resource is in an unexpected state.

5. IANA Considerations

5.1. Status Code Registration

 The HTTP Status Code Registry located at
 <http://www.iana.org/assignments/http-status-codes> shall be updated
 with the registrations below:

 +-------+---------------------+-------------+
 | Value | Description | Reference |
 +-------+---------------------+-------------+
 | 304 | Not Modified | Section 4.1 |
 | 412 | Precondition Failed | Section 4.2 |
 +-------+---------------------+-------------+

5.2. Header Field Registration

 The Message Header Field Registry located at <http://www.iana.org/
assignments/message-headers/message-header-index.html> shall be

 updated with the permanent registrations below (see [RFC3864]):

 +---------------------+----------+----------+-------------+
 | Header Field Name | Protocol | Status | Reference |
 +---------------------+----------+----------+-------------+
ETag	http	standard	Section 2.3
If-Match	http	standard	Section 3.1
If-Modified-Since	http	standard	Section 3.3
If-None-Match	http	standard	Section 3.2
If-Unmodified-Since	http	standard	Section 3.4
Last-Modified	http	standard	Section 2.2
 +---------------------+----------+----------+-------------+

 The change controller is: "IETF (iesg@ietf.org) - Internet
 Engineering Task Force".

6. Security Considerations

 No additional security considerations have been identified beyond
 those applicable to HTTP in general [Part1].

http://www.iana.org/assignments/http-status-codes
http://www.iana.org/assignments/message-headers/message-header-index.html
http://www.iana.org/assignments/message-headers/message-header-index.html
https://datatracker.ietf.org/doc/html/rfc3864

Fielding, et al. Expires February 25, 2012 [Page 20]

Internet-Draft HTTP/1.1, Part 4 August 2011

7. Acknowledgments

 See Section 12 of [Part1].

8. References

8.1. Normative References

 [Part1] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
 and J. Reschke, Ed., "HTTP/1.1, part 1: URIs, Connections,
 and Message Parsing", draft-ietf-httpbis-p1-messaging-16
 (work in progress), August 2011.

 [Part3] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
 and J. Reschke, Ed., "HTTP/1.1, part 3: Message Payload
 and Content Negotiation", draft-ietf-httpbis-p3-payload-16
 (work in progress), August 2011.

 [Part5] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
 and J. Reschke, Ed., "HTTP/1.1, part 5: Range Requests and
 Partial Responses", draft-ietf-httpbis-p5-range-16 (work
 in progress), August 2011.

 [Part6] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
 Nottingham, M., Ed., and J. Reschke, Ed., "HTTP/1.1, part
 6: Caching", draft-ietf-httpbis-p6-cache-16 (work in
 progress), August 2011.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

8.2. Informative References

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 September 2004.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p1-messaging-16
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p3-payload-16
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p5-range-16
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p6-cache-16
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/bcp90
https://datatracker.ietf.org/doc/html/rfc3864

Fielding, et al. Expires February 25, 2012 [Page 21]

Internet-Draft HTTP/1.1, Part 4 August 2011

 [RFC4918] Dusseault, L., Ed., "HTTP Extensions for Web Distributed
 Authoring and Versioning (WebDAV)", RFC 4918, June 2007.

Appendix A. Changes from RFC 2616

 Allow weak entity-tags in all requests except range requests
 (Sections 2.1 and 3.2).

 Change ABNF productions for header fields to only define the field
 value. (Section 3)

Appendix B. Collected ABNF

 ETag = entity-tag

 HTTP-date = <HTTP-date, defined in [Part1], Section 6.1>

 If-Match = "*" / (*("," OWS) entity-tag *(OWS "," [OWS
 entity-tag]))
 If-Modified-Since = HTTP-date
 If-None-Match = "*" / (*("," OWS) entity-tag *(OWS "," [OWS
 entity-tag]))
 If-Unmodified-Since = HTTP-date

 Last-Modified = HTTP-date

 OWS = <OWS, defined in [Part1], Section 1.2.2>

 entity-tag = [weak] opaque-tag

 opaque-tag = quoted-string

 quoted-string = <quoted-string, defined in [Part1], Section 3.2.3>

 weak = %x57.2F ; W/

 ABNF diagnostics:

 ; ETag defined but not used
 ; If-Match defined but not used
 ; If-Modified-Since defined but not used
 ; If-None-Match defined but not used
 ; If-Unmodified-Since defined but not used
 ; Last-Modified defined but not used

https://datatracker.ietf.org/doc/html/rfc4918
https://datatracker.ietf.org/doc/html/rfc2616

Fielding, et al. Expires February 25, 2012 [Page 22]

Internet-Draft HTTP/1.1, Part 4 August 2011

Appendix C. Change Log (to be removed by RFC Editor before publication)

C.1. Since RFC 2616

 Extracted relevant partitions from [RFC2616].

C.2. Since draft-ietf-httpbis-p4-conditional-00

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/35>: "Normative and
 Informative references"

 Other changes:

 o Move definitions of 304 and 412 condition codes from Part2.

C.3. Since draft-ietf-httpbis-p4-conditional-01

 Ongoing work on ABNF conversion
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

 o Add explicit references to BNF syntax and rules imported from
 other parts of the specification.

C.4. Since draft-ietf-httpbis-p4-conditional-02

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/116>: "Weak ETags on
 non-GET requests"

 Ongoing work on IANA Message Header Field Registration
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/40>):

 o Reference RFC 3984, and update header field registrations for
 header fields defined in this document.

C.5. Since draft-ietf-httpbis-p4-conditional-03

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/71>: "Examples for
 ETag matching"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/124>: "'entity
 value' undefined"

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-00
http://tools.ietf.org/wg/httpbis/trac/ticket/35
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-01
http://tools.ietf.org/wg/httpbis/trac/ticket/36
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-02
http://tools.ietf.org/wg/httpbis/trac/ticket/116
http://tools.ietf.org/wg/httpbis/trac/ticket/40
https://datatracker.ietf.org/doc/html/rfc3984
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-03
http://tools.ietf.org/wg/httpbis/trac/ticket/71
http://tools.ietf.org/wg/httpbis/trac/ticket/124

Fielding, et al. Expires February 25, 2012 [Page 23]

Internet-Draft HTTP/1.1, Part 4 August 2011

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/126>: "bogus 2068
 Date header reference"

C.6. Since draft-ietf-httpbis-p4-conditional-04

 Ongoing work on ABNF conversion
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

 o Use "/" instead of "|" for alternatives.

 o Introduce new ABNF rules for "bad" whitespace ("BWS"), optional
 whitespace ("OWS") and required whitespace ("RWS").

 o Rewrite ABNFs to spell out whitespace rules, factor out header
 field value format definitions.

C.7. Since draft-ietf-httpbis-p4-conditional-05

 Final work on ABNF conversion
 (<http://tools.ietf.org/wg/httpbis/trac/ticket/36>):

 o Add appendix containing collected and expanded ABNF, reorganize
 ABNF introduction.

C.8. Since draft-ietf-httpbis-p4-conditional-06

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/153>: "case-
 sensitivity of etag weakness indicator"

C.9. Since draft-ietf-httpbis-p4-conditional-07

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/116>: "Weak ETags on
 non-GET requests" (If-Match still was defined to require strong
 matching)

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/198>: "move IANA
 registrations for optional status codes"

C.10. Since draft-ietf-httpbis-p4-conditional-08

 No significant changes.

http://tools.ietf.org/wg/httpbis/trac/ticket/126
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-04
http://tools.ietf.org/wg/httpbis/trac/ticket/36
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-05
http://tools.ietf.org/wg/httpbis/trac/ticket/36
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-06
http://tools.ietf.org/wg/httpbis/trac/ticket/153
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-07
http://tools.ietf.org/wg/httpbis/trac/ticket/116
http://tools.ietf.org/wg/httpbis/trac/ticket/198
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-08

Fielding, et al. Expires February 25, 2012 [Page 24]

Internet-Draft HTTP/1.1, Part 4 August 2011

C.11. Since draft-ietf-httpbis-p4-conditional-09

 No significant changes.

C.12. Since draft-ietf-httpbis-p4-conditional-10

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/69>: "Clarify
 'Requested Variant'"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/109>: "Clarify
 entity / representation / variant terminology"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/220>: "consider
 removing the 'changes from 2068' sections"

C.13. Since draft-ietf-httpbis-p4-conditional-11

 None.

C.14. Since draft-ietf-httpbis-p4-conditional-12

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/224>: "Header
 Classification"

C.15. Since draft-ietf-httpbis-p4-conditional-13

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/89>: "If-* and
 entities"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/101>: "Definition of
 validator weakness"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/276>: "untangle
 ABNFs for header fields"

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/269>: "ETags and
 Quotes"

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-09
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-10
http://tools.ietf.org/wg/httpbis/trac/ticket/69
http://tools.ietf.org/wg/httpbis/trac/ticket/109
http://tools.ietf.org/wg/httpbis/trac/ticket/220
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-11
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-12
http://tools.ietf.org/wg/httpbis/trac/ticket/224
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-13
http://tools.ietf.org/wg/httpbis/trac/ticket/89
http://tools.ietf.org/wg/httpbis/trac/ticket/101
http://tools.ietf.org/wg/httpbis/trac/ticket/276
http://tools.ietf.org/wg/httpbis/trac/ticket/269

Fielding, et al. Expires February 25, 2012 [Page 25]

Internet-Draft HTTP/1.1, Part 4 August 2011

C.16. Since draft-ietf-httpbis-p4-conditional-14

 None.

C.17. Since draft-ietf-httpbis-p4-conditional-15

 Closed issues:

 o <http://tools.ietf.org/wg/httpbis/trac/ticket/304>: "If-Range
 should be listed when dicussing contexts where L-M can be
 considered strong"

Index

 3
 304 Not Modified (status code) 19

 4
 412 Precondition Failed (status code) 20

 E
 ETag header field 10

 G
 Grammar
 entity-tag 10
 ETag 10
 If-Match 15
 If-Modified-Since 17
 If-None-Match 16
 If-Unmodified-Since 18
 Last-Modified 8
 opaque-tag 10
 weak 10

 H
 Header Fields
 ETag 10
 If-Match 14
 If-Modified-Since 17
 If-None-Match 15
 If-Unmodified-Since 18
 Last-Modified 8

 I
 If-Match header field 14
 If-Modified-Since header field 17
 If-None-Match header field 15

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-14
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-15
http://tools.ietf.org/wg/httpbis/trac/ticket/304

Fielding, et al. Expires February 25, 2012 [Page 26]

Internet-Draft HTTP/1.1, Part 4 August 2011

 If-Unmodified-Since header field 18

 L
 Last-Modified header field 8

 M
 metadata 6

 S
 selected representation 5
 Status Codes
 304 Not Modified 19
 412 Precondition Failed 20

 V
 validator 6
 strong 6
 weak 6

Authors' Addresses

 Roy T. Fielding (editor)
 Adobe Systems Incorporated
 345 Park Ave
 San Jose, CA 95110
 USA

 EMail: fielding@gbiv.com
 URI: http://roy.gbiv.com/

 Jim Gettys
 Alcatel-Lucent Bell Labs
 21 Oak Knoll Road
 Carlisle, MA 01741
 USA

 EMail: jg@freedesktop.org
 URI: http://gettys.wordpress.com/

http://roy.gbiv.com/
http://gettys.wordpress.com/

Fielding, et al. Expires February 25, 2012 [Page 27]

Internet-Draft HTTP/1.1, Part 4 August 2011

 Jeffrey C. Mogul
 Hewlett-Packard Company
 HP Labs, Large Scale Systems Group
 1501 Page Mill Road, MS 1177
 Palo Alto, CA 94304
 USA

 EMail: JeffMogul@acm.org

 Henrik Frystyk Nielsen
 Microsoft Corporation
 1 Microsoft Way
 Redmond, WA 98052
 USA

 EMail: henrikn@microsoft.com

 Larry Masinter
 Adobe Systems Incorporated
 345 Park Ave
 San Jose, CA 95110
 USA

 EMail: LMM@acm.org
 URI: http://larry.masinter.net/

 Paul J. Leach
 Microsoft Corporation
 1 Microsoft Way
 Redmond, WA 98052

 EMail: paulle@microsoft.com

 Tim Berners-Lee
 World Wide Web Consortium
 MIT Computer Science and Artificial Intelligence Laboratory
 The Stata Center, Building 32
 32 Vassar Street
 Cambridge, MA 02139
 USA

 EMail: timbl@w3.org
 URI: http://www.w3.org/People/Berners-Lee/

http://larry.masinter.net/
http://www.w3.org/People/Berners-Lee/

Fielding, et al. Expires February 25, 2012 [Page 28]

Internet-Draft HTTP/1.1, Part 4 August 2011

 Yves Lafon (editor)
 World Wide Web Consortium
 W3C / ERCIM
 2004, rte des Lucioles
 Sophia-Antipolis, AM 06902
 France

 EMail: ylafon@w3.org
 URI: http://www.raubacapeu.net/people/yves/

 Julian F. Reschke (editor)
 greenbytes GmbH
 Hafenweg 16
 Muenster, NW 48155
 Germany

 Phone: +49 251 2807760
 Fax: +49 251 2807761
 EMail: julian.reschke@greenbytes.de
 URI: http://greenbytes.de/tech/webdav/

http://www.raubacapeu.net/people/yves/
http://greenbytes.de/tech/webdav/

Fielding, et al. Expires February 25, 2012 [Page 29]

