
Network Working Group R. Fielding, Ed.
Internet-Draft Day Software
Obsoletes: 2616 (if approved) J. Gettys
Intended status: Standards Track One Laptop per Child
Expires: August 27, 2008 J. Mogul
 HP
 H. Frystyk
 Microsoft
 L. Masinter
 Adobe Systems
 P. Leach
 Microsoft
 T. Berners-Lee
 W3C/MIT
 Y. Lafon, Ed.
 W3C
 J. Reschke, Ed.
 greenbytes
 February 24, 2008

 HTTP/1.1, part 6: Caching
 draft-ietf-httpbis-p6-cache-02

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 27, 2008.

https://datatracker.ietf.org/doc/pdf/rfc2616
https://datatracker.ietf.org/doc/pdf/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Fielding, et al. Expires August 27, 2008 [Page 1]

Internet-Draft HTTP/1.1, Part 6 February 2008

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Abstract

 The Hypertext Transfer Protocol (HTTP) is an application-level
 protocol for distributed, collaborative, hypermedia information
 systems. HTTP has been in use by the World Wide Web global
 information initiative since 1990. This document is Part 6 of the
 seven-part specification that defines the protocol referred to as
 "HTTP/1.1" and, taken together, obsoletes RFC 2616. Part 6 defines
 requirements on HTTP caches and the associated header fields that
 control cache behavior or indicate cacheable response messages.

Editorial Note (To be removed by RFC Editor)

 Discussion of this draft should take place on the HTTPBIS working
 group mailing list (ietf-http-wg@w3.org). The current issues list is
 at <http://www.tools.ietf.org/wg/httpbis/trac/report/11> and related
 documents (including fancy diffs) can be found at
 <http://www.tools.ietf.org/wg/httpbis/>.

 This draft incorporates those issue resolutions that were either
 collected in the original RFC2616 errata list
 (<http://purl.org/NET/http-errata>), or which were agreed upon on the
 mailing list between October 2006 and November 2007 (as published in
 "draft-lafon-rfc2616bis-03").

https://datatracker.ietf.org/doc/pdf/rfc2616
http://www.tools.ietf.org/wg/httpbis/trac/report/11
http://www.tools.ietf.org/wg/httpbis/
https://datatracker.ietf.org/doc/pdf/rfc2616
http://purl.org/NET/http-errata
https://datatracker.ietf.org/doc/pdf/draft-lafon-rfc2616bis-03

Fielding, et al. Expires August 27, 2008 [Page 2]

Internet-Draft HTTP/1.1, Part 6 February 2008

Table of Contents

 1. Introduction . 5
 1.1. Purpose . 5
 1.2. Terminology . 6
 1.3. Requirements . 7
 2. Notational Conventions and Generic Grammar 8
 3. Overview . 8
 3.1. Cache Correctness . 8
 3.2. Warnings . 9
 3.3. Cache-control Mechanisms 10
 3.4. Explicit User Agent Warnings 10
 3.5. Exceptions to the Rules and Warnings 11
 3.6. Client-controlled Behavior 11
 4. Expiration Model . 12
 4.1. Server-Specified Expiration 12
 4.2. Heuristic Expiration 13
 4.3. Age Calculations . 13
 4.4. Expiration Calculations 15
 4.5. Disambiguating Expiration Values 16
 4.6. Disambiguating Multiple Responses 17
 5. Validation Model . 17
 6. Response Cacheability . 18
 7. Constructing Responses From Caches 19
 7.1. End-to-end and Hop-by-hop Headers 19
 7.2. Non-modifiable Headers 20
 7.3. Combining Headers . 21
 8. Caching Negotiated Responses 22
 9. Shared and Non-Shared Caches 23
 10. Errors or Incomplete Response Cache Behavior 24
 11. Side Effects of GET and HEAD 24
 12. Invalidation After Updates or Deletions 24
 13. Write-Through Mandatory 25
 14. Cache Replacement . 26
 15. History Lists . 26

16. Header Field Definitions 27

 16.1. Age . 27
 16.2. Cache-Control . 27
 16.2.1. What is Cacheable 29
 16.2.2. What May be Stored by Caches 30
 16.2.3. Modifications of the Basic Expiration Mechanism . . . 31
 16.2.4. Cache Revalidation and Reload Controls 33
 16.2.5. No-Transform Directive 35
 16.2.6. Cache Control Extensions 36
 16.3. Expires . 37
 16.4. Pragma . 38
 16.5. Vary . 38
 16.6. Warning . 39

Fielding, et al. Expires August 27, 2008 [Page 3]

Internet-Draft HTTP/1.1, Part 6 February 2008

 17. IANA Considerations . 42
 18. Security Considerations 42
 19. Acknowledgments . 42
 20. References . 42
 20.1. Normative References 42
 20.2. Informative References 44
 Appendix A. Compatibility with Previous Versions 44
 A.1. Changes from RFC 2068 44
 A.2. Changes from RFC 2616 44
 Appendix B. Change Log (to be removed by RFC Editor before
 publication) . 44
 B.1. Since RFC2616 . 45
 B.2. Since draft-ietf-httpbis-p6-cache-00 45
 B.3. Since draft-ietf-httpbis-p6-cache-01 45
 Index . 46
 Authors' Addresses . 48
 Intellectual Property and Copyright Statements 51

https://datatracker.ietf.org/doc/pdf/rfc2068
https://datatracker.ietf.org/doc/pdf/rfc2616
https://datatracker.ietf.org/doc/pdf/rfc2616
https://datatracker.ietf.org/doc/pdf/draft-ietf-httpbis-p6-cache-00
https://datatracker.ietf.org/doc/pdf/draft-ietf-httpbis-p6-cache-01

Fielding, et al. Expires August 27, 2008 [Page 4]

Internet-Draft HTTP/1.1, Part 6 February 2008

1. Introduction

 HTTP is typically used for distributed information systems, where
 performance can be improved by the use of response caches, and
 includes a number of elements intended to make caching work as well
 as possible. Because these elements interact with each other, it is
 useful to describe the caching design of HTTP separately. This
 document defines aspects of HTTP/1.1 related to caching and reusing
 response messages.

1.1. Purpose

 An HTTP cache is a local store of response messages and the subsystem
 that controls its message storage, retrieval, and deletion. A cache
 stores cacheable responses in order to reduce the response time and
 network bandwidth consumption on future, equivalent requests. Any
 client or server may include a cache, though a cache cannot be used
 by a server that is acting as a tunnel.

 Caching would be useless if it did not significantly improve
 performance. The goal of caching in HTTP/1.1 is to reuse a prior
 response message to satisfy a current request. In some cases, the

 existing response can be reused without the need for a network
 request, reducing latency and network round-trips; we use an
 "expiration" mechanism for this purpose (see Section 4). Even when a
 new request is required, it is often possible to reuse all or parts
 of the payload of a prior response to satisfy the request, thereby
 reducing network bandwidth usage; we use a "validation" mechanism for
 this purpose (see Section 5).

 A cache behaves in a "semantically transparent" manner, with respect
 to a particular response, when its use affects neither the requesting
 client nor the origin server, except to improve performance. When a
 cache is semantically transparent, the client receives exactly the
 same response status and payload that it would have received had its
 request been handled directly by the origin server.

 In an ideal world, all interactions with an HTTP cache would be
 semantically transparent. However, for some resources, semantic
 transparency is not always necessary and can be effectively traded
 for the sake of bandwidth scaling, disconnected operation, and high
 availability. HTTP/1.1 allows origin servers, caches, and clients to
 explicitly reduce transparency when necessary. However, because non-
 transparent operation may confuse non-expert users and might be
 incompatible with certain server applications (such as those for
 ordering merchandise), the protocol requires that transparency be
 relaxed

Fielding, et al. Expires August 27, 2008 [Page 5]

Internet-Draft HTTP/1.1, Part 6 February 2008

 o only by an explicit protocol-level request when relaxed by client
 or origin server

 o only with an explicit warning to the end user when relaxed by
 cache or client

 Therefore, HTTP/1.1 provides these important elements:

 1. Protocol features that provide full semantic transparency when
 this is required by all parties.

 2. Protocol features that allow an origin server or user agent to
 explicitly request and control non-transparent operation.

 3. Protocol features that allow a cache to attach warnings to

 responses that do not preserve the requested approximation of
 semantic transparency.

 A basic principle is that it must be possible for the clients to
 detect any potential relaxation of semantic transparency.

 Note: The server, cache, or client implementor might be faced with
 design decisions not explicitly discussed in this specification.
 If a decision might affect semantic transparency, the implementor
 ought to err on the side of maintaining transparency unless a
 careful and complete analysis shows significant benefits in
 breaking transparency.

1.2. Terminology

 This specification uses a number of terms to refer to the roles
 played by participants in, and objects of, HTTP caching.

 cacheable

 A response is cacheable if a cache is allowed to store a copy of
 the response message for use in answering subsequent requests.
 Even when a response is cacheable, there may be additional
 constraints on whether a cache can use the cached copy for a
 particular request.

 first-hand

 A response is first-hand if it comes directly and without
 unnecessary delay from the origin server, perhaps via one or more
 proxies. A response is also first-hand if its validity has just
 been checked directly with the origin server.

Fielding, et al. Expires August 27, 2008 [Page 6]

Internet-Draft HTTP/1.1, Part 6 February 2008

 explicit expiration time

 The time at which the origin server intends that an entity should
 no longer be returned by a cache without further validation.

 heuristic expiration time

 An expiration time assigned by a cache when no explicit expiration

 time is available.

 age

 The age of a response is the time since it was sent by, or
 successfully validated with, the origin server.

 freshness lifetime

 The length of time between the generation of a response and its
 expiration time.

 fresh

 A response is fresh if its age has not yet exceeded its freshness
 lifetime.

 stale

 A response is stale if its age has passed its freshness lifetime.

 validator

 A protocol element (e.g., an entity tag or a Last-Modified time)
 that is used to find out whether a cache entry is an equivalent
 copy of an entity.

1.3. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 An implementation is not compliant if it fails to satisfy one or more
 of the MUST or REQUIRED level requirements for the protocols it
 implements. An implementation that satisfies all the MUST or
 REQUIRED level and all the SHOULD level requirements for its
 protocols is said to be "unconditionally compliant"; one that
 satisfies all the MUST level requirements but not all the SHOULD
 level requirements for its protocols is said to be "conditionally

Fielding, et al. Expires August 27, 2008 [Page 7]

Internet-Draft HTTP/1.1, Part 6 February 2008

 compliant."

https://datatracker.ietf.org/doc/pdf/rfc2119

2. Notational Conventions and Generic Grammar

 This specification uses the ABNF syntax defined in Section 2.1 of
 [Part1] and the core rules defined in Section 2.2 of [Part1]:
 [[abnf.dep: ABNF syntax and basic rules will be adopted from RFC
 5234, see <http://tools.ietf.org/wg/httpbis/trac/ticket/36>.]]

 DIGIT = <DIGIT, defined in [Part1], Section 2.2>
 DQUOTE = <DQUOTE, defined in [Part1], Section 2.2>
 SP = <SP, defined in [Part1], Section 2.2>

 quoted-string = <quoted-string, defined in [Part1], Section 2.2>
 token = <token, defined in [Part1], Section 2.2>

 The ABNF rules below are defined in other parts:

 field-name = <field-name, defined in [Part1], Section 4.2>
 HTTP-date = <HTTP-date, defined in [Part1], Section 3.3.1>
 port = <port, defined in [Part1], Section 3.2.1>
 pseudonym = <pseudonym, defined in [Part1], Section 8.9>
 uri-host = <uri-host, defined in [Part1], Section 3.2.1>

3. Overview

3.1. Cache Correctness

 A correct cache MUST respond to a request with the most up-to-date
 response held by the cache that is appropriate to the request (see
 Sections 4.5, 4.6, and 14) which meets one of the following
 conditions:

 1. It has been checked for equivalence with what the origin server
 would have returned by revalidating the response with the origin
 server (Section 5);

 2. It is "fresh enough" (see Section 4). In the default case, this
 means it meets the least restrictive freshness requirement of the
 client, origin server, and cache (see Section 16.2); if the
 origin server so specifies, it is the freshness requirement of
 the origin server alone. If a stored response is not "fresh
 enough" by the most restrictive freshness requirement of both the
 client and the origin server, in carefully considered
 circumstances the cache MAY still return the response with the

Fielding, et al. Expires August 27, 2008 [Page 8]

https://datatracker.ietf.org/doc/pdf/rfc5234
https://datatracker.ietf.org/doc/pdf/rfc5234
http://tools.ietf.org/wg/httpbis/trac/ticket/36

Internet-Draft HTTP/1.1, Part 6 February 2008

 appropriate Warning header (see Sections 3.5 and 16.6), unless
 such a response is prohibited (e.g., by a "no-store" cache-
 directive, or by a "no-cache" cache-request-directive; see
 Section 16.2).

 3. It is an appropriate 304 (Not Modified), 305 (Use Proxy), or
 error (4xx or 5xx) response message.

 If the cache can not communicate with the origin server, then a
 correct cache SHOULD respond as above if the response can be
 correctly served from the cache; if not it MUST return an error or
 warning indicating that there was a communication failure.

 If a cache receives a response (either an entire response, or a 304
 (Not Modified) response) that it would normally forward to the
 requesting client, and the received response is no longer fresh, the
 cache SHOULD forward it to the requesting client without adding a new
 Warning (but without removing any existing Warning headers). A cache
 SHOULD NOT attempt to revalidate a response simply because that
 response became stale in transit; this might lead to an infinite
 loop. A user agent that receives a stale response without a Warning
 MAY display a warning indication to the user.

3.2. Warnings

 Whenever a cache returns a response that is neither first-hand nor
 "fresh enough" (in the sense of condition 2 in Section 3.1), it MUST
 attach a warning to that effect, using a Warning general-header. The
 Warning header and the currently defined warnings are described in
 Section 16.6. The warning allows clients to take appropriate action.

 Warnings MAY be used for other purposes, both cache-related and
 otherwise. The use of a warning, rather than an error status code,
 distinguish these responses from true failures.

 Warnings are assigned three digit warn-codes. The first digit
 indicates whether the Warning MUST or MUST NOT be deleted from a
 stored cache entry after a successful revalidation:

 1xx Warnings that describe the freshness or revalidation status of
 the response, and so MUST be deleted after a successful
 revalidation. 1xx warn-codes MAY be generated by a cache only when
 validating a cached entry. It MUST NOT be generated by clients.

 2xx Warnings that describe some aspect of the entity body or entity
 headers that is not rectified by a revalidation (for example, a

 lossy compression of the entity bodies) and which MUST NOT be
 deleted after a successful revalidation.

Fielding, et al. Expires August 27, 2008 [Page 9]

Internet-Draft HTTP/1.1, Part 6 February 2008

 See Section 16.6 for the definitions of the codes themselves.

 HTTP/1.0 caches will cache all Warnings in responses, without
 deleting the ones in the first category. Warnings in responses that
 are passed to HTTP/1.0 caches carry an extra warning-date field,
 which prevents a future HTTP/1.1 recipient from believing an
 erroneously cached Warning.

 Warnings also carry a warning text. The text MAY be in any
 appropriate natural language (perhaps based on the client's Accept
 headers), and include an OPTIONAL indication of what character set is
 used.

 Multiple warnings MAY be attached to a response (either by the origin
 server or by a cache), including multiple warnings with the same code
 number. For example, a server might provide the same warning with
 texts in both English and Basque.

 When multiple warnings are attached to a response, it might not be
 practical or reasonable to display all of them to the user. This
 version of HTTP does not specify strict priority rules for deciding
 which warnings to display and in what order, but does suggest some
 heuristics.

3.3. Cache-control Mechanisms

 The basic cache mechanisms in HTTP/1.1 (server-specified expiration
 times and validators) are implicit directives to caches. In some
 cases, a server or client might need to provide explicit directives
 to the HTTP caches. We use the Cache-Control header for this
 purpose.

 The Cache-Control header allows a client or server to transmit a
 variety of directives in either requests or responses. These
 directives typically override the default caching algorithms. As a
 general rule, if there is any apparent conflict between header
 values, the most restrictive interpretation is applied (that is, the
 one that is most likely to preserve semantic transparency). However,
 in some cases, cache-control directives are explicitly specified as

 weakening the approximation of semantic transparency (for example,
 "max-stale" or "public").

 The cache-control directives are described in detail in Section 16.2.

3.4. Explicit User Agent Warnings

 Many user agents make it possible for users to override the basic
 caching mechanisms. For example, the user agent might allow the user

Fielding, et al. Expires August 27, 2008 [Page 10]

Internet-Draft HTTP/1.1, Part 6 February 2008

 to specify that cached entities (even explicitly stale ones) are
 never validated. Or the user agent might habitually add "Cache-
 Control: max-stale=3600" to every request. The user agent SHOULD NOT
 default to either non-transparent behavior, or behavior that results
 in abnormally ineffective caching, but MAY be explicitly configured
 to do so by an explicit action of the user.

 If the user has overridden the basic caching mechanisms, the user
 agent SHOULD explicitly indicate to the user whenever this results in
 the display of information that might not meet the server's
 transparency requirements (in particular, if the displayed entity is
 known to be stale). Since the protocol normally allows the user
 agent to determine if responses are stale or not, this indication
 need only be displayed when this actually happens. The indication
 need not be a dialog box; it could be an icon (for example, a picture
 of a rotting fish) or some other indicator.

 If the user has overridden the caching mechanisms in a way that would
 abnormally reduce the effectiveness of caches, the user agent SHOULD
 continually indicate this state to the user (for example, by a
 display of a picture of currency in flames) so that the user does not
 inadvertently consume excess resources or suffer from excessive
 latency.

3.5. Exceptions to the Rules and Warnings

 In some cases, the operator of a cache MAY choose to configure it to
 return stale responses even when not requested by clients. This
 decision ought not be made lightly, but may be necessary for reasons
 of availability or performance, especially when the cache is poorly
 connected to the origin server. Whenever a cache returns a stale
 response, it MUST mark it as such (using a Warning header) enabling

 the client software to alert the user that there might be a potential
 problem.

 It also allows the user agent to take steps to obtain a first-hand or
 fresh response. For this reason, a cache SHOULD NOT return a stale
 response if the client explicitly requests a first-hand or fresh one,
 unless it is impossible to comply for technical or policy reasons.

3.6. Client-controlled Behavior

 While the origin server (and to a lesser extent, intermediate caches,
 by their contribution to the age of a response) are the primary
 source of expiration information, in some cases the client might need
 to control a cache's decision about whether to return a cached
 response without validating it. Clients do this using several
 directives of the Cache-Control header.

Fielding, et al. Expires August 27, 2008 [Page 11]

Internet-Draft HTTP/1.1, Part 6 February 2008

 A client's request MAY specify the maximum age it is willing to
 accept of an unvalidated response; specifying a value of zero forces
 the cache(s) to revalidate all responses. A client MAY also specify
 the minimum time remaining before a response expires. Both of these
 options increase constraints on the behavior of caches, and so cannot
 further relax the cache's approximation of semantic transparency.

 A client MAY also specify that it will accept stale responses, up to
 some maximum amount of staleness. This loosens the constraints on
 the caches, and so might violate the origin server's specified
 constraints on semantic transparency, but might be necessary to
 support disconnected operation, or high availability in the face of
 poor connectivity.

4. Expiration Model

4.1. Server-Specified Expiration

 HTTP caching works best when caches can entirely avoid making
 requests to the origin server. The primary mechanism for avoiding
 requests is for an origin server to provide an explicit expiration
 time in the future, indicating that a response MAY be used to satisfy
 subsequent requests. In other words, a cache can return a fresh
 response without first contacting the server.

 Our expectation is that servers will assign future explicit
 expiration times to responses in the belief that the entity is not
 likely to change, in a semantically significant way, before the
 expiration time is reached. This normally preserves semantic
 transparency, as long as the server's expiration times are carefully
 chosen.

 The expiration mechanism applies only to responses taken from a cache
 and not to first-hand responses forwarded immediately to the
 requesting client.

 If an origin server wishes to force a semantically transparent cache
 to validate every request, it MAY assign an explicit expiration time
 in the past. This means that the response is always stale, and so
 the cache SHOULD validate it before using it for subsequent requests.
 See Section 16.2.4 for a more restrictive way to force revalidation.

 If an origin server wishes to force any HTTP/1.1 cache, no matter how
 it is configured, to validate every request, it SHOULD use the "must-
 revalidate" cache-control directive (see Section 16.2).

 Servers specify explicit expiration times using either the Expires

Fielding, et al. Expires August 27, 2008 [Page 12]

Internet-Draft HTTP/1.1, Part 6 February 2008

 header, or the max-age directive of the Cache-Control header.

 An expiration time cannot be used to force a user agent to refresh
 its display or reload a resource; its semantics apply only to caching
 mechanisms, and such mechanisms need only check a resource's
 expiration status when a new request for that resource is initiated.
 See Section 15 for an explanation of the difference between caches
 and history mechanisms.

4.2. Heuristic Expiration

 Since origin servers do not always provide explicit expiration times,
 HTTP caches typically assign heuristic expiration times, employing
 algorithms that use other header values (such as the Last-Modified
 time) to estimate a plausible expiration time. The HTTP/1.1
 specification does not provide specific algorithms, but does impose
 worst-case constraints on their results. Since heuristic expiration
 times might compromise semantic transparency, they ought to be used

 cautiously, and we encourage origin servers to provide explicit
 expiration times as much as possible.

4.3. Age Calculations

 In order to know if a cached entry is fresh, a cache needs to know if
 its age exceeds its freshness lifetime. We discuss how to calculate
 the latter in Section 4.4; this section describes how to calculate
 the age of a response or cache entry.

 In this discussion, we use the term "now" to mean "the current value
 of the clock at the host performing the calculation." Hosts that use
 HTTP, but especially hosts running origin servers and caches, SHOULD
 use NTP [RFC1305] or some similar protocol to synchronize their
 clocks to a globally accurate time standard.

 HTTP/1.1 requires origin servers to send a Date header, if possible,
 with every response, giving the time at which the response was
 generated (see Section 8.3 of [Part1]). We use the term "date_value"
 to denote the value of the Date header, in a form appropriate for
 arithmetic operations.

 HTTP/1.1 uses the Age response-header to convey the estimated age of
 the response message when obtained from a cache. The Age field value
 is the cache's estimate of the amount of time since the response was
 generated or revalidated by the origin server.

 In essence, the Age value is the sum of the time that the response
 has been resident in each of the caches along the path from the
 origin server, plus the amount of time it has been in transit along

Fielding, et al. Expires August 27, 2008 [Page 13]

Internet-Draft HTTP/1.1, Part 6 February 2008

 network paths.

 We use the term "age_value" to denote the value of the Age header, in
 a form appropriate for arithmetic operations.

 A response's age can be calculated in two entirely independent ways:

 1. now minus date_value, if the local clock is reasonably well
 synchronized to the origin server's clock. If the result is
 negative, the result is replaced by zero.

https://datatracker.ietf.org/doc/pdf/rfc1305

 2. age_value, if all of the caches along the response path implement
 HTTP/1.1.

 Given that we have two independent ways to compute the age of a
 response when it is received, we can combine these as

 corrected_received_age = max(now - date_value, age_value)

 and as long as we have either nearly synchronized clocks or all-
 HTTP/1.1 paths, one gets a reliable (conservative) result.

 Because of network-imposed delays, some significant interval might
 pass between the time that a server generates a response and the time
 it is received at the next outbound cache or client. If uncorrected,
 this delay could result in improperly low ages.

 Because the request that resulted in the returned Age value must have
 been initiated prior to that Age value's generation, we can correct
 for delays imposed by the network by recording the time at which the
 request was initiated. Then, when an Age value is received, it MUST
 be interpreted relative to the time the request was initiated, not
 the time that the response was received. This algorithm results in
 conservative behavior no matter how much delay is experienced. So,
 we compute:

 corrected_initial_age = corrected_received_age
 + (now - request_time)

 where "request_time" is the time (according to the local clock) when
 the request that elicited this response was sent.

 Summary of age calculation algorithm, when a cache receives a
 response:

Fielding, et al. Expires August 27, 2008 [Page 14]

Internet-Draft HTTP/1.1, Part 6 February 2008

 /*
 * age_value
 * is the value of Age: header received by the cache with
 * this response.

 * date_value
 * is the value of the origin server's Date: header
 * request_time
 * is the (local) time when the cache made the request
 * that resulted in this cached response
 * response_time
 * is the (local) time when the cache received the
 * response
 * now
 * is the current (local) time
 */

 apparent_age = max(0, response_time - date_value);
 corrected_received_age = max(apparent_age, age_value);
 response_delay = response_time - request_time;
 corrected_initial_age = corrected_received_age + response_delay;
 resident_time = now - response_time;
 current_age = corrected_initial_age + resident_time;

 The current_age of a cache entry is calculated by adding the amount
 of time (in seconds) since the cache entry was last validated by the
 origin server to the corrected_initial_age. When a response is
 generated from a cache entry, the cache MUST include a single Age
 header field in the response with a value equal to the cache entry's
 current_age.

 The presence of an Age header field in a response implies that a
 response is not first-hand. However, the converse is not true, since
 the lack of an Age header field in a response does not imply that the
 response is first-hand unless all caches along the request path are
 compliant with HTTP/1.1 (i.e., older HTTP caches did not implement
 the Age header field).

4.4. Expiration Calculations

 In order to decide whether a response is fresh or stale, we need to
 compare its freshness lifetime to its age. The age is calculated as
 described in Section 4.3; this section describes how to calculate the
 freshness lifetime, and to determine if a response has expired. In
 the discussion below, the values can be represented in any form
 appropriate for arithmetic operations.

 We use the term "expires_value" to denote the value of the Expires
 header. We use the term "max_age_value" to denote an appropriate

Fielding, et al. Expires August 27, 2008 [Page 15]

Internet-Draft HTTP/1.1, Part 6 February 2008

 value of the number of seconds carried by the "max-age" directive of
 the Cache-Control header in a response (see Section 16.2.3).

 The max-age directive takes priority over Expires, so if max-age is
 present in a response, the calculation is simply:

 freshness_lifetime = max_age_value

 Otherwise, if Expires is present in the response, the calculation is:

 freshness_lifetime = expires_value - date_value

 Note that neither of these calculations is vulnerable to clock skew,
 since all of the information comes from the origin server.

 If none of Expires, Cache-Control: max-age, or Cache-Control:
 s-maxage (see Section 16.2.3) appears in the response, and the
 response does not include other restrictions on caching, the cache
 MAY compute a freshness lifetime using a heuristic. The cache MUST
 attach Warning 113 to any response whose age is more than 24 hours if
 such warning has not already been added.

 Also, if the response does have a Last-Modified time, the heuristic
 expiration value SHOULD be no more than some fraction of the interval
 since that time. A typical setting of this fraction might be 10%.

 The calculation to determine if a response has expired is quite
 simple:

 response_is_fresh = (freshness_lifetime > current_age)

4.5. Disambiguating Expiration Values

 Because expiration values are assigned optimistically, it is possible
 for two caches to contain fresh values for the same resource that are
 different.

 If a client performing a retrieval receives a non-first-hand response
 for a request that was already fresh in its own cache, and the Date
 header in its existing cache entry is newer than the Date on the new
 response, then the client MAY ignore the response. If so, it MAY
 retry the request with a "Cache-Control: max-age=0" directive (see
 Section 16.2), to force a check with the origin server.

 If a cache has two fresh responses for the same representation with
 different validators, it MUST use the one with the more recent Date
 header. This situation might arise because the cache is pooling

 responses from other caches, or because a client has asked for a

Fielding, et al. Expires August 27, 2008 [Page 16]

Internet-Draft HTTP/1.1, Part 6 February 2008

 reload or a revalidation of an apparently fresh cache entry.

4.6. Disambiguating Multiple Responses

 Because a client might be receiving responses via multiple paths, so
 that some responses flow through one set of caches and other
 responses flow through a different set of caches, a client might
 receive responses in an order different from that in which the origin
 server sent them. We would like the client to use the most recently
 generated response, even if older responses are still apparently
 fresh.

 Neither the entity tag nor the expiration value can impose an
 ordering on responses, since it is possible that a later response
 intentionally carries an earlier expiration time. The Date values
 are ordered to a granularity of one second.

 When a client tries to revalidate a cache entry, and the response it
 receives contains a Date header that appears to be older than the one
 for the existing entry, then the client SHOULD repeat the request
 unconditionally, and include

 Cache-Control: max-age=0

 to force any intermediate caches to validate their copies directly
 with the origin server, or

 Cache-Control: no-cache

 to force any intermediate caches to obtain a new copy from the origin
 server.

 If the Date values are equal, then the client MAY use either response
 (or MAY, if it is being extremely prudent, request a new response).
 Servers MUST NOT depend on clients being able to choose
 deterministically between responses generated during the same second,
 if their expiration times overlap.

5. Validation Model

 When a cache has a stale entry that it would like to use as a
 response to a client's request, it first has to check with the origin
 server (or possibly an intermediate cache with a fresh response) to
 see if its cached entry is still usable. We call this "validating"
 the cache entry.

 HTTP's conditional request mechanism, defined in [Part4], is used to

Fielding, et al. Expires August 27, 2008 [Page 17]

Internet-Draft HTTP/1.1, Part 6 February 2008

 avoid retransmitting the response payload when the cached entry is
 valid. When a cached response includes one or more "cache
 validators," such as the field values of an ETag or Last-Modified
 header field, then a validating GET request SHOULD be made
 conditional to those field values. The server checks the conditional
 request's validator against the current state of the requested
 resource and, if they match, the server responds with a 304 (Not
 Modified) status code to indicate that the cached response can be
 refreshed and reused without retransmitting the response payload. If
 the validator does not match the current state of the requested
 resource, then the server returns a full response, including payload,
 so that the request can be satisfied and the cache entry supplanted
 without the need for an additional network round-trip.

6. Response Cacheability

 Unless specifically constrained by a cache-control (Section 16.2)
 directive, a caching system MAY always store a successful response
 (see Section 10) as a cache entry, MAY return it without validation
 if it is fresh, and MAY return it after successful validation. If
 there is neither a cache validator nor an explicit expiration time
 associated with a response, we do not expect it to be cached, but
 certain caches MAY violate this expectation (for example, when little
 or no network connectivity is available). A client can usually
 detect that such a response was taken from a cache by comparing the
 Date header to the current time.

 Note: some HTTP/1.0 caches are known to violate this expectation
 without providing any Warning.

 However, in some cases it might be inappropriate for a cache to
 retain an entity, or to return it in response to a subsequent

 request. This might be because absolute semantic transparency is
 deemed necessary by the service author, or because of security or
 privacy considerations. Certain cache-control directives are
 therefore provided so that the server can indicate that certain
 resource entities, or portions thereof, are not to be cached
 regardless of other considerations.

 Note that Section 4.1 of [Part7] normally prevents a shared cache
 from saving and returning a response to a previous request if that
 request included an Authorization header.

 A response received with a status code of 200, 203, 206, 300, 301 or
 410 MAY be stored by a cache and used in reply to a subsequent
 request, subject to the expiration mechanism, unless a cache-control
 directive prohibits caching. However, a cache that does not support

Fielding, et al. Expires August 27, 2008 [Page 18]

Internet-Draft HTTP/1.1, Part 6 February 2008

 the Range and Content-Range headers MUST NOT cache 206 (Partial
 Content) responses.

 A response received with any other status code (e.g. status codes 302
 and 307) MUST NOT be returned in a reply to a subsequent request
 unless there are cache-control directives or another header(s) that
 explicitly allow it. For example, these include the following: an
 Expires header (Section 16.3); a "max-age", "s-maxage", "must-
 revalidate", "proxy-revalidate", "public" or "private" cache-control
 directive (Section 16.2).

7. Constructing Responses From Caches

 The purpose of an HTTP cache is to store information received in
 response to requests for use in responding to future requests. In
 many cases, a cache simply returns the appropriate parts of a
 response to the requester. However, if the cache holds a cache entry
 based on a previous response, it might have to combine parts of a new
 response with what is held in the cache entry.

7.1. End-to-end and Hop-by-hop Headers

 For the purpose of defining the behavior of caches and non-caching
 proxies, we divide HTTP headers into two categories:

 o End-to-end headers, which are transmitted to the ultimate
 recipient of a request or response. End-to-end headers in
 responses MUST be stored as part of a cache entry and MUST be
 transmitted in any response formed from a cache entry.

 o Hop-by-hop headers, which are meaningful only for a single
 transport-level connection, and are not stored by caches or
 forwarded by proxies.

 The following HTTP/1.1 headers are hop-by-hop headers:

 o Connection

 o Keep-Alive

 o Proxy-Authenticate

 o Proxy-Authorization

 o TE

Fielding, et al. Expires August 27, 2008 [Page 19]

Internet-Draft HTTP/1.1, Part 6 February 2008

 o Trailer

 o Transfer-Encoding

 o Upgrade

 All other headers defined by HTTP/1.1 are end-to-end headers.

 Other hop-by-hop headers MUST be listed in a Connection header
 (Section 8.1 of [Part1]).

7.2. Non-modifiable Headers

 Some features of HTTP/1.1, such as Digest Authentication, depend on
 the value of certain end-to-end headers. A transparent proxy SHOULD
 NOT modify an end-to-end header unless the definition of that header
 requires or specifically allows that.

 A transparent proxy MUST NOT modify any of the following fields in a

 request or response, and it MUST NOT add any of these fields if not
 already present:

 o Content-Location

 o Content-MD5

 o ETag

 o Last-Modified

 A transparent proxy MUST NOT modify any of the following fields in a
 response:

 o Expires

 but it MAY add any of these fields if not already present. If an
 Expires header is added, it MUST be given a field-value identical to
 that of the Date header in that response.

 A proxy MUST NOT modify or add any of the following fields in a
 message that contains the no-transform cache-control directive, or in
 any request:

 o Content-Encoding

 o Content-Range

Fielding, et al. Expires August 27, 2008 [Page 20]

Internet-Draft HTTP/1.1, Part 6 February 2008

 o Content-Type

 A non-transparent proxy MAY modify or add these fields to a message
 that does not include no-transform, but if it does so, it MUST add a
 Warning 214 (Transformation applied) if one does not already appear
 in the message (see Section 16.6).

 Warning: unnecessary modification of end-to-end headers might
 cause authentication failures if stronger authentication
 mechanisms are introduced in later versions of HTTP. Such
 authentication mechanisms MAY rely on the values of header fields
 not listed here.

 The Content-Length field of a request or response is added or deleted
 according to the rules in Section 4.4 of [Part1]. A transparent
 proxy MUST preserve the entity-length (Section 4.2.2 of [Part3]) of
 the entity-body, although it MAY change the transfer-length (Section
 4.4 of [Part1]).

7.3. Combining Headers

 When a cache makes a validating request to a server, and the server
 provides a 304 (Not Modified) response or a 206 (Partial Content)
 response, the cache then constructs a response to send to the
 requesting client.

 If the status code is 304 (Not Modified), the cache uses the entity-
 body stored in the cache entry as the entity-body of this outgoing
 response. If the status code is 206 (Partial Content) and the ETag
 or Last-Modified headers match exactly, the cache MAY combine the
 contents stored in the cache entry with the new contents received in
 the response and use the result as the entity-body of this outgoing
 response, (see Section 5 of [Part5]).

 The end-to-end headers stored in the cache entry are used for the
 constructed response, except that

 o any stored Warning headers with warn-code 1xx (see Section 16.6)
 MUST be deleted from the cache entry and the forwarded response.

 o any stored Warning headers with warn-code 2xx MUST be retained in
 the cache entry and the forwarded response.

 o any end-to-end headers provided in the 304 or 206 response MUST
 replace the corresponding headers from the cache entry.

 Unless the cache decides to remove the cache entry, it MUST also
 replace the end-to-end headers stored with the cache entry with

Fielding, et al. Expires August 27, 2008 [Page 21]

Internet-Draft HTTP/1.1, Part 6 February 2008

 corresponding headers received in the incoming response, except for
 Warning headers as described immediately above. If a header field-
 name in the incoming response matches more than one header in the
 cache entry, all such old headers MUST be replaced.

 In other words, the set of end-to-end headers received in the
 incoming response overrides all corresponding end-to-end headers
 stored with the cache entry (except for stored Warning headers with
 warn-code 1xx, which are deleted even if not overridden).

 Note: this rule allows an origin server to use a 304 (Not
 Modified) or a 206 (Partial Content) response to update any header
 associated with a previous response for the same entity or sub-
 ranges thereof, although it might not always be meaningful or
 correct to do so. This rule does not allow an origin server to
 use a 304 (Not Modified) or a 206 (Partial Content) response to
 entirely delete a header that it had provided with a previous
 response.

8. Caching Negotiated Responses

 Use of server-driven content negotiation (Section 5.1 of [Part3]), as
 indicated by the presence of a Vary header field in a response,
 alters the conditions and procedure by which a cache can use the
 response for subsequent requests. See Section 16.5 for use of the
 Vary header field by servers.

 A server SHOULD use the Vary header field to inform a cache of what
 request-header fields were used to select among multiple
 representations of a cacheable response subject to server-driven
 negotiation. The set of header fields named by the Vary field value
 is known as the "selecting" request-headers.

 When the cache receives a subsequent request whose Request-URI
 specifies one or more cache entries including a Vary header field,
 the cache MUST NOT use such a cache entry to construct a response to
 the new request unless all of the selecting request-headers present
 in the new request match the corresponding stored request-headers in
 the original request.

 The selecting request-headers from two requests are defined to match
 if and only if the selecting request-headers in the first request can
 be transformed to the selecting request-headers in the second request
 by adding or removing linear white space (LWS) at places where this
 is allowed by the corresponding BNF, and/or combining multiple
 message-header fields with the same field name following the rules
 about message headers in Section 4.2 of [Part1].

Fielding, et al. Expires August 27, 2008 [Page 22]

Internet-Draft HTTP/1.1, Part 6 February 2008

 A Vary header field-value of "*" always fails to match and subsequent
 requests on that resource can only be properly interpreted by the
 origin server.

 If the selecting request header fields for the cached entry do not
 match the selecting request header fields of the new request, then
 the cache MUST NOT use a cached entry to satisfy the request unless
 it first relays the new request to the origin server in a conditional
 request and the server responds with 304 (Not Modified), including an
 entity tag or Content-Location that indicates the entity to be used.

 If an entity tag was assigned to a cached representation, the
 forwarded request SHOULD be conditional and include the entity tags
 in an If-None-Match header field from all its cache entries for the
 resource. This conveys to the server the set of entities currently
 held by the cache, so that if any one of these entities matches the
 requested entity, the server can use the ETag header field in its 304
 (Not Modified) response to tell the cache which entry is appropriate.
 If the entity-tag of the new response matches that of an existing
 entry, the new response SHOULD be used to update the header fields of
 the existing entry, and the result MUST be returned to the client.

 If any of the existing cache entries contains only partial content
 for the associated entity, its entity-tag SHOULD NOT be included in
 the If-None-Match header field unless the request is for a range that
 would be fully satisfied by that entry.

 If a cache receives a successful response whose Content-Location
 field matches that of an existing cache entry for the same Request-
 URI, whose entity-tag differs from that of the existing entry, and
 whose Date is more recent than that of the existing entry, the
 existing entry SHOULD NOT be returned in response to future requests
 and SHOULD be deleted from the cache.

9. Shared and Non-Shared Caches

 For reasons of security and privacy, it is necessary to make a
 distinction between "shared" and "non-shared" caches. A non-shared
 cache is one that is accessible only to a single user. Accessibility
 in this case SHOULD be enforced by appropriate security mechanisms.
 All other caches are considered to be "shared." Other sections of
 this specification place certain constraints on the operation of
 shared caches in order to prevent loss of privacy or failure of
 access controls.

Fielding, et al. Expires August 27, 2008 [Page 23]

Internet-Draft HTTP/1.1, Part 6 February 2008

10. Errors or Incomplete Response Cache Behavior

 A cache that receives an incomplete response (for example, with fewer
 bytes of data than specified in a Content-Length header) MAY store
 the response. However, the cache MUST treat this as a partial
 response. Partial responses MAY be combined as described in Section
 5 of [Part5]; the result might be a full response or might still be
 partial. A cache MUST NOT return a partial response to a client
 without explicitly marking it as such, using the 206 (Partial
 Content) status code. A cache MUST NOT return a partial response
 using a status code of 200 (OK).

 If a cache receives a 5xx response while attempting to revalidate an
 entry, it MAY either forward this response to the requesting client,
 or act as if the server failed to respond. In the latter case, it
 MAY return a previously received response unless the cached entry
 includes the "must-revalidate" cache-control directive (see
 Section 16.2).

11. Side Effects of GET and HEAD

 Unless the origin server explicitly prohibits the caching of their
 responses, the application of GET and HEAD methods to any resources
 SHOULD NOT have side effects that would lead to erroneous behavior if
 these responses are taken from a cache. They MAY still have side
 effects, but a cache is not required to consider such side effects in
 its caching decisions. Caches are always expected to observe an
 origin server's explicit restrictions on caching.

 We note one exception to this rule: since some applications have
 traditionally used GET and HEAD requests with URLs containing a query
 part to perform operations with significant side effects, caches MUST
 NOT treat responses to such URIs as fresh unless the server provides
 an explicit expiration time. This specifically means that responses
 from HTTP/1.0 servers for such URIs SHOULD NOT be taken from a cache.
 See Section 8.1.1 of [Part2] for related information.

12. Invalidation After Updates or Deletions

 The effect of certain methods performed on a resource at the origin

 server might cause one or more existing cache entries to become non-
 transparently invalid. That is, although they might continue to be
 "fresh," they do not accurately reflect what the origin server would
 return for a new request on that resource.

 There is no way for HTTP to guarantee that all such cache entries are

Fielding, et al. Expires August 27, 2008 [Page 24]

Internet-Draft HTTP/1.1, Part 6 February 2008

 marked invalid. For example, the request that caused the change at
 the origin server might not have gone through the proxy where a cache
 entry is stored. However, several rules help reduce the likelihood
 of erroneous behavior.

 In this section, the phrase "invalidate an entity" means that the
 cache will either remove all instances of that entity from its
 storage, or will mark these as "invalid" and in need of a mandatory
 revalidation before they can be returned in response to a subsequent
 request.

 Some HTTP methods MUST cause a cache to invalidate an entity. This
 is either the entity referred to by the Request-URI, or by the
 Location or Content-Location headers (if present). These methods
 are:

 o PUT

 o DELETE

 o POST

 An invalidation based on the URI in a Location or Content-Location
 header MUST NOT be performed if the host part of that URI differs
 from the host part in the Request-URI. This helps prevent denial of
 service attacks.

 A cache that passes through requests for methods it does not
 understand SHOULD invalidate any entities referred to by the Request-
 URI.

13. Write-Through Mandatory

 All methods that might be expected to cause modifications to the

 origin server's resources MUST be written through to the origin
 server. This currently includes all methods except for GET and HEAD.
 A cache MUST NOT reply to such a request from a client before having
 transmitted the request to the inbound server, and having received a
 corresponding response from the inbound server. This does not
 prevent a proxy cache from sending a 100 (Continue) response before
 the inbound server has sent its final reply.

 The alternative (known as "write-back" or "copy-back" caching) is not
 allowed in HTTP/1.1, due to the difficulty of providing consistent
 updates and the problems arising from server, cache, or network
 failure prior to write-back.

Fielding, et al. Expires August 27, 2008 [Page 25]

Internet-Draft HTTP/1.1, Part 6 February 2008

14. Cache Replacement

 If a new cacheable (see Sections 16.2.2, 4.5, 4.6 and 10) response is
 received from a resource while any existing responses for the same
 resource are cached, the cache SHOULD use the new response to reply
 to the current request. It MAY insert it into cache storage and MAY,
 if it meets all other requirements, use it to respond to any future
 requests that would previously have caused the old response to be
 returned. If it inserts the new response into cache storage the
 rules in Section 7.3 apply.

 Note: a new response that has an older Date header value than
 existing cached responses is not cacheable.

15. History Lists

 User agents often have history mechanisms, such as "Back" buttons and
 history lists, which can be used to redisplay an entity retrieved
 earlier in a session.

 History mechanisms and caches are different. In particular history
 mechanisms SHOULD NOT try to show a semantically transparent view of
 the current state of a resource. Rather, a history mechanism is
 meant to show exactly what the user saw at the time when the resource
 was retrieved.

 By default, an expiration time does not apply to history mechanisms.

 If the entity is still in storage, a history mechanism SHOULD display
 it even if the entity has expired, unless the user has specifically
 configured the agent to refresh expired history documents.

 This is not to be construed to prohibit the history mechanism from
 telling the user that a view might be stale.

 Note: if history list mechanisms unnecessarily prevent users from
 viewing stale resources, this will tend to force service authors
 to avoid using HTTP expiration controls and cache controls when
 they would otherwise like to. Service authors may consider it
 important that users not be presented with error messages or
 warning messages when they use navigation controls (such as BACK)
 to view previously fetched resources. Even though sometimes such
 resources ought not be cached, or ought to expire quickly, user
 interface considerations may force service authors to resort to
 other means of preventing caching (e.g. "once-only" URLs) in order
 not to suffer the effects of improperly functioning history
 mechanisms.

Fielding, et al. Expires August 27, 2008 [Page 26]

Internet-Draft HTTP/1.1, Part 6 February 2008

16. Header Field Definitions

 This section defines the syntax and semantics of HTTP/1.1 header
 fields related to caching.

 For entity-header fields, both sender and recipient refer to either
 the client or the server, depending on who sends and who receives the
 entity.

16.1. Age

 The Age response-header field conveys the sender's estimate of the
 amount of time since the response (or its revalidation) was generated
 at the origin server. A cached response is "fresh" if its age does
 not exceed its freshness lifetime. Age values are calculated as
 specified in Section 4.3.

 Age = "Age" ":" age-value
 age-value = delta-seconds

 Age values are non-negative decimal integers, representing time in

 seconds.

 delta-seconds = 1*DIGIT

 If a cache receives a value larger than the largest positive integer
 it can represent, or if any of its age calculations overflows, it
 MUST transmit an Age header with a value of 2147483648 (2^31). An
 HTTP/1.1 server that includes a cache MUST include an Age header
 field in every response generated from its own cache. Caches SHOULD
 use an arithmetic type of at least 31 bits of range.

16.2. Cache-Control

 The Cache-Control general-header field is used to specify directives
 that MUST be obeyed by all caching mechanisms along the request/
 response chain. The directives specify behavior intended to prevent
 caches from adversely interfering with the request or response.
 These directives typically override the default caching algorithms.
 Cache directives are unidirectional in that the presence of a
 directive in a request does not imply that the same directive is to
 be given in the response.

 Note that HTTP/1.0 caches might not implement Cache-Control and
 might only implement Pragma: no-cache (see Section 16.4).

 Cache directives MUST be passed through by a proxy or gateway
 application, regardless of their significance to that application,

Fielding, et al. Expires August 27, 2008 [Page 27]

Internet-Draft HTTP/1.1, Part 6 February 2008

 since the directives might be applicable to all recipients along the
 request/response chain. It is not possible to specify a cache-
 directive for a specific cache.

 Cache-Control = "Cache-Control" ":" 1#cache-directive

 cache-directive = cache-request-directive
 | cache-response-directive

 cache-request-directive =
 "no-cache" ; Section 16.2.1
 | "no-store" ; Section 16.2.2
 | "max-age" "=" delta-seconds ; Section 16.2.3, 16.2.4
 | "max-stale" ["=" delta-seconds] ; Section 16.2.3

 | "min-fresh" "=" delta-seconds ; Section 16.2.3
 | "no-transform" ; Section 16.2.5
 | "only-if-cached" ; Section 16.2.4
 | cache-extension ; Section 16.2.6

 cache-response-directive =
 "public" ; Section 16.2.1
 | "private" ["=" DQUOTE 1#field-name DQUOTE] ; Section 16.2.1
 | "no-cache" ["=" DQUOTE 1#field-name DQUOTE] ; Section 16.2.1
 | "no-store" ; Section 16.2.2
 | "no-transform" ; Section 16.2.5
 | "must-revalidate" ; Section 16.2.4
 | "proxy-revalidate" ; Section 16.2.4
 | "max-age" "=" delta-seconds ; Section 16.2.3
 | "s-maxage" "=" delta-seconds ; Section 16.2.3
 | cache-extension ; Section 16.2.6

 cache-extension = token ["=" (token | quoted-string)]

 When a directive appears without any 1#field-name parameter, the
 directive applies to the entire request or response. When such a
 directive appears with a 1#field-name parameter, it applies only to
 the named field or fields, and not to the rest of the request or
 response. This mechanism supports extensibility; implementations of
 future versions of HTTP might apply these directives to header fields
 not defined in HTTP/1.1.

 The cache-control directives can be broken down into these general
 categories:

 o Restrictions on what are cacheable; these may only be imposed by
 the origin server.

Fielding, et al. Expires August 27, 2008 [Page 28]

Internet-Draft HTTP/1.1, Part 6 February 2008

 o Restrictions on what may be stored by a cache; these may be
 imposed by either the origin server or the user agent.

 o Modifications of the basic expiration mechanism; these may be
 imposed by either the origin server or the user agent.

 o Controls over cache revalidation and reload; these may only be

 imposed by a user agent.

 o Control over transformation of entities.

 o Extensions to the caching system.

16.2.1. What is Cacheable

 By default, a response is cacheable if the requirements of the
 request method, request header fields, and the response status
 indicate that it is cacheable. Section 6 summarizes these defaults
 for cacheability. The following Cache-Control response directives
 allow an origin server to override the default cacheability of a
 response:

 public

 Indicates that the response MAY be cached by any cache, even if it
 would normally be non-cacheable or cacheable only within a non-
 shared cache. (See also Authorization, Section 4.1 of [Part7],
 for additional details.)

 private

 Indicates that all or part of the response message is intended for
 a single user and MUST NOT be cached by a shared cache. This
 allows an origin server to state that the specified parts of the
 response are intended for only one user and are not a valid
 response for requests by other users. A private (non-shared)
 cache MAY cache the response.

 Note: This usage of the word private only controls where the
 response may be cached, and cannot ensure the privacy of the
 message content.

 no-cache

 If the no-cache directive does not specify a field-name, then a
 cache MUST NOT use the response to satisfy a subsequent request
 without successful revalidation with the origin server. This
 allows an origin server to prevent caching even by caches that

Fielding, et al. Expires August 27, 2008 [Page 29]

Internet-Draft HTTP/1.1, Part 6 February 2008

 have been configured to return stale responses to client requests.

 If the no-cache directive does specify one or more field-names,
 then a cache MAY use the response to satisfy a subsequent request,
 subject to any other restrictions on caching. However, the
 specified field-name(s) MUST NOT be sent in the response to a
 subsequent request without successful revalidation with the origin
 server. This allows an origin server to prevent the re-use of
 certain header fields in a response, while still allowing caching
 of the rest of the response.

 Note: Most HTTP/1.0 caches will not recognize or obey this
 directive.

16.2.2. What May be Stored by Caches

 no-store

 The purpose of the no-store directive is to prevent the
 inadvertent release or retention of sensitive information (for
 example, on backup tapes). The no-store directive applies to the
 entire message, and MAY be sent either in a response or in a
 request. If sent in a request, a cache MUST NOT store any part of
 either this request or any response to it. If sent in a response,
 a cache MUST NOT store any part of either this response or the
 request that elicited it. This directive applies to both non-
 shared and shared caches. "MUST NOT store" in this context means
 that the cache MUST NOT intentionally store the information in
 non-volatile storage, and MUST make a best-effort attempt to
 remove the information from volatile storage as promptly as
 possible after forwarding it.

 Even when this directive is associated with a response, users
 might explicitly store such a response outside of the caching
 system (e.g., with a "Save As" dialog). History buffers MAY store
 such responses as part of their normal operation.

 The purpose of this directive is to meet the stated requirements
 of certain users and service authors who are concerned about
 accidental releases of information via unanticipated accesses to
 cache data structures. While the use of this directive might
 improve privacy in some cases, we caution that it is NOT in any
 way a reliable or sufficient mechanism for ensuring privacy. In
 particular, malicious or compromised caches might not recognize or
 obey this directive, and communications networks might be
 vulnerable to eavesdropping.

Fielding, et al. Expires August 27, 2008 [Page 30]

Internet-Draft HTTP/1.1, Part 6 February 2008

16.2.3. Modifications of the Basic Expiration Mechanism

 The expiration time of an entity MAY be specified by the origin
 server using the Expires header (see Section 16.3). Alternatively,
 it MAY be specified using the max-age directive in a response. When
 the max-age cache-control directive is present in a cached response,
 the response is stale if its current age is greater than the age
 value given (in seconds) at the time of a new request for that
 resource. The max-age directive on a response implies that the
 response is cacheable (i.e., "public") unless some other, more
 restrictive cache directive is also present.

 If a response includes both an Expires header and a max-age
 directive, the max-age directive overrides the Expires header, even
 if the Expires header is more restrictive. This rule allows an
 origin server to provide, for a given response, a longer expiration
 time to an HTTP/1.1 (or later) cache than to an HTTP/1.0 cache. This
 might be useful if certain HTTP/1.0 caches improperly calculate ages
 or expiration times, perhaps due to desynchronized clocks.

 Many HTTP/1.0 cache implementations will treat an Expires value that
 is less than or equal to the response Date value as being equivalent
 to the Cache-Control response directive "no-cache". If an HTTP/1.1
 cache receives such a response, and the response does not include a
 Cache-Control header field, it SHOULD consider the response to be
 non-cacheable in order to retain compatibility with HTTP/1.0 servers.

 Note: An origin server might wish to use a relatively new HTTP
 cache control feature, such as the "private" directive, on a
 network including older caches that do not understand that
 feature. The origin server will need to combine the new feature
 with an Expires field whose value is less than or equal to the
 Date value. This will prevent older caches from improperly
 caching the response.

 s-maxage

 If a response includes an s-maxage directive, then for a shared
 cache (but not for a private cache), the maximum age specified by
 this directive overrides the maximum age specified by either the
 max-age directive or the Expires header. The s-maxage directive
 also implies the semantics of the proxy-revalidate directive (see

Section 16.2.4), i.e., that the shared cache must not use the

 entry after it becomes stale to respond to a subsequent request
 without first revalidating it with the origin server. The
 s-maxage directive is always ignored by a private cache.

 Note that most older caches, not compliant with this specification,

Fielding, et al. Expires August 27, 2008 [Page 31]

Internet-Draft HTTP/1.1, Part 6 February 2008

 do not implement any cache-control directives. An origin server
 wishing to use a cache-control directive that restricts, but does not
 prevent, caching by an HTTP/1.1-compliant cache MAY exploit the
 requirement that the max-age directive overrides the Expires header,
 and the fact that pre-HTTP/1.1-compliant caches do not observe the
 max-age directive.

 Other directives allow a user agent to modify the basic expiration
 mechanism. These directives MAY be specified on a request:

 max-age

 Indicates that the client is willing to accept a response whose
 age is no greater than the specified time in seconds. Unless max-
 stale directive is also included, the client is not willing to
 accept a stale response.

 min-fresh

 Indicates that the client is willing to accept a response whose
 freshness lifetime is no less than its current age plus the
 specified time in seconds. That is, the client wants a response
 that will still be fresh for at least the specified number of
 seconds.

 max-stale

 Indicates that the client is willing to accept a response that has
 exceeded its expiration time. If max-stale is assigned a value,
 then the client is willing to accept a response that has exceeded
 its expiration time by no more than the specified number of
 seconds. If no value is assigned to max-stale, then the client is
 willing to accept a stale response of any age.

 If a cache returns a stale response, either because of a max-stale
 directive on a request, or because the cache is configured to

 override the expiration time of a response, the cache MUST attach a
 Warning header to the stale response, using Warning 110 (Response is
 stale).

 A cache MAY be configured to return stale responses without
 validation, but only if this does not conflict with any "MUST"-level
 requirements concerning cache validation (e.g., a "must-revalidate"
 cache-control directive).

 If both the new request and the cached entry include "max-age"
 directives, then the lesser of the two values is used for determining
 the freshness of the cached entry for that request.

Fielding, et al. Expires August 27, 2008 [Page 32]

Internet-Draft HTTP/1.1, Part 6 February 2008

16.2.4. Cache Revalidation and Reload Controls

 Sometimes a user agent might want or need to insist that a cache
 revalidate its cache entry with the origin server (and not just with
 the next cache along the path to the origin server), or to reload its
 cache entry from the origin server. End-to-end revalidation might be
 necessary if either the cache or the origin server has overestimated
 the expiration time of the cached response. End-to-end reload may be
 necessary if the cache entry has become corrupted for some reason.

 End-to-end revalidation may be requested either when the client does
 not have its own local cached copy, in which case we call it
 "unspecified end-to-end revalidation", or when the client does have a
 local cached copy, in which case we call it "specific end-to-end
 revalidation."

 The client can specify these three kinds of action using Cache-
 Control request directives:

 End-to-end reload

 The request includes a "no-cache" cache-control directive or, for
 compatibility with HTTP/1.0 clients, "Pragma: no-cache". Field
 names MUST NOT be included with the no-cache directive in a
 request. The server MUST NOT use a cached copy when responding to
 such a request.

 Specific end-to-end revalidation

 The request includes a "max-age=0" cache-control directive, which
 forces each cache along the path to the origin server to
 revalidate its own entry, if any, with the next cache or server.
 The initial request includes a cache-validating conditional with
 the client's current validator.

 Unspecified end-to-end revalidation

 The request includes "max-age=0" cache-control directive, which
 forces each cache along the path to the origin server to
 revalidate its own entry, if any, with the next cache or server.
 The initial request does not include a cache-validating
 conditional; the first cache along the path (if any) that holds a
 cache entry for this resource includes a cache-validating
 conditional with its current validator.

 max-age

Fielding, et al. Expires August 27, 2008 [Page 33]

Internet-Draft HTTP/1.1, Part 6 February 2008

 When an intermediate cache is forced, by means of a max-age=0
 directive, to revalidate its own cache entry, and the client has
 supplied its own validator in the request, the supplied validator
 might differ from the validator currently stored with the cache
 entry. In this case, the cache MAY use either validator in making
 its own request without affecting semantic transparency.

 However, the choice of validator might affect performance. The
 best approach is for the intermediate cache to use its own
 validator when making its request. If the server replies with 304
 (Not Modified), then the cache can return its now validated copy
 to the client with a 200 (OK) response. If the server replies
 with a new entity and cache validator, however, the intermediate
 cache can compare the returned validator with the one provided in
 the client's request, using the strong comparison function. If
 the client's validator is equal to the origin server's, then the
 intermediate cache simply returns 304 (Not Modified). Otherwise,
 it returns the new entity with a 200 (OK) response.

 If a request includes the no-cache directive, it SHOULD NOT
 include min-fresh, max-stale, or max-age.

 only-if-cached

 In some cases, such as times of extremely poor network
 connectivity, a client may want a cache to return only those
 responses that it currently has stored, and not to reload or
 revalidate with the origin server. To do this, the client may
 include the only-if-cached directive in a request. If it receives
 this directive, a cache SHOULD either respond using a cached entry
 that is consistent with the other constraints of the request, or
 respond with a 504 (Gateway Timeout) status. However, if a group
 of caches is being operated as a unified system with good internal
 connectivity, such a request MAY be forwarded within that group of
 caches.

 must-revalidate

 Because a cache MAY be configured to ignore a server's specified
 expiration time, and because a client request MAY include a max-
 stale directive (which has a similar effect), the protocol also
 includes a mechanism for the origin server to require revalidation
 of a cache entry on any subsequent use. When the must-revalidate
 directive is present in a response received by a cache, that cache
 MUST NOT use the entry after it becomes stale to respond to a
 subsequent request without first revalidating it with the origin
 server. (I.e., the cache MUST do an end-to-end revalidation every
 time, if, based solely on the origin server's Expires or max-age

Fielding, et al. Expires August 27, 2008 [Page 34]

Internet-Draft HTTP/1.1, Part 6 February 2008

 value, the cached response is stale.)

 The must-revalidate directive is necessary to support reliable
 operation for certain protocol features. In all circumstances an
 HTTP/1.1 cache MUST obey the must-revalidate directive; in
 particular, if the cache cannot reach the origin server for any
 reason, it MUST generate a 504 (Gateway Timeout) response.

 Servers SHOULD send the must-revalidate directive if and only if
 failure to revalidate a request on the entity could result in
 incorrect operation, such as a silently unexecuted financial
 transaction. Recipients MUST NOT take any automated action that
 violates this directive, and MUST NOT automatically provide an
 unvalidated copy of the entity if revalidation fails.

 Although this is not recommended, user agents operating under
 severe connectivity constraints MAY violate this directive but, if
 so, MUST explicitly warn the user that an unvalidated response has
 been provided. The warning MUST be provided on each unvalidated
 access, and SHOULD require explicit user confirmation.

 proxy-revalidate

 The proxy-revalidate directive has the same meaning as the must-
 revalidate directive, except that it does not apply to non-shared
 user agent caches. It can be used on a response to an
 authenticated request to permit the user's cache to store and
 later return the response without needing to revalidate it (since
 it has already been authenticated once by that user), while still
 requiring proxies that service many users to revalidate each time
 (in order to make sure that each user has been authenticated).
 Note that such authenticated responses also need the public cache
 control directive in order to allow them to be cached at all.

16.2.5. No-Transform Directive

 no-transform

 Implementors of intermediate caches (proxies) have found it useful
 to convert the media type of certain entity bodies. A non-
 transparent proxy might, for example, convert between image
 formats in order to save cache space or to reduce the amount of
 traffic on a slow link.

 Serious operational problems occur, however, when these
 transformations are applied to entity bodies intended for certain
 kinds of applications. For example, applications for medical
 imaging, scientific data analysis and those using end-to-end

Fielding, et al. Expires August 27, 2008 [Page 35]

Internet-Draft HTTP/1.1, Part 6 February 2008

 authentication, all depend on receiving an entity body that is bit
 for bit identical to the original entity-body.

 Therefore, if a message includes the no-transform directive, an
 intermediate cache or proxy MUST NOT change those headers that are
 listed in Section 7.2 as being subject to the no-transform
 directive. This implies that the cache or proxy MUST NOT change
 any aspect of the entity-body that is specified by these headers,

 including the value of the entity-body itself.

16.2.6. Cache Control Extensions

 The Cache-Control header field can be extended through the use of one
 or more cache-extension tokens, each with an optional assigned value.
 Informational extensions (those which do not require a change in
 cache behavior) MAY be added without changing the semantics of other
 directives. Behavioral extensions are designed to work by acting as
 modifiers to the existing base of cache directives. Both the new
 directive and the standard directive are supplied, such that
 applications which do not understand the new directive will default
 to the behavior specified by the standard directive, and those that
 understand the new directive will recognize it as modifying the
 requirements associated with the standard directive. In this way,
 extensions to the cache-control directives can be made without
 requiring changes to the base protocol.

 This extension mechanism depends on an HTTP cache obeying all of the
 cache-control directives defined for its native HTTP-version, obeying
 certain extensions, and ignoring all directives that it does not
 understand.

 For example, consider a hypothetical new response directive called
 community which acts as a modifier to the private directive. We
 define this new directive to mean that, in addition to any non-shared
 cache, any cache which is shared only by members of the community
 named within its value may cache the response. An origin server
 wishing to allow the UCI community to use an otherwise private
 response in their shared cache(s) could do so by including

 Cache-Control: private, community="UCI"

 A cache seeing this header field will act correctly even if the cache
 does not understand the community cache-extension, since it will also
 see and understand the private directive and thus default to the safe
 behavior.

 Unrecognized cache-directives MUST be ignored; it is assumed that any
 cache-directive likely to be unrecognized by an HTTP/1.1 cache will

Fielding, et al. Expires August 27, 2008 [Page 36]

Internet-Draft HTTP/1.1, Part 6 February 2008

 be combined with standard directives (or the response's default

 cacheability) such that the cache behavior will remain minimally
 correct even if the cache does not understand the extension(s).

16.3. Expires

 The Expires entity-header field gives the date/time after which the
 response is considered stale. A stale cache entry may not normally
 be returned by a cache (either a proxy cache or a user agent cache)
 unless it is first validated with the origin server (or with an
 intermediate cache that has a fresh copy of the entity). See
 Section 4 for further discussion of the expiration model.

 The presence of an Expires field does not imply that the original
 resource will change or cease to exist at, before, or after that
 time.

 The format is an absolute date and time as defined by HTTP-date in
 Section 3.3.1 of [Part1]; it MUST be sent in rfc1123-date format.

 Expires = "Expires" ":" HTTP-date

 An example of its use is

 Expires: Thu, 01 Dec 1994 16:00:00 GMT

 Note: if a response includes a Cache-Control field with the max-
 age directive (see Section 16.2.3), that directive overrides the
 Expires field.

 HTTP/1.1 clients and caches MUST treat other invalid date formats,
 especially including the value "0", as in the past (i.e., "already
 expired").

 To mark a response as "already expired," an origin server sends an
 Expires date that is equal to the Date header value. (See the rules
 for expiration calculations in Section 4.4.)

 To mark a response as "never expires," an origin server sends an
 Expires date approximately one year from the time the response is
 sent. HTTP/1.1 servers SHOULD NOT send Expires dates more than one
 year in the future.

 The presence of an Expires header field with a date value of some
 time in the future on a response that otherwise would by default be
 non-cacheable indicates that the response is cacheable, unless
 indicated otherwise by a Cache-Control header field (Section 16.2).

Fielding, et al. Expires August 27, 2008 [Page 37]

https://datatracker.ietf.org/doc/pdf/rfc1123

Internet-Draft HTTP/1.1, Part 6 February 2008

16.4. Pragma

 The Pragma general-header field is used to include implementation-
 specific directives that might apply to any recipient along the
 request/response chain. All pragma directives specify optional
 behavior from the viewpoint of the protocol; however, some systems
 MAY require that behavior be consistent with the directives.

 Pragma = "Pragma" ":" 1#pragma-directive
 pragma-directive = "no-cache" | extension-pragma
 extension-pragma = token ["=" (token | quoted-string)]

 When the no-cache directive is present in a request message, an
 application SHOULD forward the request toward the origin server even
 if it has a cached copy of what is being requested. This pragma
 directive has the same semantics as the no-cache cache-directive (see
 Section 16.2) and is defined here for backward compatibility with
 HTTP/1.0. Clients SHOULD include both header fields when a no-cache
 request is sent to a server not known to be HTTP/1.1 compliant.

 Pragma directives MUST be passed through by a proxy or gateway
 application, regardless of their significance to that application,
 since the directives might be applicable to all recipients along the
 request/response chain. It is not possible to specify a pragma for a
 specific recipient; however, any pragma directive not relevant to a
 recipient SHOULD be ignored by that recipient.

 HTTP/1.1 caches SHOULD treat "Pragma: no-cache" as if the client had
 sent "Cache-Control: no-cache". No new Pragma directives will be
 defined in HTTP.

 Note: because the meaning of "Pragma: no-cache" as a response-
 header field is not actually specified, it does not provide a
 reliable replacement for "Cache-Control: no-cache" in a response.

16.5. Vary

 The Vary field value indicates the set of request-header fields that
 fully determines, while the response is fresh, whether a cache is
 permitted to use the response to reply to a subsequent request
 without revalidation. For uncacheable or stale responses, the Vary
 field value advises the user agent about the criteria that were used
 to select the representation. A Vary field value of "*" implies that
 a cache cannot determine from the request headers of a subsequent
 request whether this response is the appropriate representation. See
 Section 8 for use of the Vary header field by caches.

 Vary = "Vary" ":" ("*" | 1#field-name)

Fielding, et al. Expires August 27, 2008 [Page 38]

Internet-Draft HTTP/1.1, Part 6 February 2008

 An HTTP/1.1 server SHOULD include a Vary header field with any
 cacheable response that is subject to server-driven negotiation.
 Doing so allows a cache to properly interpret future requests on that
 resource and informs the user agent about the presence of negotiation
 on that resource. A server MAY include a Vary header field with a
 non-cacheable response that is subject to server-driven negotiation,
 since this might provide the user agent with useful information about
 the dimensions over which the response varies at the time of the
 response.

 A Vary field value consisting of a list of field-names signals that
 the representation selected for the response is based on a selection
 algorithm which considers ONLY the listed request-header field values
 in selecting the most appropriate representation. A cache MAY assume
 that the same selection will be made for future requests with the
 same values for the listed field names, for the duration of time for
 which the response is fresh.

 The field-names given are not limited to the set of standard request-
 header fields defined by this specification. Field names are case-
 insensitive.

 A Vary field value of "*" signals that unspecified parameters not
 limited to the request-headers (e.g., the network address of the
 client), play a role in the selection of the response representation.
 The "*" value MUST NOT be generated by a proxy server; it may only be
 generated by an origin server.

16.6. Warning

 The Warning general-header field is used to carry additional
 information about the status or transformation of a message which
 might not be reflected in the message. This information is typically
 used to warn about a possible lack of semantic transparency from
 caching operations or transformations applied to the entity body of
 the message.

 Warning headers are sent with responses using:

Fielding, et al. Expires August 27, 2008 [Page 39]

Internet-Draft HTTP/1.1, Part 6 February 2008

 Warning = "Warning" ":" 1#warning-value

 warning-value = warn-code SP warn-agent SP warn-text
 [SP warn-date]

 warn-code = 3DIGIT
 warn-agent = (uri-host [":" port]) | pseudonym
 ; the name or pseudonym of the server adding
 ; the Warning header, for use in debugging
 warn-text = quoted-string
 warn-date = DQUOTE HTTP-date DQUOTE

 A response MAY carry more than one Warning header.

 The warn-text SHOULD be in a natural language and character set that
 is most likely to be intelligible to the human user receiving the
 response. This decision MAY be based on any available knowledge,
 such as the location of the cache or user, the Accept-Language field
 in a request, the Content-Language field in a response, etc. The
 default language is English and the default character set is ISO-
 8859-1 ([ISO-8859-1]).

 If a character set other than ISO-8859-1 is used, it MUST be encoded
 in the warn-text using the method described in [RFC2047].

 Warning headers can in general be applied to any message, however
 some specific warn-codes are specific to caches and can only be
 applied to response messages. New Warning headers SHOULD be added
 after any existing Warning headers. A cache MUST NOT delete any
 Warning header that it received with a message. However, if a cache
 successfully validates a cache entry, it SHOULD remove any Warning
 headers previously attached to that entry except as specified for

https://datatracker.ietf.org/doc/pdf/rfc2047

 specific Warning codes. It MUST then add any Warning headers
 received in the validating response. In other words, Warning headers
 are those that would be attached to the most recent relevant
 response.

 When multiple Warning headers are attached to a response, the user
 agent ought to inform the user of as many of them as possible, in the
 order that they appear in the response. If it is not possible to
 inform the user of all of the warnings, the user agent SHOULD follow
 these heuristics:

 o Warnings that appear early in the response take priority over
 those appearing later in the response.

 o Warnings in the user's preferred character set take priority over
 warnings in other character sets but with identical warn-codes and

Fielding, et al. Expires August 27, 2008 [Page 40]

Internet-Draft HTTP/1.1, Part 6 February 2008

 warn-agents.

 Systems that generate multiple Warning headers SHOULD order them with
 this user agent behavior in mind.

 Requirements for the behavior of caches with respect to Warnings are
 stated in Section 3.2.

 This is a list of the currently-defined warn-codes, each with a
 recommended warn-text in English, and a description of its meaning.

 110 Response is stale

 MUST be included whenever the returned response is stale.

 111 Revalidation failed

 MUST be included if a cache returns a stale response because an
 attempt to revalidate the response failed, due to an inability to
 reach the server.

 112 Disconnected operation

 SHOULD be included if the cache is intentionally disconnected from
 the rest of the network for a period of time.

 113 Heuristic expiration

 MUST be included if the cache heuristically chose a freshness
 lifetime greater than 24 hours and the response's age is greater
 than 24 hours.

 199 Miscellaneous warning

 The warning text MAY include arbitrary information to be presented
 to a human user, or logged. A system receiving this warning MUST
 NOT take any automated action, besides presenting the warning to
 the user.

 214 Transformation applied

 MUST be added by an intermediate cache or proxy if it applies any
 transformation changing the content-coding (as specified in the
 Content-Encoding header) or media-type (as specified in the
 Content-Type header) of the response, or the entity-body of the
 response, unless this Warning code already appears in the
 response.

Fielding, et al. Expires August 27, 2008 [Page 41]

Internet-Draft HTTP/1.1, Part 6 February 2008

 299 Miscellaneous persistent warning

 The warning text MAY include arbitrary information to be presented
 to a human user, or logged. A system receiving this warning MUST
 NOT take any automated action.

 If an implementation sends a message with one or more Warning headers
 whose version is HTTP/1.0 or lower, then the sender MUST include in
 each warning-value a warn-date that matches the date in the response.

 If an implementation receives a message with a warning-value that
 includes a warn-date, and that warn-date is different from the Date
 value in the response, then that warning-value MUST be deleted from
 the message before storing, forwarding, or using it. (This prevents
 bad consequences of naive caching of Warning header fields.) If all
 of the warning-values are deleted for this reason, the Warning header
 MUST be deleted as well.

17. IANA Considerations

 [[anchor1: TBD.]]

18. Security Considerations

 Caching proxies provide additional potential vulnerabilities, since
 the contents of the cache represent an attractive target for
 malicious exploitation. Because cache contents persist after an HTTP
 request is complete, an attack on the cache can reveal information
 long after a user believes that the information has been removed from
 the network. Therefore, cache contents should be protected as
 sensitive information.

19. Acknowledgments

 Much of the content and presentation of the caching design is due to
 suggestions and comments from individuals including: Shel Kaphan,
 Paul Leach, Koen Holtman, David Morris, and Larry Masinter.

20. References

20.1. Normative References

 [ISO-8859-1]
 International Organization for Standardization,

Fielding, et al. Expires August 27, 2008 [Page 42]

Internet-Draft HTTP/1.1, Part 6 February 2008

 "Information technology -- 8-bit single-byte coded graphic
 character sets -- Part 1: Latin alphabet No. 1", ISO/
 IEC 8859-1:1998, 1998.

 [Part1] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
 and J. Reschke, Ed., "HTTP/1.1, part 1: URIs, Connections,
 and Message Parsing", draft-ietf-httpbis-p1-messaging-02
 (work in progress), February 2008.

 [Part2] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,

https://datatracker.ietf.org/doc/pdf/draft-ietf-httpbis-p1-messaging-02

 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
 and J. Reschke, Ed., "HTTP/1.1, part 2: Message
 Semantics", draft-ietf-httpbis-p2-semantics-02 (work in
 progress), February 2008.

 [Part3] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
 and J. Reschke, Ed., "HTTP/1.1, part 3: Message Payload
 and Content Negotiation", draft-ietf-httpbis-p3-payload-02
 (work in progress), February 2008.

 [Part4] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
 and J. Reschke, Ed., "HTTP/1.1, part 4: Conditional
 Requests", draft-ietf-httpbis-p4-conditional-02 (work in
 progress), February 2008.

 [Part5] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
 and J. Reschke, Ed., "HTTP/1.1, part 5: Range Requests and
 Partial Responses", draft-ietf-httpbis-p5-range-02 (work
 in progress), February 2008.

 [Part7] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed.,
 and J. Reschke, Ed., "HTTP/1.1, part 7: Authentication",
 draft-ietf-httpbis-p7-auth-02 (work in progress),
 February 2008.

 [RFC2047] Moore, K., "MIME (Multipurpose Internet Mail Extensions)
 Part Three: Message Header Extensions for Non-ASCII Text",
 RFC 2047, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Fielding, et al. Expires August 27, 2008 [Page 43]

Internet-Draft HTTP/1.1, Part 6 February 2008

20.2. Informative References

 [RFC1305] Mills, D., "Network Time Protocol (Version 3)
 Specification, Implementation", RFC 1305, March 1992.

https://datatracker.ietf.org/doc/pdf/draft-ietf-httpbis-p2-semantics-02
https://datatracker.ietf.org/doc/pdf/draft-ietf-httpbis-p3-payload-02
https://datatracker.ietf.org/doc/pdf/draft-ietf-httpbis-p4-conditional-02
https://datatracker.ietf.org/doc/pdf/draft-ietf-httpbis-p5-range-02
https://datatracker.ietf.org/doc/pdf/draft-ietf-httpbis-p7-auth-02
https://datatracker.ietf.org/doc/pdf/rfc2047
https://datatracker.ietf.org/doc/pdf/bcp14
https://datatracker.ietf.org/doc/pdf/rfc2119
https://datatracker.ietf.org/doc/pdf/rfc1305

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

Appendix A. Compatibility with Previous Versions

A.1. Changes from RFC 2068

 A case was missed in the Cache-Control model of HTTP/1.1; s-maxage
 was introduced to add this missing case. (Sections 6, 16.2, 16.2.3)

 Transfer-coding and message lengths all interact in ways that
 required fixing exactly when chunked encoding is used (to allow for
 transfer encoding that may not be self delimiting); it was important
 to straighten out exactly how message lengths are computed.
 (Section 7.2, see also [Part1], [Part3] and [Part5])

 Proxies should be able to add Content-Length when appropriate.
 (Section 7.2)

 Range request responses would become very verbose if all meta-data
 were always returned; by allowing the server to only send needed
 headers in a 206 response, this problem can be avoided.
 (Section 7.3)

 The Cache-Control: max-age directive was not properly defined for
 responses. (Section 16.2.3)

 Warnings could be cached incorrectly, or not updated appropriately.
 (Section 3.2, 4.4, 7.2, 7.3, 16.2.3, and 16.6) Warning also needed to
 be a general header, as PUT or other methods may have need for it in
 requests.

A.2. Changes from RFC 2616

 Clarify denial of service attack avoidance requirement. (Section 12)

Appendix B. Change Log (to be removed by RFC Editor before publication)

Fielding, et al. Expires August 27, 2008 [Page 44]

https://datatracker.ietf.org/doc/pdf/rfc2616
https://datatracker.ietf.org/doc/pdf/rfc2068
https://datatracker.ietf.org/doc/pdf/rfc2616

Internet-Draft HTTP/1.1, Part 6 February 2008

B.1. Since RFC2616

 Extracted relevant partitions from [RFC2616].

B.2. Since draft-ietf-httpbis-p6-cache-00

 Closed issues:

 o <http://www3.tools.ietf.org/wg/httpbis/trac/ticket/9>: "Trailer"
 (<http://purl.org/NET/http-errata#trailer-hop>)

 o <http://www3.tools.ietf.org/wg/httpbis/trac/ticket/12>:
 "Invalidation after Update or Delete"
 (<http://purl.org/NET/http-errata#invalidupd>)

 o <http://www3.tools.ietf.org/wg/httpbis/trac/ticket/35>: "Normative
 and Informative references"

 o <http://www3.tools.ietf.org/wg/httpbis/trac/ticket/48>: "Date
 reference typo"

 o <http://www3.tools.ietf.org/wg/httpbis/trac/ticket/49>:
 "Connection header text"

 o <http://www3.tools.ietf.org/wg/httpbis/trac/ticket/65>:
 "Informative references"

 o <http://www3.tools.ietf.org/wg/httpbis/trac/ticket/66>:
 "ISO-8859-1 Reference"

 o <http://www3.tools.ietf.org/wg/httpbis/trac/ticket/86>: "Normative
 up-to-date references"

 o <http://www3.tools.ietf.org/wg/httpbis/trac/ticket/87>: "typo in
 13.2.2"

 Other changes:

 o Use names of RFC4234 core rules DQUOTE and HTAB (work in progress
 on <http://www3.tools.ietf.org/wg/httpbis/trac/ticket/36>)

B.3. Since draft-ietf-httpbis-p6-cache-01

 Closed issues:

 o <http://www3.tools.ietf.org/wg/httpbis/trac/ticket/82>: "rel_path
 not used"

https://datatracker.ietf.org/doc/pdf/rfc2616
https://datatracker.ietf.org/doc/pdf/rfc2616
https://datatracker.ietf.org/doc/pdf/draft-ietf-httpbis-p6-cache-00
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/9
http://purl.org/NET/http-errata#trailer-hop
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/12
http://purl.org/NET/http-errata#invalidupd
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/35
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/48
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/49
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/65
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/66
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/86
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/87
https://datatracker.ietf.org/doc/pdf/rfc4234
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/36
https://datatracker.ietf.org/doc/pdf/draft-ietf-httpbis-p6-cache-01
http://www3.tools.ietf.org/wg/httpbis/trac/ticket/82

Fielding, et al. Expires August 27, 2008 [Page 45]

Internet-Draft HTTP/1.1, Part 6 February 2008

 Other changes:

 o Get rid of duplicate BNF rule names ("host" -> "uri-host") (work
 in progress on
 <http://www3.tools.ietf.org/wg/httpbis/trac/ticket/36>)

 o Add explicit references to BNF syntax and rules imported from
 other parts of the specification.

Index

 A
 age 7
 Age header 27

 C
 cache 5
 Cache Directives
 max-age 32
 max-age 33
 max-stale 32
 min-fresh 32
 must-revalidate 34
 no-cache 29
 no-store 30
 no-transform 35
 only-if-cached 34
 private 29
 proxy-revalidate 35
 public 29
 s-maxage 31
 Cache-Control header 27
 cacheable 6

 E
 Expires header 37
 explicit expiration time 7

 F

http://www3.tools.ietf.org/wg/httpbis/trac/ticket/36

 first-hand 6
 fresh 7
 freshness lifetime 7

 G
 Grammar
 Age 27
 age-value 27

Fielding, et al. Expires August 27, 2008 [Page 46]

Internet-Draft HTTP/1.1, Part 6 February 2008

 Cache-Control 28
 cache-directive 28
 cache-extension 28
 cache-request-directive 28
 cache-response-directive 28
 delta-seconds 27
 Expires 37
 extension-pragma 38
 Pragma 38
 pragma-directive 38
 Vary 38
 warn-agent 40
 warn-code 40
 warn-date 40
 warn-text 40
 Warning 40
 warning-value 40

 H
 Headers
 Age 27
 Cache-Control 27
 Expires 37
 Pragma 38
 Vary 38
 Warning 39
 heuristic expiration time 7

 M
 max-age
 Cache Directive 32
 Cache Directive 33
 max-stale

 Cache Directive 32
 min-fresh
 Cache Directive 32
 must-revalidate
 Cache Directive 34

 N
 no-cache
 Cache Directive 29
 no-store
 Cache Directive 30
 no-transform
 Cache Directive 35

 O

Fielding, et al. Expires August 27, 2008 [Page 47]

Internet-Draft HTTP/1.1, Part 6 February 2008

 only-if-cached
 Cache Directive 34

 P
 Pragma header 38
 private
 Cache Directive 29
 proxy-revalidate
 Cache Directive 35
 public
 Cache Directive 29

 S
 s-maxage
 Cache Directive 31
 semantically transparent 5
 stale 7

 V
 validator 7
 Vary header 38

 W
 Warning header 39

Authors' Addresses

 Roy T. Fielding (editor)
 Day Software
 23 Corporate Plaza DR, Suite 280
 Newport Beach, CA 92660
 USA

 Phone: +1-949-706-5300
 Fax: +1-949-706-5305
 Email: fielding@gbiv.com
 URI: http://roy.gbiv.com/

Fielding, et al. Expires August 27, 2008 [Page 48]

Internet-Draft HTTP/1.1, Part 6 February 2008

 Jim Gettys
 One Laptop per Child
 21 Oak Knoll Road
 Carlisle, MA 01741
 USA

 Email: jg@laptop.org
 URI: http://www.laptop.org/

 Jeffrey C. Mogul
 Hewlett-Packard Company
 HP Labs, Large Scale Systems Group
 1501 Page Mill Road, MS 1177
 Palo Alto, CA 94304
 USA

 Email: JeffMogul@acm.org

http://roy.gbiv.com/
http://www.laptop.org/

 Henrik Frystyk Nielsen
 Microsoft Corporation
 1 Microsoft Way
 Redmond, WA 98052
 USA

 Email: henrikn@microsoft.com

 Larry Masinter
 Adobe Systems, Incorporated
 345 Park Ave
 San Jose, CA 95110
 USA

 Email: LMM@acm.org
 URI: http://larry.masinter.net/

 Paul J. Leach
 Microsoft Corporation
 1 Microsoft Way
 Redmond, WA 98052

 Email: paulle@microsoft.com

Fielding, et al. Expires August 27, 2008 [Page 49]

Internet-Draft HTTP/1.1, Part 6 February 2008

 Tim Berners-Lee
 World Wide Web Consortium
 MIT Computer Science and Artificial Intelligence Laboratory
 The Stata Center, Building 32
 32 Vassar Street
 Cambridge, MA 02139
 USA

 Email: timbl@w3.org
 URI: http://www.w3.org/People/Berners-Lee/

http://larry.masinter.net/
http://www.w3.org/People/Berners-Lee/

 Yves Lafon (editor)
 World Wide Web Consortium
 W3C / ERCIM
 2004, rte des Lucioles
 Sophia-Antipolis, AM 06902
 France

 Email: ylafon@w3.org
 URI: http://www.raubacapeu.net/people/yves/

 Julian F. Reschke (editor)
 greenbytes GmbH
 Hafenweg 16
 Muenster, NW 48155
 Germany

 Phone: +49 251 2807760
 Fax: +49 251 2807761
 Email: julian.reschke@greenbytes.de
 URI: http://greenbytes.de/tech/webdav/

Fielding, et al. Expires August 27, 2008 [Page 50]

Internet-Draft HTTP/1.1, Part 6 February 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions

http://www.raubacapeu.net/people/yves/
http://greenbytes.de/tech/webdav/

 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Fielding, et al. Expires August 27, 2008 [Page 51]

https://datatracker.ietf.org/doc/pdf/bcp78
https://datatracker.ietf.org/doc/pdf/bcp78
https://datatracker.ietf.org/doc/pdf/bcp79
http://www.ietf.org/ipr

