
Workgroup: HTTP

Internet-Draft:

draft-ietf-httpbis-resumable-upload-00

Published: 5 September 2022

Intended Status: Standards Track

Expires: 9 March 2023

Authors: M. Kleidl, Ed.

Transloadit Ltd

G. Zhang, Ed.

Apple Inc.

L. Pardue, Ed.

Cloudflare

tus - Resumable Uploads Protocol

Abstract

HTTP clients often encounter interrupted data transfers as a result

of canceled requests or dropped connections. Prior to interruption,

part of a representation may have been exchanged. To complete the

data transfer of the entire representation, it is often desirable to

issue subsequent requests that transfer only the remainder of the

representation. HTTP range requests support this concept of

resumable downloads from server to client. This document describes a

mechanism that supports resumable uploads from client to server

using HTTP.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-ietf-httpbis-resumable-upload/.

Discussion of this document takes place on the HTTP Working Group

mailing list (mailto:ietf-http-wg@w3.org), which is archived at

https://lists.w3.org/Archives/Public/ietf-http-wg/. Working Group

information can be found at https://httpwg.org/.

Source for this draft and an issue tracker can be found at https://

github.com/httpwg/http-extensions/labels/resumable-upload.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ietf-httpbis-resumable-upload/
https://datatracker.ietf.org/doc/draft-ietf-httpbis-resumable-upload/
mailto:ietf-http-wg@w3.org
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.org/
https://github.com/httpwg/http-extensions/labels/resumable-upload
https://github.com/httpwg/http-extensions/labels/resumable-upload
https://datatracker.ietf.org/drafts/current/

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 March 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Uploading Overview

3.1. Example 1: Complete upload of file with known size

3.2. Example 2: Upload as a series of parts

4. Upload Creation Procedure

4.1. Feature Detection

4.2. Draft Version Identification

5. Offset Retrieving Procedure

6. Upload Appending Procedure

7. Upload Cancellation Procedure

8. Request Identification

9. Header Fields

9.1. Upload-Token

9.2. Upload-Offset

9.3. Upload-Incomplete

10. Redirection

11. Security Considerations

12. IANA Considerations

13. Normative References

Appendix A. Changes

A.1. Since draft-tus-httpbis-resumable-uploads-protocol-01

A.2. Since draft-tus-httpbis-resumable-uploads-protocol-00

Acknowledgments

Appendix

Informational Response

Feature Detection

¶

¶

¶

¶

https://trustee.ietf.org/license-info

Upload Metadata

FAQ

Authors' Addresses

1. Introduction

HTTP clients often encounter interrupted data transfers as a result

of canceled requests or dropped connections. Prior to interruption,

part of a representation (see Section 3.2 of [HTTP]) might have been

exchanged. To complete the data transfer of the entire

representation, it is often desirable to issue subsequent requests

that transfer only the remainder of the representation. HTTP range

requests (see Section 14 of [HTTP]) support this concept of

resumable downloads from server to client.

HTTP methods such as POST or PUT can be used by clients to request

processing of representation data enclosed in the request message.

The transfer of representation data from client to server is often

referred to as an upload. Uploads are just as likely as downloads to

suffer from the effects of data transfer interruption. Humans can

play a role in upload interruptions through manual actions such as

pausing an upload. Regardless of the cause of an interruption,

servers may have received part of the representation before its

occurrence and it is desirable if clients can complete the data

transfer by sending only the remainder of the representation. The

process of sending additional parts of a representation using

subsequent HTTP requests from client to server is herein referred to

as a resumable upload.

Connection interruptions are common and the absence of a standard

mechanism for resumable uploads has lead to a proliferation of

custom solutions. Some of those use HTTP, while others rely on other

transfer mechanisms entirely. An HTTP-based standard solution is

desirable for such a common class of problem.

This document defines the Resumable Uploads Protocol, an optional

mechanism for resumable uploads using HTTP that is backwards-

compatible with conventional HTTP uploads. When an upload is

interrupted, clients can send subsequent requests to query the

server state and use this information to the send remaining data.

Alternatively, they can cancel the upload entirely. Different from

ranged downloads, this protocol does not support transferring

different parts of the same representation in parallel.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-3.2
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-14

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The terms byte sequence, Item, string, sf-binary, sf-boolean, sf-

integer, sf-string, and sf-token are imported from [STRUCTURED-

FIELDS].

The terms client and server are imported from [HTTP].

Upload: A sequence of one or more procedures, uniquely identified by

a token chosen by a client.

Procedure: An HTTP message exchange for that can be used for

resumable uploads.

3. Uploading Overview

The Resumable Uploads Protocol consists of several procedures that

rely on HTTP message exchanges. The following procedures are

defined:

Upload Creation Procedure (Section 4)

Offset Retrieving Procedure (Section 5)

Upload Appending Procedure (Section 6)

Upload Cancellation Procedure (Section 7)

A single upload is a sequence of one or more procedures. Each upload

is uniquely identified by a token chosen by a client. The token is

carried in the Upload-Token header field; see Section 9.1.

The remainder of this section uses examples of a file upload to

illustrate permutations of procedure sequence. Note, however, that

HTTP message exchanges use representation data (see Section 8.1 of

[HTTP]), which means that procedures can apply to many forms of

content.

3.1. Example 1: Complete upload of file with known size

In this example, the client first attempts to upload a file with a

known size in a single HTTP request. An interruption occurs and the

client then attempts to resume the upload using subsequent HTTP

requests.

1) The Upload Creation Procedure (Section 4) can be used to notify

the server that the client wants to begin an upload. The server

should then reserve the required resources to accept the upload from

the client. The client also begins transferring the entire file in

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-8.1

the request body. The request includes the Upload-Token header,

which is used for identifying future requests related to this

upload. An informational response can be sent to the client to

signal the support of resumable upload on the server.

Figure 1: Upload Creation Procedure

2) If the connection to the server gets interrupted during the

Upload Creation Procedure, the client may want to resume the upload.

Before this is possible, the client must know the amount of data

that the server was able to receive before the connection got

interrupted. To achieve this, the client uses the Offset Retrieving

Procedure (Section 5) to obtain the upload's offset.

Figure 2: Offset Retrieving Procedure

3) After the Offset Retrieving Procedure (Section 5) completes, the

client can resume the upload by sending the remaining file content

to the server using the Upload Appending Procedure (Section 6),

appending to the already stored data in the upload. The Upload-

¶

Client Server

| |

| POST with Upload-Token |

|--->|

| |

| | Reserve resources

| | for Upload-Token

| |------------------

| | |

| |<-----------------

| |

| 104 Upload Resumption Supported |

|<---|

| |

| Flow Interrupted |

|--->|

| |

¶

Client Server

| |

| HEAD with Upload-Token |

|--->|

| |

| 204 No Content with Upload-Offset |

|<---|

| |

Offset value is included to ensure that the client and server agree

on the offset that the upload resumes from.

Figure 3: Upload Appending Procedure

4) If the client is not interested in completing the upload anymore,

it can instruct the server to delete the upload and free all related

resources using the Upload Cancellation Procedure (Section 7).

Figure 4: Upload Cancellation Procedure

3.2. Example 2: Upload as a series of parts

In some cases clients might prefer to upload a file as a series of

parts sent across multiple HTTP messages. One use case is to

overcome server limits on HTTP message content size. Another use

case is where the client does not know the final size, such as when

file data originates from a streaming source.

This example shows how the client, with prior knowledge about the

server's resumable upload support, can upload parts of a file over a

sequence of procedures.

1) If the client is aware that the server supports resumable upload,

it can use the Upload Creation Procedure with the Upload-Incomplete

header to start an upload.

¶

Client Server

| |

| PATCH with Upload-Token and Upload-Offset |

|--->|

| |

| 201 Created on completion |

|<---|

| |

¶

Client Server

| |

| DELETE with Upload-Token |

|--->|

| |

| 204 No Content on completion |

|<---|

| |

¶

¶

¶

Figure 5: Upload Creation Procedure Incomplete

2) After creation, the following parts are sent using the Upload

Appending Procedure (Section 6), and the last part of the upload

does not have the Upload-Incomplete header.

Figure 6: Upload Appending Procedure Last Chunk

4. Upload Creation Procedure

The Upload Creation Procedure is intended for starting a new upload.

A limited form of this procedure MAY be used by the client without

the knowledge of server support of the Resumable Uploads Protocol.

This procedure is designed to be compatible with a regular upload.

Therefore all methods are allowed with the exception of GET, HEAD,

DELETE, and OPTIONS. All response status codes are allowed. The

client is RECOMMENDED to use the POST method if not otherwise

intended. The server MAY only support a limited number of methods.

The request MUST include the Upload-Token header field (Section 9.1)

which uniquely identifies an upload. The client MUST NOT reuse the

token for a different upload. The request MUST NOT include the

Upload-Offset header.

If the end of the request body is not the end of the upload, the

Upload-Incomplete header field (Section 9.3) MUST be set to true.

Client Server

| |

| POST with Upload-Token and Upload-Incomplete |

|--->|

| |

| 201 Created with Upload-Incomplete |

| on completion |

|<---|

| |

¶

Client Server

| |

| PATCH with Upload-Token and Upload-Offset |

|--->|

| |

| 201 Created on completion |

|<---|

| |

¶

¶

¶

¶

If the server already has an active upload with the same token in

the Upload-Token header field, it MUST respond with 409 (Conflict)

status code.

The server MUST send the Upload-Offset header in the response if it

considers the upload active, either when the response is a success

(e.g. 201 (Created)), or when the response is a failure (e.g. 409

(Conflict)). The value MUST be equal to the end offset of the entire

upload, or the begin offset of the next chunk if the upload is still

incomplete. The client SHOULD consider the upload failed if the

response status code indicates a success but the offset in the

Upload-Offset header field in the response does not equal to the

begin offset plus the number of bytes uploaded in the request.

If the request completes successfully and the entire upload is

complete, the server MUST acknowledge it by responding with a

successful status code between 200 and 299 (inclusive). Server is

RECOMMENDED to use 201 (Created) response if not otherwise

specified. The response MUST NOT include the Upload-Incomplete

header with the value of true.

If the request completes successfully but the entire upload is not

yet complete indicated by the Upload-Incomplete header, the server

MUST acknowledge it by responding with the 201 (Created) status

code, the Upload-Incomplete header set to true.

:method: POST

:scheme: https

:authority: example.com

:path: /upload

upload-token: :SGVs…SGU=:

upload-draft-interop-version: 2

content-length: 100

[content (100 bytes)]

:status: 104

upload-draft-interop-version: 2

:status: 201

upload-offset: 100

¶

¶

¶

¶

¶

:method: POST

:scheme: https

:authority: example.com

:path: /upload

upload-token: :SGVs…SGU=:

upload-draft-interop-version: 2

upload-incomplete: ?1

content-length: 25

[partial content (25 bytes)]

:status: 201

upload-incomplete: ?1

upload-offset: 25

The client MAY automatically attempt upload resumption when the

connection is terminated unexpectedly, or if a server error status

code between 500 and 599 (inclusive) is received. The client SHOULD

NOT automatically retry if a client error status code between 400

and 499 (inclusive) is received.

File metadata can affect how servers might act on the uploaded file.

Clients can send Representation Metadata (see Section 8.3 of [HTTP])

in the Upload Creation Procedure request that starts an upload.

Servers MAY interpret this metadata or MAY ignore it. The Content-

Type header can be used to indicate the MIME type of the file. The

Content-Disposition header can be used to transmit a filename. If

included, the parameters SHOULD be either filename, filename* or

boundary.

4.1. Feature Detection

If the client has no knowledge of whether the server supports

resumable upload, the Upload Creation Procedure MAY be used with

some additional constraints. In particular, the Upload-Incomplete

header field (Section 9.3) MUST NOT be sent in the request if the

server support is unclear. This allows the upload to function as if

it is a regular upload.

If the server detects the Upload Creation Procedure and it supports

resumable upload, an informational response with 104 (Upload

Resumption Supported) status MAY be sent to the client while the

request body is being uploaded.

The client MUST NOT attempt to resume an upload if it did not

receive the 104 (Upload Resumption Supported) informational

response, and it does not have other signals of whether the server

supporting resumable upload.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-8.3

4.2. Draft Version Identification

RFC Editor's Note: Please remove this section and Upload-Draft-

Interop-Version from all examples prior to publication of a final

version of this document.

The current interop version is 2.

Client implementations of draft versions of the protocol MUST send a

header field Upload-Draft-Interop-Version with the interop version

as its value to its requests. Its ABNF is

Upload-Draft-Interop-Version = sf-integer

Server implementations of draft versions of the protocol MUST NOT

send a 104 (Upload Resumption Supported) informational response when

the interop version indicated by the Upload-Draft-Interop-Version

header field in the request is missing or mismatching.

Server implementations of draft versions of the protocol MUST also

send a header field Upload-Draft-Interop-Version with the interop

version as its value to the 104 (Upload Resumption Supported)

informational response.

Client implementations of draft versions of the protocol MUST ignore

a 104 (Upload Resumption Supported) informational response with

missing or mismatching interop version indicated by the Upload-

Draft-Interop-Version header field.

The reason both the client and the server are sending and checking

the draft version is to ensure that implementations of the final RFC

will not accidentally interop with draft implementations, as they

will not check the existence of the Upload-Draft-Interop-Version

header field.

5. Offset Retrieving Procedure

If an upload is interrupted, the client MAY attempt to fetch the

offset of the incomplete upload by sending a HEAD request to the

server with the same Upload-Token header field (Section 9.1). The

client MUST NOT initiate this procedure without the knowledge of

server support.

The request MUST use the HEAD method and include the Upload-Token

header. The request MUST NOT include the Upload-Offset header or the

Upload-Incomplete header. The server MUST reject the request with

the Upload-Offset header or the Upload-Incomplete header by sending

a 400 (Bad Request) response.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

If the server considers the upload associated with this token

active, it MUST send back a 204 (No Content) response. The response

MUST include the Upload-Offset header set to the current resumption

offset for the client. The response MUST include the Upload-

Incomplete header which is set to true if and only if the upload is

incomplete. An upload is considered complete if and only if the

server completely and successfully received a corresponding Upload

Creation Procedure (Section 4) or Upload Appending Procedure

(Section 6) request with the Upload-Incomplete header being omitted

or set to false.

The client MUST NOT perform the Offset Retrieving Procedure (Section

5) while the Upload Creation Procedure (Section 4) or the Upload

Appending Procedure (Section 6) is in progress.

The offset MUST be accepted by a subsequent Upload Appending

Procedure (Section 6). Due to network delay and reordering, the

server might still be receiving data from an ongoing transfer for

the same token, which in the client perspective has failed. The

server MAY terminate any transfers for the same token before sending

the response by abruptly terminating the HTTP connection or stream.

Alternatively, the server MAY keep the ongoing transfer alive but

ignore further bytes received past the offset.

The client MUST NOT start more than one Upload Appending Procedures

(Section 6) based on the resumption offset from a single Offset

Retrieving Procedure (Section 5).

The response SHOULD include Cache-Control: no-store header to

prevent HTTP caching.

If the server does not consider the upload associated with this

token active, it MUST respond with 404 (Not Found) status code.

The resumption offset can be less than or equal to the number of

bytes the client has already sent. The client MAY reject an offset

which is greater than the number of bytes it has already sent during

this upload. The client is expected to handle backtracking of a

reasonable length. If the offset is invalid for this upload, or if

the client cannot backtrack to the offset and reproduce the same

content it has already sent, the upload MUST be considered a

failure. The client MAY use the Upload Cancellation Procedure

(Section 7) to cancel the upload after rejecting the offset.

¶

¶

¶

¶

¶

¶

¶

The client SHOULD NOT automatically retry if a client error status

code between 400 and 499 (inclusive) is received.

6. Upload Appending Procedure

The Upload Appending Procedure is used for resuming an existing

upload.

The request MUST use the PATCH method and include the Upload-Token

header. The Upload-Offset header field (Section 9.2) MUST be set to

the resumption offset.

If the end of the request body is not the end of the upload, the

Upload-Incomplete header field (Section 9.3) MUST be set to true.

The server SHOULD respect representation metadata received in the

Upload Creation Procedure (Section 4) and ignore any representation

metadata received in the Upload Appending Procedure (Section 6).

If the server does not consider the upload associated with the token

in the Upload-Token header field active, it MUST respond with 404

(Not Found) status code.

The client MUST NOT perform multiple upload transfers for the same

token using Upload Creation Procedures (Section 4) or Upload

Appending Procedures (Section 6) in parallel to avoid race

conditions and data loss or corruption. The server is RECOMMENDED to

take measures to avoid parallel upload transfers: The server MAY

terminate any ongoing Upload Creation Procedure (Section 4) or

Upload Appending Procedure (Section 6) for the same token. Since the

client is not allowed to perform multiple transfers in parallel, the

server can assume that the previous attempt has already failed.

Therefore, the server MAY abruptly terminate the previous HTTP

connection or stream.

If the offset in the Upload-Offset header field does not match the

offset provided by the immediate previous Offset Retrieving

Procedure (Section 5), or the end offset of the immediate previous

:method: HEAD

:scheme: https

:authority: example.com

:path: /upload

upload-token: :SGVs…SGU=:

upload-draft-interop-version: 2

:status: 204

upload-offset: 100

cache-control: no-store

¶

¶

¶

¶

¶

¶

¶

¶

incomplete transfer, the server MUST respond with 409 (Conflict)

status code.

The server MUST send the Upload-Offset header in the response if it

considers the upload active, either when the response is a success

(e.g. 201 (Created)), or when the response is a failure (e.g. 409

(Conflict)). The value MUST be equal to the end offset of the entire

upload, or the begin offset of the next chunk if the upload is still

incomplete. The client SHOULD consider the upload failed if the

response status code indicates a success but the offset in the

Upload-Offset header field in the response does not equal to the

begin offset plus the number of bytes uploaded in the request.

If the request completes successfully and the entire upload is

complete, the server MUST acknowledge it by responding with a

successful status code between 200 and 299 (inclusive). Server is

RECOMMENDED to use 201 (Created) response if not otherwise

specified. The response MUST NOT include the Upload-Incomplete

header with the value of true.

If the request completes successfully but the entire upload is not

yet complete indicated by the Upload-Incomplete header, the server

MUST acknowledge it by responding with the 201 (Created) status

code, the Upload-Incomplete header set to true.

:method: PATCH

:scheme: https

:authority: example.com

:path: /upload

upload-token: :SGVs…SGU=:

upload-offset: 100

upload-draft-interop-version: 2

content-length: 100

[content (100 bytes)]

:status: 201

upload-offset: 200

The client MAY automatically attempt upload resumption when the

connection is terminated unexpectedly, or if a server error status

code between 500 and 599 (inclusive) is received. The client SHOULD

NOT automatically retry if a client error status code between 400

and 499 (inclusive) is received.

7. Upload Cancellation Procedure

If the client wants to terminate the transfer without the ability to

resume, it MAY send a DELETE request to the server along with the

¶

¶

¶

¶

¶

¶

Upload-Token which is an indication that the client is no longer

interested in uploading this body and the server can release

resources associated with this token. The client MUST NOT initiate

this procedure without the knowledge of server support.

The request MUST use the DELETE method and include the Upload-Token

header. The request MUST NOT include the Upload-Offset header or the

Upload-Incomplete header. The server MUST reject the request with

the Upload-Offset header or the Upload-Incomplete header by sending

a 400 (Bad Request) response.

If the server has successfully deactivated this token, it MUST send

back a 204 (No Content) response.

The server MAY terminate any ongoing Upload Creation Procedure

(Section 4) or Upload Appending Procedure (Section 6) for the same

token before sending the response by abruptly terminating the HTTP

connection or stream.

If the server does not consider the upload associated with this

token active, it MUST respond with 404 (Not Found) status code.

If the server does not support cancellation, it MUST respond with

405 (Method Not Allowed) status code.

:method: DELETE

:scheme: https

:authority: example.com

:path: /upload

upload-token: :SGVs…SGU=:

upload-draft-interop-version: 2

:status: 204

8. Request Identification

The Upload Creation Procedure (Section 4) supports arbitrary methods

including PATCH, therefore it is not possible to identify the

procedure of a request purely by its method. The following algorithm

is RECOMMENDED to identify the procedure from a request for a

generic implementation:

The Upload-Token header is not present: Not a resumable upload.

The Upload-Offset header is present: Upload Appending Procedure

(Section 6).

The method is HEAD: Offset Retrieving Procedure (Section 5).

¶

¶

¶

¶

¶

¶

¶

¶

1. ¶

2.

¶

3. ¶

The method is DELETE: Upload Cancellation Procedure (Section

7).

Otherwise: Upload Creation Procedure (Section 4).

9. Header Fields

9.1. Upload-Token

The Upload-Token request header field is an Item Structured Header

(see Section 3.3 of [STRUCTURED-FIELDS]) carrying the token used for

identification of a specific upload. Its value MUST be a byte

sequence. Its ABNF is

Upload-Token = sf-binary

If not otherwise specified by the server, the client is RECOMMENDED

to use 256-bit (32 bytes) cryptographically-secure random binary

data as the value of the Upload-Token, in order to ensure that it is

globally unique and non-guessable.

A conforming implementation MUST be able to handle a Upload-Token

field value of at least 128 octets.

9.2. Upload-Offset

The Upload-Offset request and response header field is an Item

Structured Header indicating the resumption offset of corresponding

upload, counted in bytes. Its value MUST be an integer. Its ABNF is

Upload-Offset = sf-integer

9.3. Upload-Incomplete

The Upload-Incomplete request and response header field is an Item

Structured Header indicating whether the corresponding upload is

considered complete. Its value MUST be a boolean. Its ABNF is

Upload-Incomplete = sf-boolean

10. Redirection

The 301 (Moved Permanently) status code and the 302 (Found) status

code MUST NOT be used in Offset Retrieving Procedure (Section 5) and

4.

¶

5. ¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8941#section-3.3

[HTTP]

Upload Cancellation Procedure (Section 7) responses. A 308

(Permanent Redirect) response MAY be persisted for all subsequent

procedures. If client receives a 307 (Temporary Redirect) response

in the Offset Retrieving Procedure (Section 5), it MAY apply the

redirection directly in the immediate subsequent Upload Appending

Procedure (Section 6).

11. Security Considerations

The tokens inside the Upload-Token header field can be selected by

the client which has no knowledge of tokens picked by other client,

so uniqueness cannot be guaranteed. If the token is guessable, an

attacker can append malicious data to ongoing uploads. To mitigate

these issues, 256-bit cryptographically-secure random binary data is

recommended for the token.

It is OPTIONAL for the server to partition upload tokens based on

client identity established through other channels, such as Cookie

or TLS client authentication. The client MAY relax the token

strength if it is aware of server-side partitioning.

12. IANA Considerations

This specification registers the following entry in the Permanent

Message Header Field Names registry established by [RFC3864]:

Header field name: Upload-Token, Upload-Offset, Upload-Incomplete

Applicable protocol: http

Status: standard

Author/change controller: IETF

Specification: This document

Related information: n/a

This specification registers the following entry in the "HTTP Status

Codes" registry:

Code: 104 (suggested value)

Description: Upload Resumption Supported

Specification: This document

13. Normative References

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC3864]

[RFC8174]

[STRUCTURED-FIELDS]

Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP

Semantics", Work in Progress, Internet-Draft, draft-ietf-

httpbis-semantics-19, 12 September 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

semantics-19>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Klyne, G., Nottingham, M., and J. Mogul, "Registration

Procedures for Message Header Fields", BCP 90, RFC 3864,

DOI 10.17487/RFC3864, September 2004, <https://www.rfc-

editor.org/rfc/rfc3864>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Nottingham, M. and P-H. Kamp, "Structured Field

Values for HTTP", RFC 8941, DOI 10.17487/RFC8941,

February 2021, <https://www.rfc-editor.org/rfc/rfc8941>.

Appendix A. Changes

A.1. Since draft-tus-httpbis-resumable-uploads-protocol-01

Clarifying backtracking and preventing skipping ahead during the

Offset Receiving Procedure.

Clients auto-retry 404 is no longer allowed.

A.2. Since draft-tus-httpbis-resumable-uploads-protocol-00

Split the Upload Transfer Procedure into the Upload Creation

Procedure and the Upload Appending Procedure.

Acknowledgments

This document is based on an Internet-Draft specification written by

Jiten Mehta, Stefan Matsson, and the authors of this document.

TODO: more acknowledgements.

*

¶

* ¶

*

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3864
https://www.rfc-editor.org/rfc/rfc3864
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8941

Appendix

Informational Response

The server is allowed to respond to Upload Creation Procedure

(Section 4) requests with a 104 (Upload Resumption Supported)

intermediate response as soon as the server has validated the

request. This way, the client knows that the server supports

resumable uploads before the complete response for the Upload

Creation Procedure is received. The benefit is the clients can defer

starting the actual data transfer until the server indicates full

support of the incoming Upload Creation Procedure (i.e. resumable

are supported, the provided upload token is active etc).

On the contrary, support for intermediate responses (the 1XX range)

in existing software is limited or not at all present. Such software

includes proxies, firewalls, browsers, and HTTP libraries for

clients and server. Therefore, the 104 (Upload Resumption Supported)

status code is optional and not mandatory for the successful

completion of an upload. Otherwise, it might be impossible in some

cases to implement resumable upload servers using existing software

packages. Furthermore, as parts of the current internet

infrastructure currently have limited support for intermediate

responses, a successful delivery of a 104 (Upload Resumption

Supported) from the server to the client should be assumed.

We hope that support for intermediate responses increases in the

near future, to allow a wider usage of 104 (Upload Resumption

Supported).

Feature Detection

This specification includes a section about feature detection (it

was called service discovery in earlier discussions, but this name

is probably ill-suited). The idea is to allow resumable uploads to

be transparently implemented by HTTP clients. This means that

application developers just keep using the same API of their HTTP

library as they have done in the past with traditional, non-

resumable uploads. Once the HTTP library gets updated (e.g. because

mobile OS or browsers start implementing resumable uploads), the

HTTP library can transparently decide to use resumable uploads

without explicit configuration by the application developer. Of

course, in order to use resumable uploads, the HTTP library needs to

know whether the server supports resumable uploads. If no support is

detected, the HTTP library should use the traditional, non-resumable

upload technique. We call this process feature detection.

¶

¶

¶

¶

Ideally, the technique used for feature detection meets following

criteria (there might not be one approach which fits all

requirements, so we have to prioritize them):

Avoid additional roundtrips by the client, if possible (i.e. an

additional HTTP request by the client should be avoided).

Be backwards compatible to HTTP/1.1 and existing network

infrastructure: This means to avoid using new features in HTTP/

2, or features which might require changes to existing network

infrastructure (e.g. nginx or HTTP libraries)

Conserve the user's privacy (i.e. the feature detection should

not leak information to other third-parties about which URLs

have been connected to)

Following approaches have already been considered in the past. All

except the last approaches have not been deemed acceptable and are

therefore not included in the specification. This follow list is a

reference for the advantages and disadvantages of some approaches:

Include a support statement in the SETTINGS frame. The SETTINGS

frame is a HTTP/2 feature and is sent by the server to the client to

exchange information about the current connection. The idea was to

include an additional statement in this frame, so the client can

detect support for resumable uploads without an additional

roundtrip. The problem is that this is not compatible with HTTP/1.1.

Furthermore, the SETTINGS frame is intended for information about

the current connection (not bound to a request/response) and might

not be persisted when transmitted through a proxy.

Include a support statement in the DNS record. The client can detect

support when resolving a domain name. Of course, DNS is not

semantically the correct layer. Also, DNS might not be involved if

the record is cached or retrieved from a hosts files.

Send a HTTP request to ask for support. This is the easiest approach

where the client sends an OPTIONS request and uses the response to

determine if the server indicates support for resumable uploads. An

alternative is that the client sends the request to a well-known URL

to obtain this response, e.g. /.well-known/resumable-uploads. Of

course, while being fully backwards-compatible, it requires an

additional roundtrip.

Include a support statement in previous responses. In many cases,

the file upload is not the first time that the client connects to

the server. Often additional requests are sent beforehand for

authentication, data retrieval etc. The responses for those requests

can also include a header which indicates support for resumable

uploads. There are two options: - Use the standardized Alt-Svc

¶

1.

¶

2.

¶

3.

¶

¶

¶

¶

¶

response header. However, it has been indicated to us that this

header might be reworked in the future and could also be

semantically different from our intended usage. - Use a new response

header Resumable-Uploads: https://example.org/files/* to indicate

under which endpoints support for resumable uploads is available.

Send a 104 intermediate response to indicate support. The clients

normally starts a traditional upload and includes a header indicate

that it supports resumable uploads (e.g. Upload-Offset: 0). If the

server also supports resumable uploads, it will immediately respond

with a 104 intermediate response to indicate its support, before

further processing the request. This way the client is informed

during the upload whether it can resume from possible connection

errors or not. While an additional roundtrip is avoided, the problem

with that solution is that many HTTP server libraries do not support

sending custom 1XX responses and that some proxies may not be able

to handle new 1XX status codes correctly.

Send a 103 Early Hint response to indicate support. This approach is

the similar to the above one, with one exception: Instead of a new

104 (Upload Resumption Supported) status code, the existing 103

(Early Hint) status code is used in the intermediate response. The

103 code would then be accompanied by a header indicating support

for resumable uploads (e.g. Resumable-Uploads: 1). It is unclear

whether the Early Hints code is appropriate for that, as it is

currently only used to indicate resources for prefetching them.

Upload Metadata

The Upload Creation Procedure (Section 4) allows the Content-Type

and Content-Disposition header to be included. They are intended to

be a standardized way of communicating the file name and file type,

if available. However, this is not without controversy. Some argue

that since these headers are already defined in other

specifications, it is not necessary to include them here again.

Furthermore, the Content-Disposition header field's format is not

clearly enough defined. For example, it is left open which

disposition value should be used in the header. There needs to be

more discussion whether this approach is suited or not.

However, from experience with the tus project, users are often

asking for a way to communicate the file name and file type.

Therefore, we believe it is help to explicitly include an approach

for doing so.

FAQ

Are multipart requests supported? Yes, requests whose body is

encoded using the multipart/form-data are implicitly supported.

¶

¶

¶

¶

¶

*

The entire encoded body can be considered as a single file, which

is then uploaded using the resumable protocol. The server, of

course, must store the delimiter ("boundary") separating each

part and must be able to parse the multipart format once the

upload is completed.

Authors' Addresses

Marius Kleidl (editor)

Transloadit Ltd

Email: marius@transloadit.com

Guoye Zhang (editor)

Apple Inc.

Email: guoye_zhang@apple.com

Lucas Pardue (editor)

Cloudflare

Email: lucaspardue.24.7@gmail.com

¶

mailto:marius@transloadit.com
mailto:guoye_zhang@apple.com
mailto:lucaspardue.24.7@gmail.com

	tus - Resumable Uploads Protocol
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Uploading Overview
	3.1. Example 1: Complete upload of file with known size
	3.2. Example 2: Upload as a series of parts

	4. Upload Creation Procedure
	4.1. Feature Detection
	4.2. Draft Version Identification

	5. Offset Retrieving Procedure
	6. Upload Appending Procedure
	7. Upload Cancellation Procedure
	8. Request Identification
	9. Header Fields
	9.1. Upload-Token
	9.2. Upload-Offset
	9.3. Upload-Incomplete

	10. Redirection
	11. Security Considerations
	12. IANA Considerations
	13. Normative References
	Appendix A. Changes
	A.1. Since draft-tus-httpbis-resumable-uploads-protocol-01
	A.2. Since draft-tus-httpbis-resumable-uploads-protocol-00

	Acknowledgments
	Appendix
	Informational Response
	Feature Detection
	Upload Metadata
	FAQ

	Authors' Addresses

