
HTTPbis Working Group R. Fielding, Ed.

Internet-Draft Adobe

Obsoletes: 2616 (if approved) J. Gettys

Intended status: Standards Track Alcatel-Lucent

Expires: May 03, 2012 J. Mogul

HP

H. Frystyk

Microsoft

L. Masinter

Adobe

P. Leach

Microsoft

T. Berners-Lee

W3C/MIT

Y. Lafon, Ed.

W3C

M. Nottingham, Ed.

Rackspace

J. F. Reschke, Ed.

greenbytes

October 31, 2011

HTTP/1.1, part 6: Caching

draft-ietf-httpbis-p6-cache-17

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-level protocol

for distributed, collaborative, hypertext information systems. HTTP has

been in use by the World Wide Web global information initiative since

1990. This document is Part 6 of the seven-part specification that

defines the protocol referred to as "HTTP/1.1" and, taken together,

obsoletes RFC 2616.

Part 6 defines requirements on HTTP caches and the associated header

fields that control cache behavior or indicate cacheable response

messages.

Editorial Note (To be removed by RFC Editor)

Discussion of this draft should take place on the HTTPBIS working group

mailing list (ietf-http-wg@w3.org), which is archived at http://

lists.w3.org/Archives/Public/ietf-http-wg/.

The current issues list is at http://tools.ietf.org/wg/httpbis/trac/

report/3 and related documents (including fancy diffs) can be found at

http://tools.ietf.org/wg/httpbis/.

The changes in this draft are summarized in Appendix Appendix C.18.

http://lists.w3.org/Archives/Public/ietf-http-wg/
http://lists.w3.org/Archives/Public/ietf-http-wg/
http://tools.ietf.org/wg/httpbis/trac/report/3
http://tools.ietf.org/wg/httpbis/trac/report/3
http://tools.ietf.org/wg/httpbis/

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on May 03, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November 10,

2008. The person(s) controlling the copyright in some of this material

may not have granted the IETF Trust the right to allow modifications of

such material outside the IETF Standards Process. Without obtaining an

adequate license from the person(s) controlling the copyright in such

materials, this document may not be modified outside the IETF Standards

Process, and derivative works of it may not be created outside the IETF

Standards Process, except to format it for publication as an RFC or to

translate it into languages other than English.

Table of Contents

1. Introduction

1.1. Purpose

1.2. Terminology

1.3. Conformance and Error Handling

1.4. Syntax Notation

1.4.1. Core Rules

*

*

*

*

*

*

1.4.2. ABNF Rules defined in other Parts of the Specification

1.5. Delta Seconds

2. Cache Operation

2.1. Response Cacheability

2.2. Constructing Responses from Caches

2.3. Freshness Model

2.3.1. Calculating Freshness Lifetime

2.3.1.1. Calculating Heuristic Freshness

2.3.2. Calculating Age

2.3.3. Serving Stale Responses

2.4. Validation Model

2.4.1. Freshening Responses

2.5. Request Methods that Invalidate

2.6. Shared Caching of Authenticated Responses

2.7. Caching Negotiated Responses

2.8. Combining Partial Content

3. Header Field Definitions

3.1. Age

3.2. Cache-Control

3.2.1. Request Cache-Control Directives

3.2.2. Response Cache-Control Directives

3.2.3. Cache Control Extensions

3.3. Expires

3.4. Pragma

3.5. Vary

3.6. Warning

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

4. History Lists

5. IANA Considerations

5.1. Cache Directive Registry

5.2. Header Field Registration

6. Security Considerations

7. Acknowledgments

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Changes from RFC 2616

Appendix B. Collected ABNF

Appendix C. Change Log (to be removed by RFC Editor before

publication)

Appendix C.1. Since RFC 2616

Appendix C.2. Since draft-ietf-httpbis-p6-cache-00

Appendix C.3. Since draft-ietf-httpbis-p6-cache-01

Appendix C.4. Since draft-ietf-httpbis-p6-cache-02

Appendix C.5. Since draft-ietf-httpbis-p6-cache-03

Appendix C.6. Since draft-ietf-httpbis-p6-cache-04

Appendix C.7. Since draft-ietf-httpbis-p6-cache-05

Appendix C.8. Since draft-ietf-httpbis-p6-cache-06

Appendix C.9. Since draft-ietf-httpbis-p6-cache-07

Appendix C.10. Since draft-ietf-httpbis-p6-cache-08

Appendix C.11. Since draft-ietf-httpbis-p6-cache-09

Appendix C.12. Since draft-ietf-httpbis-p6-cache-10

Appendix C.13. Since draft-ietf-httpbis-p6-cache-11

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Appendix C.14. Since draft-ietf-httpbis-p6-cache-12

Appendix C.15. Since draft-ietf-httpbis-p6-cache-13

Appendix C.16. Since draft-ietf-httpbis-p6-cache-14

Appendix C.17. Since draft-ietf-httpbis-p6-cache-15

Appendix C.18. Since draft-ietf-httpbis-p6-cache-16

Index

Authors' Addresses

1. Introduction

HTTP is typically used for distributed information systems, where

performance can be improved by the use of response caches. This

document defines aspects of HTTP/1.1 related to caching and reusing

response messages.

1.1. Purpose

An HTTP cache is a local store of response messages and the subsystem

that controls its message storage, retrieval, and deletion. A cache

stores cacheable responses in order to reduce the response time and

network bandwidth consumption on future, equivalent requests. Any

client or server MAY employ a cache, though a cache cannot be used by a

server that is acting as a tunnel.

The goal of caching in HTTP/1.1 is to significantly improve performance

by reusing a prior response message to satisfy a current request. A

stored response is considered "fresh", as defined in Section 2.3, if

the response can be reused without "validation" (checking with the

origin server to see if the cached response remains valid for this

request). A fresh cache response can therefore reduce both latency and

network transfers each time it is reused. When a cached response is not

fresh, it might still be reusable if it can be freshened by validation

(Section 2.4) or if the origin is unavailable.

1.2. Terminology

This specification uses a number of terms to refer to the roles played

by participants in, and objects of, HTTP caching.

A conformant implementation of a HTTP cache. Note that this

implies an HTTP/1.1 cache; this specification does not define

conformance for HTTP/1.0 caches.

*

*

*

*

*

*

*

*

A cache that stores responses to be reused by more than one user;

usually (but not always) deployed as part of an intermediary.

A cache that is dedicated to a single user.

A response is cacheable if a cache is allowed to store a copy of

the response message for use in answering subsequent requests.

Even when a response is cacheable, there might be additional

constraints on whether a cache can use the stored copy to satisfy

a particular request.

The time at which the origin server intends that a representation

no longer be returned by a cache without further validation.

An expiration time assigned by a cache when no explicit

expiration time is available.

The age of a response is the time since it was sent by, or

successfully validated with, the origin server.

A response is first-hand if the freshness model is not in use;

i.e., its age is 0.

The length of time between the generation of a response and its

expiration time.

A response is fresh if its age has not yet exceeded its freshness

lifetime.

A response is stale if its age has passed its freshness lifetime

(either explicit or heuristic).

*

*

*

*

*

*

*

*

*

*

A protocol element (e.g., an entity-tag or a Last-Modified time)

that is used to find out whether a stored response is an

equivalent copy of a representation. See Section 2.1 of [Part4].

A validator that is defined by the origin server such that its

current value will change if the representation body changes;

i.e., an entity-tag that is not marked as weak (Section 2.3 of

[Part4]) or, if no entity-tag is provided, a Last-Modified value

that is strong in the sense defined by Section 2.2.2 of [Part4].

1.3. Conformance and Error Handling

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

This document defines conformance criteria for several roles in HTTP

communication, including Senders, Recipients, Clients, Servers, User-

Agents, Origin Servers, Intermediaries, Proxies and Gateways. See

Section 2 of [Part1] for definitions of these terms.

An implementation is considered conformant if it complies with all of

the requirements associated with its role(s). Note that SHOULD-level

requirements are relevant here, unless one of the documented exceptions

is applicable.

This document also uses ABNF to define valid protocol elements (Section

1.4). In addition to the prose requirements placed upon them, Senders

MUST NOT generate protocol elements that are invalid.

Unless noted otherwise, Recipients MAY take steps to recover a usable

protocol element from an invalid construct. However, HTTP does not

define specific error handling mechanisms, except in cases where it has

direct impact on security. This is because different uses of the

protocol require different error handling strategies; for example, a

Web browser may wish to transparently recover from a response where the

Location header field doesn't parse according to the ABNF, whereby in a

systems control protocol using HTTP, this type of error recovery could

lead to dangerous consequences.

1.4. Syntax Notation

This specification uses the ABNF syntax defined in Section 1.2 of

[Part1] (which extends the syntax defined in [RFC5234] with a list

rule). Appendix Appendix B shows the collected ABNF, with the list rule

expanded.

The following core rules are included by reference, as defined in

[RFC5234], Appendix B.1: ALPHA (letters), CR (carriage return), CRLF

(CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double quote),

HEXDIG (hexadecimal 0-9/A-F/a-f), LF (line feed), OCTET (any 8-bit

*

*

sequence of data), SP (space), and VCHAR (any visible US-ASCII

character).

1.4.1. Core Rules

The core rules below are defined in [Part1]:

 OWS = <OWS, defined in [Part1], Section 1.2.2>

 quoted-string = <quoted-string, defined in [Part1], Section 3.2.3>

 token = <token, defined in [Part1], Section 3.2.3>

1.4.2. ABNF Rules defined in other Parts of the Specification

The ABNF rules below are defined in other parts:

 field-name = <field-name, defined in [Part1], Section 3.2>

 HTTP-date = <HTTP-date, defined in [Part2], Section 8>

 port = <port, defined in [Part1], Section 2.7>

 pseudonym = <pseudonym, defined in [Part1], Section 8.8>

 uri-host = <uri-host, defined in [Part1], Section 2.7>

1.5. Delta Seconds

The delta-seconds rule specifies a non-negative integer, representing

time in seconds.

 delta-seconds = 1*DIGIT

If an implementation receives a delta-seconds value larger than the

largest positive integer it can represent, or if any of its subsequent

calculations overflows, it MUST consider the value to be 2147483648

(2^31). Recipients parsing a delta-seconds value MUST use an arithmetic

type of at least 31 bits of range, and senders MUST NOT send delta-

seconds with a value greater than 2147483648.

2. Cache Operation

Proper cache operation preserves the semantics of HTTP transfers

([Part2]) while eliminating the transfer of information already held in

the cache. Although caching is an entirely OPTIONAL feature of HTTP, we

assume that reusing the cached response is desirable and that such

reuse is the default behavior when no requirement or locally-desired

configuration prevents it. Therefore, HTTP cache requirements are

focused on preventing a cache from either storing a non-reusable

response or reusing a stored response inappropriately.

Each cache entry consists of a cache key and one or more HTTP responses

corresponding to prior requests that used the same key. The most common

form of cache entry is a successful result of a retrieval request:

i.e., a 200 (OK) response containing a representation of the resource

identified by the request target. However, it is also possible to cache

negative results (e.g., 404 not found), incomplete results (e.g., 206

partial content), and responses to safe methods other than GET if the

method's definition allows such caching and defines something suitable

for use as a cache key.

The default cache key consists of the request method and target URI.

However, since HTTP caches in common use today are typically limited to

caching responses to GET, most implementations simply decline other

methods and use only the URI as the key.

If a request target is subject to content negotiation, its cache entry

might consist of multiple stored responses, each differentiated by a

secondary key for the values of the original request's selecting header

fields (Section 2.7).

2.1. Response Cacheability

A cache MUST NOT store a response to any request, unless:

The request method is understood by the cache and defined as

being cacheable, and

the response status code is understood by the cache, and

the "no-store" cache directive (see Section 3.2) does not appear

in request or response header fields, and

the "private" cache response directive (see Section 3.2.2 does

not appear in the response, if the cache is shared, and

the "Authorization" header field (see Section 4.1 of [Part7])

does not appear in the request, if the cache is shared, unless

the response explicitly allows it (see Section 2.6), and

the response either:

contains an Expires header field (see Section 3.3), or

contains a max-age response cache directive (see Section

3.2.2), or

contains a s-maxage response cache directive and the cache is

shared, or

contains a Cache Control Extension (see Section 3.2.3) that

allows it to be cached, or

has a status code that can be served with heuristic freshness

(see Section 2.3.1.1).

Note that any of the requirements listed above can be overridden by a

cache-control extension; see Section 3.2.3.

*

*

*

*

*

*

-

-

-

-

-

In this context, a cache has "understood" a request method or a

response status code if it recognizes it and implements any cache-

specific behavior.

Note that, in normal operation, most caches will not store a response

that has neither a cache validator nor an explicit expiration time, as

such responses are not usually useful to store. However, caches are not

prohibited from storing such responses.

A response message is considered complete when all of the octets

indicated by the message framing ([Part1]) are received prior to the

connection being closed. If the request is GET, the response status is

200 (OK), and the entire response header block has been received, a

cache MAY store an incomplete response message-body if the cache entry

is recorded as incomplete. Likewise, a 206 (Partial Content) response

MAY be stored as if it were an incomplete 200 (OK) cache entry.

However, a cache MUST NOT store incomplete or partial content responses

if it does not support the Range and Content-Range header fields or if

it does not understand the range units used in those fields.

A cache MAY complete a stored incomplete response by making a

subsequent range request ([Part5]) and combining the successful

response with the stored entry, as defined in Section 2.8. A cache MUST

NOT use an incomplete response to answer requests unless the response

has been made complete or the request is partial and specifies a range

that is wholly within the incomplete response. A cache MUST NOT send a

partial response to a client without explicitly marking it as such

using the 206 (Partial Content) status code.

2.2. Constructing Responses from Caches

For a presented request, a cache MUST NOT return a stored response,

unless:

The presented effective request URI (Section 4.3 of [Part1]) and

that of the stored response match, and

the request method associated with the stored response allows it

to be used for the presented request, and

selecting header fields nominated by the stored response (if any)

match those presented (see Section 2.7), and

the presented request and stored response are free from

directives that would prevent its use (see Section 3.2 and

Section 3.4), and

the stored response is either:

fresh (see Section 2.3), or

allowed to be served stale (see Section 2.3.3), or

*

*

*

*

*

-

-

successfully validated (see Section 2.4).

Note that any of the requirements listed above can be overridden by a

cache-control extension; see Section 3.2.3.

When a stored response is used to satisfy a request without validation,

a cache MUST include a single Age header field (Section 3.1) in the

response with a value equal to the stored response's current_age; see

Section 2.3.2.

A cache MUST write through requests with methods that are unsafe

(Section 6.1.1 of [Part2]) to the origin server; i.e., a cache must not

generate a reply to such a request before having forwarded the request

and having received a corresponding response.

Also, note that unsafe requests might invalidate already stored

responses; see Section 2.5.

When more than one suitable response is stored, a cache MUST use the

most recent response (as determined by the Date header field). It can

also forward a request with "Cache-Control: max-age=0" or "Cache-

Control: no-cache" to disambiguate which response to use.

A cache that does not have a clock available MUST NOT use stored

responses without revalidating them on every use. A cache, especially a

shared cache, SHOULD use a mechanism, such as NTP [RFC1305], to

synchronize its clock with a reliable external standard.

2.3. Freshness Model

When a response is "fresh" in the cache, it can be used to satisfy

subsequent requests without contacting the origin server, thereby

improving efficiency.

The primary mechanism for determining freshness is for an origin server

to provide an explicit expiration time in the future, using either the

Expires header field (Section 3.3) or the max-age response cache

directive (Section 3.2.2). Generally, origin servers will assign future

explicit expiration times to responses in the belief that the

representation is not likely to change in a semantically significant

way before the expiration time is reached.

If an origin server wishes to force a cache to validate every request,

it can assign an explicit expiration time in the past to indicate that

the response is already stale. Compliant caches will normally validate

the cached response before reusing it for subsequent requests (see

Section 2.3.3).

Since origin servers do not always provide explicit expiration times, a

cache MAY assign a heuristic expiration time when an explicit time is

not specified, employing algorithms that use other header field values

(such as the Last-Modified time) to estimate a plausible expiration

time. This specification does not provide specific algorithms, but does

impose worst-case constraints on their results.

The calculation to determine if a response is fresh is:

 response_is_fresh = (freshness_lifetime > current_age)

-

The freshness_lifetime is defined in Section 2.3.1; the current_age is

defined in Section 2.3.2.

Additionally, clients might need to influence freshness calculation.

They can do this using several request cache directives, with the

effect of either increasing or loosening constraints on freshness. See

Section 3.2.1.

Note that freshness applies only to cache operation; it cannot be used

to force a user agent to refresh its display or reload a resource. See

Section 4 for an explanation of the difference between caches and

history mechanisms.

2.3.1. Calculating Freshness Lifetime

A cache can calculate the freshness lifetime (denoted as

freshness_lifetime) of a response by using the first match of:

If the cache is shared and the s-maxage response cache directive

(Section 3.2.2) is present, use its value, or

If the max-age response cache directive (Section 3.2.2) is

present, use its value, or

If the Expires response header field (Section 3.3) is present,

use its value minus the value of the Date response header field,

or

Otherwise, no explicit expiration time is present in the

response. A heuristic freshness lifetime might be applicable; see

Section 2.3.1.1.

Note that this calculation is not vulnerable to clock skew, since all

of the information comes from the origin server.

2.3.1.1. Calculating Heuristic Freshness

If no explicit expiration time is present in a stored response that has

a status code whose definition allows heuristic freshness to be used

(including the following in Section 7 of [Part2]: 200, 203, 206, 300,

301 and 410), a cache MAY calculate a heuristic expiration time. A

cache MUST NOT use heuristics to determine freshness for responses with

status codes that do not explicitly allow it.

When a heuristic is used to calculate freshness lifetime, a cache

SHOULD attach a Warning header field with a 113 warn-code to the

response if its current_age is more than 24 hours and such a warning is

not already present.

Also, if the response has a Last-Modified header field (Section 2.2 of

[Part4]), caches are encouraged to use a heuristic expiration value

that is no more than some fraction of the interval since that time. A

typical setting of this fraction might be 10%.

*

*

*

*

Note: RFC 2616 ([RFC2616], Section 13.9) required that caches do

not calculate heuristic freshness for URIs with query components

(i.e., those containing '?'). In practice, this has not been

widely implemented. Therefore, servers are encouraged to send

explicit directives (e.g., Cache-Control: no-cache) if they wish

to preclude caching.

2.3.2. Calculating Age

HTTP/1.1 uses the Age header field to convey the estimated age of the

response message when obtained from a cache. The Age field value is the

cache's estimate of the amount of time since the response was generated

or validated by the origin server. In essence, the Age value is the sum

of the time that the response has been resident in each of the caches

along the path from the origin server, plus the amount of time it has

been in transit along network paths.

The following data is used for the age calculation:

The term "age_value" denotes the value of the Age header field

(Section 3.1), in a form appropriate for arithmetic operation; or

0, if not available.

HTTP/1.1 requires origin servers to send a Date header field, if

possible, with every response, giving the time at which the

response was generated. The term "date_value" denotes the value

of the Date header field, in a form appropriate for arithmetic

operations. See Section 9.2 of [Part2] for the definition of the

Date header field, and for requirements regarding responses

without it.

The term "now" means "the current value of the clock at the host

performing the calculation". A cache SHOULD use NTP ([RFC1305])

or some similar protocol to synchronize its clocks to a globally

accurate time standard.

The current value of the clock at the host at the time the

request resulting in the stored response was made.

The current value of the clock at the host at the time the

response was received.

A response's age can be calculated in two entirely independent ways:

the "apparent_age": response_time minus date_value, if the

local clock is reasonably well synchronized to the origin

server's clock. If the result is negative, the result is

replaced by zero.

*

*

*

*

*

*

1.

the "corrected_age_value", if all of the caches along the

response path implement HTTP/1.1. A cache MUST interpret this

value relative to the time the request was initiated, not the

time that the response was received.

 apparent_age = max(0, response_time - date_value);

 response_delay = response_time - request_time;

 corrected_age_value = age_value + response_delay;

These are combined as

 corrected_initial_age = max(apparent_age, corrected_age_value);

The current_age of a stored response can then be calculated by adding

the amount of time (in seconds) since the stored response was last

validated by the origin server to the corrected_initial_age.

 resident_time = now - response_time;

 current_age = corrected_initial_age + resident_time;

Additionally, to avoid common problems in date parsing:

HTTP/1.1 clients and caches SHOULD assume that an RFC-850 date

which appears to be more than 50 years in the future is in fact

in the past (this helps solve the "year 2000" problem).

Although all date formats are specified to be case-sensitive,

recipients SHOULD match day, week and timezone names case-

insensitively.

An HTTP/1.1 implementation MAY internally represent a parsed

Expires date as earlier than the proper value, but MUST NOT

internally represent a parsed Expires date as later than the

proper value.

All expiration-related calculations MUST be done in GMT. The

local time zone MUST NOT influence the calculation or comparison

of an age or expiration time.

If an HTTP header field incorrectly carries a date value with a

time zone other than GMT, it MUST be converted into GMT using the

most conservative possible conversion.

2.3.3. Serving Stale Responses

A "stale" response is one that either has explicit expiry information

or is allowed to have heuristic expiry calculated, but is not fresh

according to the calculations in Section 2.3.

2.

*

*

*

*

*

A cache MUST NOT return a stale response if it is prohibited by an

explicit in-protocol directive (e.g., by a "no-store" or "no-cache"

cache directive, a "must-revalidate" cache-response-directive, or an

applicable "s-maxage" or "proxy-revalidate" cache-response-directive;

see Section 3.2.2).

A cache MUST NOT return stale responses unless it is disconnected

(i.e., it cannot contact the origin server or otherwise find a forward

path) or doing so is explicitly allowed (e.g., by the max-stale request

directive; see Section 3.2.1).

A cache SHOULD append a Warning header field with the 110 warn-code

(see Section 3.6) to stale responses. Likewise, a cache SHOULD add the

112 warn-code to stale responses if the cache is disconnected.

If a cache receives a first-hand response (either an entire response,

or a 304 (Not Modified) response) that it would normally forward to the

requesting client, and the received response is no longer fresh, the

cache can forward it to the requesting client without adding a new

Warning (but without removing any existing Warning header fields). A

cache shouldn't attempt to validate a response simply because that

response became stale in transit.

2.4. Validation Model

When a cache has one or more stored responses for a requested URI, but

cannot serve any of them (e.g., because they are not fresh, or one

cannot be selected; see Section 2.7), it can use the conditional

request mechanism [Part4] in the forwarded request to give the origin

server an opportunity to both select a valid stored response to be

used, and to update it. This process is known as "validating" or

"revalidating" the stored response.

When sending such a conditional request, a cache adds an If-Modified-

Since header field whose value is that of the Last-Modified header

field from the selected (see Section 2.7) stored response, if

available.

Additionally, a cache can add an If-None-Match header field whose value

is that of the ETag header field(s) from all responses stored for the

requested URI, if present. However, if any of the stored responses

contains only partial content, the cache shouldn't include its entity-

tag in the If-None-Match header field unless the request is for a range

that would be fully satisfied by that stored response.

Cache handling of a response to a conditional request is dependent upon

its status code:

A 304 (Not Modified) response status code indicates that the

stored response can be updated and reused; see Section 2.4.1.

A full response (i.e., one with a response body) indicates that

none of the stored responses nominated in the conditional request

is suitable. Instead, the cache can use the full response to

satisfy the request and MAY replace the stored response(s).

*

*

However, if a cache receives a 5xx response while attempting to

validate a response, it can either forward this response to the

requesting client, or act as if the server failed to respond. In

the latter case, it can return a previously stored response (see

Section 2.3.3).

2.4.1. Freshening Responses

When a cache receives a 304 (Not Modified) response and already has one

or more stored 200 (OK) responses for the same cache key, the cache

needs to identify which of the stored responses are updated by this new

response and then update the stored response(s) with the new

information provided in the 304 response.

If the new response contains a strong validator, then that strong

validator identifies the selected representation. All of the

stored responses with the same strong validator are selected. If

none of the stored responses contain the same strong validator,

then this new response corresponds to a new selected

representation and MUST NOT update the existing stored responses.

If the new response contains a weak validator and that validator

corresponds to one of the cache's stored responses, then the most

recent of those matching stored responses is selected.

If the new response does not include any form of validator, there

is only one stored response, and that stored response also lacks

a validator, then that stored response is selected.

If a stored response is selected for update, the cache MUST:

delete any Warning header fields in the stored response with

warn-code 1xx (see Section 3.6);

retain any Warning header fields in the stored response with

warn-code 2xx; and,

use other header fields provided in the 304 response to replace

all instances of the corresponding header fields in the stored

response.

2.5. Request Methods that Invalidate

Because unsafe request methods (Section 6.1.1 of [Part2]) such as PUT,

POST or DELETE have the potential for changing state on the origin

server, intervening caches can use them to keep their contents up-to-

date.

A cache MUST invalidate the effective Request URI (Section 4.3 of

[Part1]) as well as the URI(s) in the Location and Content-Location

*

*

*

*

*

*

*

header fields (if present) when a non-error response to a request with

an unsafe method is received.

However, a cache MUST NOT invalidate a URI from a Location or Content-

Location header field if the host part of that URI differs from the

host part in the effective request URI (Section 4.3 of [Part1]). This

helps prevent denial of service attacks.

A cache MUST invalidate the effective request URI (Section 4.3 of

[Part1]) when it receives a non-error response to a request with a

method whose safety is unknown.

Here, a "non-error response" is one with a 2xx or 3xx status code.

"Invalidate" means that the cache will either remove all stored

responses related to the effective request URI, or will mark these as

"invalid" and in need of a mandatory validation before they can be

returned in response to a subsequent request.

Note that this does not guarantee that all appropriate responses are

invalidated. For example, the request that caused the change at the

origin server might not have gone through the cache where a response is

stored.

2.6. Shared Caching of Authenticated Responses

A shared cache MUST NOT use a cached response to a request with an

Authorization header field (Section 4.1 of [Part7]) to satisfy any

subsequent request unless a cache directive that allows such responses

to be stored is present in the response.

In this specification, the following Cache-Control response directives

(Section 3.2.2) have such an effect: must-revalidate, public, s-

maxage.

Note that cached responses that contain the "must-revalidate" and/or

"s-maxage" response directives are not allowed to be served stale

(Section 2.3.3) by shared caches. In particular, a response with either

"max-age=0, must-revalidate" or "s-maxage=0" cannot be used to satisfy

a subsequent request without revalidating it on the origin server.

2.7. Caching Negotiated Responses

When a cache receives a request that can be satisfied by a stored

response that has a Vary header field (Section 3.5), it MUST NOT use

that response unless all of the selecting header fields nominated by

the Vary header field match in both the original request (i.e., that

associated with the stored response), and the presented request.

The selecting header fields from two requests are defined to match if

and only if those in the first request can be transformed to those in

the second request by applying any of the following:

adding or removing whitespace, where allowed in the header

field's syntax

*

combining multiple header fields with the same field name (see

Section 3.2 of [Part1])

normalizing both header field values in a way that is known to

have identical semantics, according to the header field's

specification (e.g., re-ordering field values when order is not

significant; case-normalization, where values are defined to be

case-insensitive)

If (after any normalization that might take place) a header field is

absent from a request, it can only match another request if it is also

absent there.

A Vary header field-value of "*" always fails to match, and subsequent

requests to that resource can only be properly interpreted by the

origin server.

The stored response with matching selecting header fields is known as

the selected response.

If multiple selected responses are available, the most recent response

(as determined by the Date header field) is used; see Section 2.2.

If no selected response is available, the cache can forward the

presented request to the origin server in a conditional request; see

Section 2.4.

2.8. Combining Partial Content

A response might transfer only a partial representation if the

connection closed prematurely or if the request used one or more Range

specifiers ([Part5]). After several such transfers, a cache might have

received several ranges of the same representation. A cache MAY combine

these ranges into a single stored response, and reuse that response to

satisfy later requests, if they all share the same strong validator and

the cache complies with the client requirements in Section 4 of

[Part5].

When combining the new response with one or more stored responses, a

cache MUST:

delete any Warning header fields in the stored response with

warn-code 1xx (see Section 3.6);

retain any Warning header fields in the stored response with

warn-code 2xx; and,

use other header fields provided in the new response, aside from

Content-Range, to replace all instances of the corresponding

header fields in the stored response.

3. Header Field Definitions

This section defines the syntax and semantics of HTTP/1.1 header fields

related to caching.

*

*

*

*

*

3.1. Age

The "Age" header field conveys the sender's estimate of the amount of

time since the response was generated or successfully validated at the

origin server. Age values are calculated as specified in Section 2.3.2.

 Age = delta-seconds

Age field-values are non-negative integers, representing time in

seconds (see Section 1.5).

The presence of an Age header field in a response implies that a

response is not first-hand. However, the converse is not true, since

HTTP/1.0 caches might not implement the Age header field.

3.2. Cache-Control

The "Cache-Control" header field is used to specify directives for

caches along the request/response chain. Such cache directives are

unidirectional in that the presence of a directive in a request does

not imply that the same directive is to be given in the response.

A cache MUST obey the requirements of the Cache-Control directives

defined in this section. See Section 3.2.3 for information about how

Cache-Control directives defined elsewhere are handled.

Note: HTTP/1.0 caches might not implement Cache-Control and might

only implement Pragma: no-cache (see Section 3.4).

A proxy, whether or not it implements a cache, MUST pass cache

directives through in forwarded messages, regardless of their

significance to that application, since the directives might be

applicable to all recipients along the request/response chain. It is

not possible to target a directive to a specific cache.

Cache directives are identified by a token, to be compared case-

insensitively, and have an optional argument.

 Cache-Control = 1#cache-directive

 cache-directive = cache-request-directive

 / cache-response-directive

 cache-extension = token ["=" (token / quoted-string)]

3.2.1. Request Cache-Control Directives

*

 cache-request-directive =

 "no-cache"

 / "no-store"

 / "max-age" "=" delta-seconds

 / "max-stale" ["=" delta-seconds]

 / "min-fresh" "=" delta-seconds

 / "no-transform"

 / "only-if-cached"

 / cache-extension

The no-cache request directive indicates that a cache MUST NOT

use a stored response to satisfy the request without successful

validation on the origin server.

The no-store request directive indicates that a cache MUST NOT

store any part of either this request or any response to it. This

directive applies to both private and shared caches. "MUST NOT

store" in this context means that the cache MUST NOT

intentionally store the information in non-volatile storage, and

MUST make a best-effort attempt to remove the information from

volatile storage as promptly as possible after forwarding it.

This directive is NOT a reliable or sufficient mechanism for

ensuring privacy. In particular, malicious or compromised caches

might not recognize or obey this directive, and communications

networks might be vulnerable to eavesdropping.

Note that if a request containing this directive is satisfied

from a cache, the no-store request directive does not apply to

the already stored response.

The max-age request directive indicates that the client is

unwilling to accept a response whose age is greater than the

specified number of seconds. Unless the max-stale request

directive is also present, the client is not willing to accept a

stale response.

The max-stale request directive indicates that the client is

willing to accept a response that has exceeded its expiration

time. If max-stale is assigned a value, then the client is

willing to accept a response that has exceeded its expiration

time by no more than the specified number of seconds. If no value

*

*

*

*

*

*

is assigned to max-stale, then the client is willing to accept a

stale response of any age.

The min-fresh request directive indicates that the client is

willing to accept a response whose freshness lifetime is no less

than its current age plus the specified time in seconds. That is,

the client wants a response that will still be fresh for at least

the specified number of seconds.

The no-transform request directive indicates that an intermediary

(whether or not it implements a cache) MUST NOT change the

Content-Encoding, Content-Range or Content-Type request header

fields, nor the request representation.

The only-if-cached request directive indicates that the client

only wishes to obtain a stored response. If it receives this

directive, a cache SHOULD either respond using a stored response

that is consistent with the other constraints of the request, or

respond with a 504 (Gateway Timeout) status code. If a group of

caches is being operated as a unified system with good internal

connectivity, a member cache MAY forward such a request within

that group of caches.

3.2.2. Response Cache-Control Directives

 cache-response-directive =

 "public"

 / "private" ["=" DQUOTE 1#field-name DQUOTE]

 / "no-cache" ["=" DQUOTE 1#field-name DQUOTE]

 / "no-store"

 / "no-transform"

 / "must-revalidate"

 / "proxy-revalidate"

 / "max-age" "=" delta-seconds

 / "s-maxage" "=" delta-seconds

 / cache-extension

The public response directive indicates that a response whose

associated request contains an 'Authentication' header MAY be

stored (see Section 2.6).

*

*

*

*

The private response directive indicates that the response

message is intended for a single user and MUST NOT be stored by a

shared cache. A private cache MAY store the response.

If the private response directive specifies one or more field-

names, this requirement is limited to the field-values associated

with the listed response header fields. That is, a shared cache

MUST NOT store the specified field-names(s), whereas it MAY store

the remainder of the response message.

Note: This usage of the word private only controls where the

response can be stored; it cannot ensure the privacy of the

message content. Also, private response directives with field-

names are often handled by implementations as if an unqualified

private directive was received; i.e., the special handling for

the qualified form is not widely implemented.

The no-cache response directive indicates that the response MUST

NOT be used to satisfy a subsequent request without successful

validation on the origin server. This allows an origin server to

prevent a cache from using it to satisfy a request without

contacting it, even by caches that have been configured to return

stale responses.

If the no-cache response directive specifies one or more field-

names, this requirement is limited to the field-values associated

with the listed response header fields. That is, a cache MUST NOT

send the specified field-name(s) in the response to a subsequent

request without successful validation on the origin server. This

allows an origin server to prevent the re-use of certain header

fields in a response, while still allowing caching of the rest of

the response.

Note: Most HTTP/1.0 caches will not recognize or obey this

directive. Also, no-cache response directives with field-names

are often handled by implementations as if an unqualified no-

cache directive was received; i.e., the special handling for the

qualified form is not widely implemented.

The no-store response directive indicates that a cache MUST NOT

store any part of either the immediate request or response. This

directive applies to both private and shared caches. "MUST NOT

store" in this context means that the cache MUST NOT

intentionally store the information in non-volatile storage, and

*

*

*

*

*

*

*

MUST make a best-effort attempt to remove the information from

volatile storage as promptly as possible after forwarding it.

This directive is NOT a reliable or sufficient mechanism for

ensuring privacy. In particular, malicious or compromised caches

might not recognize or obey this directive, and communications

networks might be vulnerable to eavesdropping.

The must-revalidate response directive indicates that once it has

become stale, a cache MUST NOT use the response to satisfy

subsequent requests without successful validation on the origin

server.

The must-revalidate directive is necessary to support reliable

operation for certain protocol features. In all circumstances a

cache MUST obey the must-revalidate directive; in particular, if

a cache cannot reach the origin server for any reason, it MUST

generate a 504 (Gateway Timeout) response.

The must-revalidate directive ought to be used by servers if and

only if failure to validate a request on the representation could

result in incorrect operation, such as a silently unexecuted

financial transaction.

The proxy-revalidate response directive has the same meaning as

the must-revalidate response directive, except that it does not

apply to private caches.

The max-age response directive indicates that the response is to

be considered stale after its age is greater than the specified

number of seconds.

The s-maxage response directive indicates that, in shared caches,

the maximum age specified by this directive overrides the maximum

age specified by either the max-age directive or the Expires

header field. The s-maxage directive also implies the semantics

of the proxy-revalidate response directive.

The no-transform response directive indicates that an

intermediary (regardless of whether it implements a cache) MUST

*

*

*

*

*

*

*

*

NOT change the Content-Encoding, Content-Range or Content-Type

response header fields, nor the response representation.

3.2.3. Cache Control Extensions

The Cache-Control header field can be extended through the use of one

or more cache-extension tokens, each with an optional value.

Informational extensions (those that do not require a change in cache

behavior) can be added without changing the semantics of other

directives. Behavioral extensions are designed to work by acting as

modifiers to the existing base of cache directives. Both the new

directive and the standard directive are supplied, such that

applications that do not understand the new directive will default to

the behavior specified by the standard directive, and those that

understand the new directive will recognize it as modifying the

requirements associated with the standard directive. In this way,

extensions to the cache-control directives can be made without

requiring changes to the base protocol.

This extension mechanism depends on an HTTP cache obeying all of the

cache-control directives defined for its native HTTP-version, obeying

certain extensions, and ignoring all directives that it does not

understand.

For example, consider a hypothetical new response directive called

"community" that acts as a modifier to the private directive. We define

this new directive to mean that, in addition to any private cache, any

cache that is shared only by members of the community named within its

value may cache the response. An origin server wishing to allow the UCI

community to use an otherwise private response in their shared cache(s)

could do so by including

 Cache-Control: private, community="UCI"

A cache seeing this header field will act correctly even if the cache

does not understand the community cache-extension, since it will also

see and understand the private directive and thus default to the safe

behavior.

A cache MUST ignore unrecognized cache directives; it is assumed that

any cache directive likely to be unrecognized by an HTTP/1.1 cache will

be combined with standard directives (or the response's default

cacheability) such that the cache behavior will remain minimally

correct even if the cache does not understand the extension(s).

The HTTP Cache Directive Registry defines the name space for the cache

directives.

A registration MUST include the following fields:

Cache Directive Name

Pointer to specification text

*

*

Values to be added to this name space are subject to IETF review

([RFC5226], Section 4.1).

The registry itself is maintained at http://www.iana.org/assignments/

http-cache-directives.

3.3. Expires

The "Expires" header field gives the date/time after which the response

is considered stale. See Section 2.3 for further discussion of the

freshness model.

The presence of an Expires field does not imply that the original

resource will change or cease to exist at, before, or after that time.

The field-value is an absolute date and time as defined by HTTP-date in

Section 8 of [Part2]; a sender MUST use the rfc1123-date format.

 Expires = HTTP-date

For example

 Expires: Thu, 01 Dec 1994 16:00:00 GMT

A cache MUST treat other invalid date formats, especially including the

value "0", as in the past (i.e., "already expired").

Note: If a response includes a Cache-Control field with the max-

age directive (see Section 3.2.2), that directive overrides the

Expires field. Likewise, the s-maxage directive overrides Expires

in shared caches.

Historically, HTTP required the Expires field-value to be no more than

a year in the future. While longer freshness lifetimes are no longer

prohibited, extremely large values have been demonstrated to cause

problems (e.g., clock overflows due to use of 32-bit integers for time

values), and most caches will evict a response far sooner than that.

Therefore, senders ought not produce them.

An origin server without a clock MUST NOT assign Expires values to a

response unless these values were associated with the resource by a

system or user with a reliable clock. It MAY assign an Expires value

that is known, at or before server configuration time, to be in the

past (this allows "pre-expiration" of responses without storing

separate Expires values for each resource).

3.4. Pragma

The "Pragma" header field allows backwards compatibility with HTTP/1.0

caches, so that clients can specify a "no-cache" request that they will

understand (as Cache-Control was not defined until HTTP/1.1). When the

Cache-Control header is also present and understood in a request,

Pragma is ignored.

*

http://www.iana.org/assignments/http-cache-directives
http://www.iana.org/assignments/http-cache-directives

In HTTP/1.0, Pragma was defined as an extensible field for

implementation-specified directives for recipients. This specification

deprecates such extensions to improve interoperability.

 Pragma = 1#pragma-directive

 pragma-directive = "no-cache" / extension-pragma

 extension-pragma = token ["=" (token / quoted-string)]

When the Cache-Control header is not present in a request, the no-cache

request pragma-directive MUST have the same effect on caches as if

"Cache-Control: no-cache" were present (see Section 3.2.1).

When sending a no-cache request, a client ought to include both the

pragma and cache-control directives, unless Cache-Control: no-cache is

purposefully omitted to target other Cache-Control response directives

at HTTP/1.1 caches. For example:

 GET / HTTP/1.1

 Host: www.example.com

 Cache-Control: max-age=30

 Pragma: no-cache

will constrain HTTP/1.1 caches to serve a response no older than 30

seconds, while precluding implementations that do not understand Cache-

Control from serving a cached response.

Note: Because the meaning of "Pragma: no-cache" in responses is

not specified, it does not provide a reliable replacement for

"Cache-Control: no-cache" in them.

3.5. Vary

The "Vary" header field conveys the set of header fields that were used

to select the representation.

Caches use this information, in part, to determine whether a stored

response can be used to satisfy a given request; see Section 2.7.

determines, while the response is fresh, whether a cache is permitted

to use the response to reply to a subsequent request without

validation; see Section 2.7.

In uncacheable or stale responses, the Vary field value advises the

user agent about the criteria that were used to select the

representation.

 Vary = "*" / 1#field-name

The set of header fields named by the Vary field value is known as the

selecting header fields.

A server SHOULD include a Vary header field with any cacheable response

that is subject to server-driven negotiation. Doing so allows a cache

*

to properly interpret future requests on that resource and informs the

user agent about the presence of negotiation on that resource. A server

MAY include a Vary header field with a non-cacheable response that is

subject to server-driven negotiation, since this might provide the user

agent with useful information about the dimensions over which the

response varies at the time of the response.

A Vary field value of "*" signals that unspecified parameters not

limited to the header fields (e.g., the network address of the client),

play a role in the selection of the response representation; therefore,

a cache cannot determine whether this response is appropriate. A proxy

MUST NOT generate the "*" value.

The field-names given are not limited to the set of standard header

fields defined by this specification. Field names are case-insensitive.

3.6. Warning

The "Warning" header field is used to carry additional information

about the status or transformation of a message that might not be

reflected in the message. This information is typically used to warn

about possible incorrectness introduced by caching operations or

transformations applied to the payload of the message.

Warnings can be used for other purposes, both cache-related and

otherwise. The use of a warning, rather than an error status code,

distinguishes these responses from true failures.

Warning header fields can in general be applied to any message, however

some warn-codes are specific to caches and can only be applied to

response messages.

 Warning = 1#warning-value

 warning-value = warn-code SP warn-agent SP warn-text

 [SP warn-date]

 warn-code = 3DIGIT

 warn-agent = (uri-host [":" port]) / pseudonym

 ; the name or pseudonym of the server adding

 ; the Warning header field, for use in debugging

 warn-text = quoted-string

 warn-date = DQUOTE HTTP-date DQUOTE

Multiple warnings can be attached to a response (either by the origin

server or by a cache), including multiple warnings with the same code

number, only differing in warn-text.

When this occurs, the user agent SHOULD inform the user of as many of

them as possible, in the order that they appear in the response.

Systems that generate multiple Warning header fields are encouraged to

order them with this user agent behavior in mind. New Warning header

fields are added after any existing Warning headers fields.

Warnings are assigned three digit warn-codes. The first digit indicates

whether the Warning is required to be deleted from a stored response

after validation:

1xx Warnings describe the freshness or validation status of the

response, and so MUST be deleted by a cache after validation.

They can only be generated by a cache when validating a cached

entry, and MUST NOT be generated in any other situation.

2xx Warnings describe some aspect of the representation that is

not rectified by a validation (for example, a lossy compression

of the representation) and MUST NOT be deleted by a cache after

validation, unless a full response is returned, in which case

they MUST be.

If an implementation sends a message with one or more Warning header

fields to a receiver whose version is HTTP/1.0 or lower, then the

sender MUST include in each warning-value a warn-date that matches the

Date header field in the message.

If a system receives a message with a warning-value that includes a

warn-date, and that warn-date is different from the Date value in the

response, then that warning-value MUST be deleted from the message

before storing, forwarding, or using it. (preventing the consequences

of naive caching of Warning header fields.) If all of the warning-

values are deleted for this reason, the Warning header field MUST be

deleted as well.

The following warn-codes are defined by this specification, each with a

recommended warn-text in English, and a description of its meaning.

A cache SHOULD include this whenever the returned response is

stale.

A cache SHOULD include this when returning a stale response

because an attempt to validate the response failed, due to an

inability to reach the server.

A cache SHOULD include this if it is intentionally disconnected

from the rest of the network for a period of time.

A cache SHOULD include this if it heuristically chose a freshness

lifetime greater than 24 hours and the response's age is greater

than 24 hours.

The warning text can include arbitrary information to be

presented to a human user, or logged. A system receiving this

warning MUST NOT take any automated action, besides presenting

the warning to the user.

MUST be added by a proxy if it applies any transformation to the

representation, such as changing the content-coding, media-type,

*

*

*

*

*

*

*

*

or modifying the representation data, unless this Warning code

already appears in the response.

The warning text can include arbitrary information to be

presented to a human user, or logged. A system receiving this

warning MUST NOT take any automated action.

4. History Lists

User agents often have history mechanisms, such as "Back" buttons and

history lists, that can be used to redisplay a representation retrieved

earlier in a session.

The freshness model (Section 2.3) does not necessarily apply to history

mechanisms. I.e., a history mechanism can display a previous

representation even if it has expired.

This does not prohibit the history mechanism from telling the user that

a view might be stale, or from honoring cache directives (e.g., Cache-

Control: no-store).

5. IANA Considerations

5.1. Cache Directive Registry

The registration procedure for HTTP Cache Directives is defined by

Section 3.2.3 of this document.

The HTTP Cache Directive Registry shall be created at http://

www.iana.org/assignments/http-cache-directives and be populated with

the registrations below:

Cache Directive Reference

max-age Section 3.2.1, Section 3.2.2

max-stale Section 3.2.1

min-fresh Section 3.2.1

must-revalidate Section 3.2.2

no-cache Section 3.2.1, Section 3.2.2

no-store Section 3.2.1, Section 3.2.2

no-transform Section 3.2.1, Section 3.2.2

only-if-cached Section 3.2.1

private Section 3.2.2

proxy-revalidate Section 3.2.2

public Section 3.2.2

s-maxage Section 3.2.2

stale-if-error [RFC5861], Section 4

stale-while-revalidate [RFC5861], Section 3

*

http://www.iana.org/assignments/http-cache-directives
http://www.iana.org/assignments/http-cache-directives

5.2. Header Field Registration

The Message Header Field Registry located at http://www.iana.org/

assignments/message-headers/message-header-index.html shall be updated

with the permanent registrations below (see [RFC3864]):

Header Field Name Protocol Status Reference

Age http standard Section 3.1

Cache-Control http standard Section 3.2

Expires http standard Section 3.3

Pragma http standard Section 3.4

Vary http standard Section 3.5

Warning http standard Section 3.6

The change controller is: "IETF (iesg@ietf.org) - Internet Engineering

Task Force".

6. Security Considerations

Caches expose additional potential vulnerabilities, since the contents

of the cache represent an attractive target for malicious exploitation.

Because cache contents persist after an HTTP request is complete, an

attack on the cache can reveal information long after a user believes

that the information has been removed from the network. Therefore,

cache contents need to be protected as sensitive information.

7. Acknowledgments

See Section 11 of [Part1].

8. References

8.1. Normative References

[Part1]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y. and

J. F. Reschke, "HTTP/1.1, part 1: URIs, Connections,

and Message Parsing", Internet-Draft draft-ietf-

httpbis-p1-messaging-17, October 2011.

[Part2]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y. and

J. F. Reschke, "HTTP/1.1, part 2: Message Semantics",

Internet-Draft draft-ietf-httpbis-p2-semantics-17,

October 2011.

[Part4]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y. and

J. F. Reschke, "HTTP/1.1, part 4: Conditional

http://www.iana.org/assignments/message-headers/message-header-index.html
http://www.iana.org/assignments/message-headers/message-header-index.html
http://tools.ietf.org/html/draft-ietf-httpbis-p1-messaging-17
http://tools.ietf.org/html/draft-ietf-httpbis-p1-messaging-17
http://tools.ietf.org/html/draft-ietf-httpbis-p2-semantics-17
http://tools.ietf.org/html/draft-ietf-httpbis-p4-conditional-17

Requests", Internet-Draft draft-ietf-httpbis-p4-

conditional-17, October 2011.

[Part5]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y. and

J. F. Reschke, "HTTP/1.1, part 5: Range Requests and

Partial Responses", Internet-Draft draft-ietf-httpbis-

p5-range-17, October 2011.

[Part7]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y. and

J. F. Reschke, "HTTP/1.1, part 7: Authentication",

Internet-Draft draft-ietf-httpbis-p7-auth-17, October

2011.

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC5234]
Crocker, D. and P. Overell, "Augmented BNF for Syntax

Specifications: ABNF", STD 68, RFC 5234, January 2008.

8.2. Informative References

[RFC1305]
Mills, D., "Network Time Protocol (Version 3)

Specification, Implementation", RFC 1305, March 1992.

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC3864]

Klyne, G., Nottingham, M. and J. Mogul, "Registration

Procedures for Message Header Fields", BCP 90, RFC

3864, September 2004.

[RFC5226]

Narten, T. and H. Alvestrand, "Guidelines for Writing

an IANA Considerations Section in RFCs", BCP 26, RFC

5226, May 2008.

[RFC5861]
Nottingham, M., "HTTP Cache-Control Extensions for

Stale Content", RFC 5861, April 2010.

Appendix A. Changes from RFC 2616

Make the specified age calculation algorithm less conservative.

(Section 2.3.2)

Remove requirement to consider Content-Location in successful responses

in order to determine the appropriate response to use. (Section 2.4)

Clarify denial of service attack avoidance requirement. (Section 2.5)

Change ABNF productions for header fields to only define the field

value. (Section 3)

Do not mention RFC 2047 encoding and multiple languages in Warning

header fields anymore, as these aspects never were implemented.

(Section 3.6)

Appendix B. Collected ABNF

http://tools.ietf.org/html/draft-ietf-httpbis-p4-conditional-17
http://tools.ietf.org/html/draft-ietf-httpbis-p5-range-17
http://tools.ietf.org/html/draft-ietf-httpbis-p5-range-17
http://tools.ietf.org/html/draft-ietf-httpbis-p7-auth-17
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc1305
http://tools.ietf.org/html/rfc1305
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc3864
http://tools.ietf.org/html/rfc3864
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5861
http://tools.ietf.org/html/rfc5861

Age = delta-seconds

Cache-Control = *("," OWS) cache-directive *(OWS "," [OWS

 cache-directive])

Expires = HTTP-date

HTTP-date = <HTTP-date, defined in [Part2], Section 8>

OWS = <OWS, defined in [Part1], Section 1.2.2>

Pragma = *("," OWS) pragma-directive *(OWS "," [OWS

 pragma-directive])

Vary = "*" / (*("," OWS) field-name *(OWS "," [OWS field-name]

))

Warning = *("," OWS) warning-value *(OWS "," [OWS warning-value]

)

cache-directive = cache-request-directive / cache-response-directive

cache-extension = token ["=" (token / quoted-string)]

cache-request-directive = "no-cache" / "no-store" / ("max-age="

 delta-seconds) / ("max-stale" ["=" delta-seconds]) / (

 "min-fresh=" delta-seconds) / "no-transform" / "only-if-cached" /

 cache-extension

cache-response-directive = "public" / ("private" ["=" DQUOTE *(","

 OWS) field-name *(OWS "," [OWS field-name]) DQUOTE]) / (

 "no-cache" ["=" DQUOTE *("," OWS) field-name *(OWS "," [OWS

 field-name]) DQUOTE]) / "no-store" / "no-transform" /

 "must-revalidate" / "proxy-revalidate" / ("max-age=" delta-seconds

) / ("s-maxage=" delta-seconds) / cache-extension

delta-seconds = 1*DIGIT

extension-pragma = token ["=" (token / quoted-string)]

field-name = <field-name, defined in [Part1], Section 3.2>

port = <port, defined in [Part1], Section 2.7>

pragma-directive = "no-cache" / extension-pragma

pseudonym = <pseudonym, defined in [Part1], Section 8.8>

quoted-string = <quoted-string, defined in [Part1], Section 3.2.3>

token = <token, defined in [Part1], Section 3.2.3>

uri-host = <uri-host, defined in [Part1], Section 2.7>

warn-agent = (uri-host [":" port]) / pseudonym

warn-code = 3DIGIT

warn-date = DQUOTE HTTP-date DQUOTE

warn-text = quoted-string

warning-value = warn-code SP warn-agent SP warn-text [SP warn-date

]

ABNF diagnostics:

; Age defined but not used

; Cache-Control defined but not used

; Expires defined but not used

; Pragma defined but not used

; Vary defined but not used

; Warning defined but not used

Appendix C. Change Log (to be removed by RFC Editor before publication)

Appendix C.1. Since RFC 2616

Extracted relevant partitions from [RFC2616].

Appendix C.2. Since draft-ietf-httpbis-p6-cache-00

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/9: "Trailer"

(http://purl.org/NET/http-errata#trailer-hop)

http://tools.ietf.org/wg/httpbis/trac/ticket/12: "Invalidation

after Update or Delete" (http://purl.org/NET/http-

errata#invalidupd)

http://tools.ietf.org/wg/httpbis/trac/ticket/35: "Normative and

Informative references"

http://tools.ietf.org/wg/httpbis/trac/ticket/48: "Date reference

typo"

http://tools.ietf.org/wg/httpbis/trac/ticket/49: "Connection

header text"

http://tools.ietf.org/wg/httpbis/trac/ticket/65: "Informative

references"

http://tools.ietf.org/wg/httpbis/trac/ticket/66: "ISO-8859-1

Reference"

http://tools.ietf.org/wg/httpbis/trac/ticket/86: "Normative up-

to-date references"

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/9
http://purl.org/NET/http-errata#trailer-hop
http://tools.ietf.org/wg/httpbis/trac/ticket/12
http://purl.org/NET/http-errata#invalidupd
http://purl.org/NET/http-errata#invalidupd
http://tools.ietf.org/wg/httpbis/trac/ticket/35
http://tools.ietf.org/wg/httpbis/trac/ticket/48
http://tools.ietf.org/wg/httpbis/trac/ticket/49
http://tools.ietf.org/wg/httpbis/trac/ticket/65
http://tools.ietf.org/wg/httpbis/trac/ticket/66
http://tools.ietf.org/wg/httpbis/trac/ticket/86

http://tools.ietf.org/wg/httpbis/trac/ticket/87: "typo in 13.2.2"

Other changes:

Use names of RFC4234 core rules DQUOTE and HTAB (work in progress

on http://tools.ietf.org/wg/httpbis/trac/ticket/36)

Appendix C.3. Since draft-ietf-httpbis-p6-cache-01

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/82: "rel_path not

used"

Other changes:

Get rid of duplicate BNF rule names ("host" -> "uri-host") (work

in progress on http://tools.ietf.org/wg/httpbis/trac/ticket/36)

Add explicit references to BNF syntax and rules imported from

other parts of the specification.

Appendix C.4. Since draft-ietf-httpbis-p6-cache-02

Ongoing work on IANA Message Header Field Registration (http://

tools.ietf.org/wg/httpbis/trac/ticket/40):

Reference RFC 3984, and update header field registrations for

header fields defined in this document.

Appendix C.5. Since draft-ietf-httpbis-p6-cache-03

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/106: "Vary header

classification"

Appendix C.6. Since draft-ietf-httpbis-p6-cache-04

Ongoing work on ABNF conversion (http://tools.ietf.org/wg/httpbis/trac/

ticket/36):

Use "/" instead of "|" for alternatives.

Introduce new ABNF rules for "bad" whitespace ("BWS"), optional

whitespace ("OWS") and required whitespace ("RWS").

Rewrite ABNFs to spell out whitespace rules, factor out header

field value format definitions.

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/87
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/82
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/40
http://tools.ietf.org/wg/httpbis/trac/ticket/40
http://tools.ietf.org/wg/httpbis/trac/ticket/106
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/36

Appendix C.7. Since draft-ietf-httpbis-p6-cache-05

This is a total rewrite of this part of the specification.

Affected issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/54: "Definition of

1xx Warn-Codes"

http://tools.ietf.org/wg/httpbis/trac/ticket/60: "Placement of

13.5.1 and 13.5.2"

http://tools.ietf.org/wg/httpbis/trac/ticket/138: "The role of

Warning and Semantic Transparency in Caching"

http://tools.ietf.org/wg/httpbis/trac/ticket/139: "Methods and

Caching"

In addition: Final work on ABNF conversion (http://tools.ietf.org/wg/

httpbis/trac/ticket/36):

Add appendix containing collected and expanded ABNF, reorganize

ABNF introduction.

Appendix C.8. Since draft-ietf-httpbis-p6-cache-06

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/161: "base for

numeric protocol elements"

Affected issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/37: "Vary and non-

existant headers"

Appendix C.9. Since draft-ietf-httpbis-p6-cache-07

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/54: "Definition of

1xx Warn-Codes"

http://tools.ietf.org/wg/httpbis/trac/ticket/167: "Content-

Location on 304 responses"

http://tools.ietf.org/wg/httpbis/trac/ticket/169: "private and

no-cache CC directives with headers"

http://tools.ietf.org/wg/httpbis/trac/ticket/187: "RFC2047 and

warn-text"

*

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/54
http://tools.ietf.org/wg/httpbis/trac/ticket/60
http://tools.ietf.org/wg/httpbis/trac/ticket/138
http://tools.ietf.org/wg/httpbis/trac/ticket/139
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/36
http://tools.ietf.org/wg/httpbis/trac/ticket/161
http://tools.ietf.org/wg/httpbis/trac/ticket/37
http://tools.ietf.org/wg/httpbis/trac/ticket/54
http://tools.ietf.org/wg/httpbis/trac/ticket/167
http://tools.ietf.org/wg/httpbis/trac/ticket/169
http://tools.ietf.org/wg/httpbis/trac/ticket/187

Appendix C.10. Since draft-ietf-httpbis-p6-cache-08

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/147: "serving

negotiated responses from cache: header-specific

canonicalization"

http://tools.ietf.org/wg/httpbis/trac/ticket/197: "Effect of CC

directives on history lists"

http://tools.ietf.org/wg/httpbis/trac/ticket/291: "Cache

Extensions can override no-store, etc."

Affected issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/199: Status codes

and caching

Partly resolved issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/60: "Placement of

13.5.1 and 13.5.2"

Appendix C.11. Since draft-ietf-httpbis-p6-cache-09

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/29: "Age

calculation"

http://tools.ietf.org/wg/httpbis/trac/ticket/168: "Clarify

differences between / requirements for request and response CC

directives"

http://tools.ietf.org/wg/httpbis/trac/ticket/174: "Caching

authenticated responses"

http://tools.ietf.org/wg/httpbis/trac/ticket/208: "IANA registry

for cache-control directives"

http://tools.ietf.org/wg/httpbis/trac/ticket/211: "Heuristic

caching of URLs with query components"

Partly resolved issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/196: "Term for the

requested resource's URI"

*

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/147
http://tools.ietf.org/wg/httpbis/trac/ticket/197
http://tools.ietf.org/wg/httpbis/trac/ticket/291
http://tools.ietf.org/wg/httpbis/trac/ticket/199
http://tools.ietf.org/wg/httpbis/trac/ticket/60
http://tools.ietf.org/wg/httpbis/trac/ticket/29
http://tools.ietf.org/wg/httpbis/trac/ticket/168
http://tools.ietf.org/wg/httpbis/trac/ticket/174
http://tools.ietf.org/wg/httpbis/trac/ticket/208
http://tools.ietf.org/wg/httpbis/trac/ticket/211
http://tools.ietf.org/wg/httpbis/trac/ticket/196

Appendix C.12. Since draft-ietf-httpbis-p6-cache-10

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/109: "Clarify entity

/ representation / variant terminology"

http://tools.ietf.org/wg/httpbis/trac/ticket/220: "consider

removing the 'changes from 2068' sections"

http://tools.ietf.org/wg/httpbis/trac/ticket/223: "Allowing

heuristic caching for new status codes"

Clean up TODOs and prose in "Combining Responses."

Appendix C.13. Since draft-ietf-httpbis-p6-cache-11

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/204: "Text about

clock requirement for caches belongs in p6"

Appendix C.14. Since draft-ietf-httpbis-p6-cache-12

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/224: "Header

Classification"

http://tools.ietf.org/wg/httpbis/trac/ticket/268: "Clarify

'public'"

Appendix C.15. Since draft-ietf-httpbis-p6-cache-13

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/276: "untangle ABNFs

for header fields"

Appendix C.16. Since draft-ietf-httpbis-p6-cache-14

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/38: "Mismatch Vary"

http://tools.ietf.org/wg/httpbis/trac/ticket/235: "Cache

Invalidation only happens upon successful responses"

http://tools.ietf.org/wg/httpbis/trac/ticket/282: "Recommend

minimum sizes for protocol elements"

*

*

*

*

*

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/109
http://tools.ietf.org/wg/httpbis/trac/ticket/220
http://tools.ietf.org/wg/httpbis/trac/ticket/223
http://tools.ietf.org/wg/httpbis/trac/ticket/204
http://tools.ietf.org/wg/httpbis/trac/ticket/224
http://tools.ietf.org/wg/httpbis/trac/ticket/268
http://tools.ietf.org/wg/httpbis/trac/ticket/276
http://tools.ietf.org/wg/httpbis/trac/ticket/38
http://tools.ietf.org/wg/httpbis/trac/ticket/235
http://tools.ietf.org/wg/httpbis/trac/ticket/282

http://tools.ietf.org/wg/httpbis/trac/ticket/289: "Proxies don't

'understand' methods"

http://tools.ietf.org/wg/httpbis/trac/ticket/291: "Cache

Extensions can override no-store, etc."

http://tools.ietf.org/wg/httpbis/trac/ticket/292: "Pragma"

Appendix C.17. Since draft-ietf-httpbis-p6-cache-15

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/290: "Motivate one-

year limit for Expires"

Appendix C.18. Since draft-ietf-httpbis-p6-cache-16

Closed issues:

http://tools.ietf.org/wg/httpbis/trac/ticket/186: "Document

HTTP's error-handling philosophy"

http://tools.ietf.org/wg/httpbis/trac/ticket/317: "Cache-Control

directive case sensitivity"

Index

A

age

C

Cache Directives

proxy-revalidate

only-if-cached

no-store

no-transform

min-fresh

max-age

no-cache

private

must-revalidate

s-maxage

public

max-stale

cache

cacheable

E

explicit expiration time

F

first-hand

*

*

*

*

*

*

http://tools.ietf.org/wg/httpbis/trac/ticket/289
http://tools.ietf.org/wg/httpbis/trac/ticket/291
http://tools.ietf.org/wg/httpbis/trac/ticket/292
http://tools.ietf.org/wg/httpbis/trac/ticket/290
http://tools.ietf.org/wg/httpbis/trac/ticket/186
http://tools.ietf.org/wg/httpbis/trac/ticket/317

fresh

freshness lifetime

H

heuristic expiration time

M

max-age

Cache Directive

max-stale

Cache Directive

min-fresh

Cache Directive

must-revalidate

Cache Directive

N

no-cache

Cache Directive

no-store

Cache Directive

no-transform

Cache Directive

O

only-if-cached

Cache Directive

P

private

Cache Directive

private cache

proxy-revalidate

Cache Directive

public

Cache Directive

S

s-maxage

Cache Directive

shared cache

stale

strong validator

V

validator

strong

Authors' Addresses

Roy T. Fielding editor Fielding Adobe Systems Incorporated 345 Park

Ave San Jose, CA 95110 USA EMail: fielding@gbiv.com URI: http://

roy.gbiv.com/

http://roy.gbiv.com/
http://roy.gbiv.com/

Jim Gettys Gettys Alcatel-Lucent Bell Labs 21 Oak Knoll Road

Carlisle, MA 01741 USA EMail: jg@freedesktop.org URI: http://

gettys.wordpress.com/

Jeffrey C. Mogul Mogul Hewlett-Packard Company HP Labs, Large Scale

Systems Group 1501 Page Mill Road, MS 1177 Palo Alto, CA 94304 USA

EMail: JeffMogul@acm.org

Henrik Frystyk Nielsen Frystyk Microsoft Corporation

1 Microsoft Way Redmond, WA 98052 USA EMail: henrikn@microsoft.com

Larry Masinter Masinter Adobe Systems Incorporated 345 Park Ave San

Jose, CA 95110 USA EMail: LMM@acm.org URI: http://

larry.masinter.net/

Paul J. Leach Leach Microsoft Corporation 1 Microsoft Way Redmond,

WA 98052 EMail: paulle@microsoft.com

Tim Berners-Lee Berners-Lee World Wide Web Consortium MIT Computer

Science and Artificial Intelligence Laboratory The Stata Center,

Building 32 32 Vassar Street Cambridge, MA 02139 USA EMail:

timbl@w3.org URI: http://www.w3.org/People/Berners-Lee/

Yves Lafon editor Lafon World Wide Web Consortium W3C / ERCIM 2004,

rte des Lucioles Sophia-Antipolis, AM 06902 France EMail:

ylafon@w3.org URI: http://www.raubacapeu.net/people/yves/

Mark Nottingham editor Nottingham Rackspace EMail: mnot@mnot.net

URI: http://www.mnot.net/

Julian F. Reschke editor Reschke greenbytes GmbH Hafenweg 16

Muenster, NW 48155 Germany Phone: +49 251 2807760 EMail:

julian.reschke@greenbytes.de URI: http://greenbytes.de/tech/webdav/

http://gettys.wordpress.com/
http://gettys.wordpress.com/
http://larry.masinter.net/
http://larry.masinter.net/
http://www.w3.org/People/Berners-Lee/
http://www.raubacapeu.net/people/yves/
http://www.mnot.net/
http://greenbytes.de/tech/webdav/

	Abstract
	Editorial Note (To be removed by RFC Editor)
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Purpose
	1.2. Terminology
	1.3. Conformance and Error Handling
	1.4. Syntax Notation
	1.4.1. Core Rules
	1.4.2. ABNF Rules defined in other Parts of the Specification
	1.5. Delta Seconds
	2. Cache Operation
	2.1. Response Cacheability
	2.2. Constructing Responses from Caches
	2.3. Freshness Model
	2.3.1. Calculating Freshness Lifetime
	2.3.1.1. Calculating Heuristic Freshness
	2.3.2. Calculating Age
	2.3.3. Serving Stale Responses
	2.4. Validation Model
	2.4.1. Freshening Responses
	2.5. Request Methods that Invalidate
	2.6. Shared Caching of Authenticated Responses
	2.7. Caching Negotiated Responses
	2.8. Combining Partial Content
	3. Header Field Definitions
	3.1. Age
	3.2. Cache-Control
	3.2.1. Request Cache-Control Directives
	3.2.2. Response Cache-Control Directives
	3.2.3. Cache Control Extensions
	3.3. Expires
	3.4. Pragma
	3.5. Vary
	3.6. Warning
	4. History Lists
	5. IANA Considerations
	5.1. Cache Directive Registry
	5.2. Header Field Registration
	6. Security Considerations
	7. Acknowledgments
	8. References
	8.1. Normative References
	8.2. Informative References
	Appendix A. Changes from RFC 2616
	Appendix B. Collected ABNF
	Appendix C. Change Log (to be removed by RFC Editor before publication)
	Appendix C.1. Since RFC 2616
	Appendix C.2. Since draft-ietf-httpbis-p6-cache-00
	Appendix C.3. Since draft-ietf-httpbis-p6-cache-01
	Appendix C.4. Since draft-ietf-httpbis-p6-cache-02
	Appendix C.5. Since draft-ietf-httpbis-p6-cache-03
	Appendix C.6. Since draft-ietf-httpbis-p6-cache-04
	Appendix C.7. Since draft-ietf-httpbis-p6-cache-05
	Appendix C.8. Since draft-ietf-httpbis-p6-cache-06
	Appendix C.9. Since draft-ietf-httpbis-p6-cache-07
	Appendix C.10. Since draft-ietf-httpbis-p6-cache-08
	Appendix C.11. Since draft-ietf-httpbis-p6-cache-09
	Appendix C.12. Since draft-ietf-httpbis-p6-cache-10
	Appendix C.13. Since draft-ietf-httpbis-p6-cache-11
	Appendix C.14. Since draft-ietf-httpbis-p6-cache-12
	Appendix C.15. Since draft-ietf-httpbis-p6-cache-13
	Appendix C.16. Since draft-ietf-httpbis-p6-cache-14
	Appendix C.17. Since draft-ietf-httpbis-p6-cache-15
	Appendix C.18. Since draft-ietf-httpbis-p6-cache-16
	Index
	Authors' Addresses

