
Workgroup: Network Working Group

Internet-Draft: draft-ietf-httpbis-retrofit-05

Updates: 8941 (if approved)

Published: 4 December 2022

Intended Status: Standards Track

Expires: 7 June 2023

Authors: M. Nottingham

Retrofit Structured Fields for HTTP

Abstract

This specification nominates a selection of existing HTTP fields as

having syntax that is compatible with Structured Fields, so that

they can be handled as such (subject to certain caveats).

To accommodate some additional fields whose syntax is not

compatible, it also defines mappings of their semantics into new

Structured Fields. It does not specify how to negotiate their use.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-ietf-httpbis-retrofit/.

Discussion of this document takes place on the HTTP Working Group

mailing list (mailto:ietf-http-wg@w3.org), which is archived at

https://lists.w3.org/Archives/Public/ietf-http-wg/. Working Group

information can be found at https://httpwg.org/.

Source for this draft and an issue tracker can be found at https://

github.com/httpwg/http-extensions/labels/retrofit.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8941
https://datatracker.ietf.org/doc/draft-ietf-httpbis-retrofit/
https://datatracker.ietf.org/doc/draft-ietf-httpbis-retrofit/
mailto:ietf-http-wg@w3.org
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.org/
https://github.com/httpwg/http-extensions/labels/retrofit
https://github.com/httpwg/http-extensions/labels/retrofit
https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 7 June 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Notational Conventions

2. Compatible Fields

3. Mapped Fields

3.1. URLs

3.2. Dates

3.3. ETags

3.4. Links

3.5. Cookies

4. IANA Considerations

5. Security Considerations

6. Normative References

Author's Address

1. Introduction

Structured Field Values for HTTP [STRUCTURED-FIELDS] introduced a

data model with associated parsing and serialization algorithms for

use by new HTTP field values. Fields that are defined as Structured

Fields can realise a number of benefits, including:

Improved interoperability and security: precisely defined parsing

and serialisation algorithms are typically not available for

fields defined with just ABNF and/or prose.

Reuse of common implementations: many parsers for other fields

are specific to a single field or a small family of fields.

Canonical form: because a deterministic serialisation algorithm

is defined for each type, Structure Fields have a canonical

representation.

¶

¶

¶

¶

*

¶

*

¶

*

¶

https://trustee.ietf.org/license-info

Enhanced API support: a regular data model makes it easier to

expose field values as a native data structure in

implementations.

Alternative serialisations: While [STRUCTURED-FIELDS] defines a

textual serialisation of that data model, other, more efficient

serialisations of the underlying data model are also possible.

However, a field needs to be defined as a Structured Field for these

benefits to be realised. Many existing fields are not, making up the

bulk of header and trailer fields seen in HTTP traffic on the

internet.

This specification defines how a selection of existing HTTP fields

can be handled as Structured Fields, so that these benefits can be

realised -- thereby making them Retrofit Structured Fields.

It does so using two techniques. Section 2 lists compatible fields

-- those that can be handled as if they were Structured Fields due

to the similarity of their defined syntax to that in Structured

Fields. Section 3 lists mapped fields -- those whose syntax needs to

be transformed into an underlying data model which is then mapped

into that defined by Structured Fields.

Note that while implementations can parse and serialise compatible

fields as Structured Fields subject to the caveats in Section 2, a

sender cannot generate mapped fields from Section 3 and expect them

to be understood and acted upon by the recipient without prior

negotiation. This specification does not define such a mechanism.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Compatible Fields

The HTTP fields listed in Table 1 can usually have their values

handled as Structured Fields according to the listed parsing and

serialisation algorithms in [STRUCTURED-FIELDS], subject to the

listed caveats.

The listed types are chosen for compatibility with the defined

syntax of the field as well as with actual internet traffic.

However, not all instances of these fields will successfully parse.

This might be because the field value is clearly invalid, or it

*

¶

*

¶

¶

¶

¶

¶

¶

¶

might be because it is valid but not parseable as a Structured

Field.

An application using this specification will need to consider how to

handle such field values. Depending on its requirements, it might be

advisable to reject such values, treat them as opaque strings, or

attempt to recover a structured value from them in an ad hoc

fashion.

Field Name Structured Type

Accept List

Accept-Encoding List

Accept-Language List

Accept-Patch List

Accept-Post List

Accept-Ranges List

Access-Control-Allow-Credentials Item

Access-Control-Allow-Headers List

Access-Control-Allow-Methods List

Access-Control-Allow-Origin Item

Access-Control-Expose-Headers List

Access-Control-Max-Age Item

Access-Control-Request-Headers List

Access-Control-Request-Method Item

Age Item

Allow List

ALPN List

Alt-Svc Dictionary

Alt-Used Item

Cache-Control Dictionary

CDN-Loop List

Clear-Site-Data List

Connection List

Content-Encoding List

Content-Language List

Content-Length List

Content-Type Item

Cross-Origin-Resource-Policy Item

DNT Item

Expect Dictionary

Expect-CT Dictionary

Host Item

Keep-Alive Dictionary

Max-Forwards Item

Origin Item

Pragma Dictionary

¶

¶

Error handling:

Parameter and Dictionary keys:

Parameter delimitation:

String quoting:

Field Name Structured Type

Prefer Dictionary

Preference-Applied Dictionary

Retry-After Item

Sec-WebSocket-Extensions List

Sec-WebSocket-Protocol List

Sec-WebSocket-Version Item

Server-Timing List

Surrogate-Control Dictionary

TE List

Timing-Allow-Origin List

Trailer List

Transfer-Encoding List

Upgrade-Insecure-Requests Item

Vary List

X-Content-Type-Options Item

X-Frame-Options Item

X-XSS-Protection List

Table 1: Compatible Fields

Note the following caveats regarding compatibility:

Parsing algorithms specified (or just widely

implemented) for current HTTP headers may differ from those in

Structured Fields in details such as error handling. For example,

HTTP specifies that repeated directives in the Cache-Control

header field have a different precedence than that assigned by a

Dictionary structured field (which Cache-Control is mapped to).

HTTP parameter names are case-

insensitive (per Section 5.6.6 of [HTTP]), but Structured Fields

require them to be all-lowercase. Although the vast majority of

parameters seen in typical traffic are all-lowercase,

compatibility can be improved by force-lowercasing parameters

when parsing. Likewise, many Dictionary-based fields (e.g.,

Cache-Control, Expect-CT, Pragma, Prefer, Preference-Applied,

Surrogate-Control) have case-insensitive keys, and compatibility

can be improved by force-lowercasing them when parsing.

The parameters rule in HTTP (see

Section 5.6.6 of [HTTP]) allows whitespace before the ";"

delimiter, but Structured Fields does not. Compatibility can be

improved by allowing such whitespace when parsing.

Section 5.6.4 of [HTTP] allows backslash-escaping

most characters in quoted strings, whereas Structured Field

Strings only escape "\" and DQUOTE. Compatibility can be improved

by unescaping other characters before parsing.

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-5.6.6
https://rfc-editor.org/rfc/rfc9110#section-5.6.6
https://rfc-editor.org/rfc/rfc9110#section-5.6.4

Token limitations:

Integer limitations:

IPv6 Literals:

Empty Field Values:

Alt-Svc:

Content-Length:

Retry-After:

In Structured Fields, tokens are required to

begin with an alphabetic character or "*", whereas HTTP tokens

allow a wider range of characters. This prevents use of mapped

values that begin with one of these characters. For example,

media types, field names, methods, range-units, character and

transfer codings that begin with a number or special character

other than "*" might be valid HTTP protocol elements, but will

not be able to be represented as Structured Field Tokens.

Structured Fields Integers can have at most 15

digits; larger values will not be able to be represented in them.

Fields whose values contain IPv6 literal addresses

(such as CDN-Loop, Host, and Origin) are not able to be

represented as Structured Fields Tokens, because the brackets

used to delimit them are not allowed in Tokens.

Empty and whitespace-only field values are

considered errors in Structured Fields. For compatible fields, an

empty field indicates that the field should be silently ignored.

Some ALPN tokens (e.g., h3-Q43) do not conform to key's

syntax, and therefore cannot be represented as a Token. Since the

final version of HTTP/3 uses the h3 token, this shouldn't be a

long-term issue, although future tokens may again violate this

assumption.

Note that Content-Length is defined as a List

because it is not uncommon for implementations to mistakenly send

multiple values. See Section 8.6 of [HTTP] for handling

requirements.

Only the delta-seconds form of Retry-After can be

represented; a Retry-After value containing a http-date will need

to be converted into delta-seconds to be conveyed as a Structured

Field Value.

3. Mapped Fields

Some HTTP field values have syntax that cannot be successfully

parsed as Structured Fields. Instead, it is necessary to map them

into a separate Structured Field with an alternative name.

For example, the Date HTTP header field carries a date:

Date: Sun, 06 Nov 1994 08:49:37 GMT

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-8.6

Its value would be mapped to:

SF-Date: @784111777

As in Section 2, these fields are unable to carry values that are

not valid Structured Fields, and so an application using this

specification will need to how to support such values. Typically,

handling them using the original field name is sufficient.

Each field name listed below indicates a replacement field name and

a means of mapping its original value into a Structured Field.

3.1. URLs

The field names in Table 2 (paired with their mapped field names)

have values that can be mapped into Structured Fields by treating

the original field's value as a String.

Field Name Mapped Field Name

Content-Location SF-Content-Location

Location SF-Location

Referer SF-Referer

Table 2: URL Fields

For example, this Location field

Location: https://example.com/foo

could be mapped as:

SF-Location: "https://example.com/foo"

3.2. Dates

The field names in Table 3 (paired with their mapped field names)

have values that can be mapped into Structured Fields by parsing

their payload according to Section 5.6.7 of [HTTP] and representing

the result as a Date.

Field Name Mapped Field Name

Date SF-Date

Expires SF-Expires

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-5.6.7

Field Name Mapped Field Name

If-Modified-Since SF-If-Modified-Since

If-Unmodified-Since SF-If-Unmodified-Since

Last-Modified SF-Last-Modified

Table 3: Date Fields

For example, an Expires field could be mapped as:

SF-Expires: @1659578233

3.3. ETags

The field value of the ETag header field can be mapped into the SF-

ETag Structured Field by representing the entity-tag as a String,

and the weakness flag as a Boolean "w" parameter on it, where true

indicates that the entity-tag is weak; if 0 or unset, the entity-tag

is strong.

For example, this:

ETag: W/"abcdef"

SF-ETag: "abcdef"; w

If-None-Match's field value can be mapped into the SF-If-None-Match

Structured Field, which is a List of the structure described above.

When a field value contains "*", it is represented as a Token.

Likewise, If-Match's field value can be mapped into the SF-If-Match

Structured Field in the same manner.

For example:

SF-If-None-Match: "abcdef"; w, "ghijkl", *

3.4. Links

The field value of the Link header field [RFC8288] can be mapped

into the SF-Link List Structured Field by considering the URI-

Reference as a String, and link-param as Parameters.

For example, this:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Link: </terms>; rel="copyright"; anchor="#foo"

can be mapped to:

SF-Link: "/terms"; rel="copyright"; anchor="#foo"

3.5. Cookies

The field values of the Cookie and Set-Cookie fields [COOKIES] can

be mapped into the SF-Cookie Structured Field (a List) and SF-Set-

Cookie Structured Field (a List), respectively.

In each case, a cookie is represented as an Inner List containing

two Items; the cookie name and value. The cookie name is always a

String; the cookie value is a String, unless it can be successfully

parsed as the textual representation of another, bare Item

structured type (e.g., Byte Sequence, Decimal, Integer, Token, or

Boolean).

Cookie attributes map to Parameters on the Inner List, with the

parameter name being forced to lowercase. Cookie attribute values

are Strings unless a specific type is defined for them. This

specification defines types for existing cookie attributes in

Table 4.

Parameter Name Structured Type

Domain String

HttpOnly Boolean

Expires Date

Max-Age Integer

Path String

Secure Boolean

SameSite Token

Table 4: Set-Cookie Parameter

Types

The Expires attribute is mapped to a Date representation of parsed-

cookie-date (see Section 5.1.1 of [COOKIES]).

For example, these unstructured fields:

Set-Cookie: lang=en-US; Expires=Wed, 09 Jun 2021 10:18:14 GMT;

 samesite=Strict; secure

Cookie: SID=31d4d96e407aad42; lang=en-US

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-11#section-5.1.1

can be mapped into:

SF-Set-Cookie: ("lang" "en-US"); expires=@1623233894;

 samesite=Strict; secure

SF-Cookie: ("SID" "31d4d96e407aad42"), ("lang" "en-US")

4. IANA Considerations

Please add the following note to the "Hypertext Transfer Protocol

(HTTP) Field Name Registry":

The "Structured Type" column indicates the type of the field (per

RFC8941), if any, and may be "Dictionary", "List" or "Item". A

prefix of "*" indicates that it is a retrofit type (i.e., not

natively Structured); see [this specification].

Note that field names beginning with characters other than ALPHA

or "*" will not be able to be represented as a Structured Fields

Token, and therefore may be incompatible with being mapped into

fields that refer to it; see [this specification].

Then, add a new column, "Structured Type", with the values from

Section 2 assigned to the nominated registrations, prefixing each

with "*" to indicate that it is a retrofit type.

Then, add the field names in Table 5, with the corresponding

Structured Type as indicated, a status of "permanent" and referring

to this document.

Field Name Structured Type

SF-Content-Location Item

SF-Cookie List

SF-Date Item

SF-ETag Item

SF-Expires Item

SF-If-Match List

SF-If-Modified-Since Item

SF-If-None-Match List

SF-If-Unmodified-Since Item

SF-Link List

SF-Last-Modified Item

SF-Location Item

SF-Referer Item

SF-Set-Cookie List

¶

¶

¶

¶

¶

¶

¶

¶

[COOKIES]

Table 5: New Fields

Then, add the indicated Structured Type for each existing registry

entry listed in Table 6.

Field Name Structured Type

Accept-CH List

Cache-Status List

CDN-Cache-Control Dictionary

Cross-Origin-Embedder-Policy Item

Cross-Origin-Embedder-Policy-Report-Only Item

Cross-Origin-Opener-Policy Item

Cross-Origin-Opener-Policy-Report-Only Item

Origin-Agent-Cluster Item

Priority Dictionary

Proxy-Status List

Table 6: Existing Fields

Finally, add a new column to the "Cookie Attribute Registry"

established by [COOKIES] with the title "Structured Type", using

information from Table 4.

5. Security Considerations

Section 2 identifies existing HTTP fields that can be parsed and

serialised with the algorithms defined in [STRUCTURED-FIELDS].

Variances from existing parser behavior might be exploitable,

particularly if they allow an attacker to target one implementation

in a chain (e.g., an intermediary). However, given the considerable

variance in parsers already deployed, convergence towards a single

parsing algorithm is likely to have a net security benefit in the

longer term.

Section 3 defines alternative representations of existing fields.

Because downstream consumers might interpret the message differently

based upon whether they recognise the alternative representation,

implementations are prohibited from generating such fields unless

they have negotiated support for them with their peer. This

specification does not define such a mechanism, but any such

definition needs to consider the implications of doing so carefully.

6. Normative References

Bingler, S., West, M., and J. Wilander, "Cookies: HTTP

State Management Mechanism", Work in Progress, Internet-

Draft, draft-ietf-httpbis-rfc6265bis-11, 7 November 2022,

<https://datatracker.ietf.org/doc/html/draft-ietf-

httpbis-rfc6265bis-11>.

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-11
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-11

[HTTP]

[RFC2119]

[RFC8174]

[RFC8288]

[STRUCTURED-FIELDS]

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Nottingham, M., "Web Linking", RFC 8288, DOI 10.17487/

RFC8288, October 2017, <https://www.rfc-editor.org/rfc/

rfc8288>.

Nottingham, M. and P. Kamp, "Structured Field

Values for HTTP", Work in Progress, Internet-Draft,

draft-ietf-httpbis-sfbis-00, 9 November 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

sfbis-00>.

Author's Address

Mark Nottingham

Prahran

Australia

Email: mnot@mnot.net

URI: https://www.mnot.net/

https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8288
https://www.rfc-editor.org/rfc/rfc8288
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-sfbis-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-sfbis-00
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-sfbis-00
mailto:mnot@mnot.net
https://www.mnot.net/

	Retrofit Structured Fields for HTTP
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions

	2. Compatible Fields
	3. Mapped Fields
	3.1. URLs
	3.2. Dates
	3.3. ETags
	3.4. Links
	3.5. Cookies

	4. IANA Considerations
	5. Security Considerations
	6. Normative References
	Author's Address

