
Workgroup: HTTP

Updates: 5323 (if approved)

Published: 8 June 2021

Intended Status: Standards Track

Expires: 10 December 2021

Authors: J. Reschke

greenbytes

A. Malhotra J.M. Snell

HTTP SEARCH Method

Abstract

This specification updates the definition and semantics of the HTTP

SEARCH request method originally defined by RFC 5323.

Editorial Note

This note is to be removed before publishing as an RFC.

Discussion of this draft takes place on the HTTP working group

mailing list (ietf-http-wg@w3.org), which is archived at https://

lists.w3.org/Archives/Public/ietf-http-wg/.

Working Group information can be found at https://httpwg.org/;

source code and issues list for this draft can be found at https://

github.com/httpwg/http-extensions/labels/safe-method-w-body.

The changes in this draft are summarized in Appendix A.1.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 December 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc5323
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.org/
https://github.com/httpwg/http-extensions/labels/safe-method-w-body
https://github.com/httpwg/http-extensions/labels/safe-method-w-body
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. SEARCH

3. The "Accept-Search" Header Field

4. Examples

4.1. Simple SEARCH with a Direct Response

4.2. Simple SEARCH with indirect response (303 See Other)

5. Security Considerations

6. IANA Considerations

7. Normative References

Appendix A. Change Log

A.1. Since draft-ietf-httpbis-safe-method-w-body-00

Authors' Addresses

1. Introduction

This specification updates the HTTP SEARCH method originally defined

in [RFC5323].

Many existing HTTP-based applications use the HTTP GET and POST

methods in various ways to implement the functionality provided by

SEARCH.

Using a GET request with some combination of query parameters

included within the request URI (as illustrated in the example

below) is arguably the most common mechanism for implementing search

in web applications. With this approach, implementations are

required to parse the request URI into distinct path (everything

before the '?') and query elements (everything after the '?'). The

path identifies the resource processing the query (in this case

'http://example.org/feed') while the query identifies the specific

parameters of the search operation.

A typical use of HTTP GET for requesting a search

¶

¶

¶

¶

¶

GET /feed?q=foo&limit=10&sort=-published HTTP/1.1

Host: example.org

¶

https://trustee.ietf.org/license-info

While there are definite advantages to using GET requests in this

manner, the disadvantages should not be overlooked. Specifically:

Without specific knowledge of the resource and server to which

the GET request is being sent, there is no way for the client to

know that a search operation is being requested. Identical

requests sent to two different servers can implement entirely

different semantics.

Encoding query parameters directly into the request URI

effectively casts every possible combination of query inputs as

distinct resources. For instance, because mechanisms such as HTTP

caching handle request URIs as opaque character sequences,

queries such as 'http://example.org/?q=foo' and 'http://

example.org/?q=Foo' will be treated as entirely separate

resources even if they yield identical results.

While most modern browser and server implementations allow for

long request URIs, there is no standardized minimum or maximum

length for URIs in general. Many resource constrained devices

enforce strict limits on the maximum number of characters that

can be included in a URI. Such limits can prove impractical for

large or complex query parameters.

Query expressions included within a request URI must either be

restricted to relatively simple key value pairs or encoded such

that the query can be safely represented in the limited

character-set allowed by URL standards. Such encoding can add

significant complexity, introduce bugs, or otherwise reduce the

overall visibility of the query being requested.

As an alternative to using GET, many implementations make use of the

HTTP POST method to perform queries, as illustrated in the example

below. In this case, the input parameters to the search operation

are passed along within the request payload as opposed to using the

request URI.

A typical use of HTTP POST for requesting a search

This variation, however, suffers from the same basic limitation as

GET in that it is not readily apparent -- absent specific knowledge

of the resource and server to which the request is being sent --

that a search operation is what is being requested. Web applications

use the POST method for a wide variety of uses including the

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

POST /feed HTTP/1.1

Host: example.org

Content-Type: application/x-www-form-urlencoded

q=foo&limit=10&sort=-published

¶

creation or modification of existing resources. Sending the request

above to a different server, or even repeatedly sending the request

to the same server could have dramatically different effects.

The SEARCH method provides a solution that spans the gap between the

use of GET and POST. As with POST, the input to the query operation

is passed along within the payload of the request rather than as

part of the request URI. Unlike POST, however the semantics of the

SEARCH method are specifically defined.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. SEARCH

The SEARCH method is used to initiate a server-side search. Unlike

the HTTP GET method, which requests that a server return a

representation of the resource identified by the target URI (as

defined by Section 7.1 of [RFCHTTP]), the SEARCH method is used to

ask the server to perform a query operation (described by the

request payload) over some set of data scoped to the effective

request URI. The payload returned in response to a SEARCH cannot be

assumed to be a representation of the resource identified by the

effective request URI.

The body payload of the request defines the query. Implementations

MAY use a request body of any content type with the SEARCH method;

however, for backwards compatibility with existing WebDAV

implementations, SEARCH requests that use the text/xml or

application/xml media types with a root element (Section 2.1 of

[XML]) in the "DAV:" XML namespace ([XMLNS]) MUST be processed per

the requirements established by [RFC5323].

SEARCH requests are both safe and idempotent with regards to the

resource identified by the request URI. That is, SEARCH requests do

not alter the state of the targeted resource. However, while

processing a search request, a server can be expected to allocate

computing and memory resources or even create additional HTTP

resources through which the response can be retrieved.

A successful response to a SEARCH request is expected to provide

some indication as to the final disposition of the search operation.

For instance, a successful search that yields no results can be

represented by a 204 No Content response. If the response includes a

content, it is expected to describe the results of the search

operation. In some cases, the server may choose to respond

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-16#section-7.1
https://www.w3.org/TR/2008/REC-xml-20081126/#sec-well-formed

indirectly to the SEARCH request by returning a 3xx Redirection with

a Location header field specifying an alternate Request URI from

which the search results can be retrieved using an HTTP GET request.

Various non-normative examples of successful SEARCH responses are

illustrated in Section 4.

The response to a SEARCH request is not cacheable. It ought to be

noted, however, that because SEARCH requests are safe and

idempotent, responses to a SEARCH MUST NOT invalidate previously

cached responses to other requests directed at the same effective

request URI. By default, that is. We need to figure out under which

conditions we can make the result cacheable.

The semantics of the SEARCH method change to a "conditional SEARCH"

if the request message includes an If-Modified-Since, If-Unmodified-

Since, If-Match, If-None-Match, or If-Range header field ([RFCHTTP],

Section 13). A conditional SEARCH requests that the query be

performed only under the circumstances described by the conditional

header field(s). It is important to note, however, that such

conditions are evaluated against the state of the target resource

itself as opposed to the collected results of the search operation.

3. The "Accept-Search" Header Field

The "Accept-Search" response header field MAY be used by a server to

directly signal support for the SEARCH method while identifying the

specific query format media types that may be used.

Accept-Search = 1#media-type

The Accept-Search header field specifies a comma-separated listing

of media types (with optional parameters) as defined by

Section 8.3.1 of [RFCHTTP].

The order of types listed by the Accept-Search header field is

insignificant.

4. Examples

The non-normative examples in this section make use of a simple,

hypothetical plain-text based query syntax based on SQL with results

returned as comma-separated values. This is done for illustration

purposes only. Implementations are free to use any format they wish

on both the request and response.

4.1. Simple SEARCH with a Direct Response

A simple query with a direct response:

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-16#section-13
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-16#section-8.3.1

Response:

4.2. Simple SEARCH with indirect response (303 See Other)

A simple query with an Indirect Response (303 See Other):

Response:

Fetch Query Response:

Response:

SEARCH /contacts HTTP/1.1

Host: example.org

Content-Type: example/query

Accept: text/csv

select surname, givenname, email limit 10

¶

¶

HTTP/1.1 200 OK

Content-Type: text/csv

surname, givenname, email

Smith, John, john.smith@example.org

Jones, Sally, sally.jones@example.com

Dubois, Camille, camille.dubois@example.net

¶

¶

SEARCH /contacts HTTP/1.1

Host: example.org

Content-Type: example/query

Accept: text/csv

select surname, givenname, email limit 10

¶

¶

HTTP/1.1 303 See Other

Location: http://example.org/contacts/query123

¶

¶

GET /contacts/query123 HTTP/1.1

Host: example.org

¶

¶

HTTP/1.1 200 OK

Content-Type: text/csv

surname, givenname, email

Smith, John, john.smith@example.org

Jones, Sally, sally.jones@example.com

Dubois, Camille, camille.dubois@example.net

¶

[RFC2119]

[RFC5323]

[RFC8174]

[RFCHTTP]

[XML]

[XMLNS]

5. Security Considerations

The SEARCH method is subject to the same general security

considerations as all HTTP methods as described in [RFCHTTP].

6. IANA Considerations

IANA is requested to update the registration of the SEARCH method in

the permanent registry at <http://www.iana.org/assignments/http-

methods> (see Section 16.1.1 of [RFCHTTP]).

Method Name Safe Idempotent Specification

SEARCH Yes Yes Section 2

Table 1

7. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Reschke, J., Ed., Reddy, S., Davis, J., and A. Babich,

"Web Distributed Authoring and Versioning (WebDAV)

SEARCH", RFC 5323, DOI 10.17487/RFC5323, November 2008,

<https://www.rfc-editor.org/info/rfc5323>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", Work in Progress, Internet-Draft,

draft-ietf-httpbis-semantics-16, 27 May 2021, <https://

tools.ietf.org/html/draft-ietf-httpbis-semantics-16>.

Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E.,

and F. Yergeau, "Extensible Markup Language (XML) 1.0

(Fifth Edition)", W3C Recommendation REC-xml-20081126, 26

November 2008, <https://www.w3.org/TR/2008/REC-

xml-20081126/>. Latest version available at https://

www.w3.org/TR/xml/.

Bray, T., Hollander, D., Layman, A., Tobin, R., and H.

Thompson, "Namespaces in XML 1.0 (Third Edition)", W3C

Recommendation REC-xml-names-20091208, 8 December 2009,

<https://www.w3.org/TR/2009/REC-xml-names-20091208/>.

Latest version available at https://www.w3.org/TR/xml-

names/.

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-semantics-16#section-16.1.1
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5323
https://www.rfc-editor.org/info/rfc8174
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-16
https://tools.ietf.org/html/draft-ietf-httpbis-semantics-16
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml/
https://www.w3.org/TR/2009/REC-xml-names-20091208/
https://www.w3.org/TR/xml-names/
https://www.w3.org/TR/xml-names/

Appendix A. Change Log

This section is to be removed before publishing as an RFC.

(see https://trac.tools.ietf.org/tools/xml2rfc/trac/ticket/622)

A.1. Since draft-ietf-httpbis-safe-method-w-body-00

Use "example/query" media type instead of undefined "text/query"

(https://github.com/httpwg/http-extensions/issues/1450)

In Section 3, adjust the grammar to just define the field value

(https://github.com/httpwg/http-extensions/issues/1470)

Update to latest HTTP core spec, and adjust terminology

accordingly (https://github.com/httpwg/http-extensions/issues/

1473)

Reference RFC 8174 and markup bcp14 terms (https://github.com/

httpwg/http-extensions/issues/1497)

Update HTTP reference (https://github.com/httpwg/http-extensions/

issues/1524)

Relax restriction of generic XML media type in request body

(https://github.com/httpwg/http-extensions/issues/1535)

Authors' Addresses

Julian Reschke

greenbytes GmbH

Hafenweg 16

48155 Münster

Germany

Email: julian.reschke@greenbytes.de

URI: https://greenbytes.de/tech/webdav/

Ashok Malhotra

Email: malhotrasahib@gmail.com

James M Snell

Email: jasnell@gmail.com

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://trac.tools.ietf.org/tools/xml2rfc/trac/ticket/622
https://github.com/httpwg/http-extensions/issues/1450
https://github.com/httpwg/http-extensions/issues/1470
https://github.com/httpwg/http-extensions/issues/1473
https://github.com/httpwg/http-extensions/issues/1473
https://github.com/httpwg/http-extensions/issues/1497
https://github.com/httpwg/http-extensions/issues/1497
https://github.com/httpwg/http-extensions/issues/1524
https://github.com/httpwg/http-extensions/issues/1524
https://github.com/httpwg/http-extensions/issues/1535
mailto:julian.reschke@greenbytes.de
https://greenbytes.de/tech/webdav/
mailto:malhotrasahib@gmail.com
mailto:jasnell@gmail.com

	HTTP SEARCH Method
	Abstract
	Editorial Note
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. SEARCH
	3. The "Accept-Search" Header Field
	4. Examples
	4.1. Simple SEARCH with a Direct Response
	4.2. Simple SEARCH with indirect response (303 See Other)

	5. Security Considerations
	6. IANA Considerations
	7. Normative References
	Appendix A. Change Log
	A.1. Since draft-ietf-httpbis-safe-method-w-body-00
	Authors' Addresses

