
HTTP K. Oku
Internet-Draft Fastly
Intended status: Standards Track L. Pardue
Expires: April 4, 2021 Cloudflare
 October 01, 2020

Extensible Prioritization Scheme for HTTP
draft-ietf-httpbis-priority-02

Abstract

 This document describes a scheme for prioritizing HTTP responses.
 This scheme expresses the priority of each HTTP response using
 absolute values, rather than as a relative relationship between a
 group of HTTP responses.

 This document defines the Priority header field for communicating the
 initial priority in an HTTP version-independent manner, as well as
 HTTP/2 and HTTP/3 frames for reprioritizing the responses. These
 share a common format structure that is designed to provide future
 extensibility.

Note to Readers

 RFC EDITOR: please remove this section before publication

 Discussion of this draft takes place on the HTTP working group
 mailing list (ietf-http-wg@w3.org), which is archived at

https://lists.w3.org/Archives/Public/ietf-http-wg/ [1].

 Working Group information can be found at https://httpwg.org/ [2];
 source code and issues list for this draft can be found at

https://github.com/httpwg/http-extensions/labels/priorities [3].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Oku & Pardue Expires April 4, 2021 [Page 1]

https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.org/
https://github.com/httpwg/http-extensions/labels/priorities
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP Priorities October 2020

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 4, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Notational Conventions 3

2. Motivation for Replacing HTTP/2 Priorities 4
2.1. Disabling HTTP/2 Priorities 5

3. Priority Parameters . 6
3.1. Urgency . 7
3.2. Incremental . 7
3.3. Defining New Parameters 8

4. The Priority HTTP Header Field 8
5. Reprioritization . 9
6. The PRIORITY_UPDATE Frame 9
6.1. HTTP/2 PRIORITY_UPDATE Frame 10
6.2. HTTP/3 PRIORITY_UPDATE Frame 11

7. Merging Client- and Server-Driven Parameters 12
8. Client Scheduling . 13
9. Server Scheduling . 13
10. Fairness . 14
10.1. Coalescing Intermediaries 15
10.2. HTTP/1.x Back Ends 15
10.3. Intentional Introduction of Unfairness 16

11. Why use an End-to-End Header Field? 16
12. Security Considerations 16
13. IANA Considerations . 17
14. References . 18
14.1. Normative References 18
14.2. Informative References 19

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Oku & Pardue Expires April 4, 2021 [Page 2]

Internet-Draft HTTP Priorities October 2020

14.3. URIs . 19
Appendix A. Acknowledgements 20
Appendix B. Change Log . 20
B.1. Since draft-ietf-httpbis-priority-01 20
B.2. Since draft-ietf-httpbis-priority-00 20
B.3. Since draft-kazuho-httpbis-priority-04 21
B.4. Since draft-kazuho-httpbis-priority-03 21
B.5. Since draft-kazuho-httpbis-priority-02 21
B.6. Since draft-kazuho-httpbis-priority-01 21
B.7. Since draft-kazuho-httpbis-priority-00 21

 Authors' Addresses . 22

1. Introduction

 It is common for an HTTP ([RFC7230]) resource representation to have
 relationships to one or more other resources. Clients will often
 discover these relationships while processing a retrieved
 representation, leading to further retrieval requests. Meanwhile,
 the nature of the relationship determines whether the client is
 blocked from continuing to process locally available resources. For
 example, visual rendering of an HTML document could be blocked by the
 retrieval of a CSS file that the document refers to. In contrast,
 inline images do not block rendering and get drawn incrementally as
 the chunks of the images arrive.

 To provide meaningful presentation of a document at the earliest
 moment, it is important for an HTTP server to prioritize the HTTP
 responses, or the chunks of those HTTP responses, that it sends.

 HTTP/2 ([RFC7540]) provides such a prioritization scheme. A client
 sends a series of PRIORITY frames to communicate to the server a
 "priority tree"; this represents the client's preferred ordering and
 weighted distribution of the bandwidth among the HTTP responses.
 However, the design and implementation of this scheme has been
 observed to have shortcomings, explained in Section 2.

 This document defines the Priority HTTP header field that can be used
 by both client and server to specify the precedence of HTTP responses
 in a standardized, extensible, protocol-version-independent, end-to-
 end format. Along with the protocol-version-specific frame for
 reprioritization, this prioritization scheme acts as a substitute for
 the original prioritization scheme of HTTP/2.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-priority-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-priority-00
https://datatracker.ietf.org/doc/html/draft-kazuho-httpbis-priority-04
https://datatracker.ietf.org/doc/html/draft-kazuho-httpbis-priority-03
https://datatracker.ietf.org/doc/html/draft-kazuho-httpbis-priority-02
https://datatracker.ietf.org/doc/html/draft-kazuho-httpbis-priority-01
https://datatracker.ietf.org/doc/html/draft-kazuho-httpbis-priority-00
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc2119

Oku & Pardue Expires April 4, 2021 [Page 3]

Internet-Draft HTTP Priorities October 2020

 The terms sf-token and sf-boolean are imported from
 [STRUCTURED-FIELDS].

 Example HTTP requests and responses use the HTTP/2-style formatting
 from [RFC7540].

 This document uses the variable-length integer encoding from
 [I-D.ietf-quic-transport].

 The term control stream is used to describe the HTTP/2 stream with
 identifier 0x0, and HTTP/3 control stream; see [I-D.ietf-quic-http],
 Section 6.2.1.

2. Motivation for Replacing HTTP/2 Priorities

 An important feature of any implementation of a protocol that
 provides multiplexing is the ability to prioritize the sending of
 information. This was an important realization in the design of
 HTTP/2. Prioritization is a difficult problem, so it will always be
 suboptimal, particularly if one endpoint operates in ignorance of the
 needs of its peer.

 HTTP/2 introduced a complex prioritization signaling scheme that used
 a combination of dependencies and weights, formed into an unbalanced
 tree. This scheme has suffered from poor deployment and
 interoperability.

 The rich flexibility of client-driven HTTP/2 prioritization tree
 building is rarely exercised. Experience has shown that clients tend
 to choose a single model optimized for a web use case and experiment
 within the model constraints, or do nothing at all. Furthermore,
 many clients build their prioritization tree in a unique way, which
 makes it difficult for servers to understand their intent and act or
 intervene accordingly.

 Many HTTP/2 server implementations do not include support for the
 priority scheme. Some instead favor custom server-driven schemes
 based on heuristics or other hints, such as resource content type or
 request generation order. For example, a server, with knowledge of
 the document structure, might want to prioritize the delivery of
 images that are critical to user experience above other images, but
 below the CSS files. Since client trees vary, it is impossible for
 the server to determine how such images should be prioritized against
 other responses.

 The HTTP/2 scheme allows intermediaries to coalesce multiple client
 trees into a single tree that is used for a single upstream HTTP/2
 connection. However, most intermediaries do not support this. The

https://datatracker.ietf.org/doc/html/rfc7540

Oku & Pardue Expires April 4, 2021 [Page 4]

Internet-Draft HTTP Priorities October 2020

 scheme does not define a method that can be used by a server to
 express the priority of a response. Without such a method,
 intermediaries cannot coordinate client-driven and server-driven
 priorities.

 HTTP/2 describes denial-of-service considerations for
 implementations. On 2019-08-13 Netflix issued an advisory notice
 about the discovery of several resource exhaustion vectors affecting
 multiple HTTP/2 implementations. One attack, [CVE-2019-9513] aka
 "Resource Loop", is based on manipulation of the priority tree.

 The HTTP/2 scheme depends on in-order delivery of signals, leading to
 challenges in porting the scheme to protocols that do not provide
 global ordering. For example, the scheme cannot be used in HTTP/3
 [I-D.ietf-quic-http] without changing the signal and its processing.

 Considering the problems with deployment and adaptability to HTTP/3,
 retaining the HTTP/2 priority scheme increases the complexity of the
 entire system without any evidence that the value it provides offsets
 that complexity. In fact, multiple experiments from independent
 research have shown that simpler schemes can reach at least
 equivalent performance characteristics compared to the more complex
 HTTP/2 setups seen in practice, at least for the web use case.

2.1. Disabling HTTP/2 Priorities

 The problems and insights set out above are motivation for allowing
 endpoints to opt out of using the HTTP/2 priority scheme, in favor of
 using an alternative such as the scheme defined in this
 specification. The SETTINGS_DEPRECATE_HTTP2_PRIORITIES setting
 described below enables endpoints to understand their peer's
 intention. The value of the parameter MUST be 0 or 1. Any value
 other than 0 or 1 MUST be treated as a connection error (see

[RFC7540], Section 5.4.1) of type PROTOCOL_ERROR.

 Endpoints MUST send this SETTINGS parameter as part of the first
 SETTINGS frame. When the peer receives the first SETTINGS frame, it
 learns the sender has deprecated the HTTP/2 priority scheme if it
 receives the SETTINGS_DEPRECATE_HTTP2_PRIORITIES parameter with the
 value of 1.

 A sender MUST NOT change the SETTINGS_DEPRECATE_HTTP2_PRIORITIES
 parameter value after the first SETTINGS frame. Detection of a
 change by a receiver MUST be treated as a connection error of type
 PROTOCOL_ERROR.

 Until the client receives the SETTINGS frame from the server, the
 client SHOULD send both the priority signal defined in the HTTP/2

https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.1

Oku & Pardue Expires April 4, 2021 [Page 5]

Internet-Draft HTTP Priorities October 2020

 priority scheme and also that of this prioritization scheme. Once
 the client learns that the HTTP/2 priority scheme is deprecated, it
 SHOULD stop sending the HTTP/2 priority signals. If the client
 learns that the HTTP/2 priority scheme is not deprecated, it SHOULD
 stop sending PRIORITY_UPDATE frames (Section 6.1), but MAY continue
 sending the Priority header field (Section 4), as it is an end-to-end
 signal that might be useful to nodes behind the server that the
 client is directly connected to.

 The SETTINGS frame precedes any priority signal sent from a client in
 HTTP/2, so a server can determine if it should respect the HTTP/2
 scheme before building state. A server that receives
 SETTINGS_DEPRECATE_HTTP2_PRIORITIES MUST ignore HTTP/2 priority
 signals.

 Where both endpoints disable HTTP/2 priorities, the client is
 expected to send this scheme's priority signal. Handling of omitted
 signals is described in Section 3.

3. Priority Parameters

 The priority information is a sequence of key-value pairs, providing
 room for future extensions. Each key-value pair represents a
 priority parameter.

 The Priority HTTP header field (Section 4) is an end-to-end way to
 transmit this set of parameters when a request or a response is
 issued. In order to reprioritize a request, HTTP-version-specific
 frames (Section 6.1 and Section 6.2) are used by clients to transmit
 the same information on a single hop. If intermediaries want to
 specify prioritization on a multiplexed HTTP connection, they SHOULD
 use a PRIORITY_UPDATE frame and SHOULD NOT change the Priority header
 field.

 In both cases, the set of priority parameters is encoded as a
 Structured Fields Dictionary ([STRUCTURED-FIELDS]).

 This document defines the urgency("u") and incremental("i")
 parameters. When receiving an HTTP request that does not carry these
 priority parameters, a server SHOULD act as if their default values
 were specified. Note that handling of omitted parameters is
 different when processing an HTTP response; see Section 7.

 Unknown parameters, parameters with out-of-range values or values of
 unexpected types MUST be ignored.

Oku & Pardue Expires April 4, 2021 [Page 6]

Internet-Draft HTTP Priorities October 2020

3.1. Urgency

 The urgency parameter ("u") takes an integer between 0 and 7, in
 descending order of priority. This range provides sufficient
 granularity for prioritizing responses for ordinary web browsing, at
 minimal complexity.

 The value is encoded as an sf-integer. The default value is 3.

 This parameter indicates the sender's recommendation, based on the
 expectation that the server would transmit HTTP responses in the
 order of their urgency values if possible. The smaller the value,
 the higher the precedence.

 The following example shows a request for a CSS file with the urgency
 set to "0":

 :method = GET
 :scheme = https
 :authority = example.net
 :path = /style.css
 priority = u=0

 A client that fetches a document that likely consists of multiple
 HTTP resources (e.g., HTML) SHOULD assign the default urgency level
 to the main resource. This convention allows servers to refine the
 urgency using knowledge specific to the web-site (see Section 7).

 The lowest urgency level (7) is reserved for background tasks such as
 delivery of software updates. This urgency level SHOULD NOT be used
 for fetching responses that have impact on user interaction.

3.2. Incremental

 The incremental parameter ("i") takes an sf-boolean as the value that
 indicates if an HTTP response can be processed incrementally, i.e.
 provide some meaningful output as chunks of the response arrive.

 The default value of the incremental parameter is false ("0").

 A server might distribute the bandwidth of a connection between
 incremental responses that share the same urgency, hoping that
 providing those responses in parallel would be more helpful to the
 client than delivering the responses one by one.

 If a client makes concurrent requests with the incremental parameter
 set to false, there is no benefit serving responses in parallel
 because the client is not going to process those responses

Oku & Pardue Expires April 4, 2021 [Page 7]

Internet-Draft HTTP Priorities October 2020

 incrementally. Serving non-incremental responses one by one, in the
 order in which those requests were generated is considered to be the
 best strategy.

 The following example shows a request for a JPEG file with the
 urgency parameter set to "5" and the incremental parameter set to
 "true".

 :method = GET
 :scheme = https
 :authority = example.net
 :path = /image.jpg
 priority = u=5, i

3.3. Defining New Parameters

 When attempting to extend priorities, care must be taken to ensure
 any use of existing parameters leaves them either unchanged or
 modified in a way that is backwards compatible for peers that are
 unaware of the extended meaning.

 For example, if there is a need to provide more granularity than
 eight urgency levels, it would be possible to subdivide the range
 using an additional parameter. Implementations that do not recognize
 the parameter can safely continue to use the less granular eight
 levels.

 Alternatively, the urgency can be augmented. For example, a
 graphical user agent could send a "visible" parameter to indicate if
 the resource being requested is within the viewport.

4. The Priority HTTP Header Field

 The Priority HTTP header field can appear in requests and responses.
 A client uses it to specify the priority of the response. A server
 uses it to inform the client that the priority was overwritten. An
 intermediary can use the Priority information from client requests
 and server responses to correct or amend the precedence to suit it
 (see Section 7).

 The Priority header field is an end-to-end signal of the request
 priority from the client or the response priority from the server.

 As is the ordinary case for HTTP caching ([RFC7234]), a response with
 a Priority header field might be cached and re-used for subsequent
 requests. When an origin server generates the Priority response
 header field based on properties of an HTTP request it receives, the
 server is expected to control the cacheability or the applicability

https://datatracker.ietf.org/doc/html/rfc7234

Oku & Pardue Expires April 4, 2021 [Page 8]

Internet-Draft HTTP Priorities October 2020

 of the cached response, by using header fields that control the
 caching behavior (e.g., Cache-Control, Vary).

 An endpoint that fails to parse the Priority header field SHOULD use
 default parameter values.

5. Reprioritization

 After a client sends a request, it may be beneficial to change the
 priority of the response. As an example, a web browser might issue a
 prefetch request for a JavaScript file with the urgency parameter of
 the Priority request header field set to "u=7" (background). Then,
 when the user navigates to a page which references the new JavaScript
 file, while the prefetch is in progress, the browser would send a
 reprioritization signal with the priority field value set to "u=0".
 The PRIORITY_UPDATE frame (Section 6) can be used for such
 reprioritization.

6. The PRIORITY_UPDATE Frame

 This document specifies a new PRIORITY_UPDATE frame for HTTP/2
 ([RFC7540]) and HTTP/3 ([I-D.ietf-quic-http]). It carries priority
 parameters and references the target of the prioritization based on a
 version-specific identifier. In HTTP/2, this identifier is the
 Stream ID; in HTTP/3, the identifier is either the Stream ID or Push
 ID. Unlike the Priority header field, the PRIORITY_UPDATE frame is a
 hop-by-hop signal.

 PRIORITY_UPDATE frames are sent by clients on the control stream,
 allowing them to be sent independent from the stream that carries the
 response. This means they can be used to reprioritize a response or
 a push stream; or signal the initial priority of a response instead
 of the Priority header field.

 A PRIORITY_UPDATE frame communicates a complete set of all parameters
 in the Priority Field Value field. Omitting a parameter is a signal
 to use the parameter's default value. Failure to parse the Priority
 Field Value MUST be treated as a connection error. In HTTP/2 the
 error is of type PROTOCOL_ERROR; in HTTP/3 the error is of type
 H3_FRAME_ERROR.

 A client MAY send a PRIORITY_UPDATE frame before the stream that it
 references is open. Furthermore, HTTP/3 offers no guaranteed
 ordering across streams, which could cause the frame to be received
 earlier than intended. Either case leads to a race condition where a
 server receives a PRIORITY_UPDATE frame that references a request
 stream that is yet to be opened. To solve this condition, for the
 purposes of scheduling, the most recently received PRIORITY_UPDATE

https://datatracker.ietf.org/doc/html/rfc7540

Oku & Pardue Expires April 4, 2021 [Page 9]

Internet-Draft HTTP Priorities October 2020

 frame can be considered as the most up-to-date information that
 overrides any other signal. Servers SHOULD buffer the most recently
 received PRIORITY_UPDATE frame and apply it once the referenced
 stream is opened. Holding PRIORITY_UPDATE frames for each stream
 requires server resources, which can can be bound by local
 implementation policy. (TODO: consider resolving #1261, and adding
 more text about bounds). Although there is no limit to the number
 PRIORITY_UPDATES that can be sent, storing only the most recently
 received frame limits resource commitment.

6.1. HTTP/2 PRIORITY_UPDATE Frame

 The HTTP/2 PRIORITY_UPDATE frame (type=0x10) is used by clients to
 signal the initial priority of a response, or to reprioritize a
 response or push stream. It carries the stream ID of the response
 and the priority in ASCII text, using the same representation as the
 Priority header field value.

 The Stream Identifier field ([RFC7540], Section 4.1) in the
 PRIORITY_UPDATE frame header MUST be zero (0x0). Receiving a
 PRIORITY_UPDATE frame with a field of any other value MUST be treated
 as a connection error of type PROTOCOL_ERROR.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 |R| Prioritized Stream ID (31) |
 +---+
 | Priority Field Value (*) ...
 +---+

 Figure 1: HTTP/2 PRIORITY_UPDATE Frame Payload

 The PRIORITY_UPDATE frame payload has the following fields:

 R: A reserved 1-bit field. The semantics of this bit are undefined,
 and the bit MUST remain unset (0x0) when sending and MUST be
 ignored when receiving.

 Prioritized Stream ID: A 31-bit stream identifier for the stream
 that is the target of the priority update.

 Priority Field Value: The priority update value in ASCII text,
 encoded using Structured Fields.

 The Prioritized Stream ID MUST be within the stream limit. If a
 server receives a PRIORITY_UPDATE with a Prioritized Stream ID that

https://datatracker.ietf.org/doc/html/rfc7540#section-4.1

Oku & Pardue Expires April 4, 2021 [Page 10]

Internet-Draft HTTP Priorities October 2020

 is beyond the stream limits, this SHOULD be treated as a connection
 error of type PROTOCOL_ERROR.

 If a PRIORITY_UPDATE frame is received with a Prioritized Stream ID
 of 0x0, the recipient MUST respond with a connection error of type
 PROTOCOL_ERROR.

 If a client receives a PRIORITY_UPDATE frame, it MUST respond with a
 connection error of type PROTOCOL_ERROR.

6.2. HTTP/3 PRIORITY_UPDATE Frame

 The HTTP/3 PRIORITY_UPDATE frame (type=0xF0700 or 0xF0701) is used by
 clients to signal the initial priority of a response, or to
 reprioritize a response or push stream. It carries the identifier of
 the element that is being prioritized, and the updated priority in
 ASCII text, using the same representation as that of the Priority
 header field value. PRIORITY_UPDATE with a frame type of 0xF0700 is
 used for request streams, while PRIORITY_UPDATE with a frame type of
 0xF0701 is used for push streams.

 The PRIORITY_UPDATE frame MUST be sent on the client control stream
 ([I-D.ietf-quic-http], Section 6.2.1). Receiving a PRIORITY_UPDATE
 frame on a stream other than the client control stream MUST be
 treated as a connection error of type H3_FRAME_UNEXPECTED.

 HTTP/3 PRIORITY_UPDATE Frame {
 Type (i) = 0xF0700..0xF0701,
 Length (i),
 Prioritized Element ID (i),
 Priority Field Value (..),
 }

 Figure 2: HTTP/3 PRIORITY_UPDATE Frame

 The PRIORITY_UPDATE frame payload has the following fields:

 Prioritized Element ID: The stream ID or push ID that is the target
 of the priority update.

 Priority Field Value: The priority update value in ASCII text,
 encoded using Structured Fields.

 The request-stream variant of PRIORITY_UPDATE (type=0xF0700) MUST
 reference a request stream. If a server receives a PRIORITY_UPDATE
 (type=0xF0700) for a Stream ID that is not a request stream, this
 MUST be treated as a connection error of type H3_ID_ERROR. The
 Stream ID MUST be within the client-initiated bidirectional stream

Oku & Pardue Expires April 4, 2021 [Page 11]

Internet-Draft HTTP Priorities October 2020

 limit. If a server receives a PRIORITY_UPDATE (type=0xF0700) with a
 Stream ID that is beyond the stream limits, this SHOULD be treated as
 a connection error of type H3_ID_ERROR.

 The push-stream variant PRIORITY_UPDATE (type=0xF0701) MUST reference
 a promised push stream. If a server receives a PRIORITY_UPDATE
 (type=0xF0701) with a Push ID that is greater than the maximum Push
 ID or which has not yet been promised, this MUST be treated as a
 connection error of type H3_ID_ERROR.

 PRIORITY_UPDATE frames of either type are only sent by clients. If a
 client receives a PRIORITY_UPDATE frame, this MUST be treated as a
 connection error of type H3_FRAME_UNEXPECTED.

7. Merging Client- and Server-Driven Parameters

 It is not always the case that the client has the best understanding
 of how the HTTP responses deserve to be prioritized. The server
 might have additional information that can be combined with the
 client's indicated priority in order to improve the prioritization of
 the response. For example, use of an HTML document might depend
 heavily on one of the inline images; existence of such dependencies
 is typically best known to the server. Or, a server that receives
 requests for a font [RFC8081] and images with the same urgency might
 give higher precedence to the font, so that a visual client can
 render textual information at an early moment.

 An origin can use the Priority response header field to indicate its
 view on how an HTTP response should be prioritized. An intermediary
 that forwards an HTTP response can use the parameters found in the
 Priority response header field, in combination with the client
 Priority request header field, as input to its prioritization
 process. No guidance is provided for merging priorities, this is
 left as an implementation decision.

 Absence of a priority parameter in an HTTP response indicates the
 server's disinterest in changing the client-provided value. This is
 different from the logic being defined for the request header field,
 in which omission of a priority parameter implies the use of their
 default values (see Section 3).

 As a non-normative example, when the client sends an HTTP request
 with the urgency parameter set to "5" and the incremental parameter
 set to "true"

https://datatracker.ietf.org/doc/html/rfc8081

Oku & Pardue Expires April 4, 2021 [Page 12]

Internet-Draft HTTP Priorities October 2020

 :method = GET
 :scheme = https
 :authority = example.net
 :path = /menu.png
 priority = u=5, i

 and the origin responds with

 :status = 200
 content-type = image/png
 priority = u=1

 the intermediary might alter its understanding of the urgency from
 "5" to "1", because it prefers the server-provided value over the
 client's. The incremental value continues to be "true", the value
 specified by the client, as the server did not specify the
 incremental("i") parameter.

8. Client Scheduling

 A client MAY use priority values to make local processing or
 scheduling choices about the requests it initiates.

9. Server Scheduling

 Priority signals are input to a prioritization process. They do not
 guarantee any particular processing or transmission order for one
 response relative to any other response. An endpoint cannot force a
 peer to process concurrent request in a particular order using
 priority. Expressing priority is therefore only a suggestion.

 A server can use priority signals along with other inputs to make
 scheduling decisions. No guidance is provided about how this can or
 should be done. Factors such as implementation choices or deployment
 environment also play a role. Any given connection is likely to have
 many dynamic permutations. For these reasons, there is no unilateral
 perfect scheduler and this document only provides some basic
 recommendations for implementations.

 Clients cannot depend on particular treatment based on priority
 signals. Servers can use other information to prioritize responses.

 It is RECOMMENDED that, when possible, servers respect the urgency
 parameter (Section 3.1), sending higher urgency responses before
 lower urgency responses.

 It is RECOMMENDED that, when possible, servers respect the
 incremental parameter (Section 3.2). Non-incremental responses of

Oku & Pardue Expires April 4, 2021 [Page 13]

Internet-Draft HTTP Priorities October 2020

 the same urgency SHOULD be served one-by-one based on the Stream ID,
 which corresponds to the order in which clients make requests. Doing
 so ensures that clients can use request ordering to influence
 response order. Incremental responses of the same urgency SHOULD be
 served in round-robin manner.

 The incremental parameter indicates how a client processes response
 bytes as they arrive. Non-incremental resources are only used when
 all of the response payload has been received. Incremental resources
 are used as parts, or chunks, of the response payload are received.
 Therefore, the timing of response data reception at the client, such
 as the time to early bytes or the time to receive the entire payload,
 plays an important role in perceived performance. Timings depend on
 resource size but this scheme provides no explicit guidance about how
 a server should use size as an input to prioritization. Instead, the
 following examples demonstrate how a server that strictly abides the
 scheduling guidance based on urgency and request generation order
 could find that early requests prevent serving of later requests.

 1. At the same urgency level, a non-incremental request for a large
 resource followed by an incremental request for a small resource.

 2. At the same urgency level, an incremental request of
 indeterminate length followed by a non-incremental large
 resource.

 It is RECOMMENDED that servers avoid such starvation where possible.
 The method to do so is an implementation decision. For example, a
 server might pre-emptively send responses of a particular incremental
 type based on other information such as content size.

10. Fairness

 As a general guideline, a server SHOULD NOT use priority information
 for making schedule decisions across multiple connections, unless it
 knows that those connections originate from the same client. Due to
 this, priority information conveyed over a non-coalesced HTTP
 connection (e.g., HTTP/1.1) might go unused.

 The remainder of this section discusses scenarios where unfairness is
 problematic and presents possible mitigations, or where unfairness is
 desirable.

 TODO: Discuss if we should add a signal that mitigates this issue.
 For example, we might add a SETTINGS parameter that indicates the
 next hop that the connection is NOT coalesced (see

https://github.com/kazuho/draft-kazuho-httpbis-priority/issues/99).

https://github.com/kazuho/draft-kazuho-httpbis-priority/issues/99

Oku & Pardue Expires April 4, 2021 [Page 14]

Internet-Draft HTTP Priorities October 2020

10.1. Coalescing Intermediaries

 When an intermediary coalesces HTTP requests coming from multiple
 clients into one HTTP/2 or HTTP/3 connection going to the backend
 server, requests that originate from one client might have higher
 precedence than those coming from others.

 It is sometimes beneficial for the server running behind an
 intermediary to obey to the value of the Priority header field. As
 an example, a resource-constrained server might defer the
 transmission of software update files that would have the background
 urgency being associated. However, in the worst case, the asymmetry
 between the precedence declared by multiple clients might cause
 responses going to one user agent to be delayed totally after those
 going to another.

 In order to mitigate this fairness problem, a server could use
 knowledge about the intermediary as another signal in its
 prioritization decisions. For instance, if a server knows the
 intermediary is coalescing requests, then it could serve the
 responses in round-robin manner. This can work if the constrained
 resource is network capacity between the intermediary and the user
 agent, as the intermediary buffers responses and forwards the chunks
 based on the prioritization scheme it implements.

 A server can determine if a request came from an intermediary through
 configuration, or by consulting if that request contains one of the
 following header fields:

 o Forwarded, X-Forwarded-For ([RFC7239])

 o Via ([RFC7230], Section 5.7.1)

10.2. HTTP/1.x Back Ends

 It is common for CDN infrastructure to support different HTTP
 versions on the front end and back end. For instance, the client-
 facing edge might support HTTP/2 and HTTP/3 while communication to
 back end servers is done using HTTP/1.1. Unlike with connection
 coalescing, the CDN will "de-mux" requests into discrete connections
 to the back end. As HTTP/1.1 and older do not provide a way to
 concurrently transmit multiple responses, there is no immediate
 fairness issue in protocol. However, back end servers MAY still use
 client headers for request scheduling. Back end servers SHOULD only
 schedule based on client priority information where that information
 can be scoped to individual end clients. Authentication and other
 session information might provide this linkability.

https://datatracker.ietf.org/doc/html/rfc7239
https://datatracker.ietf.org/doc/html/rfc7230#section-5.7.1

Oku & Pardue Expires April 4, 2021 [Page 15]

Internet-Draft HTTP Priorities October 2020

10.3. Intentional Introduction of Unfairness

 It is sometimes beneficial to deprioritize the transmission of one
 connection over others, knowing that doing so introduces a certain
 amount of unfairness between the connections and therefore between
 the requests served on those connections.

 For example, a server might use a scavenging congestion controller on
 connections that only convey background priority responses such as
 software update images. Doing so improves responsiveness of other
 connections at the cost of delaying the delivery of updates.

11. Why use an End-to-End Header Field?

 Contrary to the prioritization scheme of HTTP/2 that uses a hop-by-
 hop frame, the Priority header field is defined as end-to-end.

 The rationale is that the Priority header field transmits how each
 response affects the client's processing of those responses, rather
 than how relatively urgent each response is to others. The way a
 client processes a response is a property associated to that client
 generating that request. Not that of an intermediary. Therefore, it
 is an end-to-end property. How these end-to-end properties carried
 by the Priority header field affect the prioritization between the
 responses that share a connection is a hop-by-hop issue.

 Having the Priority header field defined as end-to-end is important
 for caching intermediaries. Such intermediaries can cache the value
 of the Priority header field along with the response, and utilize the
 value of the cached header field when serving the cached response,
 only because the header field is defined as end-to-end rather than
 hop-by-hop.

 It should also be noted that the use of a header field carrying a
 textual value makes the prioritization scheme extensible; see the
 discussion below.

12. Security Considerations

 [CVE-2019-9513] aka "Resource Loop", is a DoS attack based on
 manipulation of the HTTP/2 priority tree. Extensible priorities does
 not use stream dependencies, which mitigates this vulnerability.

 TBD: depending on the outcome of reprioritization discussions,
 following paragraphs may change or be removed.

[RFC7540], Section 5.3.4 describes a scenario where closure of
 streams in the priority tree could cause suboptimal prioritization.

https://datatracker.ietf.org/doc/html/rfc7540#section-5.3.4

Oku & Pardue Expires April 4, 2021 [Page 16]

Internet-Draft HTTP Priorities October 2020

 To avoid this, [RFC7540] states that "an endpoint SHOULD retain
 stream prioritization state for a period after streams become
 closed". Retaining state for streams no longer counted towards
 stream concurrency consumes server resources. Furthermore, [RFC7540]
 identifies that reprioritization of a closed stream could affect
 dependents; it recommends updating the priority tree if sufficient
 state is stored, which will also consume server resources. To limit
 this commitment, it is stated that "The amount of prioritization
 state that is retained MAY be limited" and "If a limit is applied,
 endpoints SHOULD maintain state for at least as many streams as
 allowed by their setting for SETTINGS_MAX_CONCURRENT_STREAMS.".
 Extensible priorities does not use stream dependencies, which
 minimizes most of the resource concerns related to this scenario.

[RFC7540], Section 5.3.4 also presents considerations about the state
 required to store priority information about streams in an "idle"
 state. This state can be limited by adopting the guidance about
 concurrency limits described above. Extensible priorities is subject
 to a similar consideration because PRIORITY_UPDATE frames may arrive
 before the request that they reference. A server is required to
 store the information in order to apply the most up-to-date signal to
 the request. However, HTTP/3 implementations might have practical
 barriers to determining reasonable stream concurrency limits
 depending on the information that is available to them from the QUIC
 transport layer. TODO: so what can we suggest?

13. IANA Considerations

 This specification registers the following entry in the Permanent
 Message Header Field Names registry established by [RFC3864]:

 Header field name: Priority

 Applicable protocol: http

 Status: standard

 Author/change controller: IETF

 Specification document(s): This document

 Related information: n/a

 This specification registers the following entry in the HTTP/2
 Settings registry established by [RFC7540]:

 Name: SETTINGS_DEPRECATE_HTTP2_PRIORITIES

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540#section-5.3.4
https://datatracker.ietf.org/doc/html/rfc3864
https://datatracker.ietf.org/doc/html/rfc7540

Oku & Pardue Expires April 4, 2021 [Page 17]

Internet-Draft HTTP Priorities October 2020

 Code: 0x9

 Initial value: 0

 Specification: This document

 This specification registers the following entry in the HTTP/2 Frame
 Type registry established by [RFC7540]:

 Frame Type: PRIORITY_UPDATE

 Code: 0x10

 Specification: This document

 This specification registers the following entries in the HTTP/3
 Frame Type registry established by [I-D.ietf-quic-http]:

 Frame Type: PRIORITY_UPDATE

 Code: 0xF0700 and 0xF0701

 Specification: This document

14. References

14.1. Normative References

 [I-D.ietf-quic-http]
 Bishop, M., "Hypertext Transfer Protocol Version 3
 (HTTP/3)", draft-ietf-quic-http-31 (work in progress),
 September 2020.

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-31 (work
 in progress), September 2020.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-31
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-31
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230

Oku & Pardue Expires April 4, 2021 [Page 18]

Internet-Draft HTTP Priorities October 2020

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [STRUCTURED-FIELDS]
 Nottingham, M. and P. Kamp, "Structured Field Values for
 HTTP", draft-ietf-httpbis-header-structure-19 (work in
 progress), June 2020.

14.2. Informative References

 [CVE-2019-9513]
 Common Vulnerabilities and Exposures, "CVE-2019-9513",
 March 2019, <https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2019-9513>.

 [I-D.lassey-priority-setting]
 Lassey, B. and L. Pardue, "Declaring Support for HTTP/2
 Priorities", draft-lassey-priority-setting-00 (work in
 progress), July 2019.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 DOI 10.17487/RFC3864, September 2004,
 <https://www.rfc-editor.org/info/rfc3864>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <https://www.rfc-editor.org/info/rfc7234>.

 [RFC7239] Petersson, A. and M. Nilsson, "Forwarded HTTP Extension",
RFC 7239, DOI 10.17487/RFC7239, June 2014,

 <https://www.rfc-editor.org/info/rfc7239>.

 [RFC8081] Lilley, C., "The "font" Top-Level Media Type", RFC 8081,
 DOI 10.17487/RFC8081, February 2017,
 <https://www.rfc-editor.org/info/rfc8081>.

14.3. URIs

 [1] https://lists.w3.org/Archives/Public/ietf-http-wg/

 [2] https://httpwg.org/

 [3] https://github.com/httpwg/http-extensions/labels/priorities

https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-19
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9513
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9513
https://datatracker.ietf.org/doc/html/draft-lassey-priority-setting-00
https://datatracker.ietf.org/doc/html/bcp90
https://datatracker.ietf.org/doc/html/rfc3864
https://www.rfc-editor.org/info/rfc3864
https://datatracker.ietf.org/doc/html/rfc7234
https://www.rfc-editor.org/info/rfc7234
https://datatracker.ietf.org/doc/html/rfc7239
https://www.rfc-editor.org/info/rfc7239
https://datatracker.ietf.org/doc/html/rfc8081
https://www.rfc-editor.org/info/rfc8081
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.org/
https://github.com/httpwg/http-extensions/labels/priorities

Oku & Pardue Expires April 4, 2021 [Page 19]

Internet-Draft HTTP Priorities October 2020

 [4] http://tools.ietf.org/agenda/83/slides/slides-83-httpbis-5.pdf

 [5] https://github.com/pmeenan/http3-prioritization-proposal

Appendix A. Acknowledgements

 Roy Fielding presented the idea of using a header field for
 representing priorities in http://tools.ietf.org/agenda/83/slides/

slides-83-httpbis-5.pdf [4]. In https://github.com/pmeenan/http3-
prioritization-proposal [5], Patrick Meenan advocates for

 representing the priorities using a tuple of urgency and concurrency.
 The ability to deprecate HTTP/2 prioritization is based on
 [I-D.lassey-priority-setting], authored by Brad Lassey and Lucas
 Pardue, with modifications based on feedback that was not
 incorporated into an update to that document.

 The motivation for defining an alternative to HTTP/2 priorities is
 drawn from discussion within the broad HTTP community. Special
 thanks to Roberto Peon, Martin Thomson and Netflix for text that was
 incorporated explicitly in this document.

 In addition to the people above, this document owes a lot to the
 extensive discussion in the HTTP priority design team, consisting of
 Alan Frindell, Andrew Galloni, Craig Taylor, Ian Swett, Kazuho Oku,
 Lucas Pardue, Matthew Cox, Mike Bishop, Roberto Peon, Robin Marx, Roy
 Fielding.

Appendix B. Change Log

B.1. Since draft-ietf-httpbis-priority-01

 o PRIORITY_UPDATE frame changes (#1096, #1079, #1167, #1262, #1267,
 #1271)

 o Add section to describe server scheduling considerations (#1215,
 #1232, #1266)

 o Remove specific instructions related to intermediary fairness
 (#1022, #1264)

B.2. Since draft-ietf-httpbis-priority-00

 o Move text around (#1217, #1218)

 o Editorial change to the default urgency. The value is 3, which
 was always the intent of previous changes.

http://tools.ietf.org/agenda/83/slides/slides-83-httpbis-5.pdf
https://github.com/pmeenan/http3-prioritization-proposal
http://tools.ietf.org/agenda/83/slides/slides-83-httpbis-5.pdf
http://tools.ietf.org/agenda/83/slides/slides-83-httpbis-5.pdf
https://github.com/pmeenan/http3-prioritization-proposal
https://github.com/pmeenan/http3-prioritization-proposal
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-priority-01
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-priority-00

Oku & Pardue Expires April 4, 2021 [Page 20]

Internet-Draft HTTP Priorities October 2020

B.3. Since draft-kazuho-httpbis-priority-04

 o Minimize semantics of Urgency levels (#1023, #1026)

 o Reduce guidance about how intermediary implements merging priority
 signals (#1026)

 o Remove mention of CDN-Loop (#1062)

 o Editorial changes

 o Make changes due to WG adoption

 o Removed outdated Consideration (#118)

B.4. Since draft-kazuho-httpbis-priority-03

 o Changed numbering from "[-1,6]" to "[0,7]" (#78)

 o Replaced priority scheme negotiation with HTTP/2 priority
 deprecation (#100)

 o Shorten parameter names (#108)

 o Expand on considerations (#105, #107, #109, #110, #111, #113)

B.5. Since draft-kazuho-httpbis-priority-02

 o Consolidation of the problem statement (#61, #73)

 o Define SETTINGS_PRIORITIES for negotiation (#58, #69)

 o Define PRIORITY_UPDATE frame for HTTP/2 and HTTP/3 (#51)

 o Explain fairness issue and mitigations (#56)

B.6. Since draft-kazuho-httpbis-priority-01

 o Explain how reprioritization might be supported.

B.7. Since draft-kazuho-httpbis-priority-00

 o Expand urgency levels from 3 to 8.

https://datatracker.ietf.org/doc/html/draft-kazuho-httpbis-priority-04
https://datatracker.ietf.org/doc/html/draft-kazuho-httpbis-priority-03
https://datatracker.ietf.org/doc/html/draft-kazuho-httpbis-priority-02
https://datatracker.ietf.org/doc/html/draft-kazuho-httpbis-priority-01
https://datatracker.ietf.org/doc/html/draft-kazuho-httpbis-priority-00

Oku & Pardue Expires April 4, 2021 [Page 21]

Internet-Draft HTTP Priorities October 2020

Authors' Addresses

 Kazuho Oku
 Fastly

 Email: kazuhooku@gmail.com

 Lucas Pardue
 Cloudflare

 Email: lucaspardue.24.7@gmail.com

Oku & Pardue Expires April 4, 2021 [Page 22]

