
Workgroup: HTTP Working Group

Obsoletes: 2818, 7230, 7231, 7232, 7233, 7235,

7538, 7615, 7694 (if approved)

Published: 12 July 2020

Intended Status: Standards Track

Expires: 13 January 2021

Authors: R. Fielding, Ed.

Adobe

M. Nottingham, Ed.

Fastly

J. F. Reschke, Ed.

greenbytes

HTTP Semantics

Abstract

The Hypertext Transfer Protocol (HTTP) is a stateless application-

level protocol for distributed, collaborative, hypertext information

systems. This document defines the semantics of HTTP: its

architecture, terminology, the "http" and "https" Uniform Resource

Identifier (URI) schemes, core request methods, request header

fields, response status codes, response header fields, and content

negotiation.

This document obsoletes RFC 2818, RFC 7231, RFC 7232, RFC 7233, RFC

7235, RFC 7538, RFC 7615, RFC 7694, and portions of RFC 7230.

Editorial Note

This note is to be removed before publishing as an RFC.

Discussion of this draft takes place on the HTTP working group

mailing list (ietf-http-wg@w3.org), which is archived at <https://

lists.w3.org/Archives/Public/ietf-http-wg/>.

Working Group information can be found at <https://httpwg.org/>;

source code and issues list for this draft can be found at <https://

github.com/httpwg/http-core>.

The changes in this draft are summarized in Appendix D.11.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc2818
https://www.rfc-editor.org/rfc/rfc7230
https://www.rfc-editor.org/rfc/rfc7231
https://www.rfc-editor.org/rfc/rfc7232
https://www.rfc-editor.org/rfc/rfc7233
https://www.rfc-editor.org/rfc/rfc7235
https://www.rfc-editor.org/rfc/rfc7538
https://www.rfc-editor.org/rfc/rfc7615
https://www.rfc-editor.org/rfc/rfc7694
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.org/
https://github.com/httpwg/http-core
https://github.com/httpwg/http-core
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 January 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November

10, 2008. The person(s) controlling the copyright in some of this

material may not have granted the IETF Trust the right to allow

modifications of such material outside the IETF Standards Process.

Without obtaining an adequate license from the person(s) controlling

the copyright in such materials, this document may not be modified

outside the IETF Standards Process, and derivative works of it may

not be created outside the IETF Standards Process, except to format

it for publication as an RFC or to translate it into languages other

than English.

Table of Contents

1. Introduction

1.1. Requirements Notation

1.2. Syntax Notation

1.2.1. Whitespace

2. Architecture

2.1. Client/Server Messaging

2.2. Intermediaries

2.3. Caches

2.4. Uniform Resource Identifiers

2.5. Resources

2.5.1. http URI Scheme

2.5.2. https URI Scheme

2.5.3. http and https URI Normalization and Comparison

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

2.5.4. Deprecated userinfo

2.5.5. Fragment Identifiers on http(s) URI References

3. Conformance

3.1. Implementation Diversity

3.2. Role-based Requirements

3.3. Parsing Elements

3.4. Error Handling

4. Extending and Versioning HTTP

4.1. Extending HTTP

4.2. Protocol Versioning

5. Header and Trailer Fields

5.1. Field Ordering and Combination

5.2. Field Limits

5.3. Field Names

5.3.1. Field Extensibility

5.3.2. Field Name Registry

5.4. Field Values

5.4.1. Common Field Value Components

5.5. ABNF List Extension: #rule

5.5.1. Sender Requirements

5.5.2. Recipient Requirements

5.6. Trailer Fields

5.6.1. Purpose

5.6.2. Limitations

5.6.3. Trailer

5.7. Considerations for New HTTP Fields

5.8. Fields Defined In This Document

6. Message Routing

6.1. Identifying a Target Resource

6.2. Determining Origin

6.3. Routing Inbound

6.4. Direct Authoritative Access

6.4.1. http origins

6.4.2. https origins

6.4.3. Initiating HTTP Over TLS

6.5. Reconstructing the Target URI

6.6. Host

6.7. Message Forwarding

6.7.1. Via

6.7.2. Transformations

7. Representations

7.1. Representation Data

7.1.1. Media Type

7.1.2. Content Codings

7.1.3. Language Tags

7.1.4. Range Units

7.2. Representation Metadata

7.2.1. Content-Type

7.2.2. Content-Encoding

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

7.2.3. Content-Language

7.2.4. Content-Length

7.2.5. Content-Location

7.3. Payload

7.3.1. Purpose

7.3.2. Identification

7.3.3. Payload Body

7.3.4. Content-Range

7.3.5. Media Type multipart/byteranges

7.4. Content Negotiation

7.4.1. Proactive Negotiation

7.4.2. Reactive Negotiation

7.4.3. Request Payload Negotiation

7.4.4. Quality Values

8. Request Methods

8.1. Overview

8.2. Common Method Properties

8.2.1. Safe Methods

8.2.2. Idempotent Methods

8.2.3. Methods and Caching

8.3. Method Definitions

8.3.1. GET

8.3.2. HEAD

8.3.3. POST

8.3.4. PUT

8.3.5. DELETE

8.3.6. CONNECT

8.3.7. OPTIONS

8.3.8. TRACE

8.4. Method Extensibility

8.4.1. Method Registry

8.4.2. Considerations for New Methods

9. Request Header Fields

9.1. Controls

9.1.1. Expect

9.1.2. Max-Forwards

9.2. Preconditions

9.2.1. Evaluation

9.2.2. Precedence

9.2.3. If-Match

9.2.4. If-None-Match

9.2.5. If-Modified-Since

9.2.6. If-Unmodified-Since

9.2.7. If-Range

9.3. Range

9.4. Negotiation

9.4.1. Accept

9.4.2. Accept-Charset

9.4.3. Accept-Encoding

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

9.4.4. Accept-Language

9.5. Authentication Credentials

9.5.1. Challenge and Response

9.5.2. Protection Space (Realm)

9.5.3. Authorization

9.5.4. Proxy-Authorization

9.5.5. Authentication Scheme Extensibility

9.6. Request Context

9.6.1. From

9.6.2. Referer

9.6.3. User-Agent

10. Response Status Codes

10.1. Overview of Status Codes

10.2. Informational 1xx

10.2.1. 100 Continue

10.2.2. 101 Switching Protocols

10.3. Successful 2xx

10.3.1. 200 OK

10.3.2. 201 Created

10.3.3. 202 Accepted

10.3.4. 203 Non-Authoritative Information

10.3.5. 204 No Content

10.3.6. 205 Reset Content

10.3.7. 206 Partial Content

10.4. Redirection 3xx

10.4.1. 300 Multiple Choices

10.4.2. 301 Moved Permanently

10.4.3. 302 Found

10.4.4. 303 See Other

10.4.5. 304 Not Modified

10.4.6. 305 Use Proxy

10.4.7. 306 (Unused)

10.4.8. 307 Temporary Redirect

10.4.9. 308 Permanent Redirect

10.5. Client Error 4xx

10.5.1. 400 Bad Request

10.5.2. 401 Unauthorized

10.5.3. 402 Payment Required

10.5.4. 403 Forbidden

10.5.5. 404 Not Found

10.5.6. 405 Method Not Allowed

10.5.7. 406 Not Acceptable

10.5.8. 407 Proxy Authentication Required

10.5.9. 408 Request Timeout

10.5.10. 409 Conflict

10.5.11. 410 Gone

10.5.12. 411 Length Required

10.5.13. 412 Precondition Failed

10.5.14. 413 Payload Too Large

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

10.5.15. 414 URI Too Long

10.5.16. 415 Unsupported Media Type

10.5.17. 416 Range Not Satisfiable

10.5.18. 417 Expectation Failed

10.5.19. 418 (Unused)

10.5.20. 422 Unprocessable Payload

10.5.21. 426 Upgrade Required

10.6. Server Error 5xx

10.6.1. 500 Internal Server Error

10.6.2. 501 Not Implemented

10.6.3. 502 Bad Gateway

10.6.4. 503 Service Unavailable

10.6.5. 504 Gateway Timeout

10.6.6. 505 HTTP Version Not Supported

10.7. Status Code Extensibility

10.7.1. Status Code Registry

10.7.2. Considerations for New Status Codes

11. Response Header Fields

11.1. Control Data

11.1.1. Date

11.1.2. Location

11.1.3. Retry-After

11.1.4. Vary

11.2. Validators

11.2.1. Weak versus Strong

11.2.2. Last-Modified

11.2.3. ETag

11.2.4. When to Use Entity-Tags and Last-Modified Dates

11.3. Authentication Challenges

11.3.1. WWW-Authenticate

11.3.2. Proxy-Authenticate

11.3.3. Authentication-Info

11.3.4. Proxy-Authentication-Info

11.4. Response Context

11.4.1. Accept-Ranges

11.4.2. Allow

11.4.3. Server

12. Security Considerations

12.1. Establishing Authority

12.2. Risks of Intermediaries

12.3. Attacks Based on File and Path Names

12.4. Attacks Based on Command, Code, or Query Injection

12.5. Attacks via Protocol Element Length

12.6. Disclosure of Personal Information

12.7. Privacy of Server Log Information

12.8. Disclosure of Sensitive Information in URIs

12.9. Disclosure of Fragment after Redirects

12.10. Disclosure of Product Information

12.11. Browser Fingerprinting

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

12.12. Validator Retention

12.13. Denial-of-Service Attacks Using Range

12.14. Authentication Considerations

12.14.1. Confidentiality of Credentials

12.14.2. Credentials and Idle Clients

12.14.3. Protection Spaces

12.14.4. Additional Response Fields

13. IANA Considerations

13.1. URI Scheme Registration

13.2. Method Registration

13.3. Status Code Registration

13.4. HTTP Field Name Registration

13.5. Authentication Scheme Registration

13.6. Content Coding Registration

13.7. Range Unit Registration

13.8. Media Type Registration

13.9. Port Registration

14. References

14.1. Normative References

14.2. Informative References

Appendix A. Collected ABNF

Appendix B. Changes from previous RFCs

B.1. Changes from RFC 2818

B.2. Changes from RFC 7230

B.3. Changes from RFC 7231

B.4. Changes from RFC 7232

B.5. Changes from RFC 7233

B.6. Changes from RFC 7235

B.7. Changes from RFC 7538

B.8. Changes from RFC 7615

Appendix C. Changes from RFC 7694

Appendix D. Change Log

D.1. Between RFC723x and draft 00

D.2. Since draft-ietf-httpbis-semantics-00

D.3. Since draft-ietf-httpbis-semantics-01

D.4. Since draft-ietf-httpbis-semantics-02

D.5. Since draft-ietf-httpbis-semantics-03

D.6. Since draft-ietf-httpbis-semantics-04

D.7. Since draft-ietf-httpbis-semantics-05

D.8. Since draft-ietf-httpbis-semantics-06

D.9. Since draft-ietf-httpbis-semantics-07

D.10. Since draft-ietf-httpbis-semantics-08

D.11. Since draft-ietf-httpbis-semantics-09

Acknowledgments

Authors' Addresses

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1. Introduction

The Hypertext Transfer Protocol (HTTP) is a stateless application-

level request/response protocol that uses extensible semantics and

self-descriptive messages for flexible interaction with network-

based hypertext information systems. HTTP is defined by a series of

documents that collectively form the HTTP/1.1 specification:

"HTTP Semantics" (this document)

"HTTP Caching" [Caching]

"HTTP/1.1 Messaging" [Messaging]

HTTP is a generic interface protocol for information systems. It is

designed to hide the details of how a service is implemented by

presenting a uniform interface to clients that is independent of the

types of resources provided. Likewise, servers do not need to be

aware of each client's purpose: an HTTP request can be considered in

isolation rather than being associated with a specific type of

client or a predetermined sequence of application steps. The result

is a protocol that can be used effectively in many different

contexts and for which implementations can evolve independently over

time.

HTTP is also designed for use as an intermediation protocol for

translating communication to and from non-HTTP information systems.

HTTP proxies and gateways can provide access to alternative

information services by translating their diverse protocols into a

hypertext format that can be viewed and manipulated by clients in

the same way as HTTP services.

One consequence of this flexibility is that the protocol cannot be

defined in terms of what occurs behind the interface. Instead, we

are limited to defining the syntax of communication, the intent of

received communication, and the expected behavior of recipients. If

the communication is considered in isolation, then successful

actions ought to be reflected in corresponding changes to the

observable interface provided by servers. However, since multiple

clients might act in parallel and perhaps at cross-purposes, we

cannot require that such changes be observable beyond the scope of a

single response.

Each HTTP message is either a request or a response. A server

listens on a connection for a request, parses each message received,

interprets the message semantics in relation to the identified

target resource, and responds to that request with one or more

response messages. A client constructs request messages to

communicate specific intentions, examines received responses to see

¶

* ¶

* ¶

* ¶

¶

¶

¶

if the intentions were carried out, and determines how to interpret

the results.

HTTP provides a uniform interface for interacting with a resource

(Section 2.5), regardless of its type, nature, or implementation,

via the manipulation and transfer of representations (Section 7).

This document defines semantics that are common to all versions of

HTTP. HTTP semantics include the intentions defined by each request

method (Section 8), extensions to those semantics that might be

described in request header fields (Section 9), the meaning of

status codes to indicate a machine-readable response (Section 10),

and the meaning of other control data and resource metadata that

might be given in response header fields (Section 11).

This document also defines representation metadata that describe how

a payload is intended to be interpreted by a recipient, the request

header fields that might influence content selection, and the

various selection algorithms that are collectively referred to as

"content negotiation" (Section 7.4).

This document defines HTTP range requests, partial responses, and

the multipart/byteranges media type.

This document obsoletes the portions of RFC 7230 that are

independent of the HTTP/1.1 messaging syntax and connection

management, with the changes being summarized in Appendix B.2. The

other parts of RFC 7230 are obsoleted by "HTTP/1.1 Messaging"

[Messaging]. This document also obsoletes RFC 2818 (see Appendix B.

1), RFC 7231 (see Appendix B.3), RFC 7232 (see Appendix B.4), RFC

7233 (see Appendix B.5), RFC 7235 (see Appendix B.6), RFC 7538 (see

Appendix B.7), RFC 7615 (see Appendix B.8), and RFC 7694 (see

Appendix C).

1.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Conformance criteria and considerations regarding error handling are

defined in Section 3.

1.2. Syntax Notation

¶

¶

¶

¶

¶

¶

¶

¶

This specification uses the Augmented Backus-Naur Form (ABNF)

notation of [RFC5234], extended with the notation for case-

sensitivity in strings defined in [RFC7405].

It also uses a list extension, defined in Section 5.5, that allows

for compact definition of comma-separated lists using a '#' operator

(similar to how the '*' operator indicates repetition). Appendix A

shows the collected grammar with all list operators expanded to

standard ABNF notation.

As a convention, ABNF rule names prefixed with "obs-" denote

"obsolete" grammar rules that appear for historical reasons.

The following core rules are included by reference, as defined in

Appendix B.1 of [RFC5234]: ALPHA (letters), CR (carriage return),

CRLF (CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double

quote), HEXDIG (hexadecimal 0-9/A-F/a-f), HTAB (horizontal tab), LF

(line feed), OCTET (any 8-bit sequence of data), SP (space), and

VCHAR (any visible US-ASCII character).

Section 5.4.1 defines some generic syntactic components for field

values.

The rules below are defined in [Messaging]:

 protocol-name = <protocol-name, see [Messaging], Section 9.9>

 protocol-version = <protocol-version, see [Messaging], Section 9.9>

This specification uses the terms "character", "character encoding

scheme", "charset", and "protocol element" as they are defined in

[RFC6365].

1.2.1. Whitespace

This specification uses three rules to denote the use of linear

whitespace: OWS (optional whitespace), RWS (required whitespace),

and BWS ("bad" whitespace).

The OWS rule is used where zero or more linear whitespace octets

might appear. For protocol elements where optional whitespace is

preferred to improve readability, a sender SHOULD generate the

optional whitespace as a single SP; otherwise, a sender SHOULD NOT

generate optional whitespace except as needed to white out invalid

or unwanted protocol elements during in-place message filtering.

The RWS rule is used when at least one linear whitespace octet is

required to separate field tokens. A sender SHOULD generate RWS as a

single SP.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5234#appendix-B.1

OWS and RWS have the same semantics as a single SP. Any content

known to be defined as OWS or RWS MAY be replaced with a single SP

before interpreting it or forwarding the message downstream.

The BWS rule is used where the grammar allows optional whitespace

only for historical reasons. A sender MUST NOT generate BWS in

messages. A recipient MUST parse for such bad whitespace and remove

it before interpreting the protocol element.

BWS has no semantics. Any content known to be defined as BWS MAY be

removed before interpreting it or forwarding the message downstream.

 OWS = *(SP / HTAB)

 ; optional whitespace

 RWS = 1*(SP / HTAB)

 ; required whitespace

 BWS = OWS

 ; "bad" whitespace

2. Architecture

HTTP was created for the World Wide Web (WWW) architecture and has

evolved over time to support the scalability needs of a worldwide

hypertext system. Much of that architecture is reflected in the

terminology and syntax productions used to define HTTP.

2.1. Client/Server Messaging

HTTP is a stateless request/response protocol that operates by

exchanging messages across a reliable transport- or session-layer

"connection". An HTTP "client" is a program that establishes a

connection to a server for the purpose of sending one or more HTTP

requests. An HTTP "server" is a program that accepts connections in

order to service HTTP requests by sending HTTP responses.

The terms "client" and "server" refer only to the roles that these

programs perform for a particular connection. The same program might

act as a client on some connections and a server on others. The term

"user agent" refers to any of the various client programs that

initiate a request, including (but not limited to) browsers, spiders

(web-based robots), command-line tools, custom applications, and

mobile apps. The term "origin server" refers to the program that can

originate authoritative responses for a given target resource. The

terms "sender" and "recipient" refer to any implementation that

sends or receives a given message, respectively.

¶

¶

¶

¶

¶

¶

¶

HTTP relies upon the Uniform Resource Identifier (URI) standard

[RFC3986] to indicate the target resource (Section 6.1) and

relationships between resources.

Most HTTP communication consists of a retrieval request (GET) for a

representation of some resource identified by a URI. In the simplest

case, this might be accomplished via a single bidirectional

connection (===) between the user agent (UA) and the origin server

(O).

Figure 1

Each major version of HTTP defines its own syntax for the inclusion

of information in messages. Nevertheless, a common abstraction is

that a message includes some form of envelope/framing, a potential

set of named fields up front (a header section), a potential body,

and a potential following set of named fields (a trailer section).

A client sends an HTTP request to a server in the form of a request

message with a method (Section 8) and request target. The request

might also contain header fields for request modifiers, client

information, and representation metadata (Section 5), a payload body

(Section 7.3.3) to be processed in accordance with the method, and

trailer fields for metadata collected while sending the payload.

A server responds to a client's request by sending one or more HTTP

response messages, each including a success or error code (Section

10). The response might also contain header fields for server

information, resource metadata, and representation metadata (Section

5), a payload body (Section 7.3.3) to be interpreted in accordance

with the status code, and trailer fields for metadata collected

while sending the payload.

One of the functions of the message framing mechanism is to assure

that messages are complete. A message is considered complete when

all of the octets indicated by its framing are available. Note that,

when no explicit framing is used, a response message that is ended

by the transport connection's close is considered complete even

though it might be indistinguishable from an incomplete response,

unless a transport-level error indicates that it is not complete.

A connection might be used for multiple request/response exchanges.

The mechanism used to correlate between request and response

messages is version dependent; some versions of HTTP use implicit

ordering of messages, while others use an explicit identifier.

¶

¶

 request >

 UA ======================================= O

 < response

¶

¶

¶

¶

¶

Responses (both final and interim) can be sent at any time after a

request is received, even if it is not yet complete. However,

clients (including intermediaries) might abandon a request if the

response is not forthcoming within a reasonable period of time.

The following example illustrates a typical message exchange for a

GET request (Section 8.3.1) on the URI "http://www.example.com/

hello.txt":

Client request:

Server response:

2.2. Intermediaries

HTTP enables the use of intermediaries to satisfy requests through a

chain of connections. There are three common forms of HTTP

intermediary: proxy, gateway, and tunnel. In some cases, a single

intermediary might act as an origin server, proxy, gateway, or

tunnel, switching behavior based on the nature of each request.

Figure 2

The figure above shows three intermediaries (A, B, and C) between

the user agent and origin server. A request or response message that

travels the whole chain will pass through four separate connections.

Some HTTP communication options might apply only to the connection

¶

¶

¶

 GET /hello.txt HTTP/1.1

 User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3

 Host: www.example.com

 Accept-Language: en, mi

¶

¶

 HTTP/1.1 200 OK

 Date: Mon, 27 Jul 2009 12:28:53 GMT

 Server: Apache

 Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT

 ETag: "34aa387-d-1568eb00"

 Accept-Ranges: bytes

 Content-Length: 51

 Vary: Accept-Encoding

 Content-Type: text/plain

 Hello World! My payload includes a trailing CRLF.

¶

¶

 > > > >

 UA =========== A =========== B =========== C =========== O

 < < < <

with the nearest, non-tunnel neighbor, only to the endpoints of the

chain, or to all connections along the chain. Although the diagram

is linear, each participant might be engaged in multiple,

simultaneous communications. For example, B might be receiving

requests from many clients other than A, and/or forwarding requests

to servers other than C, at the same time that it is handling A's

request. Likewise, later requests might be sent through a different

path of connections, often based on dynamic configuration for load

balancing.

The terms "upstream" and "downstream" are used to describe

directional requirements in relation to the message flow: all

messages flow from upstream to downstream. The terms "inbound" and

"outbound" are used to describe directional requirements in relation

to the request route: "inbound" means toward the origin server and

"outbound" means toward the user agent.

A "proxy" is a message-forwarding agent that is selected by the

client, usually via local configuration rules, to receive requests

for some type(s) of absolute URI and attempt to satisfy those

requests via translation through the HTTP interface. Some

translations are minimal, such as for proxy requests for "http"

URIs, whereas other requests might require translation to and from

entirely different application-level protocols. Proxies are often

used to group an organization's HTTP requests through a common

intermediary for the sake of security, annotation services, or

shared caching. Some proxies are designed to apply transformations

to selected messages or payloads while they are being forwarded, as

described in Section 6.7.2.

A "gateway" (a.k.a. "reverse proxy") is an intermediary that acts as

an origin server for the outbound connection but translates received

requests and forwards them inbound to another server or servers.

Gateways are often used to encapsulate legacy or untrusted

information services, to improve server performance through

"accelerator" caching, and to enable partitioning or load balancing

of HTTP services across multiple machines.

All HTTP requirements applicable to an origin server also apply to

the outbound communication of a gateway. A gateway communicates with

inbound servers using any protocol that it desires, including

private extensions to HTTP that are outside the scope of this

specification. However, an HTTP-to-HTTP gateway that wishes to

interoperate with third-party HTTP servers ought to conform to user

agent requirements on the gateway's inbound connection.

A "tunnel" acts as a blind relay between two connections without

changing the messages. Once active, a tunnel is not considered a

party to the HTTP communication, though the tunnel might have been

¶

¶

¶

¶

¶

initiated by an HTTP request. A tunnel ceases to exist when both

ends of the relayed connection are closed. Tunnels are used to

extend a virtual connection through an intermediary, such as when

Transport Layer Security (TLS, [RFC8446]) is used to establish

confidential communication through a shared firewall proxy.

The above categories for intermediary only consider those acting as

participants in the HTTP communication. There are also

intermediaries that can act on lower layers of the network protocol

stack, filtering or redirecting HTTP traffic without the knowledge

or permission of message senders. Network intermediaries are

indistinguishable (at a protocol level) from a man-in-the-middle

attack, often introducing security flaws or interoperability

problems due to mistakenly violating HTTP semantics.

For example, an "interception proxy" [RFC3040] (also commonly known

as a "transparent proxy" [RFC1919] or "captive portal") differs from

an HTTP proxy because it is not selected by the client. Instead, an

interception proxy filters or redirects outgoing TCP port 80 packets

(and occasionally other common port traffic). Interception proxies

are commonly found on public network access points, as a means of

enforcing account subscription prior to allowing use of non-local

Internet services, and within corporate firewalls to enforce network

usage policies.

HTTP is defined as a stateless protocol, meaning that each request

message can be understood in isolation. Many implementations depend

on HTTP's stateless design in order to reuse proxied connections or

dynamically load balance requests across multiple servers. Hence, a

server MUST NOT assume that two requests on the same connection are

from the same user agent unless the connection is secured and

specific to that agent. Some non-standard HTTP extensions (e.g.,

[RFC4559]) have been known to violate this requirement, resulting in

security and interoperability problems.

2.3. Caches

A "cache" is a local store of previous response messages and the

subsystem that controls its message storage, retrieval, and

deletion. A cache stores cacheable responses in order to reduce the

response time and network bandwidth consumption on future,

equivalent requests. Any client or server MAY employ a cache, though

a cache cannot be used by a server while it is acting as a tunnel.

The effect of a cache is that the request/response chain is

shortened if one of the participants along the chain has a cached

response applicable to that request. The following illustrates the

¶

¶

¶

¶

¶

resulting chain if B has a cached copy of an earlier response from O

(via C) for a request that has not been cached by UA or A.

Figure 3

A response is "cacheable" if a cache is allowed to store a copy of

the response message for use in answering subsequent requests. Even

when a response is cacheable, there might be additional constraints

placed by the client or by the origin server on when that cached

response can be used for a particular request. HTTP requirements for

cache behavior and cacheable responses are defined in Section 2 of

[Caching].

There is a wide variety of architectures and configurations of

caches deployed across the World Wide Web and inside large

organizations. These include national hierarchies of proxy caches to

save transoceanic bandwidth, collaborative systems that broadcast or

multicast cache entries, archives of pre-fetched cache entries for

use in off-line or high-latency environments, and so on.

2.4. Uniform Resource Identifiers

Uniform Resource Identifiers (URIs) [RFC3986] are used throughout

HTTP as the means for identifying resources (Section 2.5). URI

references are used to target requests, indicate redirects, and

define relationships.

The definitions of "URI-reference", "absolute-URI", "relative-part",

"authority", "port", "host", "path-abempty", "segment", and "query"

are adopted from the URI generic syntax. An "absolute-path" rule is

defined for protocol elements that can contain a non-empty path

component. (This rule differs slightly from the path-abempty rule of

RFC 3986, which allows for an empty path to be used in references,

and path-absolute rule, which does not allow paths that begin with

"//".) A "partial-URI" rule is defined for protocol elements that

can contain a relative URI but not a fragment component.

¶

 > >

 UA =========== A =========== B - - - - - - C - - - - - - O

 < <

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#caching.overview

 URI-reference = <URI-reference, see [RFC3986], Section 4.1>

 absolute-URI = <absolute-URI, see [RFC3986], Section 4.3>

 relative-part = <relative-part, see [RFC3986], Section 4.2>

 authority = <authority, see [RFC3986], Section 3.2>

 uri-host = <host, see [RFC3986], Section 3.2.2>

 port = <port, see [RFC3986], Section 3.2.3>

 path-abempty = <path-abempty, see [RFC3986], Section 3.3>

 segment = <segment, see [RFC3986], Section 3.3>

 query = <query, see [RFC3986], Section 3.4>

 absolute-path = 1*("/" segment)

 partial-URI = relative-part ["?" query]

Each protocol element in HTTP that allows a URI reference will

indicate in its ABNF production whether the element allows any form

of reference (URI-reference), only a URI in absolute form (absolute-

URI), only the path and optional query components, or some

combination of the above. Unless otherwise indicated, URI references

are parsed relative to the target URI (Section 6.1).

It is RECOMMENDED that all senders and recipients support, at a

minimum, URIs with lengths of 8000 octets in protocol elements. Note

that this implies some structures and on-wire representations (for

example, the request line in HTTP/1.1) will necessarily be larger in

some cases.

2.5. Resources

The target of an HTTP request is called a "resource". HTTP does not

limit the nature of a resource; it merely defines an interface that

might be used to interact with resources. Most resources are

identified by a Uniform Resource Identifier (URI), as described in

Section 2.4.

One design goal of HTTP is to separate resource identification from

request semantics, which is made possible by vesting the request

semantics in the request method (Section 8) and a few request-

modifying header fields (Section 9). If there is a conflict between

the method semantics and any semantic implied by the URI itself, as

described in Section 8.2.1, the method semantics take precedence.

IANA maintains the registry of URI Schemes [BCP35] at <https://

www.iana.org/assignments/uri-schemes/>. Although requests might

target any URI scheme, the following schemes are inherent to HTTP

servers:

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/uri-schemes/
https://www.iana.org/assignments/uri-schemes/

URI Scheme Description Reference

http Hypertext Transfer Protocol Section 2.5.1

https Hypertext Transfer Protocol Secure Section 2.5.2

Table 1

Note that the presence of an "http" or "https" URI does not imply

that there is always an HTTP server at the identified origin

listening for connections. Anyone can mint a URI, whether or not a

server exists and whether or not that server currently maps that

identifier to a resource. The delegated nature of registered names

and IP addresses creates a federated namespace whether or not an

HTTP server is present.

2.5.1. http URI Scheme

The "http" URI scheme is hereby defined for minting identifiers

within the hierarchical namespace governed by a potential HTTP

origin server listening for TCP ([RFC0793]) connections on a given

port.

 http-URI = "http" "://" authority path-abempty ["?" query]

The origin server for an "http" URI is identified by the authority

component, which includes a host identifier and optional port number

([RFC3986], Section 3.2.2). If the port subcomponent is empty or not

given, TCP port 80 (the reserved port for WWW services) is the

default. The origin determines who has the right to respond

authoritatively to requests that target the identified resource, as

defined in Section 6.4.1.

A sender MUST NOT generate an "http" URI with an empty host

identifier. A recipient that processes such a URI reference MUST

reject it as invalid.

The hierarchical path component and optional query component

identify the target resource within that origin server's name space.

2.5.2. https URI Scheme

The "https" URI scheme is hereby defined for minting identifiers

within the hierarchical namespace governed by a potential origin

server listening for TCP connections on a given port and capable of

establishing a TLS ([RFC8446]) connection that has been secured for

HTTP communication. In this context, "secured" specifically means

that the server has been authenticated as acting on behalf of the

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-3.2.2

identified authority and all HTTP communication with that server has

been protected for confidentiality and integrity through the use of

strong encryption.

 https-URI = "https" "://" authority path-abempty ["?" query]

The origin server for an "https" URI is identified by the authority

component, which includes a host identifier and optional port number

([RFC3986], Section 3.2.2). If the port subcomponent is empty or not

given, TCP port 443 (the reserved port for HTTP over TLS) is the

default. The origin determines who has the right to respond

authoritatively to requests that target the identified resource, as

defined in Section 6.4.2.

A sender MUST NOT generate an "https" URI with an empty host

identifier. A recipient that processes such a URI reference MUST

reject it as invalid.

The hierarchical path component and optional query component

identify the target resource within that origin server's name space.

A client MUST ensure that its HTTP requests for an "https" resource

are secured, prior to being communicated, and that it only accepts

secured responses to those requests.

Resources made available via the "https" scheme have no shared

identity with the "http" scheme. They are distinct origins with

separate namespaces. However, an extension to HTTP that is defined

to apply to all origins with the same host, such as the Cookie

protocol [RFC6265], can allow information set by one service to

impact communication with other services within a matching group of

host domains.

2.5.3. http and https URI Normalization and Comparison

Since the "http" and "https" schemes conform to the URI generic

syntax, such URIs are normalized and compared according to the

algorithm defined in Section 6 of [RFC3986], using the defaults

described above for each scheme.

If the port is equal to the default port for a scheme, the normal

form is to omit the port subcomponent. When not being used as the

target of an OPTIONS request, an empty path component is equivalent

to an absolute path of "/", so the normal form is to provide a path

of "/" instead. The scheme and host are case-insensitive and

normally provided in lowercase; all other components are compared in

a case-sensitive manner. Characters other than those in the

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-3.2.2
https://rfc-editor.org/rfc/rfc3986#section-6

"reserved" set are equivalent to their percent-encoded octets: the

normal form is to not encode them (see Sections 2.1 and 2.2 of

[RFC3986]).

For example, the following three URIs are equivalent:

2.5.4. Deprecated userinfo

The URI generic syntax for authority also includes a userinfo

subcomponent ([RFC3986], Section 3.2.1) for including user

authentication information in the URI. In that subcomponent, the use

of the format "user:password" is deprecated.

Some implementations make use of the userinfo component for internal

configuration of authentication information, such as within command

invocation options, configuration files, or bookmark lists, even

though such usage might expose a user identifier or password.

A sender MUST NOT generate the userinfo subcomponent (and its "@"

delimiter) when an "http" or "https" URI reference is generated

within a message as a target URI or field value.

Before making use of an "http" or "https" URI reference received

from an untrusted source, a recipient SHOULD parse for userinfo and

treat its presence as an error; it is likely being used to obscure

the authority for the sake of phishing attacks.

2.5.5. Fragment Identifiers on http(s) URI References

Fragment identifiers allow for indirect identification of a

secondary resource, independent of the URI scheme, as defined in

Section 3.5 of [RFC3986]. Some protocol elements that refer to a URI

allow inclusion of a fragment, while others do not. They are

distinguished by use of the ABNF rule for elements where fragment is

allowed; otherwise, a specific rule that excludes fragments is used

(see Section 6.1).

Note: the fragment identifier component is not part of the actual

scheme definition for a URI scheme (see Section 4.3 of [RFC3986]),

thus does not appear in the ABNF definitions for the "http" and

"https" URI schemes above.

¶

¶

 http://example.com:80/~smith/home.html

 http://EXAMPLE.com/%7Esmith/home.html

 http://EXAMPLE.com:/%7esmith/home.html

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-2.1
https://rfc-editor.org/rfc/rfc3986#section-2.2
https://rfc-editor.org/rfc/rfc3986#section-3.2.1
https://rfc-editor.org/rfc/rfc3986#section-3.5
https://rfc-editor.org/rfc/rfc3986#section-4.3

3. Conformance

3.1. Implementation Diversity

When considering the design of HTTP, it is easy to fall into a trap

of thinking that all user agents are general-purpose browsers and

all origin servers are large public websites. That is not the case

in practice. Common HTTP user agents include household appliances,

stereos, scales, firmware update scripts, command-line programs,

mobile apps, and communication devices in a multitude of shapes and

sizes. Likewise, common HTTP origin servers include home automation

units, configurable networking components, office machines,

autonomous robots, news feeds, traffic cameras, ad selectors, and

video-delivery platforms.

The term "user agent" does not imply that there is a human user

directly interacting with the software agent at the time of a

request. In many cases, a user agent is installed or configured to

run in the background and save its results for later inspection (or

save only a subset of those results that might be interesting or

erroneous). Spiders, for example, are typically given a start URI

and configured to follow certain behavior while crawling the Web as

a hypertext graph.

The implementation diversity of HTTP means that not all user agents

can make interactive suggestions to their user or provide adequate

warning for security or privacy concerns. In the few cases where

this specification requires reporting of errors to the user, it is

acceptable for such reporting to only be observable in an error

console or log file. Likewise, requirements that an automated action

be confirmed by the user before proceeding might be met via advance

configuration choices, run-time options, or simple avoidance of the

unsafe action; confirmation does not imply any specific user

interface or interruption of normal processing if the user has

already made that choice.

3.2. Role-based Requirements

This specification targets conformance criteria according to the

role of a participant in HTTP communication. Hence, HTTP

requirements are placed on senders, recipients, clients, servers,

user agents, intermediaries, origin servers, proxies, gateways, or

caches, depending on what behavior is being constrained by the

requirement. Additional (social) requirements are placed on

implementations, resource owners, and protocol element registrations

when they apply beyond the scope of a single communication.

¶

¶

¶

¶

The verb "generate" is used instead of "send" where a requirement

differentiates between creating a protocol element and merely

forwarding a received element downstream.

An implementation is considered conformant if it complies with all

of the requirements associated with the roles it partakes in HTTP.

Conformance includes both the syntax and semantics of protocol

elements. A sender MUST NOT generate protocol elements that convey a

meaning that is known by that sender to be false. A sender MUST NOT

generate protocol elements that do not match the grammar defined by

the corresponding ABNF rules. Within a given message, a sender MUST

NOT generate protocol elements or syntax alternatives that are only

allowed to be generated by participants in other roles (i.e., a role

that the sender does not have for that message).

3.3. Parsing Elements

When a received protocol element is parsed, the recipient MUST be

able to parse any value of reasonable length that is applicable to

the recipient's role and that matches the grammar defined by the

corresponding ABNF rules. Note, however, that some received protocol

elements might not be parsed. For example, an intermediary

forwarding a message might parse a field into generic field name and

field value components, but then forward the field without further

parsing inside the field value.

HTTP does not have specific length limitations for many of its

protocol elements because the lengths that might be appropriate will

vary widely, depending on the deployment context and purpose of the

implementation. Hence, interoperability between senders and

recipients depends on shared expectations regarding what is a

reasonable length for each protocol element. Furthermore, what is

commonly understood to be a reasonable length for some protocol

elements has changed over the course of the past two decades of HTTP

use and is expected to continue changing in the future.

At a minimum, a recipient MUST be able to parse and process protocol

element lengths that are at least as long as the values that it

generates for those same protocol elements in other messages. For

example, an origin server that publishes very long URI references to

its own resources needs to be able to parse and process those same

references when received as a target URI.

3.4. Error Handling

A recipient MUST interpret a received protocol element according to

the semantics defined for it by this specification, including

extensions to this specification, unless the recipient has

determined (through experience or configuration) that the sender

¶

¶

¶

¶

¶

¶

incorrectly implements what is implied by those semantics. For

example, an origin server might disregard the contents of a received

Accept-Encoding header field if inspection of the User-Agent header

field indicates a specific implementation version that is known to

fail on receipt of certain content codings.

Unless noted otherwise, a recipient MAY attempt to recover a usable

protocol element from an invalid construct. HTTP does not define

specific error handling mechanisms except when they have a direct

impact on security, since different applications of the protocol

require different error handling strategies. For example, a Web

browser might wish to transparently recover from a response where

the Location header field doesn't parse according to the ABNF,

whereas a systems control client might consider any form of error

recovery to be dangerous.

Some requests can be automatically retried by a client in the event

of an underlying connection failure, as described in Section 8.2.2.

4. Extending and Versioning HTTP

While HTTP's core semantics don't change between protocol versions,

the expression of them "on the wire" can change, and so the HTTP

version number changes when incompatible changes are made to the

wire format. Additionally, HTTP allows incremental, backwards-

compatible changes to be made to the protocol without changing its

version through the use of defined extension points.

4.1. Extending HTTP

HTTP defines a number of generic extension points that can be used

to introduce capabilities to the protocol without introducing a new

version, including methods (Section 8.4), status codes (Section

10.7), header and trailer fields (Section 5.7), and further

extensibility points within defined fields (such as Cache-Control in

Section 5.2.3 of [Caching]). Because the semantics of HTTP are not

versioned, these extension points are persistent; the version of the

protocol in use does not affect their semantics.

Version-independent extensions are discouraged from depending on or

interacting with the specific version of the protocol in use. When

this is unavoidable, careful consideration needs to be given to how

the extension can interoperate across versions.

Additionally, specific versions of HTTP might have their own

extensibility points, such as transfer-codings in HTTP/1.1

(Section 6.1 of [Messaging]) and HTTP/2 ([RFC7540]) SETTINGS or

frame types. These extension points are specific to the version of

the protocol they occur within.

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#cache.control.extensions
https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#field.transfer-encoding

Version-specific extensions cannot override or modify the semantics

of a version-independent mechanism or extension point (like a method

or header field) without explicitly being allowed by that protocol

element. For example, the CONNECT method (Section 8.3.6) allows

this.

These guidelines assure that the protocol operates correctly and

predictably, even when parts of the path implement different

versions of HTTP.

4.2. Protocol Versioning

The HTTP version number consists of two decimal digits separated by

a "." (period or decimal point). The first digit ("major version")

indicates the HTTP messaging syntax, whereas the second digit

("minor version") indicates the highest minor version within that

major version to which the sender is conformant and able to

understand for future communication.

The protocol version as a whole indicates the sender's conformance

with the set of requirements laid out in that version's

corresponding specification of HTTP. For example, the version "HTTP/

1.1" is defined by the combined specifications of this document,

"HTTP Caching" [Caching], and "HTTP/1.1 Messaging" [Messaging].

The minor version advertises the sender's communication capabilities

even when the sender is only using a backwards-compatible subset of

the protocol, thereby letting the recipient know that more advanced

features can be used in response (by servers) or in future requests

(by clients).

A client SHOULD send a request version equal to the highest version

to which the client is conformant and whose major version is no

higher than the highest version supported by the server, if this is

known. A client MUST NOT send a version to which it is not

conformant.

A client MAY send a lower request version if it is known that the

server incorrectly implements the HTTP specification, but only after

the client has attempted at least one normal request and determined

from the response status code or header fields (e.g., Server) that

the server improperly handles higher request versions.

A server SHOULD send a response version equal to the highest version

to which the server is conformant that has a major version less than

or equal to the one received in the request. A server MUST NOT send

a version to which it is not conformant. A server can send a 505

(HTTP Version Not Supported) response if it wishes, for any reason,

to refuse service of the client's major protocol version.

¶

¶

¶

¶

¶

¶

¶

¶

HTTP's major version number is incremented when an incompatible

message syntax is introduced. The minor number is incremented when

changes made to the protocol have the effect of adding to the

message semantics or implying additional capabilities of the sender.

When an HTTP message is received with a major version number that

the recipient implements, but a higher minor version number than

what the recipient implements, the recipient SHOULD process the

message as if it were in the highest minor version within that major

version to which the recipient is conformant. A recipient can assume

that a message with a higher minor version, when sent to a recipient

that has not yet indicated support for that higher version, is

sufficiently backwards-compatible to be safely processed by any

implementation of the same major version.

When a major version of HTTP does not define any minor versions, the

minor version "0" is implied and is used when referring to that

protocol within a protocol element that requires sending a minor

version.

5. Header and Trailer Fields

HTTP messages use key/value pairs to convey data about the message,

its payload, the target resource, or the connection (i.e., control

data). They are called "HTTP fields" or just "fields".

Every message can have two separate areas that such fields can occur

within; the "header field section" (or just "header section")

preceding the message body and containing "header fields" (or just

"headers", colloquially) and the "trailer field section" (or just

"trailer section") after the message body containing "trailer

fields" (or just "trailers" colloquially). Header fields are more

common; see Section 5.6 for discussion of the applicability and

limitations of trailer fields.

Both sections are composed of any number of "field lines", each with

a "field name" (see Section 5.3) identifying the field, and a "field

line value" that conveys data for the field.

Each field name present in a section has a corresponding "field

value" for that section, composed from all field line values with

that given field name in that section, concatenated together and

separated with commas. See Section 5.1 for further discussion of the

semantics of field ordering and combination in messages, and Section

5.4 for more discussion of field values.

For example, this section:

¶

¶

¶

¶

¶

¶

¶

¶

 Example-Field: Foo, Bar

 Example-Field: Baz

¶

contains two field lines, both with the field name "Example-Field".

The first field line has a field line value of "Foo, Bar", while the

second field line value is "Baz". The field value for "Example-

Field" is a list with three members: "Foo", "Bar", and "Baz".

The interpretation of a field does not change between minor versions

of the same major HTTP version, though the default behavior of a

recipient in the absence of such a field can change. Unless

specified otherwise, fields are defined for all versions of HTTP. In

particular, the Host and Connection fields ought to be implemented

by all HTTP/1.x implementations whether or not they advertise

conformance with HTTP/1.1.

New fields can be introduced without changing the protocol version

if their defined semantics allow them to be safely ignored by

recipients that do not recognize them; see Section 5.3.1.

5.1. Field Ordering and Combination

The order in which field lines with differing names are received in

a message is not significant. However, it is good practice to send

header fields that contain control data first, such as Host on

requests and Date on responses, so that implementations can decide

when not to handle a message as early as possible. A server MUST NOT

apply a request to the target resource until the entire request

header section is received, since later header field lines might

include conditionals, authentication credentials, or deliberately

misleading duplicate header fields that would impact request

processing.

A recipient MAY combine multiple field lines with the same field

name into one field line, without changing the semantics of the

message, by appending each subsequent field line value to the

initial field line value in order, separated by a comma and OWS

(optional whitespace). For consistency, use comma SP.

The order in which field lines with the same name are received is

therefore significant to the interpretation of the field value; a

proxy MUST NOT change the order of these field line values when

forwarding a message.

This means that, aside from the well-known exception noted below, a

sender MUST NOT generate multiple field lines with the same name in

a message (whether in the headers or trailers), or append a field

line when a field line of the same name already exists in the

message, unless that field's definition allows multiple field line

values to be recombined as a comma-separated list [i.e., at least

one alternative of the field's definition allows a comma-separated

list, such as an ABNF rule of #(values) defined in Section 5.5].

¶

¶

¶

¶

¶

¶

¶

Note: In practice, the "Set-Cookie" header field ([RFC6265]) often

appears in a response message across multiple field lines and does

not use the list syntax, violating the above requirements on

multiple field lines with the same field name. Since it cannot be

combined into a single field value, recipients ought to handle "Set-

Cookie" as a special case while processing fields. (See Appendix A.

2.3 of [Kri2001] for details.)

5.2. Field Limits

HTTP does not place a predefined limit on the length of each field

line, field value, or on the length of the header or trailer section

as a whole, as described in Section 3. Various ad hoc limitations on

individual lengths are found in practice, often depending on the

specific field's semantics.

A server that receives a request header field line, field value, or

set of fields larger than it wishes to process MUST respond with an

appropriate 4xx (Client Error) status code. Ignoring such header

fields would increase the server's vulnerability to request

smuggling attacks (Section 11.2 of [Messaging]).

A client MAY discard or truncate received field lines that are

larger than the client wishes to process if the field semantics are

such that the dropped value(s) can be safely ignored without

changing the message framing or response semantics.

5.3. Field Names

The field-name token labels the corresponding field value as having

the semantics defined by that field. For example, the Date header

field is defined in Section 11.1.1 as containing the origination

timestamp for the message in which it appears.

 field-name = token

Field names are case-insensitive and ought to be registered within

the "Hypertext Transfer Protocol (HTTP) Field Name Registry"; see

Section 5.3.2.

Authors of specifications defining new fields are advised to choose

a short but descriptive field name. Short names avoid needless data

transmission; descriptive names avoid confusion and "squatting" on

names that might have broader uses.

To that end, limited-use fields (such as a header confined to a

single application or use case) are encouraged to use a name that

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#request.smuggling

includes its name (or an abbreviation) as a prefix; for example, if

the Foo Application needs a Description field, it might use "Foo-

Desc"; "Description" is too generic, and "Foo-Description" is

needlessly long.

While the field-name syntax is defined to allow any token character,

in practice some implementations place limits on the characters they

accept in field-names. To be interoperable, new field names SHOULD

constrain themselves to alphanumeric characters, "-", and ".", and

SHOULD begin with an alphanumeric character.

Field names ought not be prefixed with "X-"; see [BCP178] for

further information.

Other prefixes are sometimes used in HTTP field names; for example,

"Accept-" is used in many content negotiation headers. These

prefixes are only an aid to recognizing the purpose of a field, and

do not trigger automatic processing.

5.3.1. Field Extensibility

There is no limit on the introduction of new field names, each

presumably defining new semantics.

New fields can be defined such that, when they are understood by a

recipient, they might override or enhance the interpretation of

previously defined fields, define preconditions on request

evaluation, or refine the meaning of responses.

A proxy MUST forward unrecognized header fields unless the field

name is listed in the Connection header field (Section 9.1 of

[Messaging]) or the proxy is specifically configured to block, or

otherwise transform, such fields. Other recipients SHOULD ignore

unrecognized header and trailer fields. These requirements allow

HTTP's functionality to be enhanced without requiring prior update

of deployed intermediaries.

5.3.2. Field Name Registry

The "Hypertext Transfer Protocol (HTTP) Field Name Registry" defines

the namespace for HTTP field names.

Any party can request registration of a HTTP field. See Section 5.7

for considerations to take into account when creating a new HTTP

field.

The "Hypertext Transfer Protocol (HTTP) Field Name Registry" is

located at <https://www.iana.org/assignments/http-fields/>.

Registration requests can be made by following the instructions

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#field.connection
https://www.iana.org/assignments/http-fields/

Field name:

Status:

Specification document(s):

Comments:

located there or by sending an email to the "ietf-http-wg@ietf.org"

mailing list.

Field names are registered on the advice of a Designated Expert

(appointed by the IESG or their delegate). Fields with the status

'permanent' are Specification Required ([RFC8126], Section 4.6).

Registration requests consist of at least the following information:

The requested field name. It MUST conform to the field-name

syntax defined in Section 5.3, and SHOULD be restricted to just

letters, digits, hyphen ('-') and underscore ('_') characters,

with the first character being a letter.

"permanent" or "provisional".

Reference to the document that specifies the field, preferably

including a URI that can be used to retrieve a copy of the

document. An indication of the relevant section(s) can also be

included, but is not required.

And, optionally:

Additional information, such as about reserved entries.

The Expert(s) can define additional fields to be collected in the

registry, in consultation with the community.

Standards-defined names have a status of "permanent". Other names

can also be registered as permanent, if the Expert(s) find that they

are in use, in consultation with the community. Other names should

be registered as "provisional".

Provisional entries can be removed by the Expert(s) if - in

consultation with the community - the Expert(s) find that they are

not in use. The Experts can change a provisional entry's status to

permanent at any time.

Note that names can be registered by third parties (including the

Expert(s)), if the Expert(s) determines that an unregistered name is

widely deployed and not likely to be registered in a timely manner

otherwise.

5.4. Field Values

HTTP field values typically have their syntax defined using ABNF

([RFC5234]), using the extension defined in Section 5.5 as

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8126#section-4.6

necessary, and are usually constrained to the range of US-ASCII

characters. Fields needing a greater range of characters can use an

encoding such as the one defined in [RFC8187].

 field-value = *field-content

 field-content = field-vchar

 [1*(SP / HTAB / field-vchar) field-vchar]

 field-vchar = VCHAR / obs-text

Historically, HTTP allowed field content with text in the ISO‑8859‑1

charset [ISO-8859-1], supporting other charsets only through use of

[RFC2047] encoding. In practice, most HTTP field values use only a

subset of the US-ASCII charset [USASCII]. Newly defined fields

SHOULD limit their values to US‑ASCII octets. A recipient SHOULD

treat other octets in field content (obs‑text) as opaque data.

Field values containing control (CTL) characters such as CR or LF

are invalid; recipients MUST either reject a field value containing

control characters, or convert them to SP before processing or

forwarding the message.

Leading and trailing whitespace in raw field values is removed upon

field parsing (Section 5.1 of [Messaging]). Field definitions where

leading or trailing whitespace in values is significant will have to

use a container syntax such as quoted-string (Section 5.4.1.2).

Because commas (",") are used as a generic delimiter between members

of a list-based field value, they need to be treated with care if

they are allowed as data within those members. Typically, list

members that might contain a comma are enclosed in a quoted-string.

For example, a textual date and a URI (either of which might contain

a comma) could be safely carried in list-based field values like

these:

Note that double-quote delimiters almost always are used with the

quoted-string production; using a different syntax inside double-

quotes will likely cause unnecessary confusion.

Many fields (such as Content-Type, defined in Section 7.2.1) use a

common syntax for parameters that allows both unquoted (token) and

quoted (quoted-string) syntax for a parameter value (Section

5.4.1.4). Use of common syntax allows recipients to reuse existing

¶

¶

¶

¶

¶

¶

¶

 Example-URI-Field: "http://example.com/a.html,foo",

 "http://without-a-comma.example.com/"

 Example-Date-Field: "Sat, 04 May 1996", "Wed, 14 Sep 2005"

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#field.parsing

parser components. When allowing both forms, the meaning of a

parameter value ought to be the same whether it was received as a

token or a quoted string.

Historically, HTTP field values could be extended over multiple

lines by preceding each extra line with at least one space or

horizontal tab (obs-fold). This document assumes that any such

obsolete line folding has been replaced with one or more SP octets

prior to interpreting the field value, as described in Section 5.2

of [Messaging].

Note: This specification does not use ABNF rules to define each

"Field Name: Field Value" pair, as was done in earlier editions

(published before [RFC7230]). Instead, ABNF rules are named

according to each registered field name, wherein the rule defines

the valid grammar for that field's corresponding field values (i.e.,

after the field value has been extracted by a generic field parser).

5.4.1. Common Field Value Components

Many HTTP field values are defined using common syntax components,

separated by whitespace or specific delimiting characters.

Delimiters are chosen from the set of US-ASCII visual characters not

allowed in a token (DQUOTE and "(),/:;<=>?@[\]{}").

5.4.1.1. Tokens

Tokens are short textual identifiers that do not include whitespace

or delimiters.

 token = 1*tchar

 tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*"

 / "+" / "-" / "." / "^" / "_" / "`" / "|" / "~"

 / DIGIT / ALPHA

 ; any VCHAR, except delimiters

5.4.1.2. Quoted Strings

A string of text is parsed as a single value if it is quoted using

double-quote marks.

 quoted-string = DQUOTE *(qdtext / quoted-pair) DQUOTE

 qdtext = HTAB / SP / %x21 / %x23-5B / %x5D-7E / obs-text

 obs-text = %x80-FF

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#line.folding

The backslash octet ("\") can be used as a single-octet quoting

mechanism within quoted-string and comment constructs. Recipients

that process the value of a quoted-string MUST handle a quoted-pair

as if it were replaced by the octet following the backslash.

 quoted-pair = "\" (HTAB / SP / VCHAR / obs-text)

A sender SHOULD NOT generate a quoted-pair in a quoted-string except

where necessary to quote DQUOTE and backslash octets occurring

within that string. A sender SHOULD NOT generate a quoted-pair in a

comment except where necessary to quote parentheses ["(" and ")"]

and backslash octets occurring within that comment.

5.4.1.3. Comments

Comments can be included in some HTTP fields by surrounding the

comment text with parentheses. Comments are only allowed in fields

containing "comment" as part of their field value definition.

 comment = "(" *(ctext / quoted-pair / comment) ")"

 ctext = HTAB / SP / %x21-27 / %x2A-5B / %x5D-7E / obs-text

5.4.1.4. Parameters

A parameter is a name=value pair that is often defined within field

values as a common syntax for appending auxiliary information to an

item. Each parameter is usually delimited by an immediately

preceding semicolon.

 parameter = parameter-name "=" parameter-value

 parameter-name = token

 parameter-value = (token / quoted-string)

Parameter names are case-insensitive. Parameter values might or

might not be case-sensitive, depending on the semantics of the

parameter name. Examples of parameters and some equivalent forms can

be seen in media types (Section 7.1.1) and the Accept header field

(Section 9.4.1).

¶

¶

¶

¶

¶

¶

¶

¶

¶

A parameter value that matches the token production can be

transmitted either as a token or within a quoted-string. The quoted

and unquoted values are equivalent.

Note: Parameters do not allow whitespace (not even "bad" whitespace)

around the "=" character.

5.4.1.5. Date/Time Formats

Prior to 1995, there were three different formats commonly used by

servers to communicate timestamps. For compatibility with old

implementations, all three are defined here. The preferred format is

a fixed-length and single-zone subset of the date and time

specification used by the Internet Message Format [RFC5322].

 HTTP-date = IMF-fixdate / obs-date

An example of the preferred format is

Examples of the two obsolete formats are

A recipient that parses a timestamp value in an HTTP field MUST

accept all three HTTP-date formats. When a sender generates a field

that contains one or more timestamps defined as HTTP-date, the

sender MUST generate those timestamps in the IMF-fixdate format.

An HTTP-date value represents time as an instance of Coordinated

Universal Time (UTC). The first two formats indicate UTC by the

three-letter abbreviation for Greenwich Mean Time, "GMT", a

predecessor of the UTC name; values in the asctime format are

assumed to be in UTC. A sender that generates HTTP-date values from

a local clock ought to use NTP ([RFC5905]) or some similar protocol

to synchronize its clock to UTC.

Preferred format:

¶

¶

¶

¶

¶

 Sun, 06 Nov 1994 08:49:37 GMT ; IMF-fixdate¶

¶

 Sunday, 06-Nov-94 08:49:37 GMT ; obsolete RFC 850 format

 Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format

¶

¶

¶

¶

 IMF-fixdate = day-name "," SP date1 SP time-of-day SP GMT

 ; fixed length/zone/capitalization subset of the format

 ; see Section 3.3 of [RFC5322]

 day-name = %s"Mon" / %s"Tue" / %s"Wed"

 / %s"Thu" / %s"Fri" / %s"Sat" / %s"Sun"

 date1 = day SP month SP year

 ; e.g., 02 Jun 1982

 day = 2DIGIT

 month = %s"Jan" / %s"Feb" / %s"Mar" / %s"Apr"

 / %s"May" / %s"Jun" / %s"Jul" / %s"Aug"

 / %s"Sep" / %s"Oct" / %s"Nov" / %s"Dec"

 year = 4DIGIT

 GMT = %s"GMT"

 time-of-day = hour ":" minute ":" second

 ; 00:00:00 - 23:59:60 (leap second)

 hour = 2DIGIT

 minute = 2DIGIT

 second = 2DIGIT

Obsolete formats:

 obs-date = rfc850-date / asctime-date

 rfc850-date = day-name-l "," SP date2 SP time-of-day SP GMT

 date2 = day "-" month "-" 2DIGIT

 ; e.g., 02-Jun-82

 day-name-l = %s"Monday" / %s"Tuesday" / %s"Wednesday"

 / %s"Thursday" / %s"Friday" / %s"Saturday" / %s"Sunday"

 asctime-date = day-name SP date3 SP time-of-day SP year

 date3 = month SP (2DIGIT / (SP 1DIGIT))

 ; e.g., Jun 2

¶

¶

¶

¶

¶

HTTP-date is case sensitive. A sender MUST NOT generate additional

whitespace in an HTTP-date beyond that specifically included as SP

in the grammar. The semantics of day-name, day, month, year, and

time-of-day are the same as those defined for the Internet Message

Format constructs with the corresponding name ([RFC5322],

Section 3.3).

Recipients of a timestamp value in rfc850-date format, which uses a

two-digit year, MUST interpret a timestamp that appears to be more

than 50 years in the future as representing the most recent year in

the past that had the same last two digits.

Recipients of timestamp values are encouraged to be robust in

parsing timestamps unless otherwise restricted by the field

definition. For example, messages are occasionally forwarded over

HTTP from a non-HTTP source that might generate any of the date and

time specifications defined by the Internet Message Format.

Note: HTTP requirements for the date/time stamp format apply only to

their usage within the protocol stream. Implementations are not

required to use these formats for user presentation, request

logging, etc.

5.5. ABNF List Extension: #rule

A #rule extension to the ABNF rules of [RFC5234] is used to improve

readability in the definitions of some list-based field values.

A construct "#" is defined, similar to "*", for defining comma-

delimited lists of elements. The full form is "<n>#<m>element"

indicating at least <n> and at most <m> elements, each separated by

a single comma (",") and optional whitespace (OWS).

5.5.1. Sender Requirements

In any production that uses the list construct, a sender MUST NOT

generate empty list elements. In other words, a sender MUST generate

lists that satisfy the following syntax:

and:

and for n >= 1 and m > 1:

¶

¶

¶

¶

¶

¶

¶

 1#element => element *(OWS "," OWS element)¶

¶

 #element => [1#element]¶

¶

 <n>#<m>element => element <n-1>*<m-1>(OWS "," OWS element)¶

https://rfc-editor.org/rfc/rfc5322#section-3.3

Appendix A shows the collected ABNF for senders after the list

constructs have been expanded.

5.5.2. Recipient Requirements

Empty elements do not contribute to the count of elements present. A

recipient MUST parse and ignore a reasonable number of empty list

elements: enough to handle common mistakes by senders that merge

values, but not so much that they could be used as a denial-of-

service mechanism. In other words, a recipient MUST accept lists

that satisfy the following syntax:

Note that because of the potential presence of empty list elements,

the RFC 5234 ABNF cannot enforce the cardinality of list elements,

and consequently all cases are mapped is if there was no cardinality

specified.

For example, given these ABNF productions:

Then the following are valid values for example-list (not including

the double quotes, which are present for delimitation only):

In contrast, the following values would be invalid, since at least

one non-empty element is required by the example-list production:

5.6. Trailer Fields

5.6.1. Purpose

In some HTTP versions, additional metadata can be sent after the

initial header section has been completed (during or after

transmission of the payload body), such as a message integrity

check, digital signature, or post-processing status. For example,

the chunked coding in HTTP/1.1 allows a trailer section after the

payload body (Section 7.1.2 of [Messaging]) which can contain

trailer fields: field names and values that share the same syntax

¶

¶

 #element => [element] *(OWS "," OWS [element])¶

¶

¶

 example-list = 1#example-list-elmt

 example-list-elmt = token ; see Section 5.4.1.1

¶

¶

 "foo,bar"

 "foo ,bar,"

 "foo , ,bar,charlie"

¶

¶

 ""

 ","

 ", ,"

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#chunked.trailer.section

and namespace as header fields but that are received after the

header section.

Trailer fields ought to be processed and stored separately from the

fields in the header section to avoid contradicting message

semantics known at the time the header section was complete. The

presence or absence of certain header fields might impact choices

made for the routing or processing of the message as a whole before

the trailers are received; those choices cannot be unmade by the

later discovery of trailer fields.

5.6.2. Limitations

Many fields cannot be processed outside the header section because

their evaluation is necessary prior to receiving the message body,

such as those that describe message framing, routing,

authentication, request modifiers, response controls, or payload

format. A sender MUST NOT generate a trailer field unless the sender

knows the corresponding header field name's definition permits the

field to be sent in trailers.

Trailer fields can be difficult to process by intermediaries that

forward messages from one protocol version to another. If the entire

message can be buffered in transit, some intermediaries could merge

trailer fields into the header section (as appropriate) before it is

forwarded. However, in most cases, the trailers are simply

discarded. A recipient MUST NOT merge a trailer field into a header

section unless the recipient understands the corresponding header

field definition and that definition explicitly permits and defines

how trailer field values can be safely merged.

The presence of the keyword "trailers" in the TE header field

(Section 7.4 of [Messaging]) indicates that the client is willing to

accept trailer fields, on behalf of itself and any downstream

clients. For requests from an intermediary, this implies that all

downstream clients are willing to accept trailer fields in the

forwarded response. Note that the presence of "trailers" does not

mean that the client(s) will process any particular trailer field in

the response; only that the trailer section as a whole will not be

dropped by any of the clients.

Because of the potential for trailer fields to be discarded in

transit, a server SHOULD NOT generate trailer fields that it

believes are necessary for the user agent to receive.

5.6.3. Trailer

The "Trailer" header field provides a list of field names that the

sender anticipates sending as trailer fields within that message.

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#field.te

This allows a recipient to prepare for receipt of the indicated

metadata before it starts processing the body.

 Trailer = 1#field-name

For example, a sender might indicate that a message integrity check

will be computed as the payload is being streamed and provide the

final signature as a trailer field. This allows a recipient to

perform the same check on the fly as the payload data is received.

A sender that intends to generate one or more trailer fields in a

message SHOULD generate a Trailer header field in the header section

of that message to indicate which fields might be present in the

trailers.

5.7. Considerations for New HTTP Fields

See Section 5.3 for a general requirements for field names, and

Section 5.4 for a discussion of field values.

Authors of specifications defining new fields are advised to

consider documenting:

Whether the field is a single value or whether it can be a list

(delimited by commas; see Section 5.4).

If it is not a list, document how to treat messages where the

field occurs multiple times (a sensible default would be to

ignore the field, but this might not always be the right choice).

Note that intermediaries and software libraries might combine

multiple field instances into a single one, despite the field's

definition not allowing the list syntax. A robust format enables

recipients to discover these situations (good example: "Content-

Type", as the comma can only appear inside quoted strings; bad

example: "Location", as a comma can occur inside a URI).

Under what conditions the field can be used; e.g., only in

responses or requests, in all messages, only on responses to a

particular request method, etc.

What the scope of applicability for the information conveyed in

the field is. By default, fields apply only to the message they

are associated with, but some response fields are designed to

apply to all representations of a resource, the resource itself,

or an even broader scope. Specifications that expand the scope of

a response field will need to carefully consider issues such as

¶

¶

¶

¶

¶

¶

*

¶

¶

¶

*

¶

*

content negotiation, the time period of applicability, and (in

some cases) multi-tenant server deployments.

Whether the field should be stored by origin servers that

understand it upon a PUT request.

Whether the field semantics are further refined by the context,

such as by existing request methods or status codes.

Whether it is appropriate to list the field name in the

Connection header field (i.e., if the field is to be hop-by-hop;

see Section 9.1 of [Messaging]).

Under what conditions intermediaries are allowed to insert,

delete, or modify the field's value.

Whether it is appropriate to list the field name in a Vary

response header field (e.g., when the request header field is

used by an origin server's content selection algorithm; see

Section 11.1.4).

Whether the field is allowable in trailers (see Section 5.6).

Whether the field ought to be preserved across redirects.

Whether it introduces any additional security considerations,

such as disclosure of privacy-related data.

5.8. Fields Defined In This Document

The following fields are defined by this document:

Field Name Status Reference

Accept standard Section 9.4.1

Accept-Charset deprecated Section 9.4.2

Accept-Encoding standard Section 9.4.3

Accept-Language standard Section 9.4.4

Accept-Ranges standard Section 11.4.1

Allow standard Section 11.4.2

Authentication-Info standard Section 11.3.3

Authorization standard Section 9.5.3

Content-Encoding standard Section 7.2.2

Content-Language standard Section 7.2.3

Content-Length standard Section 7.2.4

Content-Location standard Section 7.2.5

Content-Range standard Section 7.3.4

Content-Type standard Section 7.2.1

Date standard Section 11.1.1

ETag standard Section 11.2.3

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

*

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#field.connection

Field Name Status Reference

Expect standard Section 9.1.1

From standard Section 9.6.1

Host standard Section 6.6

If-Match standard Section 9.2.3

If-Modified-Since standard Section 9.2.5

If-None-Match standard Section 9.2.4

If-Range standard Section 9.2.7

If-Unmodified-Since standard Section 9.2.6

Last-Modified standard Section 11.2.2

Location standard Section 11.1.2

Max-Forwards standard Section 9.1.2

Proxy-Authenticate standard Section 11.3.2

Proxy-Authentication-Info standard Section 11.3.4

Proxy-Authorization standard Section 9.5.4

Range standard Section 9.3

Referer standard Section 9.6.2

Retry-After standard Section 11.1.3

Server standard Section 11.4.3

Trailer standard Section 5.6.3

User-Agent standard Section 9.6.3

Vary standard Section 11.1.4

Via standard Section 6.7.1

WWW-Authenticate standard Section 11.3.1

Table 2

Furthermore, the field name "*" is reserved, since using that name

as an HTTP header field might conflict with its special semantics in

the Vary header field (Section 11.1.4).

Field Name Status Reference Comments

* standard Section 5.8 (reserved)

Table 3

6. Message Routing

HTTP request message routing is determined by each client based on

the target resource, the client's proxy configuration, and

establishment or reuse of an inbound connection. The corresponding

response routing follows the same connection chain back to the

client.

6.1. Identifying a Target Resource

HTTP is used in a wide variety of applications, ranging from

general-purpose computers to home appliances. In some cases,

communication options are hard-coded in a client's configuration.

¶

¶

However, most HTTP clients rely on the same resource identification

mechanism and configuration techniques as general-purpose Web

browsers.

HTTP communication is initiated by a user agent for some purpose.

The purpose is a combination of request semantics and a target

resource upon which to apply those semantics. The "request target"

is the protocol element that identifies the "target resource".

Typically, the request target is a URI reference (Section 2.4) which

a user agent would resolve to its absolute form in order to obtain

the "target URI". The target URI excludes the reference's fragment

component, if any, since fragment identifiers are reserved for

client-side processing ([RFC3986], Section 3.5).

However, there are two special, method-specific forms allowed for

the request target in specific circumstances:

For CONNECT (Section 8.3.6), the request target is the host name

and port number of the tunnel destination, separated by a colon.

For OPTIONS (Section 8.3.7), the request target can be a single

asterisk ("*").

See the respective method definitions for details. These forms MUST

NOT be used with other methods.

6.2. Determining Origin

The "origin" for a given URI is the triple of scheme, host, and port

after normalizing the scheme and host to lowercase and normalizing

the port to remove any leading zeros. If port is elided from the

URI, the default port for that scheme is used. For example, the URI

would have the origin

which can also be described as the normalized URI prefix with port

always present:

Each origin defines its own namespace and controls how identifiers

within that namespace are mapped to resources. In turn, how the

origin responds to valid requests, consistently over time,

determines the semantics that users will associate with a URI, and

¶

¶

¶

¶

*

¶

*

¶

¶

¶

 https://Example.Com/happy.js¶

¶

 { "https", "example.com", "443" }¶

¶

 https://example.com:443¶

https://rfc-editor.org/rfc/rfc3986#section-3.5

the usefulness of those semantics is what ultimately transforms

these mechanisms into a "resource" for users to reference and access

in the future.

Two origins are distinct if they differ in scheme, host, or port.

Even when it can be verified that the same entity controls two

distinct origins, the two namespaces under those origins are

distinct unless explicitly aliased by a server authoritative for

that origin.

Origin is also used within HTML and related Web protocols, beyond

the scope of this document, as described in [RFC6454].

6.3. Routing Inbound

Once the target URI and its origin are determined, a client decides

whether a network request is necessary to accomplish the desired

semantics and, if so, where that request is to be directed.

If the client has a cache [Caching] and the request can be satisfied

by it, then the request is usually directed there first.

If the request is not satisfied by a cache, then a typical client

will check its configuration to determine whether a proxy is to be

used to satisfy the request. Proxy configuration is implementation-

dependent, but is often based on URI prefix matching, selective

authority matching, or both, and the proxy itself is usually

identified by an "http" or "https" URI. If a proxy is applicable,

the client connects inbound by establishing (or reusing) a

connection to that proxy.

If no proxy is applicable, a typical client will invoke a handler

routine, usually specific to the target URI's scheme, to connect

directly to an origin for the target resource. How that is

accomplished is dependent on the target URI scheme and defined by

its associated specification, similar to how this specification

defines origin server access for resolution of the "http" (Section

2.5.1) and "https" (Section 2.5.2) schemes.

6.4. Direct Authoritative Access

6.4.1. http origins

Although HTTP is independent of the transport protocol, the "http"

scheme is specific to associating authority with whomever controls

the origin server listening for TCP connections on the indicated

port of whatever host is identified within the authority component.

This is a very weak sense of authority because it depends on both

client-specific name resolution mechanisms and communication that

might not be secured from man-in-the-middle attacks. Nevertheless,

¶

¶

¶

¶

¶

¶

¶

it is a sufficient minimum for binding "http" identifiers to an

origin server for consistent resolution within a trusted

environment.

If the host identifier is provided as an IP address, the origin

server is the listener (if any) on the indicated TCP port at that IP

address. If host is a registered name, the registered name is an

indirect identifier for use with a name resolution service, such as

DNS, to find an address for an appropriate origin server.

When an "http" URI is used within a context that calls for access to

the indicated resource, a client MAY attempt access by resolving the

host identifier to an IP address, establishing a TCP connection to

that address on the indicated port, and sending an HTTP request

message to the server containing the URI's identifying data

(Section 2 of [Messaging]).

If the server responds to such a request with a non-interim HTTP

response message, as described in Section 10, then that response is

considered an authoritative answer to the client's request.

Note, however, that the above is not the only means for obtaining an

authoritative response, nor does it imply that an authoritative

response is always necessary (see [Caching]). For example, the Alt-

Svc header field [RFC7838] allows an origin server to identify other

services that are also authoritative for that origin. Access to

"http" identified resources might also be provided by protocols

outside the scope of this document.

See Section 12.1 for security considerations related to establishing

authority.

6.4.2. https origins

The "https" scheme associates authority based on the ability of a

server to use a private key associated with a certificate that the

client considers to be trustworthy for the identified host. If a

server presents a certificate that verifiably applies to the host,

along with proof that it controls the corresponding private key,

then a client will accept a secured connection to that server as

being authoritative for all origins with the same scheme and host.

A client is therefore relying upon a chain of trust, conveyed from

some trust anchor (which is usually prearranged or configured),

through a chain of certificates (e.g., [RFC5280]) to a final

certificate that binds a private key to the host name of the origin.

The handshake and certificate validation in Section 6.4.3 describe

how that final certificate can be used to initiate a secured

connection.

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#http.message

Note that the "https" scheme does not rely on TCP and the connected

port number for associating authority, since both are outside the

secured communication and thus cannot be trusted as definitive.

Hence, the HTTP communication might take place over any channel that

has been secured, as defined in Section 2.5.2, including protocols

that don't use TCP. It is the origin's responsibility to ensure that

any services provided with control over its certificate's private

key are equally responsible for managing the corresponding "https"

namespaces, or at least prepared to reject requests that appear to

have been misdirected. Regardless, the origin's host and port value

are passed within each HTTP request, identifying the target resource

and distinguishing it from other namespaces that might be controlled

by the same server.

In HTTP/1.1 and earlier, the only URIs for which a client will

attribute authority to a server are those for which a TLS connection

was specifically established toward the origin's host. Only the

characteristics of the connection establishment and certificate are

used. For a host that is a domain name, the client MUST include that

name in the TLS server_name extension (if used) and MUST verify that

the name also appears as either the CN field of the certificate

subject or as a dNSName in the subjectAltName field of the

certificate (see [RFC6125]). For a host that is an IP address, the

client MUST verify that the address appears in the subjectAltName of

the certificate.

In HTTP/2, a client will associate authority to all names that are

present in the certificate. However, a client will only do that if

it concludes that it could open a connection to the origin for that

URI. In practice, a client will make a DNS query and see that it

contains the same server IP address. A server sending the ORIGIN

frame removes this restriction [RFC8336].

In addition to the client's verification, an origin server is

responsible for verifying that requests it receives over a

connection correspond to resources for which it actually wants to be

the origin. If a network attacker causes connections for port N to

be received at port Q, checking the target URI is necessary to

ensure that the attacker can't cause "https://example.com:N/foo" to

be replaced by "https://example.com:Q/foo" without consent.

Likewise, a server might be unwilling to serve as the origin for

some hosts even when they have the authority to do so.

When an "https" URI is used within a context that calls for access

to the indicated resource, a client MAY attempt access by resolving

the host identifier to an IP address, establishing a TCP connection

to that address on the indicated port, securing the connection end-

to-end by successfully initiating TLS over TCP with confidentiality

and integrity protection, and sending an HTTP request message to the

¶

¶

¶

¶

server over that secured connection containing the URI's identifying

data (Section 2 of [Messaging]).

If the server responds to such a request with a non-interim HTTP

response message, as described in Section 10, then that response is

considered an authoritative answer to the client's request.

Note, however, that the above is not the only means for obtaining an

authoritative response, nor does it imply that an authoritative

response is always necessary (see [Caching]).

6.4.3. Initiating HTTP Over TLS

Conceptually, HTTP/TLS is very simple. Simply use HTTP over TLS

precisely as you would use HTTP over TCP.

The agent acting as the HTTP client should also act as the TLS

client. It should initiate a connection to the server on the

appropriate port and then send the TLS ClientHello to begin the TLS

handshake. When the TLS handshake has finished. The client may then

initiate the first HTTP request. All HTTP data MUST be sent as TLS

"application data". Normal HTTP behavior, including retained

connections should be followed.

6.4.3.1. Identifying HTTPS Servers

In general, HTTP/TLS requests are generated by dereferencing a URI.

As a consequence, the hostname for the server is known to the

client. If the hostname is available, the client MUST check it

against the server's identity as presented in the server's

Certificate message, in order to prevent man-in-the-middle attacks.

If the client has external information as to the expected identity

of the server, the hostname check MAY be omitted. (For instance, a

client may be connecting to a machine whose address and hostname are

dynamic but the client knows the certificate that the server will

present.) In such cases, it is important to narrow the scope of

acceptable certificates as much as possible in order to prevent man

in the middle attacks. In special cases, it may be appropriate for

the client to simply ignore the server's identity, but it must be

understood that this leaves the connection open to active attack.

If a subjectAltName extension of type dNSName is present, that MUST

be used as the identity. Otherwise, the (most specific) Common Name

field in the Subject field of the certificate MUST be used. Although

the use of the Common Name is existing practice, it is deprecated

and Certification Authorities are encouraged to use the dNSName

instead.

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#http.message

Matching is performed using the matching rules specified by

[RFC5280]. If more than one identity of a given type is present in

the certificate (e.g., more than one dNSName name, a match in any

one of the set is considered acceptable.) Names may contain the

wildcard character * which is considered to match any single domain

name component or component fragment. E.g., *.a.com matches

foo.a.com but not bar.foo.a.com. f*.com matches foo.com but not

bar.com.

In some cases, the URI is specified as an IP address rather than a

hostname. In this case, the iPAddress subjectAltName must be present

in the certificate and must exactly match the IP in the URI.

If the hostname does not match the identity in the certificate, user

oriented clients MUST either notify the user (clients MAY give the

user the opportunity to continue with the connection in any case) or

terminate the connection with a bad certificate error. Automated

clients MUST log the error to an appropriate audit log (if

available) and SHOULD terminate the connection (with a bad

certificate error). Automated clients MAY provide a configuration

setting that disables this check, but MUST provide a setting which

enables it.

Note that in many cases the URI itself comes from an untrusted

source. The above-described check provides no protection against

attacks where this source is compromised. For example, if the URI

was obtained by clicking on an HTML page which was itself obtained

without using HTTP/TLS, a man in the middle could have replaced the

URI. In order to prevent this form of attack, users should carefully

examine the certificate presented by the server to determine if it

meets their expectations.

6.4.3.2. Identifying HTTPS Clients

Typically, the server has no external knowledge of what the client's

identity ought to be and so checks (other than that the client has a

certificate chain rooted in an appropriate CA) are not possible. If

a server has such knowledge (typically from some source external to

HTTP or TLS) it SHOULD check the identity as described above.

6.5. Reconstructing the Target URI

Once an inbound connection is obtained, the client sends an HTTP

request message (Section 2 of [Messaging]).

Depending on the nature of the request, the client's target URI

might be split into components and transmitted (or implied) within

various parts of a request message. These parts are recombined by

each recipient, in accordance with their local configuration and

incoming connection context, to determine the target URI. Appendix

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#http.message

of [Messaging] defines how a server determines the target URI for an

HTTP/1.1 request.

Once the target URI has been reconstructed, an origin server needs

to decide whether or not to provide service for that URI via the

connection in which the request was received. For example, the

request might have been misdirected, deliberately or accidentally,

such that the information within a received Host header field

differs from the host or port upon which the connection has been

made. If the connection is from a trusted gateway, that

inconsistency might be expected; otherwise, it might indicate an

attempt to bypass security filters, trick the server into delivering

non-public content, or poison a cache. See Section 12 for security

considerations regarding message routing.

Note: previous specifications defined the recomposed target URI as a

distinct concept, the effective request URI.

6.6. Host

The "Host" header field in a request provides the host and port

information from the target URI, enabling the origin server to

distinguish among resources while servicing requests for multiple

host names on a single IP address.

 Host = uri-host [":" port] ; Section 2.4

A client MUST send a Host header field in all HTTP/1.1 request

messages. If the target URI includes an authority component, then a

client MUST send a field value for Host that is identical to that

authority component, excluding any userinfo subcomponent and its "@"

delimiter (Section 2.5.1). If the authority component is missing or

undefined for the target URI, then a client MUST send a Host header

field with an empty field value.

Since the Host field value is critical information for handling a

request, a user agent SHOULD generate Host as the first header field

following the request-line.

For example, a GET request to the origin server for <http://

www.example.org/pub/WWW/> would begin with:

¶

¶

¶

¶

¶

¶

¶

¶

 GET /pub/WWW/ HTTP/1.1

 Host: www.example.org

¶

Since the Host header field acts as an application-level routing

mechanism, it is a frequent target for malware seeking to poison a

shared cache or redirect a request to an unintended server. An

interception proxy is particularly vulnerable if it relies on the

Host field value for redirecting requests to internal servers, or

for use as a cache key in a shared cache, without first verifying

that the intercepted connection is targeting a valid IP address for

that host.

A server MUST respond with a 400 (Bad Request) status code to any

HTTP/1.1 request message that lacks a Host header field and to any

request message that contains more than one Host header field or a

Host header field with an invalid field value.

6.7. Message Forwarding

As described in Section 2.2, intermediaries can serve a variety of

roles in the processing of HTTP requests and responses. Some

intermediaries are used to improve performance or availability.

Others are used for access control or to filter content. Since an

HTTP stream has characteristics similar to a pipe-and-filter

architecture, there are no inherent limits to the extent an

intermediary can enhance (or interfere) with either direction of the

stream.

An intermediary not acting as a tunnel MUST implement the Connection

header field, as specified in Section 9.1 of [Messaging], and

exclude fields from being forwarded that are only intended for the

incoming connection.

An intermediary MUST NOT forward a message to itself unless it is

protected from an infinite request loop. In general, an intermediary

ought to recognize its own server names, including any aliases,

local variations, or literal IP addresses, and respond to such

requests directly.

An HTTP message can be parsed as a stream for incremental processing

or forwarding downstream. However, recipients cannot rely on

incremental delivery of partial messages, since some implementations

will buffer or delay message forwarding for the sake of network

efficiency, security checks, or payload transformations.

6.7.1. Via

The "Via" header field indicates the presence of intermediate

protocols and recipients between the user agent and the server (on

requests) or between the origin server and the client (on

responses), similar to the "Received" header field in email

(Section 3.6.7 of [RFC5322]). Via can be used for tracking message

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#field.connection
https://rfc-editor.org/rfc/rfc5322#section-3.6.7

forwards, avoiding request loops, and identifying the protocol

capabilities of senders along the request/response chain.

 Via = 1#(received-protocol RWS received-by [RWS comment])

 received-protocol = [protocol-name "/"] protocol-version

 ; see [Messaging], Section 9.9

 received-by = pseudonym [":" port]

 pseudonym = token

Each member of the Via field value represents a proxy or gateway

that has forwarded the message. Each intermediary appends its own

information about how the message was received, such that the end

result is ordered according to the sequence of forwarding

recipients.

A proxy MUST send an appropriate Via header field, as described

below, in each message that it forwards. An HTTP-to-HTTP gateway

MUST send an appropriate Via header field in each inbound request

message and MAY send a Via header field in forwarded response

messages.

For each intermediary, the received-protocol indicates the protocol

and protocol version used by the upstream sender of the message.

Hence, the Via field value records the advertised protocol

capabilities of the request/response chain such that they remain

visible to downstream recipients; this can be useful for determining

what backwards-incompatible features might be safe to use in

response, or within a later request, as described in Section 4.2.

For brevity, the protocol-name is omitted when the received protocol

is HTTP.

The received-by portion is normally the host and optional port

number of a recipient server or client that subsequently forwarded

the message. However, if the real host is considered to be sensitive

information, a sender MAY replace it with a pseudonym. If a port is

not provided, a recipient MAY interpret that as meaning it was

received on the default TCP port, if any, for the received-protocol.

A sender MAY generate comments to identify the software of each

recipient, analogous to the User-Agent and Server header fields.

However, comments in Via are optional, and a recipient MAY remove

them prior to forwarding the message.

For example, a request message could be sent from an HTTP/1.0 user

agent to an internal proxy code-named "fred", which uses HTTP/1.1 to

forward the request to a public proxy at p.example.net, which

¶

¶

¶

¶

¶

¶

¶

completes the request by forwarding it to the origin server at

www.example.com. The request received by www.example.com would then

have the following Via header field:

An intermediary used as a portal through a network firewall SHOULD

NOT forward the names and ports of hosts within the firewall region

unless it is explicitly enabled to do so. If not enabled, such an

intermediary SHOULD replace each received-by host of any host behind

the firewall by an appropriate pseudonym for that host.

An intermediary MAY combine an ordered subsequence of Via header

field list members into a single member if the entries have

identical received-protocol values. For example,

could be collapsed to

A sender SHOULD NOT combine multiple list members unless they are

all under the same organizational control and the hosts have already

been replaced by pseudonyms. A sender MUST NOT combine members that

have different received-protocol values.

6.7.2. Transformations

Some intermediaries include features for transforming messages and

their payloads. A proxy might, for example, convert between image

formats in order to save cache space or to reduce the amount of

traffic on a slow link. However, operational problems might occur

when these transformations are applied to payloads intended for

critical applications, such as medical imaging or scientific data

analysis, particularly when integrity checks or digital signatures

are used to ensure that the payload received is identical to the

original.

An HTTP-to-HTTP proxy is called a "transforming proxy" if it is

designed or configured to modify messages in a semantically

meaningful way (i.e., modifications, beyond those required by normal

HTTP processing, that change the message in a way that would be

significant to the original sender or potentially significant to

downstream recipients). For example, a transforming proxy might be

acting as a shared annotation server (modifying responses to include

references to a local annotation database), a malware filter, a

format transcoder, or a privacy filter. Such transformations are

¶

 Via: 1.0 fred, 1.1 p.example.net¶

¶

¶

 Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy¶

¶

 Via: 1.0 ricky, 1.1 mertz, 1.0 lucy¶

¶

¶

presumed to be desired by whichever client (or client organization)

selected the proxy.

If a proxy receives a target URI with a host name that is not a

fully qualified domain name, it MAY add its own domain to the host

name it received when forwarding the request. A proxy MUST NOT

change the host name if the target URI contains a fully qualified

domain name.

A proxy MUST NOT modify the "absolute-path" and "query" parts of the

received target URI when forwarding it to the next inbound server,

except as noted above to replace an empty path with "/" or "*".

A proxy MAY modify the message body through application or removal

of a transfer coding (Section 7 of [Messaging]).

A proxy MUST NOT transform the payload (Section 7.3) of a message

that contains a no-transform cache-control response directive

(Section 5.2 of [Caching]).

A proxy MAY transform the payload of a message that does not contain

a no-transform cache-control directive. A proxy that transforms the

payload of a 200 (OK) response can inform downstream recipients that

a transformation has been applied by changing the response status

code to 203 (Non-Authoritative Information) (Section 10.3.4).

A proxy SHOULD NOT modify header fields that provide information

about the endpoints of the communication chain, the resource state,

or the selected representation (other than the payload) unless the

field's definition specifically allows such modification or the

modification is deemed necessary for privacy or security.

7. Representations

Considering that a resource could be anything, and that the uniform

interface provided by HTTP is similar to a window through which one

can observe and act upon such a thing only through the communication

of messages to some independent actor on the other side, an

abstraction is needed to represent ("take the place of") the current

or desired state of that thing in our communications. That

abstraction is called a representation [REST].

For the purposes of HTTP, a "representation" is information that is

intended to reflect a past, current, or desired state of a given

resource, in a format that can be readily communicated via the

protocol, and that consists of a set of representation metadata and

a potentially unbounded stream of representation data.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#transfer.codings
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#field.cache-control

An origin server might be provided with, or be capable of

generating, multiple representations that are each intended to

reflect the current state of a target resource. In such cases, some

algorithm is used by the origin server to select one of those

representations as most applicable to a given request, usually based

on content negotiation. This "selected representation" is used to

provide the data and metadata for evaluating conditional requests

(Section 9.2) and constructing the payload for 200 (OK), 206

(Partial Content), and 304 (Not Modified) responses to GET (Section

8.3.1).

7.1. Representation Data

The representation data associated with an HTTP message is either

provided as the payload body of the message or referred to by the

message semantics and the target URI. The representation data is in

a format and encoding defined by the representation metadata header

fields.

The data type of the representation data is determined via the

header fields Content-Type and Content-Encoding. These define a two-

layer, ordered encoding model:

7.1.1. Media Type

HTTP uses media types [RFC2046] in the Content-Type (Section 7.2.1)

and Accept (Section 9.4.1) header fields in order to provide open

and extensible data typing and type negotiation. Media types define

both a data format and various processing models: how to process

that data in accordance with each context in which it is received.

 media-type = type "/" subtype *(OWS ";" OWS parameter)

 type = token

 subtype = token

The type and subtype tokens are case-insensitive.

The type/subtype MAY be followed by semicolon-delimited parameters

(Section 5.4.1.4) in the form of name=value pairs. The presence or

absence of a parameter might be significant to the processing of a

media type, depending on its definition within the media type

registry. Parameter values might or might not be case-sensitive,

depending on the semantics of the parameter name.

¶

¶

¶

 representation-data := Content-Encoding(Content-Type(bits))¶

¶

¶

¶

¶

For example, the following media types are equivalent in describing

HTML text data encoded in the UTF-8 character encoding scheme, but

the first is preferred for consistency (the "charset" parameter

value is defined as being case-insensitive in [RFC2046],

Section 4.1.2):

Media types ought to be registered with IANA according to the

procedures defined in [BCP13].

7.1.1.1. Charset

HTTP uses charset names to indicate or negotiate the character

encoding scheme of a textual representation [RFC6365]. A charset is

identified by a case-insensitive token.

 charset = token

Charset names ought to be registered in the IANA "Character Sets"

registry (<https://www.iana.org/assignments/character-sets>)

according to the procedures defined in Section 2 of [RFC2978].

Note: In theory, charset names are defined by the "mime-charset"

ABNF rule defined in Section 2.3 of [RFC2978] (as corrected in

[Err1912]). That rule allows two characters that are not included in

"token" ("{" and "}"), but no charset name registered at the time of

this writing includes braces (see [Err5433]).

7.1.1.2. Canonicalization and Text Defaults

Media types are registered with a canonical form in order to be

interoperable among systems with varying native encoding formats.

Representations selected or transferred via HTTP ought to be in

canonical form, for many of the same reasons described by the

Multipurpose Internet Mail Extensions (MIME) [RFC2045]. However, the

performance characteristics of email deployments (i.e., store and

forward messages to peers) are significantly different from those

common to HTTP and the Web (server-based information services).

Furthermore, MIME's constraints for the sake of compatibility with

older mail transfer protocols do not apply to HTTP (see Appendix B

of [Messaging]).

¶

 text/html;charset=utf-8

 Text/HTML;Charset="utf-8"

 text/html; charset="utf-8"

 text/html;charset=UTF-8

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc2046#section-4.1.2
https://www.iana.org/assignments/character-sets
https://rfc-editor.org/rfc/rfc2978#section-2
https://rfc-editor.org/rfc/rfc2978#section-2.3
https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#differences.between.http.and.mime

MIME's canonical form requires that media subtypes of the "text"

type use CRLF as the text line break. HTTP allows the transfer of

text media with plain CR or LF alone representing a line break, when

such line breaks are consistent for an entire representation. An

HTTP sender MAY generate, and a recipient MUST be able to parse,

line breaks in text media that consist of CRLF, bare CR, or bare LF.

In addition, text media in HTTP is not limited to charsets that use

octets 13 and 10 for CR and LF, respectively. This flexibility

regarding line breaks applies only to text within a representation

that has been assigned a "text" media type; it does not apply to

"multipart" types or HTTP elements outside the payload body (e.g.,

header fields).

If a representation is encoded with a content-coding, the underlying

data ought to be in a form defined above prior to being encoded.

7.1.1.3. Multipart Types

MIME provides for a number of "multipart" types - encapsulations of

one or more representations within a single message body. All

multipart types share a common syntax, as defined in Section 5.1.1

of [RFC2046], and include a boundary parameter as part of the media

type value. The message body is itself a protocol element; a sender

MUST generate only CRLF to represent line breaks between body parts.

HTTP message framing does not use the multipart boundary as an

indicator of message body length, though it might be used by

implementations that generate or process the payload. For example,

the "multipart/form-data" type is often used for carrying form data

in a request, as described in [RFC7578], and the "multipart/

byteranges" type is defined by this specification for use in some

206 (Partial Content) responses (see Section 10.3.7).

7.1.2. Content Codings

Content coding values indicate an encoding transformation that has

been or can be applied to a representation. Content codings are

primarily used to allow a representation to be compressed or

otherwise usefully transformed without losing the identity of its

underlying media type and without loss of information. Frequently,

the representation is stored in coded form, transmitted directly,

and only decoded by the final recipient.

 content-coding = token

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc2046#section-5.1.1

All content codings are case-insensitive and ought to be registered

within the "HTTP Content Coding Registry", as defined in Section

7.1.2.4

Content-coding values are used in the Accept-Encoding (Section

9.4.3) and Content-Encoding (Section 7.2.2) header fields.

The following content-coding values are defined by this

specification:

Name Description Reference

compress UNIX "compress" data format [Welch]
Section

7.1.2.1

deflate
"deflate" compressed data ([RFC1951])

inside the "zlib" data format ([RFC1950])

Section

7.1.2.2

gzip GZIP file format [RFC1952]
Section

7.1.2.3

identity Reserved
Section

9.4.3

x-

compress
Deprecated (alias for compress)

Section

7.1.2.1

x-gzip Deprecated (alias for gzip)
Section

7.1.2.3

Table 4

7.1.2.1. Compress Coding

The "compress" coding is an adaptive Lempel-Ziv-Welch (LZW) coding

[Welch] that is commonly produced by the UNIX file compression

program "compress". A recipient SHOULD consider "x-compress" to be

equivalent to "compress".

7.1.2.2. Deflate Coding

The "deflate" coding is a "zlib" data format [RFC1950] containing a

"deflate" compressed data stream [RFC1951] that uses a combination

of the Lempel-Ziv (LZ77) compression algorithm and Huffman coding.

Note: Some non-conformant implementations send the "deflate"

compressed data without the zlib wrapper.

7.1.2.3. Gzip Coding

The "gzip" coding is an LZ77 coding with a 32-bit Cyclic Redundancy

Check (CRC) that is commonly produced by the gzip file compression

program [RFC1952]. A recipient SHOULD consider "x-gzip" to be

equivalent to "gzip".

¶

¶

¶

¶

¶

¶

¶

7.1.2.4. Content Coding Registry

The "HTTP Content Coding Registry", maintained by IANA at <https://

www.iana.org/assignments/http-parameters/>, registers content-coding

names.

Content coding registrations MUST include the following fields:

Name

Description

Pointer to specification text

Names of content codings MUST NOT overlap with names of transfer

codings (Section 7 of [Messaging]), unless the encoding

transformation is identical (as is the case for the compression

codings defined in Section 7.1.2).

Values to be added to this namespace require IETF Review (see

Section 4.8 of [RFC8126]) and MUST conform to the purpose of content

coding defined in Section 7.1.2.

7.1.3. Language Tags

A language tag, as defined in [RFC5646], identifies a natural

language spoken, written, or otherwise conveyed by human beings for

communication of information to other human beings. Computer

languages are explicitly excluded.

HTTP uses language tags within the Accept-Language and Content-

Language header fields. Accept-Language uses the broader language-

range production defined in Section 9.4.4, whereas Content-Language

uses the language-tag production defined below.

 language-tag = <Language-Tag, see [RFC5646], Section 2.1>

A language tag is a sequence of one or more case-insensitive

subtags, each separated by a hyphen character ("-", %x2D). In most

cases, a language tag consists of a primary language subtag that

identifies a broad family of related languages (e.g., "en" =

English), which is optionally followed by a series of subtags that

refine or narrow that language's range (e.g., "en-CA" = the variety

of English as communicated in Canada). Whitespace is not allowed

within a language tag. Example tags include:

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

 fr, en-US, es-419, az-Arab, x-pig-latin, man-Nkoo-GN¶

https://www.iana.org/assignments/http-parameters/
https://www.iana.org/assignments/http-parameters/
https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#transfer.codings
https://rfc-editor.org/rfc/rfc8126#section-4.8

See [RFC5646] for further information.

7.1.4. Range Units

Representation data can be partitioned into subranges when there are

addressable structural units inherent to that data's content coding

or media type. For example, octet (a.k.a., byte) boundaries are a

structural unit common to all representation data, allowing

partitions of the data to be identified as a range of bytes at some

offset from the start or end of that data.

This general notion of a "range unit" is used in the Accept-Ranges

(Section 11.4.1) response header field to advertise support for

range requests, the Range (Section 9.3) request header field to

delineate the parts of a representation that are requested, and the

Content-Range (Section 7.3.4) payload header field to describe which

part of a representation is being transferred.

 range-unit = token

All range unit names are case-insensitive and ought to be registered

within the "HTTP Range Unit Registry", as defined in Section 7.1.4.4

The following range unit names are defined by this document:

Range Unit

Name
Description Reference

bytes a range of octets
Section

7.1.4.2

none
reserved as keyword to indicate range

requests are not supported

Section

11.4.1

Table 5

7.1.4.1. Range Specifiers

Ranges are expressed in terms of a range unit paired with a set of

range specifiers. The range unit name determines what kinds of

range-spec are applicable to its own specifiers. Hence, the

following gramar is generic: each range unit is expected to specify

requirements on when int-range, suffix-range, and other-range are

allowed.

A range request can specify a single range or a set of ranges within

a single representation.

¶

¶

¶

¶

¶

¶

¶

¶

 ranges-specifier = range-unit "=" range-set

 range-set = 1#range-spec

 range-spec = int-range

 / suffix-range

 / other-range

An int-range is a range expressed as two non-negative integers or as

one non-negative integer through to the end of the representation

data. The range unit specifies what the integers mean (e.g., they

might indicate unit offsets from the beginning, inclusive numbered

parts, etc.).

 int-range = first-pos "-" [last-pos]

 first-pos = 1*DIGIT

 last-pos = 1*DIGIT

An int-range is invalid if the last-pos value is present and less

than the first-pos.

A suffix-range is a range expressed as a suffix of the

representation data with the provided non-negative integer maximum

length (in range units). In other words, the last N units of the

representation data.

 suffix-range = "-" suffix-length

 suffix-length = 1*DIGIT

To provide for extensibility, the other-range rule is a mostly

unconstrained grammar that allows application-specific or future

range units to define additional range specifiers.

 other-range = 1*(%x21-2B / %x2D-7E)

 ; 1*(VCHAR excluding comma)

7.1.4.2. Byte Ranges

The "bytes" range unit is used to express subranges of a

representation data's octet sequence. Each byte range is expressed

as an integer range at some offset, relative to either the beginning

¶

¶

¶

¶

¶

¶

¶

¶

(int-range) or end (suffix-range) of the representation data. Byte

ranges do not use the other-range specifier.

The first-pos value in a bytes int-range gives the offset of the

first byte in a range. The last-pos value gives the offset of the

last byte in the range; that is, the byte positions specified are

inclusive. Byte offsets start at zero.

If the representation data has a content coding applied, each byte

range is calculated with respect to the encoded sequence of bytes,

not the sequence of underlying bytes that would be obtained after

decoding.

Examples of bytes range specifiers:

The first 500 bytes (byte offsets 0-499, inclusive):

The second 500 bytes (byte offsets 500-999, inclusive):

A client can limit the number of bytes requested without knowing the

size of the selected representation. If the last-pos value is

absent, or if the value is greater than or equal to the current

length of the representation data, the byte range is interpreted as

the remainder of the representation (i.e., the server replaces the

value of last-pos with a value that is one less than the current

length of the selected representation).

A client can request the last N bytes (N > 0) of the selected

representation using a suffix-range. If the selected representation

is shorter than the specified suffix-length, the entire

representation is used.

Additional examples, assuming a representation of length 10000:

The final 500 bytes (byte offsets 9500-9999, inclusive):

Or:

The first and last bytes only (bytes 0 and 9999):

¶

¶

¶

¶

* ¶

 bytes=0-499¶

* ¶

 bytes=500-999¶

¶

¶

¶

* ¶

 bytes=-500¶

¶

 bytes=9500-¶

* ¶

 bytes=0-0,-1¶

The first, middle, and last 1000 bytes:

Other valid (but not canonical) specifications of the second 500

bytes (byte offsets 500-999, inclusive):

If a valid bytes range-set includes at least one range-spec with a

first-pos that is less than the current length of the

representation, or at least one suffix-range with a non-zero suffix-

length, then the bytes range-set is satisfiable. Otherwise, the

bytes range-set is unsatisfiable.

If the selected representation has zero length, the only satisfiable

form of range-spec is a suffix-range with a non-zero suffix-length.

In the byte-range syntax, first-pos, last-pos, and suffix-length are

expressed as decimal number of octets. Since there is no predefined

limit to the length of a payload, recipients MUST anticipate

potentially large decimal numerals and prevent parsing errors due to

integer conversion overflows.

7.1.4.3. Other Range Units

Other range units, such as format-specific boundaries like pages,

sections, records, rows, or time, are potentially usable in HTTP for

application-specific purposes, but are not commonly used in

practice. Implementors of alternative range units ought to consider

how they would work with content codings and general-purpose

intermediaries.

Range units are intended to be extensible. New range units ought to

be registered with IANA, as defined in Section 7.1.4.4.

7.1.4.4. Range Unit Registry

The "HTTP Range Unit Registry" defines the namespace for the range

unit names and refers to their corresponding specifications. It is

maintained at <https://www.iana.org/assignments/http-parameters>.

Registration of an HTTP Range Unit MUST include the following

fields:

Name

Description

* ¶

 bytes= 0-999, 4500-5499, -1000¶

*

¶

 bytes=500-600,601-999

 bytes=500-700,601-999

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

https://www.iana.org/assignments/http-parameters

Pointer to specification text

Values to be added to this namespace require IETF Review (see

[RFC8126], Section 4.8).

7.2. Representation Metadata

Representation header fields provide metadata about the

representation. When a message includes a payload body, the

representation header fields describe how to interpret the

representation data enclosed in the payload body. In a response to a

HEAD request, the representation header fields describe the

representation data that would have been enclosed in the payload

body if the same request had been a GET.

The following header fields convey representation metadata:

Field Name Defined in...

Content-Type Section 7.2.1

Content-Encoding Section 7.2.2

Content-Language Section 7.2.3

Content-Length Section 7.2.4

Content-Location Section 7.2.5

Table 6

7.2.1. Content-Type

The "Content-Type" header field indicates the media type of the

associated representation: either the representation enclosed in the

message payload or the selected representation, as determined by the

message semantics. The indicated media type defines both the data

format and how that data is intended to be processed by a recipient,

within the scope of the received message semantics, after any

content codings indicated by Content-Encoding are decoded.

 Content-Type = media-type

Media types are defined in Section 7.1.1. An example of the field is

A sender that generates a message containing a payload body SHOULD

generate a Content-Type header field in that message unless the

intended media type of the enclosed representation is unknown to the

sender. If a Content-Type header field is not present, the recipient

MAY either assume a media type of "application/octet-stream"

* ¶

¶

¶

¶

¶

¶

¶

 Content-Type: text/html; charset=ISO-8859-4¶

https://rfc-editor.org/rfc/rfc8126#section-4.8

([RFC2046], Section 4.5.1) or examine the data to determine its

type.

In practice, resource owners do not always properly configure their

origin server to provide the correct Content-Type for a given

representation. Some user agents examine a payload's content and, in

certain cases, override the received type (for example, see

[Sniffing]). This "MIME sniffing" risks drawing incorrect

conclusions about the data, which might expose the user to

additional security risks (e.g., "privilege escalation").

Furthermore, it is impossible to determine the sender's intended

processing model by examining the data format: many data formats

match multiple media types that differ only in processing semantics.

Implementers are encouraged to provide a means to disable such

sniffing.

7.2.2. Content-Encoding

The "Content-Encoding" header field indicates what content codings

have been applied to the representation, beyond those inherent in

the media type, and thus what decoding mechanisms have to be applied

in order to obtain data in the media type referenced by the Content-

Type header field. Content-Encoding is primarily used to allow a

representation's data to be compressed without losing the identity

of its underlying media type.

 Content-Encoding = 1#content-coding

An example of its use is

If one or more encodings have been applied to a representation, the

sender that applied the encodings MUST generate a Content-Encoding

header field that lists the content codings in the order in which

they were applied. Note that the coding named "identity" is reserved

for its special role in Accept-Encoding, and thus SHOULD NOT be

included.

Additional information about the encoding parameters can be provided

by other header fields not defined by this specification.

Unlike Transfer-Encoding (Section 6.1 of [Messaging]), the codings

listed in Content-Encoding are a characteristic of the

representation; the representation is defined in terms of the coded

form, and all other metadata about the representation is about the

¶

¶

¶

¶

¶

 Content-Encoding: gzip¶

¶

¶

https://rfc-editor.org/rfc/rfc2046#section-4.5.1
https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#field.transfer-encoding

coded form unless otherwise noted in the metadata definition.

Typically, the representation is only decoded just prior to

rendering or analogous usage.

If the media type includes an inherent encoding, such as a data

format that is always compressed, then that encoding would not be

restated in Content-Encoding even if it happens to be the same

algorithm as one of the content codings. Such a content coding would

only be listed if, for some bizarre reason, it is applied a second

time to form the representation. Likewise, an origin server might

choose to publish the same data as multiple representations that

differ only in whether the coding is defined as part of Content-Type

or Content-Encoding, since some user agents will behave differently

in their handling of each response (e.g., open a "Save as ..."

dialog instead of automatic decompression and rendering of content).

An origin server MAY respond with a status code of 415 (Unsupported

Media Type) if a representation in the request message has a content

coding that is not acceptable.

7.2.3. Content-Language

The "Content-Language" header field describes the natural

language(s) of the intended audience for the representation. Note

that this might not be equivalent to all the languages used within

the representation.

 Content-Language = 1#language-tag

Language tags are defined in Section 7.1.3. The primary purpose of

Content-Language is to allow a user to identify and differentiate

representations according to the users' own preferred language.

Thus, if the content is intended only for a Danish-literate

audience, the appropriate field is

If no Content-Language is specified, the default is that the content

is intended for all language audiences. This might mean that the

sender does not consider it to be specific to any natural language,

or that the sender does not know for which language it is intended.

Multiple languages MAY be listed for content that is intended for

multiple audiences. For example, a rendition of the "Treaty of

Waitangi", presented simultaneously in the original Maori and

English versions, would call for

¶

¶

¶

¶

¶

¶

 Content-Language: da¶

¶

¶

However, just because multiple languages are present within a

representation does not mean that it is intended for multiple

linguistic audiences. An example would be a beginner's language

primer, such as "A First Lesson in Latin", which is clearly intended

to be used by an English-literate audience. In this case, the

Content-Language would properly only include "en".

Content-Language MAY be applied to any media type - it is not

limited to textual documents.

7.2.4. Content-Length

The "Content-Length" header field indicates the number of data

octets (body length) for the representation. In some cases, Content-

Length is used to define or estimate message framing.

 Content-Length = 1*DIGIT

An example is

A sender MUST NOT send a Content-Length header field in any message

that contains a Transfer-Encoding header field.

A user agent SHOULD send a Content-Length in a request message when

no Transfer-Encoding is sent and the request method defines a

meaning for an enclosed payload body. For example, a Content-Length

header field is normally sent in a POST request even when the value

is 0 (indicating an empty payload body). A user agent SHOULD NOT

send a Content-Length header field when the request message does not

contain a payload body and the method semantics do not anticipate

such a body.

A server MAY send a Content-Length header field in a response to a

HEAD request (Section 8.3.2); a server MUST NOT send Content-Length

in such a response unless its field value equals the decimal number

of octets that would have been sent in the payload body of a

response if the same request had used the GET method.

A server MAY send a Content-Length header field in a 304 (Not

Modified) response to a conditional GET request (Section 10.4.5); a

server MUST NOT send Content-Length in such a response unless its

 Content-Language: mi, en¶

¶

¶

¶

¶

¶

 Content-Length: 3495¶

¶

¶

¶

field value equals the decimal number of octets that would have been

sent in the payload body of a 200 (OK) response to the same request.

A server MUST NOT send a Content-Length header field in any response

with a status code of 1xx (Informational) or 204 (No Content). A

server MUST NOT send a Content-Length header field in any 2xx

(Successful) response to a CONNECT request (Section 8.3.6).

Aside from the cases defined above, in the absence of Transfer-

Encoding, an origin server SHOULD send a Content-Length header field

when the payload body size is known prior to sending the complete

header section. This will allow downstream recipients to measure

transfer progress, know when a received message is complete, and

potentially reuse the connection for additional requests.

Any Content-Length field value greater than or equal to zero is

valid. Since there is no predefined limit to the length of a

payload, a recipient MUST anticipate potentially large decimal

numerals and prevent parsing errors due to integer conversion

overflows (Section 12.5).

If a message is received that has a Content-Length header field

value consisting of the same decimal value as a comma-separated list

(Section 5.5) - for example, "Content-Length: 42, 42" - indicating

that duplicate Content-Length header fields have been generated or

combined by an upstream message processor, then the recipient MUST

either reject the message as invalid or replace the duplicated field

values with a single valid Content-Length field containing that

decimal value prior to determining the message body length or

forwarding the message.

7.2.5. Content-Location

The "Content-Location" header field references a URI that can be

used as an identifier for a specific resource corresponding to the

representation in this message's payload. In other words, if one

were to perform a GET request on this URI at the time of this

message's generation, then a 200 (OK) response would contain the

same representation that is enclosed as payload in this message.

 Content-Location = absolute-URI / partial-URI

The field value is either an absolute-URI or a partial-URI. In the

latter case (Section 2.4), the referenced URI is relative to the

target URI ([RFC3986], Section 5).

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-5

The Content-Location value is not a replacement for the target URI

(Section 6.1). It is representation metadata. It has the same syntax

and semantics as the header field of the same name defined for MIME

body parts in Section 4 of [RFC2557]. However, its appearance in an

HTTP message has some special implications for HTTP recipients.

If Content-Location is included in a 2xx (Successful) response

message and its value refers (after conversion to absolute form) to

a URI that is the same as the target URI, then the recipient MAY

consider the payload to be a current representation of that resource

at the time indicated by the message origination date. For a GET

(Section 8.3.1) or HEAD (Section 8.3.2) request, this is the same as

the default semantics when no Content-Location is provided by the

server. For a state-changing request like PUT (Section 8.3.4) or

POST (Section 8.3.3), it implies that the server's response contains

the new representation of that resource, thereby distinguishing it

from representations that might only report about the action (e.g.,

"It worked!"). This allows authoring applications to update their

local copies without the need for a subsequent GET request.

If Content-Location is included in a 2xx (Successful) response

message and its field value refers to a URI that differs from the

target URI, then the origin server claims that the URI is an

identifier for a different resource corresponding to the enclosed

representation. Such a claim can only be trusted if both identifiers

share the same resource owner, which cannot be programmatically

determined via HTTP.

For a response to a GET or HEAD request, this is an indication

that the target URI refers to a resource that is subject to

content negotiation and the Content-Location field value is a

more specific identifier for the selected representation.

For a 201 (Created) response to a state-changing method, a

Content-Location field value that is identical to the Location

field value indicates that this payload is a current

representation of the newly created resource.

Otherwise, such a Content-Location indicates that this payload is

a representation reporting on the requested action's status and

that the same report is available (for future access with GET) at

the given URI. For example, a purchase transaction made via a

POST request might include a receipt document as the payload of

the 200 (OK) response; the Content-Location field value provides

an identifier for retrieving a copy of that same receipt in the

future.

A user agent that sends Content-Location in a request message is

stating that its value refers to where the user agent originally

¶

¶

¶

*

¶

*

¶

*

¶

https://rfc-editor.org/rfc/rfc2557#section-4

obtained the content of the enclosed representation (prior to any

modifications made by that user agent). In other words, the user

agent is providing a back link to the source of the original

representation.

An origin server that receives a Content-Location field in a request

message MUST treat the information as transitory request context

rather than as metadata to be saved verbatim as part of the

representation. An origin server MAY use that context to guide in

processing the request or to save it for other uses, such as within

source links or versioning metadata. However, an origin server MUST

NOT use such context information to alter the request semantics.

For example, if a client makes a PUT request on a negotiated

resource and the origin server accepts that PUT (without

redirection), then the new state of that resource is expected to be

consistent with the one representation supplied in that PUT; the

Content-Location cannot be used as a form of reverse content

selection identifier to update only one of the negotiated

representations. If the user agent had wanted the latter semantics,

it would have applied the PUT directly to the Content-Location URI.

7.3. Payload

Some HTTP messages transfer a complete or partial representation as

the message "payload". In some cases, a payload might contain only

the associated representation's header fields (e.g., responses to

HEAD) or only some part(s) of the representation data (e.g., the 206

(Partial Content) status code).

Header fields that specifically describe the payload, rather than

the associated representation, are referred to as "payload header

fields". Payload header fields are defined in other parts of this

specification, due to their impact on message parsing.

Field Name Defined in...

Content-Range Section 7.3.4

Trailer Section 5.6.3

Transfer-Encoding Section 6.1 of [Messaging]

Table 7

7.3.1. Purpose

The purpose of a payload in a request is defined by the method

semantics. For example, a representation in the payload of a PUT

request (Section 8.3.4) represents the desired state of the target

resource if the request is successfully applied, whereas a

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#field.transfer-encoding

representation in the payload of a POST request (Section 8.3.3)

represents information to be processed by the target resource.

In a response, the payload's purpose is defined by both the request

method and the response status code. For example, the payload of a

200 (OK) response to GET (Section 8.3.1) represents the current

state of the target resource, as observed at the time of the message

origination date (Section 11.1.1), whereas the payload of the same

status code in a response to POST might represent either the

processing result or the new state of the target resource after

applying the processing. Response messages with an error status code

usually contain a payload that represents the error condition, such

that it describes the error state and what next steps are suggested

for resolving it.

7.3.2. Identification

When a complete or partial representation is transferred in a

message payload, it is often desirable for the sender to supply, or

the recipient to determine, an identifier for a resource

corresponding to that representation.

For a request message:

If the request has a Content-Location header field, then the

sender asserts that the payload is a representation of the

resource identified by the Content-Location field value. However,

such an assertion cannot be trusted unless it can be verified by

other means (not defined by this specification). The information

might still be useful for revision history links.

Otherwise, the payload is unidentified.

For a response message, the following rules are applied in order

until a match is found:

If the request method is GET or HEAD and the response status

code is 200 (OK), 204 (No Content), 206 (Partial Content), or

304 (Not Modified), the payload is a representation of the

resource identified by the target URI (Section 6.1).

If the request method is GET or HEAD and the response status

code is 203 (Non-Authoritative Information), the payload is a

potentially modified or enhanced representation of the target

resource as provided by an intermediary.

If the response has a Content-Location header field and its

field value is a reference to the same URI as the target URI,

the payload is a representation of the target resource.

¶

¶

¶

¶

*

¶

* ¶

¶

1.

¶

2.

¶

3.

¶

If the response has a Content-Location header field and its

field value is a reference to a URI different from the target

URI, then the sender asserts that the payload is a

representation of the resource identified by the Content-

Location field value. However, such an assertion cannot be

trusted unless it can be verified by other means (not defined

by this specification).

Otherwise, the payload is unidentified.

7.3.3. Payload Body

The payload body contains the data of a request or response. This is

distinct from the message body (e.g., Section 6 of [Messaging]),

which is how the payload body is transferred "on the wire", and

might be encoded, depending on the HTTP version in use.

It is also distinct from a request or response's representation data

(Section 7.1), which can be inferred from protocol operation, rather

than necessarily appearing "on the wire."

The presence of a payload body in a request depends on whether the

request method used defines semantics for it.

The presence of a payload body in a response depends on both the

request method to which it is responding and the response status

code (Section 10).

Responses to the HEAD request method (Section 8.3.2) never include a

payload body because the associated response header fields indicate

only what their values would have been if the request method had

been GET (Section 8.3.1).

2xx (Successful) responses to a CONNECT request method (Section

8.3.6) switch the connection to tunnel mode instead of having a

payload body.

All 1xx (Informational), 204 (No Content), and 304 (Not Modified)

responses do not include a payload body.

All other responses do include a payload body, although that body

might be of zero length.

7.3.4. Content-Range

The "Content-Range" header field is sent in a single part 206

(Partial Content) response to indicate the partial range of the

selected representation enclosed as the message payload, sent in

each part of a multipart 206 response to indicate the range enclosed

4.

¶

5. ¶

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#message.body

within each body part, and sent in 416 (Range Not Satisfiable)

responses to provide information about the selected representation.

 Content-Range = range-unit SP

 (range-resp / unsatisfied-range)

 range-resp = incl-range "/" (complete-length / "*")

 incl-range = first-pos "-" last-pos

 unsatisfied-range = "*/" complete-length

 complete-length = 1*DIGIT

If a 206 (Partial Content) response contains a Content-Range header

field with a range unit (Section 7.1.4) that the recipient does not

understand, the recipient MUST NOT attempt to recombine it with a

stored representation. A proxy that receives such a message SHOULD

forward it downstream.

For byte ranges, a sender SHOULD indicate the complete length of the

representation from which the range has been extracted, unless the

complete length is unknown or difficult to determine. An asterisk

character ("*") in place of the complete-length indicates that the

representation length was unknown when the header field was

generated.

The following example illustrates when the complete length of the

selected representation is known by the sender to be 1234 bytes:

and this second example illustrates when the complete length is

unknown:

A Content-Range field value is invalid if it contains a range-resp

that has a last-pos value less than its first-pos value, or a

complete-length value less than or equal to its last-pos value. The

recipient of an invalid Content-Range MUST NOT attempt to recombine

the received content with a stored representation.

A server generating a 416 (Range Not Satisfiable) response to a

byte-range request SHOULD send a Content-Range header field with an

unsatisfied-range value, as in the following example:

¶

¶

¶

¶

¶

 Content-Range: bytes 42-1233/1234¶

¶

 Content-Range: bytes 42-1233/*¶

¶

¶

 Content-Range: bytes */1234¶

The complete-length in a 416 response indicates the current length

of the selected representation.

The Content-Range header field has no meaning for status codes that

do not explicitly describe its semantic. For this specification,

only the 206 (Partial Content) and 416 (Range Not Satisfiable)

status codes describe a meaning for Content-Range.

The following are examples of Content-Range values in which the

selected representation contains a total of 1234 bytes:

The first 500 bytes:

The second 500 bytes:

All except for the first 500 bytes:

The last 500 bytes:

7.3.5. Media Type multipart/byteranges

When a 206 (Partial Content) response message includes the content

of multiple ranges, they are transmitted as body parts in a

multipart message body ([RFC2046], Section 5.1) with the media type

of "multipart/byteranges".

The multipart/byteranges media type includes one or more body parts,

each with its own Content-Type and Content-Range fields. The

required boundary parameter specifies the boundary string used to

separate each body part.

Implementation Notes:

Additional CRLFs might precede the first boundary string in the

body.

Although [RFC2046] permits the boundary string to be quoted,

some existing implementations handle a quoted boundary string

incorrectly.

¶

¶

¶

* ¶

 Content-Range: bytes 0-499/1234¶

* ¶

 Content-Range: bytes 500-999/1234¶

* ¶

 Content-Range: bytes 500-1233/1234¶

* ¶

 Content-Range: bytes 734-1233/1234¶

¶

¶

¶

1.

¶

2.

¶

https://rfc-editor.org/rfc/rfc2046#section-5.1

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

A number of clients and servers were coded to an early draft of

the byteranges specification that used a media type of

multipart/x-byteranges , which is almost (but not quite)

compatible with this type.

Despite the name, the "multipart/byteranges" media type is not

limited to byte ranges. The following example uses an "exampleunit"

range unit:

The following information serves as the registration form for the

multipart/byteranges media type.

multipart

byteranges

boundary

N/A

only "7bit", "8bit", or "binary" are

permitted

see Section 12

N/A

This specification (see Section 7.3.5).

HTTP components supporting

multiple ranges in a single request.

3.

¶

¶

 HTTP/1.1 206 Partial Content

 Date: Tue, 14 Nov 1995 06:25:24 GMT

 Last-Modified: Tue, 14 July 04:58:08 GMT

 Content-Length: 2331785

 Content-Type: multipart/byteranges; boundary=THIS_STRING_SEPARATES

 --THIS_STRING_SEPARATES

 Content-Type: video/example

 Content-Range: exampleunit 1.2-4.3/25

 ...the first range...

 --THIS_STRING_SEPARATES

 Content-Type: video/example

 Content-Range: exampleunit 11.2-14.3/25

 ...the second range

 --THIS_STRING_SEPARATES--

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:

Magic number(s):

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

N/A

N/A

N/A

N/A

N/A

See

Authors' Addresses section.

COMMON

N/A

See Authors' Addresses section.

IESG

7.4. Content Negotiation

When responses convey payload information, whether indicating a

success or an error, the origin server often has different ways of

representing that information; for example, in different formats,

languages, or encodings. Likewise, different users or user agents

might have differing capabilities, characteristics, or preferences

that could influence which representation, among those available,

would be best to deliver. For this reason, HTTP provides mechanisms

for content negotiation.

This specification defines three patterns of content negotiation

that can be made visible within the protocol: "proactive"

negotiation, where the server selects the representation based upon

the user agent's stated preferences, "reactive" negotiation, where

the server provides a list of representations for the user agent to

choose from, and "request payload" negotiation, where the user agent

selects the representation for a future request based upon the

server's stated preferences in past responses. Other patterns of

content negotiation include "conditional content", where the

representation consists of multiple parts that are selectively

rendered based on user agent parameters, "active content", where the

representation contains a script that makes additional (more

specific) requests based on the user agent characteristics, and

"Transparent Content Negotiation" ([RFC2295]), where content

selection is performed by an intermediary. These patterns are not

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

mutually exclusive, and each has trade-offs in applicability and

practicality.

Note that, in all cases, HTTP is not aware of the resource

semantics. The consistency with which an origin server responds to

requests, over time and over the varying dimensions of content

negotiation, and thus the "sameness" of a resource's observed

representations over time, is determined entirely by whatever entity

or algorithm selects or generates those responses.

7.4.1. Proactive Negotiation

When content negotiation preferences are sent by the user agent in a

request to encourage an algorithm located at the server to select

the preferred representation, it is called proactive negotiation

(a.k.a., server-driven negotiation). Selection is based on the

available representations for a response (the dimensions over which

it might vary, such as language, content-coding, etc.) compared to

various information supplied in the request, including both the

explicit negotiation fields of Section 9.4 and implicit

characteristics, such as the client's network address or parts of

the User-Agent field.

Proactive negotiation is advantageous when the algorithm for

selecting from among the available representations is difficult to

describe to a user agent, or when the server desires to send its

"best guess" to the user agent along with the first response (hoping

to avoid the round trip delay of a subsequent request if the "best

guess" is good enough for the user). In order to improve the

server's guess, a user agent MAY send request header fields that

describe its preferences.

Proactive negotiation has serious disadvantages:

It is impossible for the server to accurately determine what

might be "best" for any given user, since that would require

complete knowledge of both the capabilities of the user agent and

the intended use for the response (e.g., does the user want to

view it on screen or print it on paper?);

Having the user agent describe its capabilities in every request

can be both very inefficient (given that only a small percentage

of responses have multiple representations) and a potential risk

to the user's privacy;

It complicates the implementation of an origin server and the

algorithms for generating responses to a request; and,

It limits the reusability of responses for shared caching.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

* ¶

A user agent cannot rely on proactive negotiation preferences being

consistently honored, since the origin server might not implement

proactive negotiation for the requested resource or might decide

that sending a response that doesn't conform to the user agent's

preferences is better than sending a 406 (Not Acceptable) response.

A Vary header field (Section 11.1.4) is often sent in a response

subject to proactive negotiation to indicate what parts of the

request information were used in the selection algorithm.

7.4.2. Reactive Negotiation

With reactive negotiation (a.k.a., agent-driven negotiation),

selection of the best response representation (regardless of the

status code) is performed by the user agent after receiving an

initial response from the origin server that contains a list of

resources for alternative representations. If the user agent is not

satisfied by the initial response representation, it can perform a

GET request on one or more of the alternative resources, selected

based on metadata included in the list, to obtain a different form

of representation for that response. Selection of alternatives might

be performed automatically by the user agent or manually by the user

selecting from a generated (possibly hypertext) menu.

Note that the above refers to representations of the response, in

general, not representations of the resource. The alternative

representations are only considered representations of the target

resource if the response in which those alternatives are provided

has the semantics of being a representation of the target resource

(e.g., a 200 (OK) response to a GET request) or has the semantics of

providing links to alternative representations for the target

resource (e.g., a 300 (Multiple Choices) response to a GET request).

A server might choose not to send an initial representation, other

than the list of alternatives, and thereby indicate that reactive

negotiation by the user agent is preferred. For example, the

alternatives listed in responses with the 300 (Multiple Choices) and

406 (Not Acceptable) status codes include information about the

available representations so that the user or user agent can react

by making a selection.

Reactive negotiation is advantageous when the response would vary

over commonly used dimensions (such as type, language, or encoding),

when the origin server is unable to determine a user agent's

capabilities from examining the request, and generally when public

caches are used to distribute server load and reduce network usage.

Reactive negotiation suffers from the disadvantages of transmitting

a list of alternatives to the user agent, which degrades user-

¶

¶

¶

¶

¶

¶

perceived latency if transmitted in the header section, and needing

a second request to obtain an alternate representation. Furthermore,

this specification does not define a mechanism for supporting

automatic selection, though it does not prevent such a mechanism

from being developed as an extension.

7.4.3. Request Payload Negotiation

When content negotiation preferences are sent in a server's

response, the listed preferences are called request payload

negotiation because they intend to influence selection of an

appropriate payload for subsequent requests to that resource. For

example, the Accept-Encoding field (Section 9.4.3) can be sent in a

response to indicate preferred content codings for subsequent

requests to that resource [RFC7694].

Similarly, Section 3.1 of [RFC5789] defines the "Accept-Patch"

response header field which allows discovery of which content types

are accepted in PATCH requests.

7.4.4. Quality Values

The content negotiation fields defined by this specification use a

common parameter, named "q" (case-insensitive), to assign a relative

"weight" to the preference for that associated kind of content. This

weight is referred to as a "quality value" (or "qvalue") because the

same parameter name is often used within server configurations to

assign a weight to the relative quality of the various

representations that can be selected for a resource.

The weight is normalized to a real number in the range 0 through 1,

where 0.001 is the least preferred and 1 is the most preferred; a

value of 0 means "not acceptable". If no "q" parameter is present,

the default weight is 1.

 weight = OWS ";" OWS "q=" qvalue

 qvalue = ("0" ["." 0*3DIGIT])

 / ("1" ["." 0*3("0")])

A sender of qvalue MUST NOT generate more than three digits after

the decimal point. User configuration of these values ought to be

limited in the same fashion.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5789#section-3.1

8. Request Methods

8.1. Overview

The request method token is the primary source of request semantics;

it indicates the purpose for which the client has made this request

and what is expected by the client as a successful result.

The request method's semantics might be further specialized by the

semantics of some header fields when present in a request (Section

9) if those additional semantics do not conflict with the method.

For example, a client can send conditional request header fields

(Section 9.2) to make the requested action conditional on the

current state of the target resource.

 method = token

HTTP was originally designed to be usable as an interface to

distributed object systems. The request method was envisioned as

applying semantics to a target resource in much the same way as

invoking a defined method on an identified object would apply

semantics.

The method token is case-sensitive because it might be used as a

gateway to object-based systems with case-sensitive method names. By

convention, standardized methods are defined in all-uppercase US-

ASCII letters.

Unlike distributed objects, the standardized request methods in HTTP

are not resource-specific, since uniform interfaces provide for

better visibility and reuse in network-based systems [REST]. Once

defined, a standardized method ought to have the same semantics when

applied to any resource, though each resource determines for itself

whether those semantics are implemented or allowed.

This specification defines a number of standardized methods that are

commonly used in HTTP, as outlined by the following table.

Method Description Sec.

GET
Transfer a current representation of the target

resource.
8.3.1

HEAD
Same as GET, but do not transfer the response

body.
8.3.2

POST
Perform resource-specific processing on the

request payload.
8.3.3

PUT 8.3.4

¶

¶

¶

¶

¶

¶

¶

Method Description Sec.

Replace all current representations of the target

resource with the request payload.

DELETE
Remove all current representations of the target

resource.
8.3.5

CONNECT
Establish a tunnel to the server identified by the

target resource.
8.3.6

OPTIONS
Describe the communication options for the target

resource.
8.3.7

TRACE
Perform a message loop-back test along the path to

the target resource.
8.3.8

Table 8

All general-purpose servers MUST support the methods GET and HEAD.

All other methods are OPTIONAL.

The set of methods allowed by a target resource can be listed in an

Allow header field (Section 11.4.2). However, the set of allowed

methods can change dynamically. When a request method is received

that is unrecognized or not implemented by an origin server, the

origin server SHOULD respond with the 501 (Not Implemented) status

code. When a request method is received that is known by an origin

server but not allowed for the target resource, the origin server

SHOULD respond with the 405 (Method Not Allowed) status code.

8.2. Common Method Properties

Method Safe Idempotent Reference

CONNECT no no Section 8.3.6

DELETE no yes Section 8.3.5

GET yes yes Section 8.3.1

HEAD yes yes Section 8.3.2

OPTIONS yes yes Section 8.3.7

POST no no Section 8.3.3

PUT no yes Section 8.3.4

TRACE yes yes Section 8.3.8

Table 9

8.2.1. Safe Methods

Request methods are considered "safe" if their defined semantics are

essentially read-only; i.e., the client does not request, and does

not expect, any state change on the origin server as a result of

applying a safe method to a target resource. Likewise, reasonable

use of a safe method is not expected to cause any harm, loss of

property, or unusual burden on the origin server.

¶

¶

¶

This definition of safe methods does not prevent an implementation

from including behavior that is potentially harmful, that is not

entirely read-only, or that causes side effects while invoking a

safe method. What is important, however, is that the client did not

request that additional behavior and cannot be held accountable for

it. For example, most servers append request information to access

log files at the completion of every response, regardless of the

method, and that is considered safe even though the log storage

might become full and crash the server. Likewise, a safe request

initiated by selecting an advertisement on the Web will often have

the side effect of charging an advertising account.

Of the request methods defined by this specification, the GET, HEAD,

OPTIONS, and TRACE methods are defined to be safe.

The purpose of distinguishing between safe and unsafe methods is to

allow automated retrieval processes (spiders) and cache performance

optimization (pre-fetching) to work without fear of causing harm. In

addition, it allows a user agent to apply appropriate constraints on

the automated use of unsafe methods when processing potentially

untrusted content.

A user agent SHOULD distinguish between safe and unsafe methods when

presenting potential actions to a user, such that the user can be

made aware of an unsafe action before it is requested.

When a resource is constructed such that parameters within the

target URI have the effect of selecting an action, it is the

resource owner's responsibility to ensure that the action is

consistent with the request method semantics. For example, it is

common for Web-based content editing software to use actions within

query parameters, such as "page?do=delete". If the purpose of such a

resource is to perform an unsafe action, then the resource owner

MUST disable or disallow that action when it is accessed using a

safe request method. Failure to do so will result in unfortunate

side effects when automated processes perform a GET on every URI

reference for the sake of link maintenance, pre-fetching, building a

search index, etc.

8.2.2. Idempotent Methods

A request method is considered "idempotent" if the intended effect

on the server of multiple identical requests with that method is the

same as the effect for a single such request. Of the request methods

defined by this specification, PUT, DELETE, and safe request methods

are idempotent.

Like the definition of safe, the idempotent property only applies to

what has been requested by the user; a server is free to log each

¶

¶

¶

¶

¶

¶

request separately, retain a revision control history, or implement

other non-idempotent side effects for each idempotent request.

Idempotent methods are distinguished because the request can be

repeated automatically if a communication failure occurs before the

client is able to read the server's response. For example, if a

client sends a PUT request and the underlying connection is closed

before any response is received, then the client can establish a new

connection and retry the idempotent request. It knows that repeating

the request will have the same intended effect, even if the original

request succeeded, though the response might differ.

A client SHOULD NOT automatically retry a request with a non-

idempotent method unless it has some means to know that the request

semantics are actually idempotent, regardless of the method, or some

means to detect that the original request was never applied.

For example, a user agent that knows (through design or

configuration) that a POST request to a given resource is safe can

repeat that request automatically. Likewise, a user agent designed

specifically to operate on a version control repository might be

able to recover from partial failure conditions by checking the

target resource revision(s) after a failed connection, reverting or

fixing any changes that were partially applied, and then

automatically retrying the requests that failed.

Some clients use weaker signals to initiate automatic retries. For

example, when a POST request is sent, but the underlying transport

connection is closed before any part of the response is received.

Although this is commonly implemented, it is not recommended.

A proxy MUST NOT automatically retry non-idempotent requests. A

client SHOULD NOT automatically retry a failed automatic retry.

8.2.3. Methods and Caching

For a cache to store and use a response, the associated method needs

to explicitly allow caching, and detail under what conditions a

response can be used to satisfy subsequent requests; a method

definition which does not do so cannot be cached. For additional

requirements see [Caching].

This specification defines caching semantics for GET, HEAD, and

POST, although the overwhelming majority of cache implementations

only support GET and HEAD.

8.3. Method Definitions

8.3.1. GET

¶

¶

¶

¶

¶

¶

¶

¶

The GET method requests transfer of a current selected

representation for the target resource. GET is the primary mechanism

of information retrieval and the focus of almost all performance

optimizations. Hence, when people speak of retrieving some

identifiable information via HTTP, they are generally referring to

making a GET request.

The GET method is specifically intended to reflect the quality of

"sameness" identified by the request URI as if it were referenced as

an ordinary hypertext link.

It is tempting to think of resource identifiers as remote file

system pathnames and of representations as being a copy of the

contents of such files. In fact, that is how many resources are

implemented (see Section 12.3 for related security considerations).

However, there are no such limitations in practice. The HTTP

interface for a resource is just as likely to be implemented as a

tree of content objects, a programmatic view on various database

records, or a gateway to other information systems. Even when the

URI mapping mechanism is tied to a file system, an origin server

might be configured to execute the files with the request as input

and send the output as the representation rather than transfer the

files directly. Regardless, only the origin server needs to know how

each of its resource identifiers corresponds to an implementation

and how each implementation manages to select and send a current

representation of the target resource in a response to GET.

A client can alter the semantics of GET to be a "range request",

requesting transfer of only some part(s) of the selected

representation, by sending a Range header field in the request

(Section 9.3).

A client SHOULD NOT generate a body in a GET request. A payload

received in a GET request has no defined semantics, cannot alter the

meaning or target of the request, and might lead some

implementations to reject the request and close the connection

because of its potential as a request smuggling attack (Section 11.2

of [Messaging]).

The response to a GET request is cacheable; a cache MAY use it to

satisfy subsequent GET and HEAD requests unless otherwise indicated

by the Cache-Control header field (Section 5.2 of [Caching]). A

cache that receives a payload in a GET request is likely to ignore

that payload and cache regardless of the payload contents.

8.3.2. HEAD

The HEAD method is identical to GET except that the server MUST NOT

send a message body in the response (i.e., the response terminates

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#request.smuggling
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#field.cache-control

at the end of the header section). The server SHOULD send the same

header fields in response to a HEAD request as it would have sent if

the request had been a GET, except that the payload header fields

(Section 7.3) MAY be omitted. This method can be used for obtaining

metadata about the selected representation without transferring the

representation data and is often used for testing hypertext links

for validity, accessibility, and recent modification.

A payload within a HEAD request message has no defined semantics;

sending a payload body on a HEAD request might cause some existing

implementations to reject the request.

The response to a HEAD request is cacheable; a cache MAY use it to

satisfy subsequent HEAD requests unless otherwise indicated by the

Cache-Control header field (Section 5.2 of [Caching]). A HEAD

response might also have an effect on previously cached responses to

GET; see Section 4.3.5 of [Caching].

8.3.3. POST

The POST method requests that the target resource process the

representation enclosed in the request according to the resource's

own specific semantics. For example, POST is used for the following

functions (among others):

Providing a block of data, such as the fields entered into an

HTML form, to a data-handling process;

Posting a message to a bulletin board, newsgroup, mailing list,

blog, or similar group of articles;

Creating a new resource that has yet to be identified by the

origin server; and

Appending data to a resource's existing representation(s).

An origin server indicates response semantics by choosing an

appropriate status code depending on the result of processing the

POST request; almost all of the status codes defined by this

specification might be received in a response to POST (the

exceptions being 206 (Partial Content), 304 (Not Modified), and 416

(Range Not Satisfiable)).

If one or more resources has been created on the origin server as a

result of successfully processing a POST request, the origin server

SHOULD send a 201 (Created) response containing a Location header

field that provides an identifier for the primary resource created

(Section 11.1.2) and a representation that describes the status of

the request while referring to the new resource(s).

¶

¶

¶

¶

*

¶

*

¶

*

¶

* ¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#field.cache-control
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#head.effects

Responses to POST requests are only cacheable when they include

explicit freshness information (see Section 4.2.1 of [Caching]) and

a Content-Location header field that has the same value as the

POST's target URI (Section 7.2.5). A cached POST response can be

reused to satisfy a later GET or HEAD request, but not a POST

request, since POST is required to be written through to the origin

server, because it is unsafe; see Section 4 of [Caching].

If the result of processing a POST would be equivalent to a

representation of an existing resource, an origin server MAY

redirect the user agent to that resource by sending a 303 (See

Other) response with the existing resource's identifier in the

Location field. This has the benefits of providing the user agent a

resource identifier and transferring the representation via a method

more amenable to shared caching, though at the cost of an extra

request if the user agent does not already have the representation

cached.

8.3.4. PUT

The PUT method requests that the state of the target resource be

created or replaced with the state defined by the representation

enclosed in the request message payload. A successful PUT of a given

representation would suggest that a subsequent GET on that same

target resource will result in an equivalent representation being

sent in a 200 (OK) response. However, there is no guarantee that

such a state change will be observable, since the target resource

might be acted upon by other user agents in parallel, or might be

subject to dynamic processing by the origin server, before any

subsequent GET is received. A successful response only implies that

the user agent's intent was achieved at the time of its processing

by the origin server.

If the target resource does not have a current representation and

the PUT successfully creates one, then the origin server MUST inform

the user agent by sending a 201 (Created) response. If the target

resource does have a current representation and that representation

is successfully modified in accordance with the state of the

enclosed representation, then the origin server MUST send either a

200 (OK) or a 204 (No Content) response to indicate successful

completion of the request.

An origin server SHOULD ignore unrecognized header and trailer

fields received in a PUT request (i.e., do not save them as part of

the resource state).

An origin server SHOULD verify that the PUT representation is

consistent with any constraints the server has for the target

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#calculating.freshness.lifetime
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#constructing.responses.from.caches

resource that cannot or will not be changed by the PUT. This is

particularly important when the origin server uses internal

configuration information related to the URI in order to set the

values for representation metadata on GET responses. When a PUT

representation is inconsistent with the target resource, the origin

server SHOULD either make them consistent, by transforming the

representation or changing the resource configuration, or respond

with an appropriate error message containing sufficient information

to explain why the representation is unsuitable. The 409 (Conflict)

or 415 (Unsupported Media Type) status codes are suggested, with the

latter being specific to constraints on Content-Type values.

For example, if the target resource is configured to always have a

Content-Type of "text/html" and the representation being PUT has a

Content-Type of "image/jpeg", the origin server ought to do one of:

reconfigure the target resource to reflect the new media type;

transform the PUT representation to a format consistent with

that of the resource before saving it as the new resource

state; or,

reject the request with a 415 (Unsupported Media Type) response

indicating that the target resource is limited to "text/html",

perhaps including a link to a different resource that would be

a suitable target for the new representation.

HTTP does not define exactly how a PUT method affects the state of

an origin server beyond what can be expressed by the intent of the

user agent request and the semantics of the origin server response.

It does not define what a resource might be, in any sense of that

word, beyond the interface provided via HTTP. It does not define how

resource state is "stored", nor how such storage might change as a

result of a change in resource state, nor how the origin server

translates resource state into representations. Generally speaking,

all implementation details behind the resource interface are

intentionally hidden by the server.

An origin server MUST NOT send a validator header field (Section

11.2), such as an ETag or Last-Modified field, in a successful

response to PUT unless the request's representation data was saved

without any transformation applied to the body (i.e., the resource's

new representation data is identical to the representation data

received in the PUT request) and the validator field value reflects

the new representation. This requirement allows a user agent to know

when the representation body it has in memory remains current as a

result of the PUT, thus not in need of being retrieved again from

the origin server, and that the new validator(s) received in the

¶

¶

a. ¶

b.

¶

c.

¶

¶

response can be used for future conditional requests in order to

prevent accidental overwrites (Section 9.2).

The fundamental difference between the POST and PUT methods is

highlighted by the different intent for the enclosed representation.

The target resource in a POST request is intended to handle the

enclosed representation according to the resource's own semantics,

whereas the enclosed representation in a PUT request is defined as

replacing the state of the target resource. Hence, the intent of PUT

is idempotent and visible to intermediaries, even though the exact

effect is only known by the origin server.

Proper interpretation of a PUT request presumes that the user agent

knows which target resource is desired. A service that selects a

proper URI on behalf of the client, after receiving a state-changing

request, SHOULD be implemented using the POST method rather than

PUT. If the origin server will not make the requested PUT state

change to the target resource and instead wishes to have it applied

to a different resource, such as when the resource has been moved to

a different URI, then the origin server MUST send an appropriate 3xx

(Redirection) response; the user agent MAY then make its own

decision regarding whether or not to redirect the request.

A PUT request applied to the target resource can have side effects

on other resources. For example, an article might have a URI for

identifying "the current version" (a resource) that is separate from

the URIs identifying each particular version (different resources

that at one point shared the same state as the current version

resource). A successful PUT request on "the current version" URI

might therefore create a new version resource in addition to

changing the state of the target resource, and might also cause

links to be added between the related resources.

An origin server that allows PUT on a given target resource MUST

send a 400 (Bad Request) response to a PUT request that contains a

Content-Range header field (Section 7.3.4), since the payload is

likely to be partial content that has been mistakenly PUT as a full

representation. Partial content updates are possible by targeting a

separately identified resource with state that overlaps a portion of

the larger resource, or by using a different method that has been

specifically defined for partial updates (for example, the PATCH

method defined in [RFC5789]).

Responses to the PUT method are not cacheable. If a successful PUT

request passes through a cache that has one or more stored responses

for the target URI, those stored responses will be invalidated (see

Section 4.4 of [Caching]).

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#invalidation

8.3.5. DELETE

The DELETE method requests that the origin server remove the

association between the target resource and its current

functionality. In effect, this method is similar to the rm command

in UNIX: it expresses a deletion operation on the URI mapping of the

origin server rather than an expectation that the previously

associated information be deleted.

If the target resource has one or more current representations, they

might or might not be destroyed by the origin server, and the

associated storage might or might not be reclaimed, depending

entirely on the nature of the resource and its implementation by the

origin server (which are beyond the scope of this specification).

Likewise, other implementation aspects of a resource might need to

be deactivated or archived as a result of a DELETE, such as database

or gateway connections. In general, it is assumed that the origin

server will only allow DELETE on resources for which it has a

prescribed mechanism for accomplishing the deletion.

Relatively few resources allow the DELETE method - its primary use

is for remote authoring environments, where the user has some

direction regarding its effect. For example, a resource that was

previously created using a PUT request, or identified via the

Location header field after a 201 (Created) response to a POST

request, might allow a corresponding DELETE request to undo those

actions. Similarly, custom user agent implementations that implement

an authoring function, such as revision control clients using HTTP

for remote operations, might use DELETE based on an assumption that

the server's URI space has been crafted to correspond to a version

repository.

If a DELETE method is successfully applied, the origin server SHOULD

send

a 202 (Accepted) status code if the action will likely succeed

but has not yet been enacted,

a 204 (No Content) status code if the action has been enacted and

no further information is to be supplied, or

a 200 (OK) status code if the action has been enacted and the

response message includes a representation describing the status.

A client SHOULD NOT generate a body in a DELETE request. A payload

received in a DELETE request has no defined semantics, cannot alter

the meaning or target of the request, and might lead some

implementations to reject the request.

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

Responses to the DELETE method are not cacheable. If a successful

DELETE request passes through a cache that has one or more stored

responses for the target URI, those stored responses will be

invalidated (see Section 4.4 of [Caching]).

8.3.6. CONNECT

The CONNECT method requests that the recipient establish a tunnel to

the destination origin server identified by the request target and,

if successful, thereafter restrict its behavior to blind forwarding

of data, in both directions, until the tunnel is closed. Tunnels are

commonly used to create an end-to-end virtual connection, through

one or more proxies, which can then be secured using TLS (Transport

Layer Security, [RFC8446]).

Because CONNECT changes the request/response nature of an HTTP

connection, specific HTTP versions might have different ways of

mapping its semantics into the protocol's wire format.

CONNECT is intended only for use in requests to a proxy. An origin

server that receives a CONNECT request for itself MAY respond with a

2xx (Successful) status code to indicate that a connection is

established. However, most origin servers do not implement CONNECT.

A client sending a CONNECT request MUST send the authority component

(described in Section 3.2 of [RFC3986]) as the request target; i.e.,

the request target consists of only the host name and port number of

the tunnel destination, separated by a colon. For example,

The recipient proxy can establish a tunnel either by directly

connecting to the request target or, if configured to use another

proxy, by forwarding the CONNECT request to the next inbound proxy.

Any 2xx (Successful) response indicates that the sender (and all

inbound proxies) will switch to tunnel mode immediately after the

blank line that concludes the successful response's header section;

data received after that blank line is from the server identified by

the request target. Any response other than a successful response

indicates that the tunnel has not yet been formed and that the

connection remains governed by HTTP.

A tunnel is closed when a tunnel intermediary detects that either

side has closed its connection: the intermediary MUST attempt to

send any outstanding data that came from the closed side to the

other side, close both connections, and then discard any remaining

data left undelivered.

¶

¶

¶

¶

¶

 CONNECT server.example.com:80 HTTP/1.1

 Host: server.example.com:80

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#invalidation

Proxy authentication might be used to establish the authority to

create a tunnel. For example,

There are significant risks in establishing a tunnel to arbitrary

servers, particularly when the destination is a well-known or

reserved TCP port that is not intended for Web traffic. For example,

a CONNECT to "example.com:25" would suggest that the proxy connect

to the reserved port for SMTP traffic; if allowed, that could trick

the proxy into relaying spam email. Proxies that support CONNECT

SHOULD restrict its use to a limited set of known ports or a

configurable whitelist of safe request targets.

A server MUST NOT send any Transfer-Encoding or Content-Length

header fields in a 2xx (Successful) response to CONNECT. A client

MUST ignore any Content-Length or Transfer-Encoding header fields

received in a successful response to CONNECT.

A payload within a CONNECT request message has no defined semantics;

sending a payload body on a CONNECT request might cause some

existing implementations to reject the request.

Responses to the CONNECT method are not cacheable.

8.3.7. OPTIONS

The OPTIONS method requests information about the communication

options available for the target resource, at either the origin

server or an intervening intermediary. This method allows a client

to determine the options and/or requirements associated with a

resource, or the capabilities of a server, without implying a

resource action.

An OPTIONS request with an asterisk ("*") as the request target

(Section 6.1) applies to the server in general rather than to a

specific resource. Since a server's communication options typically

depend on the resource, the "*" request is only useful as a "ping"

or "no-op" type of method; it does nothing beyond allowing the

client to test the capabilities of the server. For example, this can

be used to test a proxy for HTTP/1.1 conformance (or lack thereof).

If the request target is not an asterisk, the OPTIONS request

applies to the options that are available when communicating with

the target resource.

¶

 CONNECT server.example.com:80 HTTP/1.1

 Host: server.example.com:80

 Proxy-Authorization: basic aGVsbG86d29ybGQ=

¶

¶

¶

¶

¶

¶

¶

¶

A server generating a successful response to OPTIONS SHOULD send any

header that might indicate optional features implemented by the

server and applicable to the target resource (e.g., Allow),

including potential extensions not defined by this specification.

The response payload, if any, might also describe the communication

options in a machine or human-readable representation. A standard

format for such a representation is not defined by this

specification, but might be defined by future extensions to HTTP.

A client MAY send a Max-Forwards header field in an OPTIONS request

to target a specific recipient in the request chain (see Section

9.1.2). A proxy MUST NOT generate a Max-Forwards header field while

forwarding a request unless that request was received with a Max-

Forwards field.

A client that generates an OPTIONS request containing a payload body

MUST send a valid Content-Type header field describing the

representation media type. Note that this specification does not

define any use for such a payload.

Responses to the OPTIONS method are not cacheable.

8.3.8. TRACE

The TRACE method requests a remote, application-level loop-back of

the request message. The final recipient of the request SHOULD

reflect the message received, excluding some fields described below,

back to the client as the message body of a 200 (OK) response with a

Content-Type of "message/http" (Section 10.1 of [Messaging]). The

final recipient is either the origin server or the first server to

receive a Max-Forwards value of zero (0) in the request (Section

9.1.2).

A client MUST NOT generate fields in a TRACE request containing

sensitive data that might be disclosed by the response. For example,

it would be foolish for a user agent to send stored user credentials

Section 9.5 or cookies [RFC6265] in a TRACE request. The final

recipient of the request SHOULD exclude any request fields that are

likely to contain sensitive data when that recipient generates the

response body.

TRACE allows the client to see what is being received at the other

end of the request chain and use that data for testing or diagnostic

information. The value of the Via header field (Section 6.7.1) is of

particular interest, since it acts as a trace of the request chain.

Use of the Max-Forwards header field allows the client to limit the

length of the request chain, which is useful for testing a chain of

proxies forwarding messages in an infinite loop.

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#media.type.message.http

A client MUST NOT send a message body in a TRACE request.

Responses to the TRACE method are not cacheable.

8.4. Method Extensibility

Additional methods, outside the scope of this specification, have

been specified for use in HTTP. All such methods ought to be

registered within the "Hypertext Transfer Protocol (HTTP) Method

Registry".

8.4.1. Method Registry

The "Hypertext Transfer Protocol (HTTP) Method Registry", maintained

by IANA at <https://www.iana.org/assignments/http-methods>,

registers method names.

HTTP method registrations MUST include the following fields:

Method Name (see Section 8)

Safe ("yes" or "no", see Section 8.2.1)

Idempotent ("yes" or "no", see Section 8.2.2)

Pointer to specification text

Values to be added to this namespace require IETF Review (see

[RFC8126], Section 4.8).

8.4.2. Considerations for New Methods

Standardized methods are generic; that is, they are potentially

applicable to any resource, not just one particular media type, kind

of resource, or application. As such, it is preferred that new

methods be registered in a document that isn't specific to a single

application or data format, since orthogonal technologies deserve

orthogonal specification.

Since message parsing (Section 6 of [Messaging]) needs to be

independent of method semantics (aside from responses to HEAD),

definitions of new methods cannot change the parsing algorithm or

prohibit the presence of a message body on either the request or the

response message. Definitions of new methods can specify that only a

zero-length message body is allowed by requiring a Content-Length

header field with a value of "0".

A new method definition needs to indicate whether it is safe

(Section 8.2.1), idempotent (Section 8.2.2), cacheable (Section

8.2.3), what semantics are to be associated with the payload body if

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

https://www.iana.org/assignments/http-methods
https://rfc-editor.org/rfc/rfc8126#section-4.8
https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#message.body

any is present in the request and what refinements the method makes

to header field or status code semantics. If the new method is

cacheable, its definition ought to describe how, and under what

conditions, a cache can store a response and use it to satisfy a

subsequent request. The new method ought to describe whether it can

be made conditional (Section 9.2) and, if so, how a server responds

when the condition is false. Likewise, if the new method might have

some use for partial response semantics (Section 9.3), it ought to

document this, too.

Note: Avoid defining a method name that starts with "M-", since that

prefix might be misinterpreted as having the semantics assigned to

it by [RFC2774].

9. Request Header Fields

A client sends request header fields to provide more information

about the request context, make the request conditional based on the

target resource state, suggest preferred formats for the response,

supply authentication credentials, or modify the expected request

processing. These fields act as request modifiers, similar to the

parameters on a programming language method invocation.

9.1. Controls

Controls are request header fields that direct specific handling of

the request.

Field Name Defined in...

Cache-Control Section 5.2 of [Caching]

Expect Section 9.1.1

Host Section 6.6

Max-Forwards Section 9.1.2

Pragma Section 5.4 of [Caching]

TE Section 7.4 of [Messaging]

Table 10

9.1.1. Expect

The "Expect" header field in a request indicates a certain set of

behaviors (expectations) that need to be supported by the server in

order to properly handle this request. The only such expectation

defined by this specification is 100-continue.

 Expect = "100-continue"

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#field.cache-control
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#field.pragma
https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#field.te

The Expect field value is case-insensitive.

A server that receives an Expect field value other than 100-continue

MAY respond with a 417 (Expectation Failed) status code to indicate

that the unexpected expectation cannot be met.

A 100-continue expectation informs recipients that the client is

about to send a (presumably large) message body in this request and

wishes to receive a 100 (Continue) interim response if the method,

target URI, and header fields are not sufficient to cause an

immediate success, redirect, or error response. This allows the

client to wait for an indication that it is worthwhile to send the

message body before actually doing so, which can improve efficiency

when the message body is huge or when the client anticipates that an

error is likely (e.g., when sending a state-changing method, for the

first time, without previously verified authentication credentials).

For example, a request that begins with

allows the origin server to immediately respond with an error

message, such as 401 (Unauthorized) or 405 (Method Not Allowed),

before the client starts filling the pipes with an unnecessary data

transfer.

Requirements for clients:

A client MUST NOT generate a 100-continue expectation in a

request that does not include a message body.

A client that will wait for a 100 (Continue) response before

sending the request message body MUST send an Expect header field

containing a 100-continue expectation.

A client that sends a 100-continue expectation is not required to

wait for any specific length of time; such a client MAY proceed

to send the message body even if it has not yet received a

response. Furthermore, since 100 (Continue) responses cannot be

sent through an HTTP/1.0 intermediary, such a client SHOULD NOT

wait for an indefinite period before sending the message body.

A client that receives a 417 (Expectation Failed) status code in

response to a request containing a 100-continue expectation

SHOULD repeat that request without a 100-continue expectation,

¶

¶

¶

¶

 PUT /somewhere/fun HTTP/1.1

 Host: origin.example.com

 Content-Type: video/h264

 Content-Length: 1234567890987

 Expect: 100-continue

¶

¶

¶

*

¶

*

¶

*

¶

*

since the 417 response merely indicates that the response chain

does not support expectations (e.g., it passes through an HTTP/

1.0 server).

Requirements for servers:

A server that receives a 100-continue expectation in an HTTP/1.0

request MUST ignore that expectation.

A server MAY omit sending a 100 (Continue) response if it has

already received some or all of the message body for the

corresponding request, or if the framing indicates that there is

no message body.

A server that sends a 100 (Continue) response MUST ultimately

send a final status code, once the message body is received and

processed, unless the connection is closed prematurely.

A server that responds with a final status code before reading

the entire request payload body SHOULD indicate whether it

intends to close the connection (see Section 9.7 of [Messaging])

or continue reading the payload body.

An origin server MUST, upon receiving an HTTP/1.1 (or later) request

that has a method, target URI, and complete header section that

contains a 100-continue expectation and indicates a request message

body will follow, either send an immediate response with a final

status code, if that status can be determined by examining just the

method, target URI, and header fields, or send an immediate 100

(Continue) response to encourage the client to send the request's

message body. The origin server MUST NOT wait for the message body

before sending the 100 (Continue) response.

A proxy MUST, upon receiving an HTTP/1.1 (or later) request that has

a method, target URI, and complete header section that contains a

100-continue expectation and indicates a request message body will

follow, either send an immediate response with a final status code,

if that status can be determined by examining just the method,

target URI, and header fields, or begin forwarding the request

toward the origin server by sending a corresponding request-line and

header section to the next inbound server. If the proxy believes

(from configuration or past interaction) that the next inbound

server only supports HTTP/1.0, the proxy MAY generate an immediate

100 (Continue) response to encourage the client to begin sending the

message body.

Note: The Expect header field was added after the original

publication of HTTP/1.1 [RFC2068] as both the means to request an

interim 100 (Continue) response and the general mechanism for

indicating must-understand extensions. However, the extension

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#persistent.tear-down

mechanism has not been used by clients and the must-understand

requirements have not been implemented by many servers, rendering

the extension mechanism useless. This specification has removed the

extension mechanism in order to simplify the definition and

processing of 100-continue.

9.1.2. Max-Forwards

The "Max-Forwards" header field provides a mechanism with the TRACE

(Section 8.3.8) and OPTIONS (Section 8.3.7) request methods to limit

the number of times that the request is forwarded by proxies. This

can be useful when the client is attempting to trace a request that

appears to be failing or looping mid-chain.

 Max-Forwards = 1*DIGIT

The Max-Forwards value is a decimal integer indicating the remaining

number of times this request message can be forwarded.

Each intermediary that receives a TRACE or OPTIONS request

containing a Max-Forwards header field MUST check and update its

value prior to forwarding the request. If the received value is zero

(0), the intermediary MUST NOT forward the request; instead, the

intermediary MUST respond as the final recipient. If the received

Max-Forwards value is greater than zero, the intermediary MUST

generate an updated Max-Forwards field in the forwarded message with

a field value that is the lesser of a) the received value

decremented by one (1) or b) the recipient's maximum supported value

for Max-Forwards.

A recipient MAY ignore a Max-Forwards header field received with any

other request methods.

9.2. Preconditions

A conditional request is an HTTP request with one or more request

header fields that indicate a precondition to be tested before

applying the request method to the target resource. Section 9.2.1

defines when preconditions are applied. Section 9.2.2 defines the

order of evaluation when more than one precondition is present.

Conditional GET requests are the most efficient mechanism for HTTP

cache updates [Caching]. Conditionals can also be applied to state-

changing methods, such as PUT and DELETE, to prevent the "lost

¶

¶

¶

¶

¶

¶

¶

update" problem: one client accidentally overwriting the work of

another client that has been acting in parallel.

Conditional request preconditions are based on the state of the

target resource as a whole (its current value set) or the state as

observed in a previously obtained representation (one value in that

set). A resource might have multiple current representations, each

with its own observable state. The conditional request mechanisms

assume that the mapping of requests to a selected representation

(Section 7) will be consistent over time if the server intends to

take advantage of conditionals. Regardless, if the mapping is

inconsistent and the server is unable to select the appropriate

representation, then no harm will result when the precondition

evaluates to false.

The following request header fields allow a client to place a

precondition on the state of the target resource, so that the action

corresponding to the method semantics will not be applied if the

precondition evaluates to false. Each precondition defined by this

specification consists of a comparison between a set of validators

obtained from prior representations of the target resource to the

current state of validators for the selected representation (Section

11.2). Hence, these preconditions evaluate whether the state of the

target resource has changed since a given state known by the client.

The effect of such an evaluation depends on the method semantics and

choice of conditional, as defined in Section 9.2.1.

Field Name Defined in...

If-Match Section 9.2.3

If-None-Match Section 9.2.4

If-Modified-Since Section 9.2.5

If-Unmodified-Since Section 9.2.6

If-Range Section 9.2.7

Table 11

9.2.1. Evaluation

Except when excluded below, a recipient cache or origin server MUST

evaluate received request preconditions after it has successfully

performed its normal request checks and just before it would perform

the action associated with the request method. A server MUST ignore

all received preconditions if its response to the same request

without those conditions would have been a status code other than a

2xx (Successful) or 412 (Precondition Failed). In other words,

redirects and failures take precedence over the evaluation of

preconditions in conditional requests.

A server that is not the origin server for the target resource and

cannot act as a cache for requests on the target resource MUST NOT

¶

¶

¶

¶

evaluate the conditional request header fields defined by this

specification, and it MUST forward them if the request is forwarded,

since the generating client intends that they be evaluated by a

server that can provide a current representation. Likewise, a server

MUST ignore the conditional request header fields defined by this

specification when received with a request method that does not

involve the selection or modification of a selected representation,

such as CONNECT, OPTIONS, or TRACE.

Note that protocol extensions can modify the conditions under which

revalidation is triggered. For example, the "immutable" cache

directive (defined by [RFC8246]) instructs caches to forgo

revalidation of fresh responses even when requested by the client.

Conditional request header fields that are defined by extensions to

HTTP might place conditions on all recipients, on the state of the

target resource in general, or on a group of resources. For

instance, the "If" header field in WebDAV can make a request

conditional on various aspects of multiple resources, such as locks,

if the recipient understands and implements that field ([RFC4918],

Section 10.4).

Although conditional request header fields are defined as being

usable with the HEAD method (to keep HEAD's semantics consistent

with those of GET), there is no point in sending a conditional HEAD

because a successful response is around the same size as a 304 (Not

Modified) response and more useful than a 412 (Precondition Failed)

response.

9.2.2. Precedence

When more than one conditional request header field is present in a

request, the order in which the fields are evaluated becomes

important. In practice, the fields defined in this document are

consistently implemented in a single, logical order, since "lost

update" preconditions have more strict requirements than cache

validation, a validated cache is more efficient than a partial

response, and entity tags are presumed to be more accurate than date

validators.

A recipient cache or origin server MUST evaluate the request

preconditions defined by this specification in the following order:

When recipient is the origin server and If-Match is present,

evaluate the If-Match precondition:

if true, continue to step 3

¶

¶

¶

¶

¶

¶

1.

¶

* ¶

https://rfc-editor.org/rfc/rfc4918#section-10.4

if false, respond 412 (Precondition Failed) unless it can be

determined that the state-changing request has already

succeeded (see Section 9.2.3)

When recipient is the origin server, If-Match is not present,

and If-Unmodified-Since is present, evaluate the If-Unmodified-

Since precondition:

if true, continue to step 3

if false, respond 412 (Precondition Failed) unless it can be

determined that the state-changing request has already

succeeded (see Section 9.2.6)

When If-None-Match is present, evaluate the If-None-Match

precondition:

if true, continue to step 5

if false for GET/HEAD, respond 304 (Not Modified)

if false for other methods, respond 412 (Precondition

Failed)

When the method is GET or HEAD, If-None-Match is not present,

and If-Modified-Since is present, evaluate the If-Modified-

Since precondition:

if true, continue to step 5

if false, respond 304 (Not Modified)

When the method is GET and both Range and If-Range are present,

evaluate the If-Range precondition:

if the validator matches and the Range specification is

applicable to the selected representation, respond 206

(Partial Content)

Otherwise,

all conditions are met, so perform the requested action and

respond according to its success or failure.

Any extension to HTTP that defines additional conditional request

header fields ought to define its own expectations regarding the

order for evaluating such fields in relation to those defined in

this document and other conditionals that might be found in

practice.

*

¶

2.

¶

* ¶

*

¶

3.

¶

* ¶

* ¶

*

¶

4.

¶

* ¶

* ¶

5.

¶

*

¶

6. ¶

*

¶

¶

9.2.3. If-Match

The "If-Match" header field makes the request method conditional on

the recipient origin server either having at least one current

representation of the target resource, when the field value is "*",

or having a current representation of the target resource that has

an entity-tag matching a member of the list of entity-tags provided

in the field value.

An origin server MUST use the strong comparison function when

comparing entity-tags for If-Match (Section 11.2.3.2), since the

client intends this precondition to prevent the method from being

applied if there have been any changes to the representation data.

 If-Match = "*" / 1#entity-tag

Examples:

If-Match is most often used with state-changing methods (e.g., POST,

PUT, DELETE) to prevent accidental overwrites when multiple user

agents might be acting in parallel on the same resource (i.e., to

prevent the "lost update" problem). It can also be used with safe

methods to abort a request if the selected representation does not

match one already stored (or partially stored) from a prior request.

An origin server that receives an If-Match header field MUST

evaluate the condition as per Section 9.2.1 prior to performing the

method.

To evaluate a received If-Match header field:

If the field value is "*", the condition is true if the origin

server has a current representation for the target resource.

If the field value is a list of entity-tags, the condition is

true if any of the listed tags match the entity-tag of the

selected representation.

Otherwise, the condition is false.

An origin server MUST NOT perform the requested method if a received

If-Match condition evaluates to false; instead, the origin server

¶

¶

¶

¶

 If-Match: "xyzzy"

 If-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"

 If-Match: *

¶

¶

¶

¶

1.

¶

2.

¶

3. ¶

MUST respond with either a) the 412 (Precondition Failed) status

code or b) one of the 2xx (Successful) status codes if the origin

server has verified that a state change is being requested and the

final state is already reflected in the current state of the target

resource (i.e., the change requested by the user agent has already

succeeded, but the user agent might not be aware of it, perhaps

because the prior response was lost or a compatible change was made

by some other user agent). In the latter case, the origin server

MUST NOT send a validator header field in the response unless it can

verify that the request is a duplicate of an immediately prior

change made by the same user agent.

The If-Match header field can be ignored by caches and

intermediaries because it is not applicable to a stored response.

Note that an If-Match header field with a list value containing "*"

and other values (including other instances of "*") is unlikely to

be interoperable.

9.2.4. If-None-Match

The "If-None-Match" header field makes the request method

conditional on a recipient cache or origin server either not having

any current representation of the target resource, when the field

value is "*", or having a selected representation with an entity-tag

that does not match any of those listed in the field value.

A recipient MUST use the weak comparison function when comparing

entity-tags for If-None-Match (Section 11.2.3.2), since weak entity-

tags can be used for cache validation even if there have been

changes to the representation data.

 If-None-Match = "*" / 1#entity-tag

Examples:

If-None-Match is primarily used in conditional GET requests to

enable efficient updates of cached information with a minimum amount

of transaction overhead. When a client desires to update one or more

stored responses that have entity-tags, the client SHOULD generate

¶

¶

¶

¶

¶

¶

¶

 If-None-Match: "xyzzy"

 If-None-Match: W/"xyzzy"

 If-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"

 If-None-Match: W/"xyzzy", W/"r2d2xxxx", W/"c3piozzzz"

 If-None-Match: *

¶

an If-None-Match header field containing a list of those entity-tags

when making a GET request; this allows recipient servers to send a

304 (Not Modified) response to indicate when one of those stored

responses matches the selected representation.

If-None-Match can also be used with a value of "*" to prevent an

unsafe request method (e.g., PUT) from inadvertently modifying an

existing representation of the target resource when the client

believes that the resource does not have a current representation

(Section 8.2.1). This is a variation on the "lost update" problem

that might arise if more than one client attempts to create an

initial representation for the target resource.

An origin server that receives an If-None-Match header field MUST

evaluate the condition as per Section 9.2.1 prior to performing the

method.

To evaluate a received If-None-Match header field:

If the field value is "*", the condition is false if the origin

server has a current representation for the target resource.

If the field value is a list of entity-tags, the condition is

false if one of the listed tags matches the entity-tag of the

selected representation.

Otherwise, the condition is true.

An origin server MUST NOT perform the requested method if the

condition evaluates to false; instead, the origin server MUST

respond with either a) the 304 (Not Modified) status code if the

request method is GET or HEAD or b) the 412 (Precondition Failed)

status code for all other request methods.

Requirements on cache handling of a received If-None-Match header

field are defined in Section 4.3.2 of [Caching].

Note that an If-None-Match header field with a list value containing

"*" and other values (including other instances of "*") is unlikely

to be interoperable.

9.2.5. If-Modified-Since

The "If-Modified-Since" header field makes a GET or HEAD request

method conditional on the selected representation's modification

date being more recent than the date provided in the field value.

Transfer of the selected representation's data is avoided if that

data has not changed.

¶

¶

¶

¶

1.

¶

2.

¶

3. ¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#validation.received

 If-Modified-Since = HTTP-date

An example of the field is:

A recipient MUST ignore If-Modified-Since if the request contains an

If-None-Match header field; the condition in If-None-Match is

considered to be a more accurate replacement for the condition in

If-Modified-Since, and the two are only combined for the sake of

interoperating with older intermediaries that might not implement

If-None-Match.

A recipient MUST ignore the If-Modified-Since header field if the

received field value is not a valid HTTP-date, or if the request

method is neither GET nor HEAD.

A recipient MUST interpret an If-Modified-Since field value's

timestamp in terms of the origin server's clock.

If-Modified-Since is typically used for two distinct purposes: 1) to

allow efficient updates of a cached representation that does not

have an entity-tag and 2) to limit the scope of a web traversal to

resources that have recently changed.

When used for cache updates, a cache will typically use the value of

the cached message's Last-Modified field to generate the field value

of If-Modified-Since. This behavior is most interoperable for cases

where clocks are poorly synchronized or when the server has chosen

to only honor exact timestamp matches (due to a problem with Last-

Modified dates that appear to go "back in time" when the origin

server's clock is corrected or a representation is restored from an

archived backup). However, caches occasionally generate the field

value based on other data, such as the Date header field of the

cached message or the local clock time that the message was

received, particularly when the cached message does not contain a

Last-Modified field.

When used for limiting the scope of retrieval to a recent time

window, a user agent will generate an If-Modified-Since field value

based on either its own local clock or a Date header field received

from the server in a prior response. Origin servers that choose an

exact timestamp match based on the selected representation's Last-

Modified field will not be able to help the user agent limit its

data transfers to only those changed during the specified window.

An origin server that receives an If-Modified-Since header field

SHOULD evaluate the condition as per Section 9.2.1 prior to

¶

¶

 If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT¶

¶

¶

¶

¶

¶

¶

performing the method. The origin server SHOULD NOT perform the

requested method if the selected representation's last modification

date is earlier than or equal to the date provided in the field

value; instead, the origin server SHOULD generate a 304 (Not

Modified) response, including only those metadata that are useful

for identifying or updating a previously cached response.

Requirements on cache handling of a received If-Modified-Since

header field are defined in Section 4.3.2 of [Caching].

9.2.6. If-Unmodified-Since

The "If-Unmodified-Since" header field makes the request method

conditional on the selected representation's last modification date

being earlier than or equal to the date provided in the field value.

This field accomplishes the same purpose as If-Match for cases where

the user agent does not have an entity-tag for the representation.

 If-Unmodified-Since = HTTP-date

An example of the field is:

A recipient MUST ignore If-Unmodified-Since if the request contains

an If-Match header field; the condition in If-Match is considered to

be a more accurate replacement for the condition in If-Unmodified-

Since, and the two are only combined for the sake of interoperating

with older intermediaries that might not implement If-Match.

A recipient MUST ignore the If-Unmodified-Since header field if the

received field value is not a valid HTTP-date.

A recipient MUST interpret an If-Unmodified-Since field value's

timestamp in terms of the origin server's clock.

If-Unmodified-Since is most often used with state-changing methods

(e.g., POST, PUT, DELETE) to prevent accidental overwrites when

multiple user agents might be acting in parallel on a resource that

does not supply entity-tags with its representations (i.e., to

prevent the "lost update" problem). It can also be used with safe

methods to abort a request if the selected representation does not

match one already stored (or partially stored) from a prior request.

¶

¶

¶

¶

¶

 If-Unmodified-Since: Sat, 29 Oct 1994 19:43:31 GMT¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#validation.received

An origin server that receives an If-Unmodified-Since header field

MUST evaluate the condition as per Section 9.2.1 prior to performing

the method.

If the selected representation has a last modification date, the

origin server MUST NOT perform the requested method if that date is

more recent than the date provided in the field value. Instead, the

origin server MUST respond with either a) the 412 (Precondition

Failed) status code or b) one of the 2xx (Successful) status codes

if the origin server has verified that a state change is being

requested and the final state is already reflected in the current

state of the target resource (i.e., the change requested by the user

agent has already succeeded, but the user agent might not be aware

of that because the prior response message was lost or a compatible

change was made by some other user agent). In the latter case, the

origin server MUST NOT send a validator header field in the response

unless it can verify that the request is a duplicate of an

immediately prior change made by the same user agent.

The If-Unmodified-Since header field can be ignored by caches and

intermediaries because it is not applicable to a stored response.

9.2.7. If-Range

The "If-Range" header field provides a special conditional request

mechanism that is similar to the If-Match and If-Unmodified-Since

header fields but that instructs the recipient to ignore the Range

header field if the validator doesn't match, resulting in transfer

of the new selected representation instead of a 412 (Precondition

Failed) response.

If a client has a partial copy of a representation and wishes to

have an up-to-date copy of the entire representation, it could use

the Range header field with a conditional GET (using either or both

of If-Unmodified-Since and If-Match.) However, if the precondition

fails because the representation has been modified, the client would

then have to make a second request to obtain the entire current

representation.

The "If-Range" header field allows a client to "short-circuit" the

second request. Informally, its meaning is as follows: if the

representation is unchanged, send me the part(s) that I am

requesting in Range; otherwise, send me the entire representation.

 If-Range = entity-tag / HTTP-date

¶

¶

¶

¶

¶

¶

¶

A client MUST NOT generate an If-Range header field in a request

that does not contain a Range header field. A server MUST ignore an

If-Range header field received in a request that does not contain a

Range header field. An origin server MUST ignore an If-Range header

field received in a request for a target resource that does not

support Range requests.

A client MUST NOT generate an If-Range header field containing an

entity-tag that is marked as weak. A client MUST NOT generate an If-

Range header field containing an HTTP-date unless the client has no

entity-tag for the corresponding representation and the date is a

strong validator in the sense defined by Section 11.2.2.2.

A server that evaluates an If-Range precondition MUST use the strong

comparison function when comparing entity-tags (Section 11.2.3.2)

and MUST evaluate the condition as false if an HTTP-date validator

is provided that is not a strong validator in the sense defined by

Section 11.2.2.2. A valid entity-tag can be distinguished from a

valid HTTP-date by examining the first two characters for a DQUOTE.

If the validator given in the If-Range header field matches the

current validator for the selected representation of the target

resource, then the server SHOULD process the Range header field as

requested. If the validator does not match, the server MUST ignore

the Range header field. Note that this comparison by exact match,

including when the validator is an HTTP-date, differs from the

"earlier than or equal to" comparison used when evaluating an If-

Unmodified-Since conditional.

9.3. Range

The "Range" header field on a GET request modifies the method

semantics to request transfer of only one or more subranges of the

selected representation data (Section 7.1), rather than the entire

selected representation.

 Range = ranges-specifier

Clients often encounter interrupted data transfers as a result of

canceled requests or dropped connections. When a client has stored a

partial representation, it is desirable to request the remainder of

that representation in a subsequent request rather than transfer the

entire representation. Likewise, devices with limited local storage

might benefit from being able to request only a subset of a larger

representation, such as a single page of a very large document, or

the dimensions of an embedded image.

¶

¶

¶

¶

¶

¶

¶

Range requests are an OPTIONAL feature of HTTP, designed so that

recipients not implementing this feature (or not supporting it for

the target resource) can respond as if it is a normal GET request

without impacting interoperability. Partial responses are indicated

by a distinct status code to not be mistaken for full responses by

caches that might not implement the feature.

A server MAY ignore the Range header field. However, origin servers

and intermediate caches ought to support byte ranges when possible,

since they support efficient recovery from partially failed

transfers and partial retrieval of large representations. A server

MUST ignore a Range header field received with a request method

other than GET.

Although the range request mechanism is designed to allow for

extensible range types, this specification only defines requests for

byte ranges.

An origin server MUST ignore a Range header field that contains a

range unit it does not understand. A proxy MAY discard a Range

header field that contains a range unit it does not understand.

A server that supports range requests MAY ignore or reject a Range

header field that consists of more than two overlapping ranges, or a

set of many small ranges that are not listed in ascending order,

since both are indications of either a broken client or a deliberate

denial-of-service attack (Section 12.13). A client SHOULD NOT

request multiple ranges that are inherently less efficient to

process and transfer than a single range that encompasses the same

data.

A server that supports range requests MAY ignore a Range header

field when the selected representation has no body (i.e., the

selected representation data is of zero length).

A client that is requesting multiple ranges SHOULD list those ranges

in ascending order (the order in which they would typically be

received in a complete representation) unless there is a specific

need to request a later part earlier. For example, a user agent

processing a large representation with an internal catalog of parts

might need to request later parts first, particularly if the

representation consists of pages stored in reverse order and the

user agent wishes to transfer one page at a time.

The Range header field is evaluated after evaluating the

precondition header fields defined in Section 9.2, and only if the

result in absence of the Range header field would be a 200 (OK)

response. In other words, Range is ignored when a conditional GET

would result in a 304 (Not Modified) response.

¶

¶

¶

¶

¶

¶

¶

¶

The If-Range header field (Section 9.2.7) can be used as a

precondition to applying the Range header field.

If all of the preconditions are true, the server supports the Range

header field for the target resource, and the specified range(s) are

valid and satisfiable (as defined in Section 7.1.4.2), the server

SHOULD send a 206 (Partial Content) response with a payload

containing one or more partial representations that correspond to

the satisfiable ranges requested.

If all of the preconditions are true, the server supports the Range

header field for the target resource, and the specified range(s) are

invalid or unsatisfiable, the server SHOULD send a 416 (Range Not

Satisfiable) response.

9.4. Negotiation

The following request header fields can be sent by a user agent to

engage in proactive negotiation of the response content, as defined

in Section 7.4.1. The preferences sent in these fields apply to any

content in the response, including representations of the target

resource, representations of error or processing status, and

potentially even the miscellaneous text strings that might appear

within the protocol.

Field Name Defined in...

Accept Section 9.4.1

Accept-Charset Section 9.4.2

Accept-Encoding Section 9.4.3

Accept-Language Section 9.4.4

Table 12

For each of these header fields, a request that does not contain it

implies that the user agent has no preference on that axis of

negotiation. If the header field is present in a request and none of

the available representations for the response can be considered

acceptable according to it, the origin server can either honor the

header field by sending a 406 (Not Acceptable) response or disregard

the header field by treating the response as if it is not subject to

content negotiation for that request header field. This does not

imply, however, that the client will be able to use the

representation.

Note: Sending these header fields makes it easier for a server to

identify an individual by virtue of the user agent's request

characteristics (Section 12.11).

Each of these header fields defines a wildcard value (often, "*") to

select unspecified values. If no wildcard is present, all values not

¶

¶

¶

¶

¶

¶

explicitly mentioned in the field are considered "not acceptable" to

the client.

Note: In practice, using wildcards in content negotiation has

limited practical value, because it is seldom useful to say, for

example, "I prefer image/* more or less than (some other specific

value)". Clients can explicitly request a 406 (Not Acceptable)

response if a more preferred format is not available by sending

Accept: */*;q=0, but they still need to be able to handle a

different response, since the server is allowed to ignore their

preference.

9.4.1. Accept

The "Accept" header field can be used by user agents to specify

their preferences regarding response media types. For example,

Accept header fields can be used to indicate that the request is

specifically limited to a small set of desired types, as in the case

of a request for an in-line image.

When sent by a server in a response, Accept provides information

about what content types are preferred in the payload of a

subsequent request to the same resource.

 Accept = #(media-range [accept-params])

 media-range = ("*/*"

 / (type "/" "*")

 / (type "/" subtype)

) *(OWS ";" OWS parameter)

 accept-params = weight *(accept-ext)

 accept-ext = OWS ";" OWS token ["=" (token / quoted-string)]

The asterisk "*" character is used to group media types into ranges,

with "*/*" indicating all media types and "type/*" indicating all

subtypes of that type. The media-range can include media type

parameters that are applicable to that range.

Each media-range might be followed by zero or more applicable media

type parameters (e.g., charset), an optional "q" parameter for

indicating a relative weight (Section 7.4.4), and then zero or more

extension parameters. The "q" parameter is necessary if any

extensions (accept-ext) are present, since it acts as a separator

between the two parameter sets.

¶

¶

¶

¶

¶

¶

¶

Note: Use of the "q" parameter name to separate media type

parameters from Accept extension parameters is due to historical

practice. Although this prevents any media type parameter named "q"

from being used with a media range, such an event is believed to be

unlikely given the lack of any "q" parameters in the IANA media type

registry and the rare usage of any media type parameters in Accept.

Future media types are discouraged from registering any parameter

named "q".

The example

is interpreted as "I prefer audio/basic, but send me any audio type

if it is the best available after an 80% markdown in quality".

A more elaborate example is

Verbally, this would be interpreted as "text/html and text/x-c are

the equally preferred media types, but if they do not exist, then

send the text/x-dvi representation, and if that does not exist, send

the text/plain representation".

Media ranges can be overridden by more specific media ranges or

specific media types. If more than one media range applies to a

given type, the most specific reference has precedence. For example,

have the following precedence:

text/plain;format=flowed

text/plain

text/*

/

The media type quality factor associated with a given type is

determined by finding the media range with the highest precedence

that matches the type. For example,

would cause the following values to be associated:

¶

¶

 Accept: audio/*; q=0.2, audio/basic¶

¶

¶

 Accept: text/plain; q=0.5, text/html,

 text/x-dvi; q=0.8, text/x-c

¶

¶

¶

 Accept: text/*, text/plain, text/plain;format=flowed, */*¶

¶

1. ¶

2. ¶

3. ¶

4. ¶

¶

 Accept: text/*;q=0.3, text/plain;q=0.7, text/plain;format=flowed,

 text/plain;format=fixed;q=0.4, */*;q=0.5

¶

¶

Media Type Quality Value

text/plain;format=flowed 1

text/plain 0.7

text/html 0.3

image/jpeg 0.5

text/plain;format=fixed 0.4

text/html;level=3 0.7

Table 13

Note: A user agent might be provided with a default set of quality

values for certain media ranges. However, unless the user agent is a

closed system that cannot interact with other rendering agents, this

default set ought to be configurable by the user.

9.4.2. Accept-Charset

The "Accept-Charset" header field can be sent by a user agent to

indicate its preferences for charsets in textual response content.

For example, this field allows user agents capable of understanding

more comprehensive or special-purpose charsets to signal that

capability to an origin server that is capable of representing

information in those charsets.

 Accept-Charset = 1#((charset / "*") [weight])

Charset names are defined in Section 7.1.1.1. A user agent MAY

associate a quality value with each charset to indicate the user's

relative preference for that charset, as defined in Section 7.4.4.

An example is

The special value "*", if present in the Accept-Charset field,

matches every charset that is not mentioned elsewhere in the Accept-

Charset field.

Note: Accept-Charset is deprecated because UTF-8 has become nearly

ubiquitous and sending a detailed list of user-preferred charsets

wastes bandwidth, increases latency, and makes passive

fingerprinting far too easy (Section 12.11). Most general-purpose

user agents do not send Accept-Charset, unless specifically

configured to do so.

9.4.3. Accept-Encoding

¶

¶

¶

¶

 Accept-Charset: iso-8859-5, unicode-1-1;q=0.8¶

¶

¶

The "Accept-Encoding" header field can be used to indicate

preferences regarding the use of content codings (Section 7.1.2).

When sent by a user agent in a request, Accept-Encoding indicates

the content codings acceptable in a response.

When sent by a server in a response, Accept-Encoding provides

information about what content codings are preferred in the payload

of a subsequent request to the same resource.

An "identity" token is used as a synonym for "no encoding" in order

to communicate when no encoding is preferred.

 Accept-Encoding = #(codings [weight])

 codings = content-coding / "identity" / "*"

Each codings value MAY be given an associated quality value

representing the preference for that encoding, as defined in Section

7.4.4. The asterisk "*" symbol in an Accept-Encoding field matches

any available content-coding not explicitly listed in the header

field.

For example,

A server tests whether a content-coding for a given representation

is acceptable using these rules:

If no Accept-Encoding field is in the request, any content-

coding is considered acceptable by the user agent.

If the representation has no content-coding, then it is

acceptable by default unless specifically excluded by the

Accept-Encoding field stating either "identity;q=0" or "*;q=0"

without a more specific entry for "identity".

If the representation's content-coding is one of the content-

codings listed in the Accept-Encoding field value, then it is

acceptable unless it is accompanied by a qvalue of 0. (As

defined in Section 7.4.4, a qvalue of 0 means "not

acceptable".)

¶

¶

¶

¶

¶

¶

¶

 Accept-Encoding: compress, gzip

 Accept-Encoding:

 Accept-Encoding: *

 Accept-Encoding: compress;q=0.5, gzip;q=1.0

 Accept-Encoding: gzip;q=1.0, identity; q=0.5, *;q=0

¶

¶

1.

¶

2.

¶

3.

¶

If multiple content-codings are acceptable, then the acceptable

content-coding with the highest non-zero qvalue is preferred.

An Accept-Encoding header field with a field value that is empty

implies that the user agent does not want any content-coding in

response. If an Accept-Encoding header field is present in a request

and none of the available representations for the response have a

content-coding that is listed as acceptable, the origin server

SHOULD send a response without any content-coding.

When the Accept-Encoding header field is present in a response, it

indicates what content codings the resource was willing to accept in

the associated request. The field value is evaluated the same way as

in a request.

Note that this information is specific to the associated request;

the set of supported encodings might be different for other

resources on the same server and could change over time or depend on

other aspects of the request (such as the request method).

Servers that fail a request due to an unsupported content coding

ought to respond with a 415 (Unsupported Media Type) status and

include an Accept-Encoding header field in that response, allowing

clients to distinguish between issues related to content codings and

media types. In order to avoid confusion with issues related to

media types, servers that fail a request with a 415 status for

reasons unrelated to content codings MUST NOT include the Accept-

Encoding header field.

The most common use of Accept-Encoding is in responses with a 415

(Unsupported Media Type) status code, in response to optimistic use

of a content coding by clients. However, the header field can also

be used to indicate to clients that content codings are supported,

to optimize future interactions. For example, a resource might

include it in a 2xx (Successful) response when the request payload

was big enough to justify use of a compression coding but the client

failed do so.

Note: Most HTTP/1.0 applications do not recognize or obey qvalues

associated with content-codings. This means that qvalues might not

work and are not permitted with x-gzip or x-compress.

9.4.4. Accept-Language

The "Accept-Language" header field can be used by user agents to

indicate the set of natural languages that are preferred in the

response. Language tags are defined in Section 7.1.3.

4.

¶

¶

¶

¶

¶

¶

¶

¶

 Accept-Language = 1#(language-range [weight])

 language-range =

 <language-range, see [RFC4647], Section 2.1>

Each language-range can be given an associated quality value

representing an estimate of the user's preference for the languages

specified by that range, as defined in Section 7.4.4. For example,

would mean: "I prefer Danish, but will accept British English and

other types of English".

Note that some recipients treat the order in which language tags are

listed as an indication of descending priority, particularly for

tags that are assigned equal quality values (no value is the same as

q=1). However, this behavior cannot be relied upon. For consistency

and to maximize interoperability, many user agents assign each

language tag a unique quality value while also listing them in order

of decreasing quality. Additional discussion of language priority

lists can be found in Section 2.3 of [RFC4647].

For matching, Section 3 of [RFC4647] defines several matching

schemes. Implementations can offer the most appropriate matching

scheme for their requirements. The "Basic Filtering" scheme

([RFC4647], Section 3.3.1) is identical to the matching scheme that

was previously defined for HTTP in Section 14.4 of [RFC2616].

It might be contrary to the privacy expectations of the user to send

an Accept-Language header field with the complete linguistic

preferences of the user in every request (Section 12.11).

Since intelligibility is highly dependent on the individual user,

user agents need to allow user control over the linguistic

preference (either through configuration of the user agent itself or

by defaulting to a user controllable system setting). A user agent

that does not provide such control to the user MUST NOT send an

Accept-Language header field.

Note: User agents ought to provide guidance to users when setting a

preference, since users are rarely familiar with the details of

language matching as described above. For example, users might

assume that on selecting "en-gb", they will be served any kind of

English document if British English is not available. A user agent

might suggest, in such a case, to add "en" to the list for better

matching behavior.

¶

¶

 Accept-Language: da, en-gb;q=0.8, en;q=0.7¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc4647#section-2.3
https://rfc-editor.org/rfc/rfc4647#section-3
https://rfc-editor.org/rfc/rfc4647#section-3.3.1
https://rfc-editor.org/rfc/rfc2616#section-14.4

9.5. Authentication Credentials

HTTP provides a general framework for access control and

authentication, via an extensible set of challenge-response

authentication schemes, which can be used by a server to challenge a

client request and by a client to provide authentication

information.

Two header fields are used for carrying authentication credentials.

Note that various custom mechanisms for user authentication use the

Cookie header field for this purpose, as defined in [RFC6265].

Field Name Defined in...

Authorization Section 9.5.3

Proxy-Authorization Section 9.5.4

Table 14

9.5.1. Challenge and Response

HTTP provides a simple challenge-response authentication framework

that can be used by a server to challenge a client request and by a

client to provide authentication information. It uses a case-

insensitive token as a means to identify the authentication scheme,

followed by additional information necessary for achieving

authentication via that scheme. The latter can be either a comma-

separated list of parameters or a single sequence of characters

capable of holding base64-encoded information.

Authentication parameters are name=value pairs, where the name token

is matched case-insensitively, and each parameter name MUST only

occur once per challenge.

 auth-scheme = token

 auth-param = token BWS "=" BWS (token / quoted-string)

 token68 = 1*(ALPHA / DIGIT /

 "-" / "." / "_" / "~" / "+" / "/") *"="

The token68 syntax allows the 66 unreserved URI characters

([RFC3986]), plus a few others, so that it can hold a base64,

base64url (URL and filename safe alphabet), base32, or base16 (hex)

encoding, with or without padding, but excluding whitespace

([RFC4648]).

A 401 (Unauthorized) response message is used by an origin server to

challenge the authorization of a user agent, including a WWW-

¶

¶

¶

¶

¶

¶

Authenticate header field containing at least one challenge

applicable to the requested resource.

A 407 (Proxy Authentication Required) response message is used by a

proxy to challenge the authorization of a client, including a Proxy-

Authenticate header field containing at least one challenge

applicable to the proxy for the requested resource.

 challenge = auth-scheme [1*SP (token68 / #auth-param)]

Note: Many clients fail to parse a challenge that contains an

unknown scheme. A workaround for this problem is to list well-

supported schemes (such as "basic") first.

A user agent that wishes to authenticate itself with an origin

server - usually, but not necessarily, after receiving a 401

(Unauthorized) - can do so by including an Authorization header

field with the request.

A client that wishes to authenticate itself with a proxy - usually,

but not necessarily, after receiving a 407 (Proxy Authentication

Required) - can do so by including a Proxy-Authorization header

field with the request.

Both the Authorization field value and the Proxy-Authorization field

value contain the client's credentials for the realm of the resource

being requested, based upon a challenge received in a response

(possibly at some point in the past). When creating their values,

the user agent ought to do so by selecting the challenge with what

it considers to be the most secure auth-scheme that it understands,

obtaining credentials from the user as appropriate. Transmission of

credentials within header field values implies significant security

considerations regarding the confidentiality of the underlying

connection, as described in Section 12.14.1.

 credentials = auth-scheme [1*SP (token68 / #auth-param)]

Upon receipt of a request for a protected resource that omits

credentials, contains invalid credentials (e.g., a bad password) or

partial credentials (e.g., when the authentication scheme requires

more than one round trip), an origin server SHOULD send a 401

(Unauthorized) response that contains a WWW-Authenticate header

field with at least one (possibly new) challenge applicable to the

requested resource.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Likewise, upon receipt of a request that omits proxy credentials or

contains invalid or partial proxy credentials, a proxy that requires

authentication SHOULD generate a 407 (Proxy Authentication Required)

response that contains a Proxy-Authenticate header field with at

least one (possibly new) challenge applicable to the proxy.

A server that receives valid credentials that are not adequate to

gain access ought to respond with the 403 (Forbidden) status code

(Section 10.5.4).

HTTP does not restrict applications to this simple challenge-

response framework for access authentication. Additional mechanisms

can be used, such as authentication at the transport level or via

message encapsulation, and with additional header fields specifying

authentication information. However, such additional mechanisms are

not defined by this specification.

9.5.2. Protection Space (Realm)

The "realm" authentication parameter is reserved for use by

authentication schemes that wish to indicate a scope of protection.

A protection space is defined by the canonical root URI (the scheme

and authority components of the target URI; see Section 6.1) of the

server being accessed, in combination with the realm value if

present. These realms allow the protected resources on a server to

be partitioned into a set of protection spaces, each with its own

authentication scheme and/or authorization database. The realm value

is a string, generally assigned by the origin server, that can have

additional semantics specific to the authentication scheme. Note

that a response can have multiple challenges with the same auth-

scheme but with different realms.

The protection space determines the domain over which credentials

can be automatically applied. If a prior request has been

authorized, the user agent MAY reuse the same credentials for all

other requests within that protection space for a period of time

determined by the authentication scheme, parameters, and/or user

preferences (such as a configurable inactivity timeout). Unless

specifically allowed by the authentication scheme, a single

protection space cannot extend outside the scope of its server.

For historical reasons, a sender MUST only generate the quoted-

string syntax. Recipients might have to support both token and

quoted-string syntax for maximum interoperability with existing

clients that have been accepting both notations for a long time.

9.5.3. Authorization

¶

¶

¶

¶

¶

¶

¶

The "Authorization" header field allows a user agent to authenticate

itself with an origin server - usually, but not necessarily, after

receiving a 401 (Unauthorized) response. Its value consists of

credentials containing the authentication information of the user

agent for the realm of the resource being requested.

 Authorization = credentials

If a request is authenticated and a realm specified, the same

credentials are presumed to be valid for all other requests within

this realm (assuming that the authentication scheme itself does not

require otherwise, such as credentials that vary according to a

challenge value or using synchronized clocks).

A proxy forwarding a request MUST NOT modify any Authorization

fields in that request. See Section 3.3 of [Caching] for details of

and requirements pertaining to handling of the Authorization field

by HTTP caches.

9.5.4. Proxy-Authorization

The "Proxy-Authorization" header field allows the client to identify

itself (or its user) to a proxy that requires authentication. Its

value consists of credentials containing the authentication

information of the client for the proxy and/or realm of the resource

being requested.

 Proxy-Authorization = credentials

Unlike Authorization, the Proxy-Authorization header field applies

only to the next inbound proxy that demanded authentication using

the Proxy-Authenticate field. When multiple proxies are used in a

chain, the Proxy-Authorization header field is consumed by the first

inbound proxy that was expecting to receive credentials. A proxy MAY

relay the credentials from the client request to the next proxy if

that is the mechanism by which the proxies cooperatively

authenticate a given request.

9.5.5. Authentication Scheme Extensibility

Aside from the general framework, this document does not specify any

authentication schemes. New and existing authentication schemes are

specified independently and ought to be registered within the

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#caching.authenticated.responses

"Hypertext Transfer Protocol (HTTP) Authentication Scheme Registry".

For example, the "basic" and "digest" authentication schemes are

defined by RFC 7617 and RFC 7616, respectively.

9.5.5.1. Authentication Scheme Registry

The "Hypertext Transfer Protocol (HTTP) Authentication Scheme

Registry" defines the namespace for the authentication schemes in

challenges and credentials. It is maintained at <https://

www.iana.org/assignments/http-authschemes>.

Registrations MUST include the following fields:

Authentication Scheme Name

Pointer to specification text

Notes (optional)

Values to be added to this namespace require IETF Review (see

[RFC8126], Section 4.8).

9.5.5.2. Considerations for New Authentication Schemes

There are certain aspects of the HTTP Authentication framework that

put constraints on how new authentication schemes can work:

HTTP authentication is presumed to be stateless: all of the

information necessary to authenticate a request MUST be provided

in the request, rather than be dependent on the server

remembering prior requests. Authentication based on, or bound to,

the underlying connection is outside the scope of this

specification and inherently flawed unless steps are taken to

ensure that the connection cannot be used by any party other than

the authenticated user (see Section 2.2).

The authentication parameter "realm" is reserved for defining

protection spaces as described in Section 9.5.2. New schemes MUST

NOT use it in a way incompatible with that definition.

The "token68" notation was introduced for compatibility with

existing authentication schemes and can only be used once per

challenge or credential. Thus, new schemes ought to use the auth-

param syntax instead, because otherwise future extensions will be

impossible.

The parsing of challenges and credentials is defined by this

specification and cannot be modified by new authentication

schemes. When the auth-param syntax is used, all parameters ought

to support both token and quoted-string syntax, and syntactical

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

*

¶

*

¶

*

¶

*

https://www.iana.org/assignments/http-authschemes
https://www.iana.org/assignments/http-authschemes
https://rfc-editor.org/rfc/rfc8126#section-4.8

constraints ought to be defined on the field value after parsing

(i.e., quoted-string processing). This is necessary so that

recipients can use a generic parser that applies to all

authentication schemes.

Note: The fact that the value syntax for the "realm" parameter is

restricted to quoted-string was a bad design choice not to be

repeated for new parameters.

Definitions of new schemes ought to define the treatment of

unknown extension parameters. In general, a "must-ignore" rule is

preferable to a "must-understand" rule, because otherwise it will

be hard to introduce new parameters in the presence of legacy

recipients. Furthermore, it's good to describe the policy for

defining new parameters (such as "update the specification" or

"use this registry").

Authentication schemes need to document whether they are usable

in origin-server authentication (i.e., using WWW-Authenticate),

and/or proxy authentication (i.e., using Proxy-Authenticate).

The credentials carried in an Authorization header field are

specific to the user agent and, therefore, have the same effect

on HTTP caches as the "private" Cache-Control response directive

(Section 5.2.2.7 of [Caching]), within the scope of the request

in which they appear.

Therefore, new authentication schemes that choose not to carry

credentials in the Authorization header field (e.g., using a

newly defined header field) will need to explicitly disallow

caching, by mandating the use of Cache-Control response

directives (e.g., "private").

Schemes using Authentication-Info, Proxy-Authentication-Info, or

any other authentication related response header field need to

consider and document the related security considerations (see

Section 12.14.4).

9.6. Request Context

The following request header fields provide additional information

about the request context, including information about the user,

user agent, and resource behind the request.

Field Name Defined in...

From Section 9.6.1

Referer Section 9.6.2

User-Agent Section 9.6.3

Table 15

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#cache-response-directive.private

9.6.1. From

The "From" header field contains an Internet email address for a

human user who controls the requesting user agent. The address ought

to be machine-usable, as defined by "mailbox" in Section 3.4 of

[RFC5322]:

 From = mailbox

 mailbox = <mailbox, see [RFC5322], Section 3.4>

An example is:

The From header field is rarely sent by non-robotic user agents. A

user agent SHOULD NOT send a From header field without explicit

configuration by the user, since that might conflict with the user's

privacy interests or their site's security policy.

A robotic user agent SHOULD send a valid From header field so that

the person responsible for running the robot can be contacted if

problems occur on servers, such as if the robot is sending

excessive, unwanted, or invalid requests.

A server SHOULD NOT use the From header field for access control or

authentication, since most recipients will assume that the field

value is public information.

9.6.2. Referer

The "Referer" [sic] header field allows the user agent to specify a

URI reference for the resource from which the target URI was

obtained (i.e., the "referrer", though the field name is

misspelled). A user agent MUST NOT include the fragment and userinfo

components of the URI reference [RFC3986], if any, when generating

the Referer field value.

 Referer = absolute-URI / partial-URI

¶

¶

¶

 From: webmaster@example.org¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5322#section-3.4

The field value is either an absolute-URI or a partial-URI. In the

latter case (Section 2.4), the referenced URI is relative to the

target URI ([RFC3986], Section 5).

The Referer header field allows servers to generate back-links to

other resources for simple analytics, logging, optimized caching,

etc. It also allows obsolete or mistyped links to be found for

maintenance. Some servers use the Referer header field as a means of

denying links from other sites (so-called "deep linking") or

restricting cross-site request forgery (CSRF), but not all requests

contain it.

Example:

If the target URI was obtained from a source that does not have its

own URI (e.g., input from the user keyboard, or an entry within the

user's bookmarks/favorites), the user agent MUST either exclude the

Referer field or send it with a value of "about:blank".

The Referer field has the potential to reveal information about the

request context or browsing history of the user, which is a privacy

concern if the referring resource's identifier reveals personal

information (such as an account name) or a resource that is supposed

to be confidential (such as behind a firewall or internal to a

secured service). Most general-purpose user agents do not send the

Referer header field when the referring resource is a local "file"

or "data" URI. A user agent MUST NOT send a Referer header field in

an unsecured HTTP request if the referring page was received with a

secure protocol. See Section 12.8 for additional security

considerations.

Some intermediaries have been known to indiscriminately remove

Referer header fields from outgoing requests. This has the

unfortunate side effect of interfering with protection against CSRF

attacks, which can be far more harmful to their users.

Intermediaries and user agent extensions that wish to limit

information disclosure in Referer ought to restrict their changes to

specific edits, such as replacing internal domain names with

pseudonyms or truncating the query and/or path components. An

intermediary SHOULD NOT modify or delete the Referer header field

when the field value shares the same scheme and host as the target

URI.

9.6.3. User-Agent

The "User-Agent" header field contains information about the user

agent originating the request, which is often used by servers to

¶

¶

¶

 Referer: http://www.example.org/hypertext/Overview.html¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-5

help identify the scope of reported interoperability problems, to

work around or tailor responses to avoid particular user agent

limitations, and for analytics regarding browser or operating system

use. A user agent SHOULD send a User-Agent field in each request

unless specifically configured not to do so.

 User-Agent = product *(RWS (product / comment))

The User-Agent field value consists of one or more product

identifiers, each followed by zero or more comments (Section

5.4.1.3), which together identify the user agent software and its

significant subproducts. By convention, the product identifiers are

listed in decreasing order of their significance for identifying the

user agent software. Each product identifier consists of a name and

optional version.

 product = token ["/" product-version]

 product-version = token

A sender SHOULD limit generated product identifiers to what is

necessary to identify the product; a sender MUST NOT generate

advertising or other nonessential information within the product

identifier. A sender SHOULD NOT generate information in product-

version that is not a version identifier (i.e., successive versions

of the same product name ought to differ only in the product-version

portion of the product identifier).

Example:

A user agent SHOULD NOT generate a User-Agent field containing

needlessly fine-grained detail and SHOULD limit the addition of

subproducts by third parties. Overly long and detailed User-Agent

field values increase request latency and the risk of a user being

identified against their wishes ("fingerprinting").

Likewise, implementations are encouraged not to use the product

tokens of other implementations in order to declare compatibility

with them, as this circumvents the purpose of the field. If a user

agent masquerades as a different user agent, recipients can assume

that the user intentionally desires to see responses tailored for

that identified user agent, even if they might not work as well for

the actual user agent being used.

¶

¶

¶

¶

¶

¶

 User-Agent: CERN-LineMode/2.15 libwww/2.17b3¶

¶

¶

10. Response Status Codes

The (response) status code is a three-digit integer code giving the

result of the attempt to understand and satisfy the request.

HTTP status codes are extensible. HTTP clients are not required to

understand the meaning of all registered status codes, though such

understanding is obviously desirable. However, a client MUST

understand the class of any status code, as indicated by the first

digit, and treat an unrecognized status code as being equivalent to

the x00 status code of that class.

For example, if an unrecognized status code of 471 is received by a

client, the client can assume that there was something wrong with

its request and treat the response as if it had received a 400 (Bad

Request) status code. The response message will usually contain a

representation that explains the status.

The first digit of the status code defines the class of response.

The last two digits do not have any categorization role. There are

five values for the first digit:

1xx (Informational): The request was received, continuing process

2xx (Successful): The request was successfully received,

understood, and accepted

3xx (Redirection): Further action needs to be taken in order to

complete the request

4xx (Client Error): The request contains bad syntax or cannot be

fulfilled

5xx (Server Error): The server failed to fulfill an apparently

valid request

A single request can have multiple associated responses: zero or

more interim (non-final) responses with status codes in the

"informational" (1xx) range, followed by exactly one final response

with a status code in one of the other ranges.

10.1. Overview of Status Codes

The status codes listed below are defined in this specification. The

reason phrases listed here are only recommendations - they can be

replaced by local equivalents without affecting the protocol.

Responses with status codes that are defined as heuristically

cacheable (e.g., 200, 203, 204, 206, 300, 301, 308, 404, 405, 410,

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

¶

¶

414, and 501 in this specification) can be reused by a cache with

heuristic expiration unless otherwise indicated by the method

definition or explicit cache controls [Caching]; all other status

codes are not heuristically cacheable.

Value Description Reference

100 Continue Section 10.2.1

101 Switching Protocols Section 10.2.2

200 OK Section 10.3.1

201 Created Section 10.3.2

202 Accepted Section 10.3.3

203 Non-Authoritative Information Section 10.3.4

204 No Content Section 10.3.5

205 Reset Content Section 10.3.6

206 Partial Content Section 10.3.7

300 Multiple Choices Section 10.4.1

301 Moved Permanently Section 10.4.2

302 Found Section 10.4.3

303 See Other Section 10.4.4

304 Not Modified Section 10.4.5

305 Use Proxy Section 10.4.6

306 (Unused) Section 10.4.7

307 Temporary Redirect Section 10.4.8

308 Permanent Redirect Section 10.4.9

400 Bad Request Section 10.5.1

401 Unauthorized Section 10.5.2

402 Payment Required Section 10.5.3

403 Forbidden Section 10.5.4

404 Not Found Section 10.5.5

405 Method Not Allowed Section 10.5.6

406 Not Acceptable Section 10.5.7

407 Proxy Authentication Required Section 10.5.8

408 Request Timeout Section 10.5.9

409 Conflict Section 10.5.10

410 Gone Section 10.5.11

411 Length Required Section 10.5.12

412 Precondition Failed Section 10.5.13

413 Payload Too Large Section 10.5.14

414 URI Too Long Section 10.5.15

415 Unsupported Media Type Section 10.5.16

416 Range Not Satisfiable Section 10.5.17

417 Expectation Failed Section 10.5.18

418 (Unused) Section 10.5.19

422 Unprocessable Payload Section 10.5.20

426 Upgrade Required Section 10.5.21

500 Internal Server Error Section 10.6.1

501 Not Implemented Section 10.6.2

¶

Value Description Reference

502 Bad Gateway Section 10.6.3

503 Service Unavailable Section 10.6.4

504 Gateway Timeout Section 10.6.5

505 HTTP Version Not Supported Section 10.6.6

Table 16

Note that this list is not exhaustive - it does not include

extension status codes defined in other specifications (Section

10.7).

10.2. Informational 1xx

The 1xx (Informational) class of status code indicates an interim

response for communicating connection status or request progress

prior to completing the requested action and sending a final

response. 1xx responses are terminated by the end of the header

section. Since HTTP/1.0 did not define any 1xx status codes, a

server MUST NOT send a 1xx response to an HTTP/1.0 client.

A client MUST be able to parse one or more 1xx responses received

prior to a final response, even if the client does not expect one. A

user agent MAY ignore unexpected 1xx responses.

A proxy MUST forward 1xx responses unless the proxy itself requested

the generation of the 1xx response. For example, if a proxy adds an

"Expect: 100-continue" field when it forwards a request, then it

need not forward the corresponding 100 (Continue) response(s).

10.2.1. 100 Continue

The 100 (Continue) status code indicates that the initial part of a

request has been received and has not yet been rejected by the

server. The server intends to send a final response after the

request has been fully received and acted upon.

When the request contains an Expect header field that includes a

100-continue expectation, the 100 response indicates that the server

wishes to receive the request payload body, as described in Section

9.1.1. The client ought to continue sending the request and discard

the 100 response.

If the request did not contain an Expect header field containing the

100-continue expectation, the client can simply discard this interim

response.

10.2.2. 101 Switching Protocols

¶

¶

¶

¶

¶

¶

¶

GET

HEAD

POST

PUT, DELETE

OPTIONS

TRACE

The 101 (Switching Protocols) status code indicates that the server

understands and is willing to comply with the client's request, via

the Upgrade header field (Section 9.9 of [Messaging]), for a change

in the application protocol being used on this connection. The

server MUST generate an Upgrade header field in the response that

indicates which protocol(s) will be switched to immediately after

the empty line that terminates the 101 response.

It is assumed that the server will only agree to switch protocols

when it is advantageous to do so. For example, switching to a newer

version of HTTP might be advantageous over older versions, and

switching to a real-time, synchronous protocol might be advantageous

when delivering resources that use such features.

10.3. Successful 2xx

The 2xx (Successful) class of status code indicates that the

client's request was successfully received, understood, and

accepted.

10.3.1. 200 OK

The 200 (OK) status code indicates that the request has succeeded.

The payload sent in a 200 response depends on the request method.

For the methods defined by this specification, the intended meaning

of the payload can be summarized as:

a representation of the target resource;

the same representation as GET, but without the representation

data;

a representation of the status of, or results obtained from,

the action;

a representation of the status of the action;

a representation of the communications options;

a representation of the request message as received by the

end server.

Aside from responses to CONNECT, a 200 response always has a

payload, though an origin server MAY generate a payload body of zero

length. If no payload is desired, an origin server ought to send 204

(No Content) instead. For CONNECT, no payload is allowed because the

successful result is a tunnel, which begins immediately after the

200 response header section.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#field.upgrade

A 200 response is heuristically cacheable; i.e., unless otherwise

indicated by the method definition or explicit cache controls (see

Section 4.2.2 of [Caching]).

10.3.2. 201 Created

The 201 (Created) status code indicates that the request has been

fulfilled and has resulted in one or more new resources being

created. The primary resource created by the request is identified

by either a Location header field in the response or, if no Location

field is received, by the target URI.

The 201 response payload typically describes and links to the

resource(s) created. See Section 11.2 for a discussion of the

meaning and purpose of validator header fields, such as ETag and

Last-Modified, in a 201 response.

10.3.3. 202 Accepted

The 202 (Accepted) status code indicates that the request has been

accepted for processing, but the processing has not been completed.

The request might or might not eventually be acted upon, as it might

be disallowed when processing actually takes place. There is no

facility in HTTP for re-sending a status code from an asynchronous

operation.

The 202 response is intentionally noncommittal. Its purpose is to

allow a server to accept a request for some other process (perhaps a

batch-oriented process that is only run once per day) without

requiring that the user agent's connection to the server persist

until the process is completed. The representation sent with this

response ought to describe the request's current status and point to

(or embed) a status monitor that can provide the user with an

estimate of when the request will be fulfilled.

10.3.4. 203 Non-Authoritative Information

The 203 (Non-Authoritative Information) status code indicates that

the request was successful but the enclosed payload has been

modified from that of the origin server's 200 (OK) response by a

transforming proxy (Section 6.7.2). This status code allows the

proxy to notify recipients when a transformation has been applied,

since that knowledge might impact later decisions regarding the

content. For example, future cache validation requests for the

content might only be applicable along the same request path

(through the same proxies).

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#heuristic.freshness

The 203 response is similar to the Warning code of 214

Transformation Applied (Section 5.5 of [Caching]), which has the

advantage of being applicable to responses with any status code.

A 203 response is heuristically cacheable; i.e., unless otherwise

indicated by the method definition or explicit cache controls (see

Section 4.2.2 of [Caching]).

10.3.5. 204 No Content

The 204 (No Content) status code indicates that the server has

successfully fulfilled the request and that there is no additional

content to send in the response payload body. Metadata in the

response header fields refer to the target resource and its selected

representation after the requested action was applied.

For example, if a 204 status code is received in response to a PUT

request and the response contains an ETag field, then the PUT was

successful and the ETag field value contains the entity-tag for the

new representation of that target resource.

The 204 response allows a server to indicate that the action has

been successfully applied to the target resource, while implying

that the user agent does not need to traverse away from its current

"document view" (if any). The server assumes that the user agent

will provide some indication of the success to its user, in accord

with its own interface, and apply any new or updated metadata in the

response to its active representation.

For example, a 204 status code is commonly used with document

editing interfaces corresponding to a "save" action, such that the

document being saved remains available to the user for editing. It

is also frequently used with interfaces that expect automated data

transfers to be prevalent, such as within distributed version

control systems.

A 204 response is terminated by the first empty line after the

header fields because it cannot contain a message body.

A 204 response is heuristically cacheable; i.e., unless otherwise

indicated by the method definition or explicit cache controls (see

Section 4.2.2 of [Caching]).

10.3.6. 205 Reset Content

The 205 (Reset Content) status code indicates that the server has

fulfilled the request and desires that the user agent reset the

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#field.warning
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#heuristic.freshness
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#heuristic.freshness

"document view", which caused the request to be sent, to its

original state as received from the origin server.

This response is intended to support a common data entry use case

where the user receives content that supports data entry (a form,

notepad, canvas, etc.), enters or manipulates data in that space,

causes the entered data to be submitted in a request, and then the

data entry mechanism is reset for the next entry so that the user

can easily initiate another input action.

Since the 205 status code implies that no additional content will be

provided, a server MUST NOT generate a payload in a 205 response.

10.3.7. 206 Partial Content

The 206 (Partial Content) status code indicates that the server is

successfully fulfilling a range request for the target resource by

transferring one or more parts of the selected representation.

When a 206 response is generated, the server MUST generate the

following header fields, in addition to those required in the

subsections below, if the field would have been sent in a 200 (OK)

response to the same request: Date, Cache-Control, ETag, Expires,

Content-Location, and Vary.

If a 206 is generated in response to a request with an If-Range

header field, the sender SHOULD NOT generate other representation

header fields beyond those required, because the client is

understood to already have a prior response containing those header

fields. Otherwise, the sender MUST generate all of the

representation header fields that would have been sent in a 200 (OK)

response to the same request.

A 206 response is heuristically cacheable; i.e., unless otherwise

indicated by explicit cache controls (see Section 4.2.2 of

[Caching]).

10.3.7.1. Single Part

If a single part is being transferred, the server generating the 206

response MUST generate a Content-Range header field, describing what

range of the selected representation is enclosed, and a payload

consisting of the range. For example:

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#heuristic.freshness

10.3.7.2. Multiple Parts

If multiple parts are being transferred, the server generating the

206 response MUST generate a "multipart/byteranges" payload, as

defined in Section 7.3.5, and a Content-Type header field containing

the multipart/byteranges media type and its required boundary

parameter. To avoid confusion with single-part responses, a server

MUST NOT generate a Content-Range header field in the HTTP header

section of a multiple part response (this field will be sent in each

part instead).

Within the header area of each body part in the multipart payload,

the server MUST generate a Content-Range header field corresponding

to the range being enclosed in that body part. If the selected

representation would have had a Content-Type header field in a 200

(OK) response, the server SHOULD generate that same Content-Type

field in the header area of each body part. For example:

When multiple ranges are requested, a server MAY coalesce any of the

ranges that overlap, or that are separated by a gap that is smaller

than the overhead of sending multiple parts, regardless of the order

in which the corresponding range-spec appeared in the received Range

header field. Since the typical overhead between parts of a

 HTTP/1.1 206 Partial Content

 Date: Wed, 15 Nov 1995 06:25:24 GMT

 Last-Modified: Wed, 15 Nov 1995 04:58:08 GMT

 Content-Range: bytes 21010-47021/47022

 Content-Length: 26012

 Content-Type: image/gif

 ... 26012 bytes of partial image data ...

¶

¶

¶

 HTTP/1.1 206 Partial Content

 Date: Wed, 15 Nov 1995 06:25:24 GMT

 Last-Modified: Wed, 15 Nov 1995 04:58:08 GMT

 Content-Length: 1741

 Content-Type: multipart/byteranges; boundary=THIS_STRING_SEPARATES

 --THIS_STRING_SEPARATES

 Content-Type: application/pdf

 Content-Range: bytes 500-999/8000

 ...the first range...

 --THIS_STRING_SEPARATES

 Content-Type: application/pdf

 Content-Range: bytes 7000-7999/8000

 ...the second range

 --THIS_STRING_SEPARATES--

¶

multipart/byteranges payload is around 80 bytes, depending on the

selected representation's media type and the chosen boundary

parameter length, it can be less efficient to transfer many small

disjoint parts than it is to transfer the entire selected

representation.

A server MUST NOT generate a multipart response to a request for a

single range, since a client that does not request multiple parts

might not support multipart responses. However, a server MAY

generate a multipart/byteranges payload with only a single body part

if multiple ranges were requested and only one range was found to be

satisfiable or only one range remained after coalescing. A client

that cannot process a multipart/byteranges response MUST NOT

generate a request that asks for multiple ranges.

When a multipart response payload is generated, the server SHOULD

send the parts in the same order that the corresponding range-spec

appeared in the received Range header field, excluding those ranges

that were deemed unsatisfiable or that were coalesced into other

ranges. A client that receives a multipart response MUST inspect the

Content-Range header field present in each body part in order to

determine which range is contained in that body part; a client

cannot rely on receiving the same ranges that it requested, nor the

same order that it requested.

10.3.7.3. Combining Parts

A response might transfer only a subrange of a representation if the

connection closed prematurely or if the request used one or more

Range specifications. After several such transfers, a client might

have received several ranges of the same representation. These

ranges can only be safely combined if they all have in common the

same strong validator (Section 11.2.1).

A client that has received multiple partial responses to GET

requests on a target resource MAY combine those responses into a

larger continuous range if they share the same strong validator.

If the most recent response is an incomplete 200 (OK) response, then

the header fields of that response are used for any combined

response and replace those of the matching stored responses.

If the most recent response is a 206 (Partial Content) response and

at least one of the matching stored responses is a 200 (OK), then

the combined response header fields consist of the most recent 200

response's header fields. If all of the matching stored responses

are 206 responses, then the stored response with the most recent

header fields is used as the source of header fields for the

combined response, except that the client MUST use other header

¶

¶

¶

¶

¶

¶

fields provided in the new response, aside from Content-Range, to

replace all instances of the corresponding header fields in the

stored response.

The combined response message body consists of the union of partial

content ranges in the new response and each of the selected

responses. If the union consists of the entire range of the

representation, then the client MUST process the combined response

as if it were a complete 200 (OK) response, including a Content-

Length header field that reflects the complete length. Otherwise,

the client MUST process the set of continuous ranges as one of the

following: an incomplete 200 (OK) response if the combined response

is a prefix of the representation, a single 206 (Partial Content)

response containing a multipart/byteranges body, or multiple 206

(Partial Content) responses, each with one continuous range that is

indicated by a Content-Range header field.

10.4. Redirection 3xx

The 3xx (Redirection) class of status code indicates that further

action needs to be taken by the user agent in order to fulfill the

request. If a Location header field (Section 11.1.2) is provided,

the user agent MAY automatically redirect its request to the URI

referenced by the Location field value, even if the specific status

code is not understood. Automatic redirection needs to be done with

care for methods not known to be safe, as defined in Section 8.2.1,

since the user might not wish to redirect an unsafe request.

There are several types of redirects:

Redirects that indicate the resource might be available at a

different URI, as provided by the Location field, as in the

status codes 301 (Moved Permanently), 302 (Found), 307

(Temporary Redirect), and 308 (Permanent Redirect).

Redirection that offers a choice of matching resources, each

capable of representing the original target resource, as in the

300 (Multiple Choices) status code.

Redirection to a different resource, identified by the Location

field, that can represent an indirect response to the request,

as in the 303 (See Other) status code.

Redirection to a previously cached result, as in the 304 (Not

Modified) status code.

Note: In HTTP/1.0, the status codes 301 (Moved Permanently) and 302

(Found) were defined for the first type of redirect ([RFC1945],

Section 9.3). Early user agents split on whether the method applied

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

https://rfc-editor.org/rfc/rfc1945#section-9.3

to the redirect target would be the same as the original request or

would be rewritten as GET. Although HTTP originally defined the

former semantics for 301 and 302 (to match its original

implementation at CERN), and defined 303 (See Other) to match the

latter semantics, prevailing practice gradually converged on the

latter semantics for 301 and 302 as well. The first revision of

HTTP/1.1 added 307 (Temporary Redirect) to indicate the former

semantics of 302 without being impacted by divergent practice. For

the same reason, 308 (Permanent Redirect) was later on added in

[RFC7538] to match 301. Over 10 years later, most user agents still

do method rewriting for 301 and 302; therefore, [RFC7231] made that

behavior conformant when the original request is POST.

A client SHOULD detect and intervene in cyclical redirections (i.e.,

"infinite" redirection loops).

Note: An earlier version of this specification recommended a maximum

of five redirections ([RFC2068], Section 10.3). Content developers

need to be aware that some clients might implement such a fixed

limitation.

10.4.1. 300 Multiple Choices

The 300 (Multiple Choices) status code indicates that the target

resource has more than one representation, each with its own more

specific identifier, and information about the alternatives is being

provided so that the user (or user agent) can select a preferred

representation by redirecting its request to one or more of those

identifiers. In other words, the server desires that the user agent

engage in reactive negotiation to select the most appropriate

representation(s) for its needs (Section 7.4).

If the server has a preferred choice, the server SHOULD generate a

Location header field containing a preferred choice's URI reference.

The user agent MAY use the Location field value for automatic

redirection.

For request methods other than HEAD, the server SHOULD generate a

payload in the 300 response containing a list of representation

metadata and URI reference(s) from which the user or user agent can

choose the one most preferred. The user agent MAY make a selection

from that list automatically if it understands the provided media

type. A specific format for automatic selection is not defined by

this specification because HTTP tries to remain orthogonal to the

definition of its payloads. In practice, the representation is

provided in some easily parsed format believed to be acceptable to

the user agent, as determined by shared design or content

negotiation, or in some commonly accepted hypertext format.

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc2068#section-10.3

A 300 response is heuristically cacheable; i.e., unless otherwise

indicated by the method definition or explicit cache controls (see

Section 4.2.2 of [Caching]).

Note: The original proposal for the 300 status code defined the URI

header field as providing a list of alternative representations,

such that it would be usable for 200, 300, and 406 responses and be

transferred in responses to the HEAD method. However, lack of

deployment and disagreement over syntax led to both URI and

Alternates (a subsequent proposal) being dropped from this

specification. It is possible to communicate the list as a Link

header field value [RFC8288] whose members have a relationship of

"alternate", though deployment is a chicken-and-egg problem.

10.4.2. 301 Moved Permanently

The 301 (Moved Permanently) status code indicates that the target

resource has been assigned a new permanent URI and any future

references to this resource ought to use one of the enclosed URIs.

Clients with link-editing capabilities ought to automatically re-

link references to the target URI to one or more of the new

references sent by the server, where possible.

The server SHOULD generate a Location header field in the response

containing a preferred URI reference for the new permanent URI. The

user agent MAY use the Location field value for automatic

redirection. The server's response payload usually contains a short

hypertext note with a hyperlink to the new URI(s).

Note: For historical reasons, a user agent MAY change the request

method from POST to GET for the subsequent request. If this behavior

is undesired, the 308 (Permanent Redirect) status code can be used

instead.

A 301 response is heuristically cacheable; i.e., unless otherwise

indicated by the method definition or explicit cache controls (see

Section 4.2.2 of [Caching]).

10.4.3. 302 Found

The 302 (Found) status code indicates that the target resource

resides temporarily under a different URI. Since the redirection

might be altered on occasion, the client ought to continue to use

the target URI for future requests.

The server SHOULD generate a Location header field in the response

containing a URI reference for the different URI. The user agent MAY

use the Location field value for automatic redirection. The server's

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#heuristic.freshness
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#heuristic.freshness

response payload usually contains a short hypertext note with a

hyperlink to the different URI(s).

Note: For historical reasons, a user agent MAY change the request

method from POST to GET for the subsequent request. If this behavior

is undesired, the 307 (Temporary Redirect) status code can be used

instead.

10.4.4. 303 See Other

The 303 (See Other) status code indicates that the server is

redirecting the user agent to a different resource, as indicated by

a URI in the Location header field, which is intended to provide an

indirect response to the original request. A user agent can perform

a retrieval request targeting that URI (a GET or HEAD request if

using HTTP), which might also be redirected, and present the

eventual result as an answer to the original request. Note that the

new URI in the Location header field is not considered equivalent to

the target URI.

This status code is applicable to any HTTP method. It is primarily

used to allow the output of a POST action to redirect the user agent

to a selected resource, since doing so provides the information

corresponding to the POST response in a form that can be separately

identified, bookmarked, and cached, independent of the original

request.

A 303 response to a GET request indicates that the origin server

does not have a representation of the target resource that can be

transferred by the server over HTTP. However, the Location field

value refers to a resource that is descriptive of the target

resource, such that making a retrieval request on that other

resource might result in a representation that is useful to

recipients without implying that it represents the original target

resource. Note that answers to the questions of what can be

represented, what representations are adequate, and what might be a

useful description are outside the scope of HTTP.

Except for responses to a HEAD request, the representation of a 303

response ought to contain a short hypertext note with a hyperlink to

the same URI reference provided in the Location header field.

10.4.5. 304 Not Modified

The 304 (Not Modified) status code indicates that a conditional GET

or HEAD request has been received and would have resulted in a 200

(OK) response if it were not for the fact that the condition

evaluated to false. In other words, there is no need for the server

¶

¶

¶

¶

¶

¶

to transfer a representation of the target resource because the

request indicates that the client, which made the request

conditional, already has a valid representation; the server is

therefore redirecting the client to make use of that stored

representation as if it were the payload of a 200 (OK) response.

The server generating a 304 response MUST generate any of the

following header fields that would have been sent in a 200 (OK)

response to the same request: Cache-Control, Content-Location, Date,

ETag, Expires, and Vary.

Since the goal of a 304 response is to minimize information transfer

when the recipient already has one or more cached representations, a

sender SHOULD NOT generate representation metadata other than the

above listed fields unless said metadata exists for the purpose of

guiding cache updates (e.g., Last-Modified might be useful if the

response does not have an ETag field).

Requirements on a cache that receives a 304 response are defined in

Section 4.3.4 of [Caching]. If the conditional request originated

with an outbound client, such as a user agent with its own cache

sending a conditional GET to a shared proxy, then the proxy SHOULD

forward the 304 response to that client.

A 304 response cannot contain a message-body; it is always

terminated by the first empty line after the header fields.

10.4.6. 305 Use Proxy

The 305 (Use Proxy) status code was defined in a previous version of

this specification and is now deprecated (Appendix B of [RFC7231]).

10.4.7. 306 (Unused)

The 306 status code was defined in a previous version of this

specification, is no longer used, and the code is reserved.

10.4.8. 307 Temporary Redirect

The 307 (Temporary Redirect) status code indicates that the target

resource resides temporarily under a different URI and the user

agent MUST NOT change the request method if it performs an automatic

redirection to that URI. Since the redirection can change over time,

the client ought to continue using the original target URI for

future requests.

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#freshening.responses
https://rfc-editor.org/rfc/rfc7231#appendix-B

The server SHOULD generate a Location header field in the response

containing a URI reference for the different URI. The user agent MAY

use the Location field value for automatic redirection. The server's

response payload usually contains a short hypertext note with a

hyperlink to the different URI(s).

10.4.9. 308 Permanent Redirect

The 308 (Permanent Redirect) status code indicates that the target

resource has been assigned a new permanent URI and any future

references to this resource ought to use one of the enclosed URIs.

Clients with link editing capabilities ought to automatically re-

link references to the target URI to one or more of the new

references sent by the server, where possible.

The server SHOULD generate a Location header field in the response

containing a preferred URI reference for the new permanent URI. The

user agent MAY use the Location field value for automatic

redirection. The server's response payload usually contains a short

hypertext note with a hyperlink to the new URI(s).

A 308 response is heuristically cacheable; i.e., unless otherwise

indicated by the method definition or explicit cache controls (see

Section 4.2.2 of [Caching]).

Note: This status code is much younger (June 2014) than its sibling

codes, and thus might not be recognized everywhere. See Section 4 of

[RFC7538] for deployment considerations.

10.5. Client Error 4xx

The 4xx (Client Error) class of status code indicates that the

client seems to have erred. Except when responding to a HEAD

request, the server SHOULD send a representation containing an

explanation of the error situation, and whether it is a temporary or

permanent condition. These status codes are applicable to any

request method. User agents SHOULD display any included

representation to the user.

10.5.1. 400 Bad Request

The 400 (Bad Request) status code indicates that the server cannot

or will not process the request due to something that is perceived

to be a client error (e.g., malformed request syntax, invalid

request message framing, or deceptive request routing).

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#heuristic.freshness
https://rfc-editor.org/rfc/rfc7538#section-4

10.5.2. 401 Unauthorized

The 401 (Unauthorized) status code indicates that the request has

not been applied because it lacks valid authentication credentials

for the target resource. The server generating a 401 response MUST

send a WWW-Authenticate header field (Section 11.3.1) containing at

least one challenge applicable to the target resource.

If the request included authentication credentials, then the 401

response indicates that authorization has been refused for those

credentials. The user agent MAY repeat the request with a new or

replaced Authorization header field (Section 9.5.3). If the 401

response contains the same challenge as the prior response, and the

user agent has already attempted authentication at least once, then

the user agent SHOULD present the enclosed representation to the

user, since it usually contains relevant diagnostic information.

10.5.3. 402 Payment Required

The 402 (Payment Required) status code is reserved for future use.

10.5.4. 403 Forbidden

The 403 (Forbidden) status code indicates that the server understood

the request but refuses to fulfill it. A server that wishes to make

public why the request has been forbidden can describe that reason

in the response payload (if any).

If authentication credentials were provided in the request, the

server considers them insufficient to grant access. The client

SHOULD NOT automatically repeat the request with the same

credentials. The client MAY repeat the request with new or different

credentials. However, a request might be forbidden for reasons

unrelated to the credentials.

An origin server that wishes to "hide" the current existence of a

forbidden target resource MAY instead respond with a status code of

404 (Not Found).

10.5.5. 404 Not Found

The 404 (Not Found) status code indicates that the origin server did

not find a current representation for the target resource or is not

willing to disclose that one exists. A 404 status code does not

indicate whether this lack of representation is temporary or

permanent; the 410 (Gone) status code is preferred over 404 if the

¶

¶

¶

¶

¶

¶

origin server knows, presumably through some configurable means,

that the condition is likely to be permanent.

A 404 response is heuristically cacheable; i.e., unless otherwise

indicated by the method definition or explicit cache controls (see

Section 4.2.2 of [Caching]).

10.5.6. 405 Method Not Allowed

The 405 (Method Not Allowed) status code indicates that the method

received in the request-line is known by the origin server but not

supported by the target resource. The origin server MUST generate an

Allow header field in a 405 response containing a list of the target

resource's currently supported methods.

A 405 response is heuristically cacheable; i.e., unless otherwise

indicated by the method definition or explicit cache controls (see

Section 4.2.2 of [Caching]).

10.5.7. 406 Not Acceptable

The 406 (Not Acceptable) status code indicates that the target

resource does not have a current representation that would be

acceptable to the user agent, according to the proactive negotiation

header fields received in the request (Section 9.4), and the server

is unwilling to supply a default representation.

The server SHOULD generate a payload containing a list of available

representation characteristics and corresponding resource

identifiers from which the user or user agent can choose the one

most appropriate. A user agent MAY automatically select the most

appropriate choice from that list. However, this specification does

not define any standard for such automatic selection, as described

in Section 10.4.1.

10.5.8. 407 Proxy Authentication Required

The 407 (Proxy Authentication Required) status code is similar to

401 (Unauthorized), but it indicates that the client needs to

authenticate itself in order to use a proxy for this request. The

proxy MUST send a Proxy-Authenticate header field (Section 11.3.2)

containing a challenge applicable to that proxy for the request. The

client MAY repeat the request with a new or replaced Proxy-

Authorization header field (Section 9.5.4).

10.5.9. 408 Request Timeout

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#heuristic.freshness
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#heuristic.freshness

The 408 (Request Timeout) status code indicates that the server did

not receive a complete request message within the time that it was

prepared to wait. If the client has an outstanding request in

transit, the client MAY repeat that request on a new connection.

10.5.10. 409 Conflict

The 409 (Conflict) status code indicates that the request could not

be completed due to a conflict with the current state of the target

resource. This code is used in situations where the user might be

able to resolve the conflict and resubmit the request. The server

SHOULD generate a payload that includes enough information for a

user to recognize the source of the conflict.

Conflicts are most likely to occur in response to a PUT request. For

example, if versioning were being used and the representation being

PUT included changes to a resource that conflict with those made by

an earlier (third-party) request, the origin server might use a 409

response to indicate that it can't complete the request. In this

case, the response representation would likely contain information

useful for merging the differences based on the revision history.

10.5.11. 410 Gone

The 410 (Gone) status code indicates that access to the target

resource is no longer available at the origin server and that this

condition is likely to be permanent. If the origin server does not

know, or has no facility to determine, whether or not the condition

is permanent, the status code 404 (Not Found) ought to be used

instead.

The 410 response is primarily intended to assist the task of web

maintenance by notifying the recipient that the resource is

intentionally unavailable and that the server owners desire that

remote links to that resource be removed. Such an event is common

for limited-time, promotional services and for resources belonging

to individuals no longer associated with the origin server's site.

It is not necessary to mark all permanently unavailable resources as

"gone" or to keep the mark for any length of time - that is left to

the discretion of the server owner.

A 410 response is heuristically cacheable; i.e., unless otherwise

indicated by the method definition or explicit cache controls (see

Section 4.2.2 of [Caching]).

10.5.12. 411 Length Required

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#heuristic.freshness

The 411 (Length Required) status code indicates that the server

refuses to accept the request without a defined Content-Length

(Section 7.2.4). The client MAY repeat the request if it adds a

valid Content-Length header field containing the length of the

message body in the request message.

10.5.13. 412 Precondition Failed

The 412 (Precondition Failed) status code indicates that one or more

conditions given in the request header fields evaluated to false

when tested on the server. This response status code allows the

client to place preconditions on the current resource state (its

current representations and metadata) and, thus, prevent the request

method from being applied if the target resource is in an unexpected

state.

10.5.14. 413 Payload Too Large

The 413 (Payload Too Large) status code indicates that the server is

refusing to process a request because the request payload is larger

than the server is willing or able to process. The server MAY

terminate the request, if the protocol version in use allows it;

otherwise, the server MAY close the connection.

If the condition is temporary, the server SHOULD generate a Retry-

After header field to indicate that it is temporary and after what

time the client MAY try again.

10.5.15. 414 URI Too Long

The 414 (URI Too Long) status code indicates that the server is

refusing to service the request because the target URI is longer

than the server is willing to interpret. This rare condition is only

likely to occur when a client has improperly converted a POST

request to a GET request with long query information, when the

client has descended into a "black hole" of redirection (e.g., a

redirected URI prefix that points to a suffix of itself) or when the

server is under attack by a client attempting to exploit potential

security holes.

A 414 response is heuristically cacheable; i.e., unless otherwise

indicated by the method definition or explicit cache controls (see

Section 4.2.2 of [Caching]).

10.5.16. 415 Unsupported Media Type

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#heuristic.freshness

The 415 (Unsupported Media Type) status code indicates that the

origin server is refusing to service the request because the payload

is in a format not supported by this method on the target resource.

The format problem might be due to the request's indicated Content-

Type or Content-Encoding, or as a result of inspecting the data

directly.

If the problem was caused by an unsupported content coding, the

Accept-Encoding response header field (Section 9.4.3) ought to be

used to indicate what (if any) content codings would have been

accepted in the request.

On the other hand, if the cause was an unsupported media type, the

Accept response header field (Section 9.4.1) can be used to indicate

what media types would have been accepted in the request.

10.5.17. 416 Range Not Satisfiable

The 416 (Range Not Satisfiable) status code indicates that the set

of ranges in the request's Range header field (Section 9.3) has been

rejected either because none of the requested ranges are satisfiable

or because the client has requested an excessive number of small or

overlapping ranges (a potential denial of service attack).

Each range unit defines what is required for its own range sets to

be satisfiable. For example, Section 7.1.4.2 defines what makes a

bytes range set satisfiable.

When this status code is generated in response to a byte-range

request, the sender SHOULD generate a Content-Range header field

specifying the current length of the selected representation

(Section 7.3.4).

For example:

Note: Because servers are free to ignore Range, many implementations

will respond with the entire selected representation in a 200 (OK)

response. That is partly because most clients are prepared to

receive a 200 (OK) to complete the task (albeit less efficiently)

and partly because clients might not stop making an invalid partial

request until they have received a complete representation. Thus,

clients cannot depend on receiving a 416 (Range Not Satisfiable)

response even when it is most appropriate.

¶

¶

¶

¶

¶

¶

¶

¶

 HTTP/1.1 416 Range Not Satisfiable

 Date: Fri, 20 Jan 2012 15:41:54 GMT

 Content-Range: bytes */47022

¶

¶

10.5.18. 417 Expectation Failed

The 417 (Expectation Failed) status code indicates that the

expectation given in the request's Expect header field (Section

9.1.1) could not be met by at least one of the inbound servers.

10.5.19. 418 (Unused)

[RFC2324] was an April 1 RFC that lampooned the various ways HTTP

was abused; one such abuse was the definition of an application-

specific 418 status code. In the intervening years, this status code

has been widely implemented as an "Easter Egg", and therefore is

effectively consumed by this use.

Therefore, the 418 status code is reserved in the IANA HTTP Status

Code Registry. This indicates that the status code cannot be

assigned to other applications currently. If future circumstances

require its use (e.g., exhaustion of 4NN status codes), it can be

re-assigned to another use.

10.5.20. 422 Unprocessable Payload

The 422 (Unprocessable Payload) status code indicates that the

server understands the content type of the request payload (hence a

415 (Unsupported Media Type) status code is inappropriate), and the

syntax of the request payload is correct, but was unable to process

the contained instructions. For example, this status code can be

sent if an XML request payload contains well-formed (i.e.,

syntactically correct), but semantically erroneous XML instructions.

10.5.21. 426 Upgrade Required

The 426 (Upgrade Required) status code indicates that the server

refuses to perform the request using the current protocol but might

be willing to do so after the client upgrades to a different

protocol. The server MUST send an Upgrade header field in a 426

response to indicate the required protocol(s) (Section 9.9 of

[Messaging]).

Example:

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#field.upgrade

10.6. Server Error 5xx

The 5xx (Server Error) class of status code indicates that the

server is aware that it has erred or is incapable of performing the

requested method. Except when responding to a HEAD request, the

server SHOULD send a representation containing an explanation of the

error situation, and whether it is a temporary or permanent

condition. A user agent SHOULD display any included representation

to the user. These response codes are applicable to any request

method.

10.6.1. 500 Internal Server Error

The 500 (Internal Server Error) status code indicates that the

server encountered an unexpected condition that prevented it from

fulfilling the request.

10.6.2. 501 Not Implemented

The 501 (Not Implemented) status code indicates that the server does

not support the functionality required to fulfill the request. This

is the appropriate response when the server does not recognize the

request method and is not capable of supporting it for any resource.

A 501 response is heuristically cacheable; i.e., unless otherwise

indicated by the method definition or explicit cache controls (see

Section 4.2.2 of [Caching]).

10.6.3. 502 Bad Gateway

The 502 (Bad Gateway) status code indicates that the server, while

acting as a gateway or proxy, received an invalid response from an

inbound server it accessed while attempting to fulfill the request.

10.6.4. 503 Service Unavailable

 HTTP/1.1 426 Upgrade Required

 Upgrade: HTTP/3.0

 Connection: Upgrade

 Content-Length: 53

 Content-Type: text/plain

 This service requires use of the HTTP/3.0 protocol.

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#heuristic.freshness

The 503 (Service Unavailable) status code indicates that the server

is currently unable to handle the request due to a temporary

overload or scheduled maintenance, which will likely be alleviated

after some delay. The server MAY send a Retry-After header field

(Section 11.1.3) to suggest an appropriate amount of time for the

client to wait before retrying the request.

Note: The existence of the 503 status code does not imply that a

server has to use it when becoming overloaded. Some servers might

simply refuse the connection.

10.6.5. 504 Gateway Timeout

The 504 (Gateway Timeout) status code indicates that the server,

while acting as a gateway or proxy, did not receive a timely

response from an upstream server it needed to access in order to

complete the request.

10.6.6. 505 HTTP Version Not Supported

The 505 (HTTP Version Not Supported) status code indicates that the

server does not support, or refuses to support, the major version of

HTTP that was used in the request message. The server is indicating

that it is unable or unwilling to complete the request using the

same major version as the client, as described in Section 4.2, other

than with this error message. The server SHOULD generate a

representation for the 505 response that describes why that version

is not supported and what other protocols are supported by that

server.

10.7. Status Code Extensibility

Additional status codes, outside the scope of this specification,

have been specified for use in HTTP. All such status codes ought to

be registered within the "Hypertext Transfer Protocol (HTTP) Status

Code Registry".

10.7.1. Status Code Registry

The "Hypertext Transfer Protocol (HTTP) Status Code Registry",

maintained by IANA at <https://www.iana.org/assignments/http-status-

codes>, registers status code numbers.

A registration MUST include the following fields:

Status Code (3 digits)

Short Description

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

https://www.iana.org/assignments/http-status-codes
https://www.iana.org/assignments/http-status-codes

Pointer to specification text

Values to be added to the HTTP status code namespace require IETF

Review (see [RFC8126], Section 4.8).

10.7.2. Considerations for New Status Codes

When it is necessary to express semantics for a response that are

not defined by current status codes, a new status code can be

registered. Status codes are generic; they are potentially

applicable to any resource, not just one particular media type, kind

of resource, or application of HTTP. As such, it is preferred that

new status codes be registered in a document that isn't specific to

a single application.

New status codes are required to fall under one of the categories

defined in Section 10. To allow existing parsers to process the

response message, new status codes cannot disallow a payload,

although they can mandate a zero-length payload body.

Proposals for new status codes that are not yet widely deployed

ought to avoid allocating a specific number for the code until there

is clear consensus that it will be registered; instead, early drafts

can use a notation such as "4NN", or "3N0" .. "3N9", to indicate the

class of the proposed status code(s) without consuming a number

prematurely.

The definition of a new status code ought to explain the request

conditions that would cause a response containing that status code

(e.g., combinations of request header fields and/or method(s)) along

with any dependencies on response header fields (e.g., what fields

are required, what fields can modify the semantics, and what field

semantics are further refined when used with the new status code).

By default, a status code applies only to the request corresponding

to the response it occurs within. If a status code applies to a

larger scope of applicability - for example, all requests to the

resource in question, or all requests to a server - this must be

explicitly specified. When doing so, it should be noted that not all

clients can be expected to consistently apply a larger scope,

because they might not understand the new status code.

The definition of a new status code ought to specify whether or not

it is cacheable. Note that all status codes can be cached if the

response they occur in has explicit freshness information; however,

status codes that are defined as being cacheable are allowed to be

cached without explicit freshness information. Likewise, the

definition of a status code can place constraints upon cache

behavior. See [Caching] for more information.

* ¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8126#section-4.8

Finally, the definition of a new status code ought to indicate

whether the payload has any implied association with an identified

resource (Section 7.3.2).

11. Response Header Fields

The response header fields allow the server to pass additional

information about the response beyond the status code. These header

fields give information about the server, about further access to

the target resource, or about related resources.

Although each response header field has a defined meaning, in

general, the precise semantics might be further refined by the

semantics of the request method and/or response status code.

11.1. Control Data

Response header fields can supply control data that supplements the

status code, directs caching, or instructs the client where to go

next.

Field Name Defined in...

Age Section 5.1 of [Caching]

Cache-Control Section 5.2 of [Caching]

Expires Section 5.3 of [Caching]

Date Section 11.1.1

Location Section 11.1.2

Retry-After Section 11.1.3

Vary Section 11.1.4

Warning Section 5.5 of [Caching]

Table 17

11.1.1. Date

The "Date" header field represents the date and time at which the

message was originated, having the same semantics as the Origination

Date Field (orig-date) defined in Section 3.6.1 of [RFC5322]. The

field value is an HTTP-date, as defined in Section 5.4.1.5.

 Date = HTTP-date

An example is

¶

¶

¶

¶

¶

¶

¶

 Date: Tue, 15 Nov 1994 08:12:31 GMT¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#field.age
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#field.cache-control
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#field.expires
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#field.warning
https://rfc-editor.org/rfc/rfc5322#section-3.6.1

When a Date header field is generated, the sender SHOULD generate

its field value as the best available approximation of the date and

time of message generation. In theory, the date ought to represent

the moment just before the payload is generated. In practice, the

date can be generated at any time during message origination.

An origin server MUST NOT send a Date header field if it does not

have a clock capable of providing a reasonable approximation of the

current instance in Coordinated Universal Time. An origin server MAY

send a Date header field if the response is in the 1xx

(Informational) or 5xx (Server Error) class of status codes. An

origin server MUST send a Date header field in all other cases.

A recipient with a clock that receives a response message without a

Date header field MUST record the time it was received and append a

corresponding Date header field to the message's header section if

it is cached or forwarded downstream.

A user agent MAY send a Date header field in a request, though

generally will not do so unless it is believed to convey useful

information to the server. For example, custom applications of HTTP

might convey a Date if the server is expected to adjust its

interpretation of the user's request based on differences between

the user agent and server clocks.

11.1.2. Location

The "Location" header field is used in some responses to refer to a

specific resource in relation to the response. The type of

relationship is defined by the combination of request method and

status code semantics.

 Location = URI-reference

The field value consists of a single URI-reference. When it has the

form of a relative reference ([RFC3986], Section 4.2), the final

value is computed by resolving it against the target URI ([RFC3986],

Section 5).

For 201 (Created) responses, the Location value refers to the

primary resource created by the request. For 3xx (Redirection)

responses, the Location value refers to the preferred target

resource for automatically redirecting the request.

If the Location value provided in a 3xx (Redirection) response does

not have a fragment component, a user agent MUST process the

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-4.2
https://rfc-editor.org/rfc/rfc3986#section-5

redirection as if the value inherits the fragment component of the

URI reference used to generate the target URI (i.e., the redirection

inherits the original reference's fragment, if any).

For example, a GET request generated for the URI reference "http://

www.example.org/~tim" might result in a 303 (See Other) response

containing the header field:

which suggests that the user agent redirect to "http://

www.example.org/People.html#tim"

Likewise, a GET request generated for the URI reference "http://

www.example.org/index.html#larry" might result in a 301 (Moved

Permanently) response containing the header field:

which suggests that the user agent redirect to "http://

www.example.net/index.html#larry", preserving the original fragment

identifier.

There are circumstances in which a fragment identifier in a Location

value would not be appropriate. For example, the Location header

field in a 201 (Created) response is supposed to provide a URI that

is specific to the created resource.

Note: Some recipients attempt to recover from Location fields that

are not valid URI references. This specification does not mandate or

define such processing, but does allow it for the sake of

robustness.

Note: The Content-Location header field (Section 7.2.5) differs from

Location in that the Content-Location refers to the most specific

resource corresponding to the enclosed representation. It is

therefore possible for a response to contain both the Location and

Content-Location header fields.

11.1.3. Retry-After

Servers send the "Retry-After" header field to indicate how long the

user agent ought to wait before making a follow-up request. When

sent with a 503 (Service Unavailable) response, Retry-After

indicates how long the service is expected to be unavailable to the

client. When sent with any 3xx (Redirection) response, Retry-After

indicates the minimum time that the user agent is asked to wait

before issuing the redirected request.

¶

¶

 Location: /People.html#tim¶

¶

¶

 Location: http://www.example.net/index.html¶

¶

¶

¶

¶

¶

The value of this field can be either an HTTP-date or a number of

seconds to delay after the response is received.

 Retry-After = HTTP-date / delay-seconds

A delay-seconds value is a non-negative decimal integer,

representing time in seconds.

 delay-seconds = 1*DIGIT

Two examples of its use are

In the latter example, the delay is 2 minutes.

11.1.4. Vary

The "Vary" header field in a response describes what parts of a

request message, aside from the method, Host header field, and

target URI, might influence the origin server's process for

selecting and representing this response.

 Vary = 1#("*" / field-name)

A Vary field value is a list of request field names, known as the

selecting header fields, that might have a role in selecting the

representation for this response. Potential selecting header fields

are not limited to those defined by this specification.

If the list contains "*", it signals that other aspects of the

request might play a role in selecting the response representation,

possibly including elements outside the message syntax (e.g., the

client's network address). A recipient will not be able to determine

whether this response is appropriate for a later request without

forwarding the request to the origin server. A proxy MUST NOT

generate "*" in a Vary field value.

For example, a response that contains

¶

¶

¶

¶

¶

 Retry-After: Fri, 31 Dec 1999 23:59:59 GMT

 Retry-After: 120

¶

¶

¶

¶

¶

¶

¶

indicates that the origin server might have used the request's

Accept-Encoding and Accept-Language fields (or lack thereof) as

determining factors while choosing the content for this response.

An origin server might send Vary with a list of fields for two

purposes:

To inform cache recipients that they MUST NOT use this response

to satisfy a later request unless the later request has the

same values for the listed fields as the original request

(Section 4.1 of [Caching]). In other words, Vary expands the

cache key required to match a new request to the stored cache

entry.

To inform user agent recipients that this response is subject

to content negotiation (Section 9.4) and that a different

representation might be sent in a subsequent request if

additional parameters are provided in the listed header fields

(proactive negotiation).

An origin server SHOULD send a Vary header field when its algorithm

for selecting a representation varies based on aspects of the

request message other than the method and target URI, unless the

variance cannot be crossed or the origin server has been

deliberately configured to prevent cache transparency. For example,

there is no need to send the Authorization field name in Vary

because reuse across users is constrained by the field definition

(Section 9.5.3). Likewise, an origin server might use Cache-Control

response directives (Section 5.2 of [Caching]) to supplant Vary if

it considers the variance less significant than the performance cost

of Vary's impact on caching.

11.2. Validators

Validator header fields convey metadata about the selected

representation (Section 7). In responses to safe requests, validator

fields describe the selected representation chosen by the origin

server while handling the response. Note that, depending on the

status code semantics, the selected representation for a given

response is not necessarily the same as the representation enclosed

as response payload.

In a successful response to a state-changing request, validator

fields describe the new representation that has replaced the prior

selected representation as a result of processing the request.

 Vary: accept-encoding, accept-language¶

¶

¶

1.

¶

2.

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#caching.negotiated.responses
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#field.cache-control

For example, an ETag field in a 201 (Created) response communicates

the entity-tag of the newly created resource's representation, so

that it can be used in later conditional requests to prevent the

"lost update" problem Section 9.2.

Field Name Defined in...

ETag Section 11.2.3

Last-Modified Section 11.2.2

Table 18

This specification defines two forms of metadata that are commonly

used to observe resource state and test for preconditions:

modification dates (Section 11.2.2) and opaque entity tags (Section

11.2.3). Additional metadata that reflects resource state has been

defined by various extensions of HTTP, such as Web Distributed

Authoring and Versioning (WebDAV, [RFC4918]), that are beyond the

scope of this specification. A resource metadata value is referred

to as a "validator" when it is used within a precondition.

11.2.1. Weak versus Strong

Validators come in two flavors: strong or weak. Weak validators are

easy to generate but are far less useful for comparisons. Strong

validators are ideal for comparisons but can be very difficult (and

occasionally impossible) to generate efficiently. Rather than impose

that all forms of resource adhere to the same strength of validator,

HTTP exposes the type of validator in use and imposes restrictions

on when weak validators can be used as preconditions.

A "strong validator" is representation metadata that changes value

whenever a change occurs to the representation data that would be

observable in the payload body of a 200 (OK) response to GET.

A strong validator might change for reasons other than a change to

the representation data, such as when a semantically significant

part of the representation metadata is changed (e.g., Content-Type),

but it is in the best interests of the origin server to only change

the value when it is necessary to invalidate the stored responses

held by remote caches and authoring tools.

Cache entries might persist for arbitrarily long periods, regardless

of expiration times. Thus, a cache might attempt to validate an

entry using a validator that it obtained in the distant past. A

strong validator is unique across all versions of all

representations associated with a particular resource over time.

However, there is no implication of uniqueness across

representations of different resources (i.e., the same strong

validator might be in use for representations of multiple resources

¶

¶

¶

¶

¶

at the same time and does not imply that those representations are

equivalent).

There are a variety of strong validators used in practice. The best

are based on strict revision control, wherein each change to a

representation always results in a unique node name and revision

identifier being assigned before the representation is made

accessible to GET. A collision-resistant hash function applied to

the representation data is also sufficient if the data is available

prior to the response header fields being sent and the digest does

not need to be recalculated every time a validation request is

received. However, if a resource has distinct representations that

differ only in their metadata, such as might occur with content

negotiation over media types that happen to share the same data

format, then the origin server needs to incorporate additional

information in the validator to distinguish those representations.

In contrast, a "weak validator" is representation metadata that

might not change for every change to the representation data. This

weakness might be due to limitations in how the value is calculated,

such as clock resolution, an inability to ensure uniqueness for all

possible representations of the resource, or a desire of the

resource owner to group representations by some self-determined set

of equivalency rather than unique sequences of data. An origin

server SHOULD change a weak entity-tag whenever it considers prior

representations to be unacceptable as a substitute for the current

representation. In other words, a weak entity-tag ought to change

whenever the origin server wants caches to invalidate old responses.

For example, the representation of a weather report that changes in

content every second, based on dynamic measurements, might be

grouped into sets of equivalent representations (from the origin

server's perspective) with the same weak validator in order to allow

cached representations to be valid for a reasonable period of time

(perhaps adjusted dynamically based on server load or weather

quality). Likewise, a representation's modification time, if defined

with only one-second resolution, might be a weak validator if it is

possible for the representation to be modified twice during a single

second and retrieved between those modifications.

Likewise, a validator is weak if it is shared by two or more

representations of a given resource at the same time, unless those

representations have identical representation data. For example, if

the origin server sends the same validator for a representation with

a gzip content coding applied as it does for a representation with

no content coding, then that validator is weak. However, two

simultaneous representations might share the same strong validator

if they differ only in the representation metadata, such as when two

¶

¶

¶

¶

different media types are available for the same representation

data.

Strong validators are usable for all conditional requests, including

cache validation, partial content ranges, and "lost update"

avoidance. Weak validators are only usable when the client does not

require exact equality with previously obtained representation data,

such as when validating a cache entry or limiting a web traversal to

recent changes.

11.2.2. Last-Modified

The "Last-Modified" header field in a response provides a timestamp

indicating the date and time at which the origin server believes the

selected representation was last modified, as determined at the

conclusion of handling the request.

 Last-Modified = HTTP-date

An example of its use is

11.2.2.1. Generation

An origin server SHOULD send Last-Modified for any selected

representation for which a last modification date can be reasonably

and consistently determined, since its use in conditional requests

and evaluating cache freshness ([Caching]) results in a substantial

reduction of HTTP traffic on the Internet and can be a significant

factor in improving service scalability and reliability.

A representation is typically the sum of many parts behind the

resource interface. The last-modified time would usually be the most

recent time that any of those parts were changed. How that value is

determined for any given resource is an implementation detail beyond

the scope of this specification. What matters to HTTP is how

recipients of the Last-Modified header field can use its value to

make conditional requests and test the validity of locally cached

responses.

An origin server SHOULD obtain the Last-Modified value of the

representation as close as possible to the time that it generates

the Date field value for its response. This allows a recipient to

make an accurate assessment of the representation's modification

¶

¶

¶

¶

¶

 Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT¶

¶

¶

time, especially if the representation changes near the time that

the response is generated.

An origin server with a clock MUST NOT send a Last-Modified date

that is later than the server's time of message origination (Date).

If the last modification time is derived from implementation-

specific metadata that evaluates to some time in the future,

according to the origin server's clock, then the origin server MUST

replace that value with the message origination date. This prevents

a future modification date from having an adverse impact on cache

validation.

An origin server without a clock MUST NOT assign Last-Modified

values to a response unless these values were associated with the

resource by some other system or user with a reliable clock.

11.2.2.2. Comparison

A Last-Modified time, when used as a validator in a request, is

implicitly weak unless it is possible to deduce that it is strong,

using the following rules:

The validator is being compared by an origin server to the actual

current validator for the representation and,

That origin server reliably knows that the associated

representation did not change twice during the second covered by

the presented validator.

or

The validator is about to be used by a client in an If-Modified-

Since, If-Unmodified-Since, or If-Range header field, because the

client has a cache entry for the associated representation, and

That cache entry includes a Date value, which gives the time when

the origin server sent the original response, and

The presented Last-Modified time is at least 60 seconds before

the Date value.

or

The validator is being compared by an intermediate cache to the

validator stored in its cache entry for the representation, and

That cache entry includes a Date value, which gives the time when

the origin server sent the original response, and

¶

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

The presented Last-Modified time is at least 60 seconds before

the Date value.

This method relies on the fact that if two different responses were

sent by the origin server during the same second, but both had the

same Last-Modified time, then at least one of those responses would

have a Date value equal to its Last-Modified time. The arbitrary 60-

second limit guards against the possibility that the Date and Last-

Modified values are generated from different clocks or at somewhat

different times during the preparation of the response. An

implementation MAY use a value larger than 60 seconds, if it is

believed that 60 seconds is too short.

11.2.3. ETag

The "ETag" field in a response provides the current entity-tag for

the selected representation, as determined at the conclusion of

handling the request. An entity-tag is an opaque validator for

differentiating between multiple representations of the same

resource, regardless of whether those multiple representations are

due to resource state changes over time, content negotiation

resulting in multiple representations being valid at the same time,

or both. An entity-tag consists of an opaque quoted string, possibly

prefixed by a weakness indicator.

 ETag = entity-tag

 entity-tag = [weak] opaque-tag

 weak = %s"W/"

 opaque-tag = DQUOTE *etagc DQUOTE

 etagc = %x21 / %x23-7E / obs-text

 ; VCHAR except double quotes, plus obs-text

Note: Previously, opaque-tag was defined to be a quoted-string

([RFC2616], Section 3.11); thus, some recipients might perform

backslash unescaping. Servers therefore ought to avoid backslash

characters in entity tags.

An entity-tag can be more reliable for validation than a

modification date in situations where it is inconvenient to store

modification dates, where the one-second resolution of HTTP date

values is not sufficient, or where modification dates are not

consistently maintained.

Examples:

*

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc2616#section-3.11

An entity-tag can be either a weak or strong validator, with strong

being the default. If an origin server provides an entity-tag for a

representation and the generation of that entity-tag does not

satisfy all of the characteristics of a strong validator (Section

11.2.1), then the origin server MUST mark the entity-tag as weak by

prefixing its opaque value with "W/" (case-sensitive).

A sender MAY send the Etag field in a trailer section (see Section

5.6). However, since trailers are often ignored, it is preferable to

send Etag as a header field unless the entity-tag is generated while

sending the message body.

11.2.3.1. Generation

The principle behind entity-tags is that only the service author

knows the implementation of a resource well enough to select the

most accurate and efficient validation mechanism for that resource,

and that any such mechanism can be mapped to a simple sequence of

octets for easy comparison. Since the value is opaque, there is no

need for the client to be aware of how each entity-tag is

constructed.

For example, a resource that has implementation-specific versioning

applied to all changes might use an internal revision number,

perhaps combined with a variance identifier for content negotiation,

to accurately differentiate between representations. Other

implementations might use a collision-resistant hash of

representation content, a combination of various file attributes, or

a modification timestamp that has sub-second resolution.

An origin server SHOULD send an ETag for any selected representation

for which detection of changes can be reasonably and consistently

determined, since the entity-tag's use in conditional requests and

evaluating cache freshness ([Caching]) can result in a substantial

reduction of HTTP network traffic and can be a significant factor in

improving service scalability and reliability.

11.2.3.2. Comparison

There are two entity-tag comparison functions, depending on whether

or not the comparison context allows the use of weak validators:

Strong comparison: two entity-tags are equivalent if both are not

weak and their opaque-tags match character-by-character.

 ETag: "xyzzy"

 ETag: W/"xyzzy"

 ETag: ""

¶

¶

¶

¶

¶

¶

¶

*

¶

Weak comparison: two entity-tags are equivalent if their opaque-

tags match character-by-character, regardless of either or both

being tagged as "weak".

The example below shows the results for a set of entity-tag pairs

and both the weak and strong comparison function results:

ETag 1 ETag 2 Strong Comparison Weak Comparison

W/"1" W/"1" no match match

W/"1" W/"2" no match no match

W/"1" "1" no match match

"1" "1" match match

Table 19

11.2.3.3. Example: Entity-Tags Varying on Content-Negotiated Resources

Consider a resource that is subject to content negotiation (Section

7.4), and where the representations sent in response to a GET

request vary based on the Accept-Encoding request header field

(Section 9.4.3):

>> Request:

In this case, the response might or might not use the gzip content

coding. If it does not, the response might look like:

>> Response:

An alternative representation that does use gzip content coding

would be:

>> Response:

*

¶

¶

¶

¶

 GET /index HTTP/1.1

 Host: www.example.com

 Accept-Encoding: gzip

¶

¶

¶

 HTTP/1.1 200 OK

 Date: Fri, 26 Mar 2010 00:05:00 GMT

 ETag: "123-a"

 Content-Length: 70

 Vary: Accept-Encoding

 Content-Type: text/plain

 Hello World!

 Hello World!

 Hello World!

 Hello World!

 Hello World!

¶

¶

¶

Note: Content codings are a property of the representation data, so

a strong entity-tag for a content-encoded representation has to be

distinct from the entity tag of an unencoded representation to

prevent potential conflicts during cache updates and range requests.

In contrast, transfer codings (Section 7 of [Messaging]) apply only

during message transfer and do not result in distinct entity-tags.

11.2.4. When to Use Entity-Tags and Last-Modified Dates

In 200 (OK) responses to GET or HEAD, an origin server:

SHOULD send an entity-tag validator unless it is not feasible to

generate one.

MAY send a weak entity-tag instead of a strong entity-tag, if

performance considerations support the use of weak entity-tags,

or if it is unfeasible to send a strong entity-tag.

SHOULD send a Last-Modified value if it is feasible to send one.

In other words, the preferred behavior for an origin server is to

send both a strong entity-tag and a Last-Modified value in

successful responses to a retrieval request.

A client:

MUST send that entity-tag in any cache validation request (using

If-Match or If-None-Match) if an entity-tag has been provided by

the origin server.

SHOULD send the Last-Modified value in non-subrange cache

validation requests (using If-Modified-Since) if only a Last-

Modified value has been provided by the origin server.

MAY send the Last-Modified value in subrange cache validation

requests (using If-Unmodified-Since) if only a Last-Modified

value has been provided by an HTTP/1.0 origin server. The user

agent SHOULD provide a way to disable this, in case of

difficulty.

 HTTP/1.1 200 OK

 Date: Fri, 26 Mar 2010 00:05:00 GMT

 ETag: "123-b"

 Content-Length: 43

 Vary: Accept-Encoding

 Content-Type: text/plain

 Content-Encoding: gzip

 ...binary data...

¶

¶

¶

*

¶

*

¶

* ¶

¶

¶

*

¶

*

¶

*

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#transfer.codings

SHOULD send both validators in cache validation requests if both

an entity-tag and a Last-Modified value have been provided by the

origin server. This allows both HTTP/1.0 and HTTP/1.1 caches to

respond appropriately.

11.3. Authentication Challenges

Authentication challenges indicate what mechanisms are available for

the client to provide authentication credentials in future requests.

Field Name Defined in...

WWW-Authenticate Section 11.3.1

Proxy-Authenticate Section 11.3.2

Table 20

Furthermore, the "Authentication-Info" and "Proxy-Authentication-

Info" response header fields are defined for use in authentication

schemes that need to return information once the client's

authentication credentials have been accepted.

Field Name Defined in...

Authentication-Info Section 11.3.3

Proxy-Authentication-Info Section 11.3.4

Table 21

11.3.1. WWW-Authenticate

The "WWW-Authenticate" header field indicates the authentication

scheme(s) and parameters applicable to the target resource.

 WWW-Authenticate = 1#challenge

A server generating a 401 (Unauthorized) response MUST send a WWW-

Authenticate header field containing at least one challenge. A

server MAY generate a WWW-Authenticate header field in other

response messages to indicate that supplying credentials (or

different credentials) might affect the response.

A proxy forwarding a response MUST NOT modify any WWW-Authenticate

fields in that response.

User agents are advised to take special care in parsing the field

value, as it might contain more than one challenge, and each

challenge can contain a comma-separated list of authentication

parameters. Furthermore, the header field itself can occur multiple

times.

*

¶

¶

¶

¶

¶

¶

¶

¶

For instance:

This header field contains two challenges; one for the "Newauth"

scheme with a realm value of "apps", and two additional parameters

"type" and "title", and another one for the "Basic" scheme with a

realm value of "simple".

Note: The challenge grammar production uses the list syntax as well.

Therefore, a sequence of comma, whitespace, and comma can be

considered either as applying to the preceding challenge, or to be

an empty entry in the list of challenges. In practice, this

ambiguity does not affect the semantics of the header field value

and thus is harmless.

11.3.2. Proxy-Authenticate

The "Proxy-Authenticate" header field consists of at least one

challenge that indicates the authentication scheme(s) and parameters

applicable to the proxy for this request. A proxy MUST send at least

one Proxy-Authenticate header field in each 407 (Proxy

Authentication Required) response that it generates.

 Proxy-Authenticate = 1#challenge

Unlike WWW-Authenticate, the Proxy-Authenticate header field applies

only to the next outbound client on the response chain. This is

because only the client that chose a given proxy is likely to have

the credentials necessary for authentication. However, when multiple

proxies are used within the same administrative domain, such as

office and regional caching proxies within a large corporate

network, it is common for credentials to be generated by the user

agent and passed through the hierarchy until consumed. Hence, in

such a configuration, it will appear as if Proxy-Authenticate is

being forwarded because each proxy will send the same challenge set.

Note that the parsing considerations for WWW-Authenticate apply to

this header field as well; see Section 11.3.1 for details.

11.3.3. Authentication-Info

HTTP authentication schemes can use the Authentication-Info response

header field to communicate information after the client's

¶

 WWW-Authenticate: Newauth realm="apps", type=1,

 title="Login to \"apps\"", Basic realm="simple"

¶

¶

¶

¶

¶

¶

¶

authentication credentials have been accepted. This information can

include a finalization message from the server (e.g., it can contain

the server authentication).

The field value is a list of parameters (name/value pairs), using

the "auth-param" syntax defined in Section 9.5.1. This specification

only describes the generic format; authentication schemes using

Authentication-Info will define the individual parameters. The

"Digest" Authentication Scheme, for instance, defines multiple

parameters in Section 3.5 of [RFC7616].

 Authentication-Info = #auth-param

The Authentication-Info header field can be used in any HTTP

response, independently of request method and status code. Its

semantics are defined by the authentication scheme indicated by the

Authorization header field (Section 9.5.3) of the corresponding

request.

A proxy forwarding a response is not allowed to modify the field

value in any way.

Authentication-Info can be used inside trailers (Section 5.6) when

the authentication scheme explicitly allows this.

11.3.3.1. Parameter Value Format

Parameter values can be expressed either as "token" or as "quoted-

string" (Section 5.4.1).

Authentication scheme definitions need to allow both notations, both

for senders and recipients. This allows recipients to use generic

parsing components, independent of the authentication scheme in use.

For backwards compatibility, authentication scheme definitions can

restrict the format for senders to one of the two variants. This can

be important when it is known that deployed implementations will

fail when encountering one of the two formats.

11.3.4. Proxy-Authentication-Info

The Proxy-Authentication-Info response header field is equivalent to

Authentication-Info, except that it applies to proxy authentication

(Section 9.5.1) and its semantics are defined by the authentication

scheme indicated by the Proxy-Authorization header field (Section

9.5.4) of the corresponding request:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7616#section-3.5

 Proxy-Authentication-Info = #auth-param

However, unlike Authentication-Info, the Proxy-Authentication-Info

header field applies only to the next outbound client on the

response chain. This is because only the client that chose a given

proxy is likely to have the credentials necessary for

authentication. However, when multiple proxies are used within the

same administrative domain, such as office and regional caching

proxies within a large corporate network, it is common for

credentials to be generated by the user agent and passed through the

hierarchy until consumed. Hence, in such a configuration, it will

appear as if Proxy-Authentication-Info is being forwarded because

each proxy will send the same field value.

11.4. Response Context

The remaining response header fields provide more information about

the target resource for potential use in later requests.

Field Name Defined in...

Accept-Ranges Section 11.4.1

Allow Section 11.4.2

Server Section 11.4.3

Table 22

11.4.1. Accept-Ranges

The "Accept-Ranges" header field allows a server to indicate that it

supports range requests for the target resource.

 Accept-Ranges = acceptable-ranges

 acceptable-ranges = 1#range-unit / "none"

An origin server that supports byte-range requests for a given

target resource MAY send

to indicate what range units are supported. A client MAY generate

range requests without having received this header field for the

resource involved. Range units are defined in Section 7.1.4.

¶

¶

¶

¶

¶

¶

 Accept-Ranges: bytes¶

¶

A server that does not support any kind of range request for the

target resource MAY send

to advise the client not to attempt a range request.

11.4.2. Allow

The "Allow" header field lists the set of methods advertised as

supported by the target resource. The purpose of this field is

strictly to inform the recipient of valid request methods associated

with the resource.

 Allow = #method

Example of use:

The actual set of allowed methods is defined by the origin server at

the time of each request. An origin server MUST generate an Allow

field in a 405 (Method Not Allowed) response and MAY do so in any

other response. An empty Allow field value indicates that the

resource allows no methods, which might occur in a 405 response if

the resource has been temporarily disabled by configuration.

A proxy MUST NOT modify the Allow header field - it does not need to

understand all of the indicated methods in order to handle them

according to the generic message handling rules.

11.4.3. Server

The "Server" header field contains information about the software

used by the origin server to handle the request, which is often used

by clients to help identify the scope of reported interoperability

problems, to work around or tailor requests to avoid particular

server limitations, and for analytics regarding server or operating

system use. An origin server MAY generate a Server field in its

responses.

 Server = product *(RWS (product / comment))

¶

 Accept-Ranges: none¶

¶

¶

¶

¶

 Allow: GET, HEAD, PUT¶

¶

¶

¶

¶

The Server field value consists of one or more product identifiers,

each followed by zero or more comments (Section 5.4.1.3), which

together identify the origin server software and its significant

subproducts. By convention, the product identifiers are listed in

decreasing order of their significance for identifying the origin

server software. Each product identifier consists of a name and

optional version, as defined in Section 9.6.3.

Example:

An origin server SHOULD NOT generate a Server field containing

needlessly fine-grained detail and SHOULD limit the addition of

subproducts by third parties. Overly long and detailed Server field

values increase response latency and potentially reveal internal

implementation details that might make it (slightly) easier for

attackers to find and exploit known security holes.

12. Security Considerations

This section is meant to inform developers, information providers,

and users of known security concerns relevant to HTTP semantics and

its use for transferring information over the Internet.

Considerations related to message syntax, parsing, and routing are

discussed in Section 11 of [Messaging].

The list of considerations below is not exhaustive. Most security

concerns related to HTTP semantics are about securing server-side

applications (code behind the HTTP interface), securing user agent

processing of payloads received via HTTP, or secure use of the

Internet in general, rather than security of the protocol. Various

organizations maintain topical information and links to current

research on Web application security (e.g., [OWASP]).

12.1. Establishing Authority

HTTP relies on the notion of an authoritative response: a response

that has been determined by (or at the direction of) the origin

server identified within the target URI to be the most appropriate

response for that request given the state of the target resource at

the time of response message origination.

When a registered name is used in the authority component, the

"http" URI scheme (Section 2.5.1) relies on the user's local name

resolution service to determine where it can find authoritative

responses. This means that any attack on a user's network host

table, cached names, or name resolution libraries becomes an avenue

for attack on establishing authority for "http" URIs. Likewise, the

¶

¶

 Server: CERN/3.0 libwww/2.17¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#security.considerations

user's choice of server for Domain Name Service (DNS), and the

hierarchy of servers from which it obtains resolution results, could

impact the authenticity of address mappings; DNS Security Extensions

(DNSSEC, [RFC4033]) are one way to improve authenticity.

Furthermore, after an IP address is obtained, establishing authority

for an "http" URI is vulnerable to attacks on Internet Protocol

routing.

The "https" scheme (Section 2.5.2) is intended to prevent (or at

least reveal) many of these potential attacks on establishing

authority, provided that the negotiated TLS connection is secured

and the client properly verifies that the communicating server's

identity matches the target URI's authority component (Section

6.4.3.1). Correctly implementing such verification can be difficult

(see [Georgiev]).

Authority for a given origin server can be delegated through

protocol extensions; for example, [RFC7838]. Likewise, the set of

servers that a connection is considered authoritative for can be

changed with a protocol extension like [RFC8336].

Providing a response from a non-authoritative source, such as a

shared proxy cache, is often useful to improve performance and

availability, but only to the extent that the source can be trusted

or the distrusted response can be safely used.

Unfortunately, communicating authority to users can be difficult.

For example, phishing is an attack on the user's perception of

authority, where that perception can be misled by presenting similar

branding in hypertext, possibly aided by userinfo obfuscating the

authority component (see Section 2.5.1). User agents can reduce the

impact of phishing attacks by enabling users to easily inspect a

target URI prior to making an action, by prominently distinguishing

(or rejecting) userinfo when present, and by not sending stored

credentials and cookies when the referring document is from an

unknown or untrusted source.

12.2. Risks of Intermediaries

By their very nature, HTTP intermediaries are men-in-the-middle and,

thus, represent an opportunity for man-in-the-middle attacks.

Compromise of the systems on which the intermediaries run can result

in serious security and privacy problems. Intermediaries might have

access to security-related information, personal information about

individual users and organizations, and proprietary information

belonging to users and content providers. A compromised

intermediary, or an intermediary implemented or configured without

¶

¶

¶

¶

¶

¶

regard to security and privacy considerations, might be used in the

commission of a wide range of potential attacks.

Intermediaries that contain a shared cache are especially vulnerable

to cache poisoning attacks, as described in Section 7 of [Caching].

Implementers need to consider the privacy and security implications

of their design and coding decisions, and of the configuration

options they provide to operators (especially the default

configuration).

Users need to be aware that intermediaries are no more trustworthy

than the people who run them; HTTP itself cannot solve this problem.

12.3. Attacks Based on File and Path Names

Origin servers frequently make use of their local file system to

manage the mapping from target URI to resource representations. Most

file systems are not designed to protect against malicious file or

path names. Therefore, an origin server needs to avoid accessing

names that have a special significance to the system when mapping

the target resource to files, folders, or directories.

For example, UNIX, Microsoft Windows, and other operating systems

use ".." as a path component to indicate a directory level above the

current one, and they use specially named paths or file names to

send data to system devices. Similar naming conventions might exist

within other types of storage systems. Likewise, local storage

systems have an annoying tendency to prefer user-friendliness over

security when handling invalid or unexpected characters,

recomposition of decomposed characters, and case-normalization of

case-insensitive names.

Attacks based on such special names tend to focus on either denial-

of-service (e.g., telling the server to read from a COM port) or

disclosure of configuration and source files that are not meant to

be served.

12.4. Attacks Based on Command, Code, or Query Injection

Origin servers often use parameters within the URI as a means of

identifying system services, selecting database entries, or choosing

a data source. However, data received in a request cannot be

trusted. An attacker could construct any of the request data

elements (method, target URI, header fields, or body) to contain

data that might be misinterpreted as a command, code, or query when

passed through a command invocation, language interpreter, or

database interface.

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10#security.considerations

For example, SQL injection is a common attack wherein additional

query language is inserted within some part of the target URI or

header fields (e.g., Host, Referer, etc.). If the received data is

used directly within a SELECT statement, the query language might be

interpreted as a database command instead of a simple string value.

This type of implementation vulnerability is extremely common, in

spite of being easy to prevent.

In general, resource implementations ought to avoid use of request

data in contexts that are processed or interpreted as instructions.

Parameters ought to be compared to fixed strings and acted upon as a

result of that comparison, rather than passed through an interface

that is not prepared for untrusted data. Received data that isn't

based on fixed parameters ought to be carefully filtered or encoded

to avoid being misinterpreted.

Similar considerations apply to request data when it is stored and

later processed, such as within log files, monitoring tools, or when

included within a data format that allows embedded scripts.

12.5. Attacks via Protocol Element Length

Because HTTP uses mostly textual, character-delimited fields,

parsers are often vulnerable to attacks based on sending very long

(or very slow) streams of data, particularly where an implementation

is expecting a protocol element with no predefined length (Section

3.3).

To promote interoperability, specific recommendations are made for

minimum size limits on request-line (Section 3 of [Messaging]) and

fields (Section 5). These are minimum recommendations, chosen to be

supportable even by implementations with limited resources; it is

expected that most implementations will choose substantially higher

limits.

A server can reject a message that has a target URI that is too long

(Section 10.5.15) or a request payload that is too large (Section

10.5.14). Additional status codes related to capacity limits have

been defined by extensions to HTTP [RFC6585].

Recipients ought to carefully limit the extent to which they process

other protocol elements, including (but not limited to) request

methods, response status phrases, field names, numeric values, and

body chunks. Failure to limit such processing can result in buffer

overflows, arithmetic overflows, or increased vulnerability to

denial-of-service attacks.

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10#request.line

12.6. Disclosure of Personal Information

Clients are often privy to large amounts of personal information,

including both information provided by the user to interact with

resources (e.g., the user's name, location, mail address, passwords,

encryption keys, etc.) and information about the user's browsing

activity over time (e.g., history, bookmarks, etc.). Implementations

need to prevent unintentional disclosure of personal information.

12.7. Privacy of Server Log Information

A server is in the position to save personal data about a user's

requests over time, which might identify their reading patterns or

subjects of interest. In particular, log information gathered at an

intermediary often contains a history of user agent interaction,

across a multitude of sites, that can be traced to individual users.

HTTP log information is confidential in nature; its handling is

often constrained by laws and regulations. Log information needs to

be securely stored and appropriate guidelines followed for its

analysis. Anonymization of personal information within individual

entries helps, but it is generally not sufficient to prevent real

log traces from being re-identified based on correlation with other

access characteristics. As such, access traces that are keyed to a

specific client are unsafe to publish even if the key is

pseudonymous.

To minimize the risk of theft or accidental publication, log

information ought to be purged of personally identifiable

information, including user identifiers, IP addresses, and user-

provided query parameters, as soon as that information is no longer

necessary to support operational needs for security, auditing, or

fraud control.

12.8. Disclosure of Sensitive Information in URIs

URIs are intended to be shared, not secured, even when they identify

secure resources. URIs are often shown on displays, added to

templates when a page is printed, and stored in a variety of

unprotected bookmark lists. It is therefore unwise to include

information within a URI that is sensitive, personally identifiable,

or a risk to disclose.

Authors of services ought to avoid GET-based forms for the

submission of sensitive data because that data will be placed in the

target URI. Many existing servers, proxies, and user agents log or

display the target URI in places where it might be visible to third

parties. Such services ought to use POST-based form submission

instead.

¶

¶

¶

¶

¶

¶

Since the Referer header field tells a target site about the context

that resulted in a request, it has the potential to reveal

information about the user's immediate browsing history and any

personal information that might be found in the referring resource's

URI. Limitations on the Referer header field are described in

Section 9.6.2 to address some of its security considerations.

12.9. Disclosure of Fragment after Redirects

Although fragment identifiers used within URI references are not

sent in requests, implementers ought to be aware that they will be

visible to the user agent and any extensions or scripts running as a

result of the response. In particular, when a redirect occurs and

the original request's fragment identifier is inherited by the new

reference in Location (Section 11.1.2), this might have the effect

of disclosing one site's fragment to another site. If the first site

uses personal information in fragments, it ought to ensure that

redirects to other sites include a (possibly empty) fragment

component in order to block that inheritance.

12.10. Disclosure of Product Information

The User-Agent (Section 9.6.3), Via (Section 6.7.1), and Server

(Section 11.4.3) header fields often reveal information about the

respective sender's software systems. In theory, this can make it

easier for an attacker to exploit known security holes; in practice,

attackers tend to try all potential holes regardless of the apparent

software versions being used.

Proxies that serve as a portal through a network firewall ought to

take special precautions regarding the transfer of header

information that might identify hosts behind the firewall. The Via

header field allows intermediaries to replace sensitive machine

names with pseudonyms.

12.11. Browser Fingerprinting

Browser fingerprinting is a set of techniques for identifying a

specific user agent over time through its unique set of

characteristics. These characteristics might include information

related to its TCP behavior, feature capabilities, and scripting

environment, though of particular interest here is the set of unique

characteristics that might be communicated via HTTP. Fingerprinting

is considered a privacy concern because it enables tracking of a

user agent's behavior over time ([Bujlow]) without the corresponding

controls that the user might have over other forms of data

collection (e.g., cookies). Many general-purpose user agents (i.e.,

Web browsers) have taken steps to reduce their fingerprints.

¶

¶

¶

¶

¶

There are a number of request header fields that might reveal

information to servers that is sufficiently unique to enable

fingerprinting. The From header field is the most obvious, though it

is expected that From will only be sent when self-identification is

desired by the user. Likewise, Cookie header fields are deliberately

designed to enable re-identification, so fingerprinting concerns

only apply to situations where cookies are disabled or restricted by

the user agent's configuration.

The User-Agent header field might contain enough information to

uniquely identify a specific device, usually when combined with

other characteristics, particularly if the user agent sends

excessive details about the user's system or extensions. However,

the source of unique information that is least expected by users is

proactive negotiation (Section 9.4), including the Accept, Accept-

Charset, Accept-Encoding, and Accept-Language header fields.

In addition to the fingerprinting concern, detailed use of the

Accept-Language header field can reveal information the user might

consider to be of a private nature. For example, understanding a

given language set might be strongly correlated to membership in a

particular ethnic group. An approach that limits such loss of

privacy would be for a user agent to omit the sending of Accept-

Language except for sites that have been whitelisted, perhaps via

interaction after detecting a Vary header field that indicates

language negotiation might be useful.

In environments where proxies are used to enhance privacy, user

agents ought to be conservative in sending proactive negotiation

header fields. General-purpose user agents that provide a high

degree of header field configurability ought to inform users about

the loss of privacy that might result if too much detail is

provided. As an extreme privacy measure, proxies could filter the

proactive negotiation header fields in relayed requests.

12.12. Validator Retention

The validators defined by this specification are not intended to

ensure the validity of a representation, guard against malicious

changes, or detect man-in-the-middle attacks. At best, they enable

more efficient cache updates and optimistic concurrent writes when

all participants are behaving nicely. At worst, the conditions will

fail and the client will receive a response that is no more harmful

than an HTTP exchange without conditional requests.

An entity-tag can be abused in ways that create privacy risks. For

example, a site might deliberately construct a semantically invalid

entity-tag that is unique to the user or user agent, send it in a

cacheable response with a long freshness time, and then read that

¶

¶

¶

¶

¶

entity-tag in later conditional requests as a means of re-

identifying that user or user agent. Such an identifying tag would

become a persistent identifier for as long as the user agent

retained the original cache entry. User agents that cache

representations ought to ensure that the cache is cleared or

replaced whenever the user performs privacy-maintaining actions,

such as clearing stored cookies or changing to a private browsing

mode.

12.13. Denial-of-Service Attacks Using Range

Unconstrained multiple range requests are susceptible to denial-of-

service attacks because the effort required to request many

overlapping ranges of the same data is tiny compared to the time,

memory, and bandwidth consumed by attempting to serve the requested

data in many parts. Servers ought to ignore, coalesce, or reject

egregious range requests, such as requests for more than two

overlapping ranges or for many small ranges in a single set,

particularly when the ranges are requested out of order for no

apparent reason. Multipart range requests are not designed to

support random access.

12.14. Authentication Considerations

Everything about the topic of HTTP authentication is a security

consideration, so the list of considerations below is not

exhaustive. Furthermore, it is limited to security considerations

regarding the authentication framework, in general, rather than

discussing all of the potential considerations for specific

authentication schemes (which ought to be documented in the

specifications that define those schemes). Various organizations

maintain topical information and links to current research on Web

application security (e.g., [OWASP]), including common pitfalls for

implementing and using the authentication schemes found in practice.

12.14.1. Confidentiality of Credentials

The HTTP authentication framework does not define a single mechanism

for maintaining the confidentiality of credentials; instead, each

authentication scheme defines how the credentials are encoded prior

to transmission. While this provides flexibility for the development

of future authentication schemes, it is inadequate for the

protection of existing schemes that provide no confidentiality on

their own, or that do not sufficiently protect against replay

attacks. Furthermore, if the server expects credentials that are

specific to each individual user, the exchange of those credentials

will have the effect of identifying that user even if the content

within credentials remains confidential.

¶

¶

¶

¶

HTTP depends on the security properties of the underlying transport-

or session-level connection to provide confidential transmission of

fields. In other words, if a server limits access to authenticated

users using this framework, the server needs to ensure that the

connection is properly secured in accordance with the nature of the

authentication scheme used. For example, services that depend on

individual user authentication often require a connection to be

secured with TLS ("Transport Layer Security", [RFC8446]) prior to

exchanging any credentials.

12.14.2. Credentials and Idle Clients

Existing HTTP clients and user agents typically retain

authentication information indefinitely. HTTP does not provide a

mechanism for the origin server to direct clients to discard these

cached credentials, since the protocol has no awareness of how

credentials are obtained or managed by the user agent. The

mechanisms for expiring or revoking credentials can be specified as

part of an authentication scheme definition.

Circumstances under which credential caching can interfere with the

application's security model include but are not limited to:

Clients that have been idle for an extended period, following

which the server might wish to cause the client to re-prompt the

user for credentials.

Applications that include a session termination indication (such

as a "logout" or "commit" button on a page) after which the

server side of the application "knows" that there is no further

reason for the client to retain the credentials.

User agents that cache credentials are encouraged to provide a

readily accessible mechanism for discarding cached credentials under

user control.

12.14.3. Protection Spaces

Authentication schemes that solely rely on the "realm" mechanism for

establishing a protection space will expose credentials to all

resources on an origin server. Clients that have successfully made

authenticated requests with a resource can use the same

authentication credentials for other resources on the same origin

server. This makes it possible for a different resource to harvest

authentication credentials for other resources.

This is of particular concern when an origin server hosts resources

for multiple parties under the same canonical root URI (Section

9.5.2). Possible mitigation strategies include restricting direct

access to authentication credentials (i.e., not making the content

¶

¶

¶

*

¶

*

¶

¶

¶

Method Name:

Safe:

Idempotent:

Reference:

of the Authorization request header field available), and separating

protection spaces by using a different host name (or port number)

for each party.

12.14.4. Additional Response Fields

Adding information to responses that are sent over an unencrypted

channel can affect security and privacy. The presence of the

Authentication-Info and Proxy-Authentication-Info header fields

alone indicates that HTTP authentication is in use. Additional

information could be exposed by the contents of the authentication-

scheme specific parameters; this will have to be considered in the

definitions of these schemes.

13. IANA Considerations

The change controller for the following registrations is: "IETF

(iesg@ietf.org) - Internet Engineering Task Force".

13.1. URI Scheme Registration

Please update the registry of URI Schemes [BCP35] at <https://

www.iana.org/assignments/uri-schemes/> with the permanent schemes

listed in the first table of Section 2.5.

13.2. Method Registration

Please update the "Hypertext Transfer Protocol (HTTP) Method

Registry" at <https://www.iana.org/assignments/http-methods> with

the registration procedure of Section 8.4.1 and the method names

summarized in the table of Section 8.2.

Furthermore, the method name "*" is reserved, since using that name

as HTTP method name might conflict with special semantics in fields

such as "Access-Control-Request-Method". Thus, please add the entry

below to the registry:

*

no

no

Section 13.2

13.3. Status Code Registration

Please update the "Hypertext Transfer Protocol (HTTP) Status Code

Registry" at <https://www.iana.org/assignments/http-status-codes>

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/uri-schemes/
https://www.iana.org/assignments/uri-schemes/
https://www.iana.org/assignments/http-methods
https://www.iana.org/assignments/http-status-codes

Value:

Description:

Reference

with the registration procedure of Section 10.7.1 and the status

code values summarized in the table of Section 10.1.

Additionally, please update the following entry in the Hypertext

Transfer Protocol (HTTP) Status Code Registry:

418

(Unused)

Section 10.5.19

13.4. HTTP Field Name Registration

Please create a new registry as outlined in Section 5.3.2.

After creating the registry, all entries in the Permanent and

Provisional Message Header Registries with the protocol 'http' are

to be moved to it, with the following changes applied:

The 'Applicable Protocol' field is to be omitted.

Entries with a status of 'standard', 'experimental',

'reserved', or 'informational' are to have a status of

'permanent'.

Provisional entries without a status are to have a status of

'provisional'.

Permanent entries without a status (after confirmation that the

registration document did not define one) will have a status of

'provisional'. The Expert(s) can choose to update their status

if there is evidence that another is more appropriate.

Please annotate the Permanent and Provisional Message Header

registries to indicate that HTTP field name registrations have

moved, with an appropriate link.

After that is complete, please update the new registry with the

field names listed in the table of Section 5.8.

Finally, please update the "Content-MD5" entry in the new registry

to have a status of 'obsoleted' with references to Section 14.15 of

[RFC2616] (for the definition of the header field) and Appendix B of

[RFC7231] (which removed the field definition from the updated

specification).

¶

¶

¶

¶

¶

¶

¶

1. ¶

2.

¶

3.

¶

4.

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc2616#section-14.15
https://rfc-editor.org/rfc/rfc7231#appendix-B

[Caching]

13.5. Authentication Scheme Registration

Please update the "Hypertext Transfer Protocol (HTTP) Authentication

Scheme Registry" at <https://www.iana.org/assignments/http-

authschemes> with the registration procedure of Section 9.5.5.1. No

authentication schemes are defined in this document.

13.6. Content Coding Registration

Please update the "HTTP Content Coding Registry" at <https://

www.iana.org/assignments/http-parameters/> with the registration

procedure of Section 7.1.2.4 and the content coding names summarized

in the table of Section 7.1.2.

13.7. Range Unit Registration

Please update the "HTTP Range Unit Registry" at <https://

www.iana.org/assignments/http-parameters/> with the registration

procedure of Section 7.1.4.4 and the range unit names summarized in

the table of Section 7.1.4.

13.8. Media Type Registration

Please update the "Media Types" registry at <https://www.iana.org/

assignments/media-types> with the registration information in

Section 7.3.5 for the media type "multipart/byteranges".

13.9. Port Registration

Please update the "Service Name and Transport Protocol Port Number"

registry at <https://www.iana.org/assignments/service-names-port-

numbers/> for the services on ports 80 and 443 that use UDP or TCP

to:

use this document as "Reference", and

when currently unspecified, set "Assignee" to "IESG" and

"Contact" to "IETF_Chair".

14. References

14.1. Normative References

Fielding, R., Ed., Nottingham, M., Ed., and J. F.

Reschke, Ed., "HTTP Caching", Work in Progress, Internet-

Draft, draft-ietf-httpbis-cache-10, 12 July 2020,

¶

¶

¶

¶

¶

1. ¶

2.

¶

https://www.iana.org/assignments/http-authschemes
https://www.iana.org/assignments/http-authschemes
https://www.iana.org/assignments/http-parameters/
https://www.iana.org/assignments/http-parameters/
https://www.iana.org/assignments/http-parameters/
https://www.iana.org/assignments/http-parameters/
https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/service-names-port-numbers/
https://www.iana.org/assignments/service-names-port-numbers/

[Messaging]

[RFC0793]

[RFC1950]

[RFC1951]

[RFC1952]

[RFC2045]

[RFC2046]

[RFC2119]

[RFC3986]

[RFC4647]

<https://tools.ietf.org/html/draft-ietf-httpbis-

cache-10>.

Fielding, R., Ed., Nottingham, M., Ed., and J. F.

Reschke, Ed., "HTTP/1.1 Messaging", Work in Progress,

Internet-Draft, draft-ietf-httpbis-messaging-10, 12 July

2020, <https://tools.ietf.org/html/draft-ietf-httpbis-

messaging-10>.

Postel, J., "Transmission Control Protocol", STD 7, RFC

793, DOI 10.17487/RFC0793, September 1981, <https://

www.rfc-editor.org/info/rfc793>.

Deutsch, L.P. and J-L. Gailly, "ZLIB Compressed Data

Format Specification version 3.3", RFC 1950, DOI

10.17487/RFC1950, May 1996, <https://www.rfc-editor.org/

info/rfc1950>.

Deutsch, P., "DEFLATE Compressed Data Format

Specification version 1.3", RFC 1951, DOI 10.17487/

RFC1951, May 1996, <https://www.rfc-editor.org/info/

rfc1951>.

Deutsch, P., Gailly, J-L., Adler, M., Deutsch, L.P., and

G. Randers-Pehrson, "GZIP file format specification

version 4.3", RFC 1952, DOI 10.17487/RFC1952, May 1996,

<https://www.rfc-editor.org/info/rfc1952>.

Freed, N. and N.S. Borenstein, "Multipurpose Internet

Mail Extensions (MIME) Part One: Format of Internet

Message Bodies", RFC 2045, DOI 10.17487/RFC2045, November

1996, <https://www.rfc-editor.org/info/rfc2045>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part Two: Media Types", RFC 2046, DOI

10.17487/RFC2046, November 1996, <https://www.rfc-

editor.org/info/rfc2046>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Phillips, A., Ed. and M. Davis, Ed., "Matching of

Language Tags", BCP 47, RFC 4647, DOI 10.17487/RFC4647,

https://tools.ietf.org/html/draft-ietf-httpbis-cache-10
https://tools.ietf.org/html/draft-ietf-httpbis-cache-10
https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10
https://tools.ietf.org/html/draft-ietf-httpbis-messaging-10
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc1950
https://www.rfc-editor.org/info/rfc1950
https://www.rfc-editor.org/info/rfc1951
https://www.rfc-editor.org/info/rfc1951
https://www.rfc-editor.org/info/rfc1952
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

[RFC4648]

[RFC5234]

[RFC5280]

[RFC5646]

[RFC6365]

[RFC7405]

[RFC8174]

[USASCII]

[Welch]

[BCP13]

September 2006, <https://www.rfc-editor.org/info/

rfc4647>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Phillips, A., Ed. and M. Davis, Ed., "Tags for

Identifying Languages", BCP 47, RFC 5646, DOI 10.17487/

RFC5646, September 2009, <https://www.rfc-editor.org/

info/rfc5646>.

Hoffman, P. and J. Klensin, "Terminology Used in

Internationalization in the IETF", BCP 166, RFC 6365, DOI

10.17487/RFC6365, September 2011, <https://www.rfc-

editor.org/info/rfc6365>.

Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC

7405, DOI 10.17487/RFC7405, December 2014, <https://

www.rfc-editor.org/info/rfc7405>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

American National Standards Institute, "Coded Character

Set -- 7-bit American Standard Code for Information

Interchange", ANSI X3.4, 1986.

Welch, T. A., "A Technique for High-Performance Data

Compression", IEEE Computer 17(6), DOI 10.1109/MC.

1984.1659158, June 1984, <https://ieeexplore.ieee.org/

document/1659158/>.

14.2. Informative References

Freed, N., Klensin, J., and T. Hansen, "Media Type

Specifications and Registration Procedures", BCP 13, RFC

https://www.rfc-editor.org/info/rfc4647
https://www.rfc-editor.org/info/rfc4647
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc6365
https://www.rfc-editor.org/info/rfc6365
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc8174
https://ieeexplore.ieee.org/document/1659158/
https://ieeexplore.ieee.org/document/1659158/

[BCP178]

[BCP35]

[Bujlow]

[Err1912]

[Err5433]

[Georgiev]

[ISO-8859-1]

[Kri2001]

[OWASP]

[REST]

6838, January 2013, <https://www.rfc-editor.org/info/

bcp13>.

Saint-Andre, P., Crocker, D., and M. Nottingham,

"Deprecating the "X-" Prefix and Similar Constructs in

Application Protocols", BCP 178, RFC 6648, June 2012,

<https://www.rfc-editor.org/info/bcp178>.

Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines

and Registration Procedures for URI Schemes", BCP 35, RFC

7595, June 2015, <https://www.rfc-editor.org/info/bcp35>.

Bujlow, T., Carela-Espanol, V., Sole-Pareta, J., and P.

Barlet-Ros, "A Survey on Web Tracking: Mechanisms,

Implications, and Defenses", DOI 10.1109/JPROC.

2016.2637878, Proceedings of the IEEE 105(8), August

2017, <https://doi.org/10.1109/JPROC.2016.2637878>.

RFC Errata, Erratum ID 1912, RFC 2978, , <https://

www.rfc-editor.org/errata/eid1912>.

RFC Errata, Erratum ID 5433, RFC 2978, , <https://

www.rfc-editor.org/errata/eid5433>.

Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh,

D., and V. Shmatikov, "The Most Dangerous Code in the

World: Validating SSL Certificates in Non-browser

Software", DOI 10.1145/2382196.2382204, In Proceedings of

the 2012 ACM Conference on Computer and Communications

Security (CCS '12), pp. 38-49, October 2012, <https://

doi.org/10.1145/2382196.2382204>.

International Organization for Standardization,

"Information technology -- 8-bit single-byte coded

graphic character sets -- Part 1: Latin alphabet No. 1",

ISO/IEC 8859-1:1998, 1998.

Kristol, D., "HTTP Cookies: Standards, Privacy, and

Politics", ACM Transactions on Internet Technology 1(2),

November 2001, <http://arxiv.org/abs/cs.SE/0105018>.

van der Stock, A., Ed., "A Guide to Building Secure Web

Applications and Web Services", The Open Web Application

Security Project (OWASP) 2.0.1, 27 July 2005, <https://

www.owasp.org/>.

Fielding, R.T., "Architectural Styles and the Design of

Network-based Software Architectures", Doctoral

Dissertation, University of California, Irvine, September

2000, <https://roy.gbiv.com/pubs/dissertation/top.htm>.

https://www.rfc-editor.org/info/bcp13
https://www.rfc-editor.org/info/bcp13
https://www.rfc-editor.org/info/bcp178
https://www.rfc-editor.org/info/bcp35
https://doi.org/10.1109/JPROC.2016.2637878
https://www.rfc-editor.org/errata/eid1912
https://www.rfc-editor.org/errata/eid1912
https://www.rfc-editor.org/errata/eid5433
https://www.rfc-editor.org/errata/eid5433
https://doi.org/10.1145/2382196.2382204
https://doi.org/10.1145/2382196.2382204
http://arxiv.org/abs/cs.SE/0105018
https://www.owasp.org/
https://www.owasp.org/
https://roy.gbiv.com/pubs/dissertation/top.htm

[RFC1919]

[RFC1945]

[RFC2047]

[RFC2068]

[RFC2145]

[RFC2295]

[RFC2324]

[RFC2557]

[RFC2616]

[RFC2617]

Chatel, M., "Classical versus Transparent IP Proxies",

RFC 1919, DOI 10.17487/RFC1919, March 1996, <https://

www.rfc-editor.org/info/rfc1919>.

Berners-Lee, T., Fielding, R.T., and H.F. Nielsen,

"Hypertext Transfer Protocol -- HTTP/1.0", RFC 1945, DOI

10.17487/RFC1945, May 1996, <https://www.rfc-editor.org/

info/rfc1945>.

Moore, K., "MIME (Multipurpose Internet Mail Extensions)

Part Three: Message Header Extensions for Non-ASCII

Text", RFC 2047, DOI 10.17487/RFC2047, November 1996,

<https://www.rfc-editor.org/info/rfc2047>.

Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and T.

Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1",

RFC 2068, DOI 10.17487/RFC2068, January 1997, <https://

www.rfc-editor.org/info/rfc2068>.

Mogul, J.C., Fielding, R.T., Gettys, J., and H.F.

Nielsen, "Use and Interpretation of HTTP Version

Numbers", RFC 2145, DOI 10.17487/RFC2145, May 1997,

<https://www.rfc-editor.org/info/rfc2145>.

Holtman, K. and A.H. Mutz, "Transparent Content

Negotiation in HTTP", RFC 2295, DOI 10.17487/RFC2295,

March 1998, <https://www.rfc-editor.org/info/rfc2295>.

Masinter, L., "Hyper Text Coffee Pot Control Protocol

(HTCPCP/1.0)", RFC 2324, DOI 10.17487/RFC2324, 1 April

1998, <https://www.rfc-editor.org/info/rfc2324>.

Palme, F., Hopmann, A., Shelness, N., and E. Stefferud,

"MIME Encapsulation of Aggregate Documents, such as HTML

(MHTML)", RFC 2557, DOI 10.17487/RFC2557, March 1999,

<https://www.rfc-editor.org/info/rfc2557>.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, DOI 10.17487/

RFC2616, June 1999, <https://www.rfc-editor.org/info/

rfc2616>.

Franks, J., Hallam-Baker, P.M., Hostetler, J.L.,

Lawrence, S.D., Leach, P.J., Luotonen, A., and L.

Stewart, "HTTP Authentication: Basic and Digest Access

Authentication", RFC 2617, DOI 10.17487/RFC2617, June

1999, <https://www.rfc-editor.org/info/rfc2617>.

https://www.rfc-editor.org/info/rfc1919
https://www.rfc-editor.org/info/rfc1919
https://www.rfc-editor.org/info/rfc1945
https://www.rfc-editor.org/info/rfc1945
https://www.rfc-editor.org/info/rfc2047
https://www.rfc-editor.org/info/rfc2068
https://www.rfc-editor.org/info/rfc2068
https://www.rfc-editor.org/info/rfc2145
https://www.rfc-editor.org/info/rfc2295
https://www.rfc-editor.org/info/rfc2324
https://www.rfc-editor.org/info/rfc2557
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2617

[RFC2774]

[RFC2818]

[RFC2978]

[RFC3040]

[RFC4033]

[RFC4559]

[RFC4918]

[RFC5322]

[RFC5789]

[RFC5905]

[RFC6125]

Frystyk, H., Leach, P., and S. Lawrence, "An HTTP

Extension Framework", RFC 2774, DOI 10.17487/RFC2774,

February 2000, <https://www.rfc-editor.org/info/rfc2774>.

Rescorla, E., "HTTP Over TLS", RFC 2818, DOI 10.17487/

RFC2818, May 2000, <https://www.rfc-editor.org/info/

rfc2818>.

Freed, N. and J. Postel, "IANA Charset Registration

Procedures", BCP 19, RFC 2978, DOI 10.17487/RFC2978,

October 2000, <https://www.rfc-editor.org/info/rfc2978>.

Cooper, I., Melve, I., and G. Tomlinson, "Internet Web

Replication and Caching Taxonomy", RFC 3040, DOI

10.17487/RFC3040, January 2001, <https://www.rfc-

editor.org/info/rfc3040>.

Arends, R., Austein, R., Larson, M., Massey, D., and S.

Rose, "DNS Security Introduction and Requirements", RFC

4033, DOI 10.17487/RFC4033, March 2005, <https://www.rfc-

editor.org/info/rfc4033>.

Jaganathan, K., Zhu, L., and J. Brezak, "SPNEGO-based

Kerberos and NTLM HTTP Authentication in Microsoft

Windows", RFC 4559, DOI 10.17487/RFC4559, June 2006,

<https://www.rfc-editor.org/info/rfc4559>.

Dusseault, L.M., Ed., "HTTP Extensions for Web

Distributed Authoring and Versioning (WebDAV)", RFC 4918,

DOI 10.17487/RFC4918, June 2007, <https://www.rfc-

editor.org/info/rfc4918>.

Resnick, P., "Internet Message Format", RFC 5322, DOI

10.17487/RFC5322, October 2008, <https://www.rfc-

editor.org/info/rfc5322>.

Dusseault, L. and J. Snell, "PATCH Method for HTTP", RFC

5789, DOI 10.17487/RFC5789, March 2010, <https://www.rfc-

editor.org/info/rfc5789>.

Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

"Network Time Protocol Version 4: Protocol and Algorithms

Specification", RFC 5905, DOI 10.17487/RFC5905, June

2010, <https://www.rfc-editor.org/info/rfc5905>.

Saint-Andre, P. and J. Hodges, "Representation and

Verification of Domain-Based Application Service Identity

within Internet Public Key Infrastructure Using X.509

(PKIX) Certificates in the Context of Transport Layer

https://www.rfc-editor.org/info/rfc2774
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2978
https://www.rfc-editor.org/info/rfc3040
https://www.rfc-editor.org/info/rfc3040
https://www.rfc-editor.org/info/rfc4033
https://www.rfc-editor.org/info/rfc4033
https://www.rfc-editor.org/info/rfc4559
https://www.rfc-editor.org/info/rfc4918
https://www.rfc-editor.org/info/rfc4918
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5789
https://www.rfc-editor.org/info/rfc5789
https://www.rfc-editor.org/info/rfc5905

[RFC6265]

[RFC6454]

[RFC6585]

[RFC7230]

[RFC7231]

[RFC7232]

[RFC7233]

[RFC7235]

[RFC7538]

[RFC7540]

Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March

2011, <https://www.rfc-editor.org/info/rfc6125>.

Barth, A., "HTTP State Management Mechanism", RFC 6265,

DOI 10.17487/RFC6265, April 2011, <https://www.rfc-

editor.org/info/rfc6265>.

Barth, A., "The Web Origin Concept", RFC 6454, DOI

10.17487/RFC6454, December 2011, <https://www.rfc-

editor.org/info/rfc6454>.

Nottingham, M. and R. Fielding, "Additional HTTP Status

Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,

<https://www.rfc-editor.org/info/rfc6585>.

Fielding, R., Ed. and J. F. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Fielding, R., Ed. and J. F. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Fielding, R., Ed. and J. F. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Conditional Requests", RFC

7232, DOI 10.17487/RFC7232, June 2014, <https://www.rfc-

editor.org/info/rfc7232>.

Fielding, R., Ed., Lafon, Y., Ed., and J. F. Reschke,

Ed., "Hypertext Transfer Protocol (HTTP): Range

Requests", RFC 7233, DOI 10.17487/RFC7233, June 2014,

<https://www.rfc-editor.org/info/rfc7233>.

Fielding, R., Ed. and J. F. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Authentication", RFC 7235,

DOI 10.17487/RFC7235, June 2014, <https://www.rfc-

editor.org/info/rfc7235>.

Reschke, J. F., "The Hypertext Transfer Protocol Status

Code 308 (Permanent Redirect)", RFC 7538, DOI 10.17487/

RFC7538, April 2015, <https://www.rfc-editor.org/info/

rfc7538>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6265
https://www.rfc-editor.org/info/rfc6265
https://www.rfc-editor.org/info/rfc6454
https://www.rfc-editor.org/info/rfc6454
https://www.rfc-editor.org/info/rfc6585
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7232
https://www.rfc-editor.org/info/rfc7232
https://www.rfc-editor.org/info/rfc7233
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7538
https://www.rfc-editor.org/info/rfc7538
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540

[RFC7578]

[RFC7615]

[RFC7616]

[RFC7617]

[RFC7694]

[RFC7838]

[RFC8126]

[RFC8187]

[RFC8246]

[RFC8288]

[RFC8336]

Masinter, L., "Returning Values from Forms: multipart/

form-data", RFC 7578, DOI 10.17487/RFC7578, July 2015,

<https://www.rfc-editor.org/info/rfc7578>.

Reschke, J. F., "HTTP Authentication-Info and Proxy-

Authentication-Info Response Header Fields", RFC 7615,

DOI 10.17487/RFC7615, September 2015, <https://www.rfc-

editor.org/info/rfc7615>.

Shekh-Yusef, R., Ed., Ahrens, D., and S. Bremer, "HTTP

Digest Access Authentication", RFC 7616, DOI 10.17487/

RFC7616, September 2015, <https://www.rfc-editor.org/

info/rfc7616>.

Reschke, J. F., "The 'Basic' HTTP Authentication Scheme",

RFC 7617, DOI 10.17487/RFC7617, September 2015, <https://

www.rfc-editor.org/info/rfc7617>.

Reschke, J. F., "Hypertext Transfer Protocol (HTTP)

Client-Initiated Content-Encoding", RFC 7694, DOI

10.17487/RFC7694, November 2015, <https://www.rfc-

editor.org/info/rfc7694>.

Nottingham, M., McManus, P., and J. Reschke, "HTTP

Alternative Services", RFC 7838, DOI 10.17487/RFC7838,

April 2016, <https://www.rfc-editor.org/info/rfc7838>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Reschke, J. F., "Indicating Character Encoding and

Language for HTTP Header Field Parameters", RFC 8187, DOI

10.17487/RFC8187, September 2017, <https://www.rfc-

editor.org/info/rfc8187>.

McManus, P., "HTTP Immutable Responses", RFC 8246, DOI

10.17487/RFC8246, September 2017, <https://www.rfc-

editor.org/info/rfc8246>.

Nottingham, M., "Web Linking", RFC 8288, DOI 10.17487/

RFC8288, October 2017, <https://www.rfc-editor.org/info/

rfc8288>.

Nottingham, M. and E. Nygren, "The ORIGIN HTTP/2 Frame",

RFC 8336, DOI 10.17487/RFC8336, March 2018, <https://

www.rfc-editor.org/info/rfc8336>.

https://www.rfc-editor.org/info/rfc7578
https://www.rfc-editor.org/info/rfc7615
https://www.rfc-editor.org/info/rfc7615
https://www.rfc-editor.org/info/rfc7616
https://www.rfc-editor.org/info/rfc7616
https://www.rfc-editor.org/info/rfc7617
https://www.rfc-editor.org/info/rfc7617
https://www.rfc-editor.org/info/rfc7694
https://www.rfc-editor.org/info/rfc7694
https://www.rfc-editor.org/info/rfc7838
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8187
https://www.rfc-editor.org/info/rfc8187
https://www.rfc-editor.org/info/rfc8246
https://www.rfc-editor.org/info/rfc8246
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8336
https://www.rfc-editor.org/info/rfc8336

[RFC8446]

[Sniffing]

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

WHATWG, "MIME Sniffing", , <https://

mimesniff.spec.whatwg.org>.

Appendix A. Collected ABNF

In the collected ABNF below, list rules are expanded as per Section

5.5.1.¶

https://www.rfc-editor.org/info/rfc8446
https://mimesniff.spec.whatwg.org
https://mimesniff.spec.whatwg.org

Accept = [(media-range [accept-params]) *(OWS "," OWS (

 media-range [accept-params]))]

Accept-Charset = ((charset / "*") [weight]) *(OWS "," OWS ((

 charset / "*") [weight]))

Accept-Encoding = [(codings [weight]) *(OWS "," OWS (codings [

 weight]))]

Accept-Language = (language-range [weight]) *(OWS "," OWS (

 language-range [weight]))

Accept-Ranges = acceptable-ranges

Allow = [method *(OWS "," OWS method)]

Authentication-Info = [auth-param *(OWS "," OWS auth-param)]

Authorization = credentials

BWS = OWS

Content-Encoding = content-coding *(OWS "," OWS content-coding)

Content-Language = language-tag *(OWS "," OWS language-tag)

Content-Length = 1*DIGIT

Content-Location = absolute-URI / partial-URI

Content-Range = range-unit SP (range-resp / unsatisfied-range)

Content-Type = media-type

Date = HTTP-date

ETag = entity-tag

Expect = "100-continue"

From = mailbox

GMT = %x47.4D.54 ; GMT

HTTP-date = IMF-fixdate / obs-date

Host = uri-host [":" port]

IMF-fixdate = day-name "," SP date1 SP time-of-day SP GMT

If-Match = "*" / (entity-tag *(OWS "," OWS entity-tag))

If-Modified-Since = HTTP-date

If-None-Match = "*" / (entity-tag *(OWS "," OWS entity-tag))

If-Range = entity-tag / HTTP-date

If-Unmodified-Since = HTTP-date

Last-Modified = HTTP-date

Location = URI-reference

Max-Forwards = 1*DIGIT

OWS = *(SP / HTAB)

Proxy-Authenticate = challenge *(OWS "," OWS challenge)

Proxy-Authentication-Info = [auth-param *(OWS "," OWS auth-param)

]

Proxy-Authorization = credentials

RWS = 1*(SP / HTAB)

Range = ranges-specifier

Referer = absolute-URI / partial-URI

Retry-After = HTTP-date / delay-seconds

Server = product *(RWS (product / comment))

Trailer = field-name *(OWS "," OWS field-name)

URI-reference = <URI-reference, see [RFC3986], Section 4.1>

User-Agent = product *(RWS (product / comment))

Vary = ("*" / field-name) *(OWS "," OWS ("*" / field-name))

Via = (received-protocol RWS received-by [RWS comment]) *(OWS

 "," OWS (received-protocol RWS received-by [RWS comment]))

WWW-Authenticate = challenge *(OWS "," OWS challenge)

absolute-URI = <absolute-URI, see [RFC3986], Section 4.3>

absolute-path = 1*("/" segment)

accept-ext = OWS ";" OWS token ["=" (token / quoted-string)]

accept-params = weight *accept-ext

acceptable-ranges = (range-unit *(OWS "," OWS range-unit)) /

 "none"

asctime-date = day-name SP date3 SP time-of-day SP year

auth-param = token BWS "=" BWS (token / quoted-string)

auth-scheme = token

authority = <authority, see [RFC3986], Section 3.2>

challenge = auth-scheme [1*SP (token68 / [auth-param *(OWS ","

 OWS auth-param)])]

charset = token

codings = content-coding / "identity" / "*"

comment = "(" *(ctext / quoted-pair / comment) ")"

complete-length = 1*DIGIT

content-coding = token

credentials = auth-scheme [1*SP (token68 / [auth-param *(OWS ","

 OWS auth-param)])]

ctext = HTAB / SP / %x21-27 ; '!'-'''

 / %x2A-5B ; '*'-'['

 / %x5D-7E ; ']'-'~'

 / obs-text

date1 = day SP month SP year

date2 = day "-" month "-" 2DIGIT

date3 = month SP (2DIGIT / (SP DIGIT))

day = 2DIGIT

day-name = %x4D.6F.6E ; Mon

 / %x54.75.65 ; Tue

 / %x57.65.64 ; Wed

 / %x54.68.75 ; Thu

 / %x46.72.69 ; Fri

 / %x53.61.74 ; Sat

 / %x53.75.6E ; Sun

day-name-l = %x4D.6F.6E.64.61.79 ; Monday

 / %x54.75.65.73.64.61.79 ; Tuesday

 / %x57.65.64.6E.65.73.64.61.79 ; Wednesday

 / %x54.68.75.72.73.64.61.79 ; Thursday

 / %x46.72.69.64.61.79 ; Friday

 / %x53.61.74.75.72.64.61.79 ; Saturday

 / %x53.75.6E.64.61.79 ; Sunday

delay-seconds = 1*DIGIT

entity-tag = [weak] opaque-tag

etagc = "!" / %x23-7E ; '#'-'~'

 / obs-text

field-content = field-vchar [1*(SP / HTAB / field-vchar)

 field-vchar]

field-name = token

field-value = *field-content

field-vchar = VCHAR / obs-text

first-pos = 1*DIGIT

hour = 2DIGIT

http-URI = "http://" authority path-abempty ["?" query]

https-URI = "https://" authority path-abempty ["?" query]

incl-range = first-pos "-" last-pos

int-range = first-pos "-" [last-pos]

language-range = <language-range, see [RFC4647], Section 2.1>

language-tag = <Language-Tag, see [RFC5646], Section 2.1>

last-pos = 1*DIGIT

mailbox = <mailbox, see [RFC5322], Section 3.4>

media-range = ("*/*" / (type "/*") / (type "/" subtype)) *(OWS

 ";" OWS parameter)

media-type = type "/" subtype *(OWS ";" OWS parameter)

method = token

minute = 2DIGIT

month = %x4A.61.6E ; Jan

 / %x46.65.62 ; Feb

 / %x4D.61.72 ; Mar

 / %x41.70.72 ; Apr

 / %x4D.61.79 ; May

 / %x4A.75.6E ; Jun

 / %x4A.75.6C ; Jul

 / %x41.75.67 ; Aug

 / %x53.65.70 ; Sep

 / %x4F.63.74 ; Oct

 / %x4E.6F.76 ; Nov

 / %x44.65.63 ; Dec

obs-date = rfc850-date / asctime-date

obs-text = %x80-FF

opaque-tag = DQUOTE *etagc DQUOTE

other-range = 1*(%x21-2B ; '!'-'+'

 / %x2D-7E ; '-'-'~'

)

parameter = parameter-name "=" parameter-value

parameter-name = token

parameter-value = (token / quoted-string)

partial-URI = relative-part ["?" query]

path-abempty = <path-abempty, see [RFC3986], Section 3.3>

port = <port, see [RFC3986], Section 3.2.3>

product = token ["/" product-version]

product-version = token

protocol-name = <protocol-name, see [Messaging], Section 9.9>

protocol-version = <protocol-version, see [Messaging], Section 9.9>

pseudonym = token

qdtext = HTAB / SP / "!" / %x23-5B ; '#'-'['

 / %x5D-7E ; ']'-'~'

 / obs-text

query = <query, see [RFC3986], Section 3.4>

quoted-pair = "\" (HTAB / SP / VCHAR / obs-text)

quoted-string = DQUOTE *(qdtext / quoted-pair) DQUOTE

qvalue = ("0" ["." *3DIGIT]) / ("1" ["." *3"0"])

range-resp = incl-range "/" (complete-length / "*")

range-set = range-spec *(OWS "," OWS range-spec)

range-spec = int-range / suffix-range / other-range

range-unit = token

ranges-specifier = range-unit "=" range-set

received-by = pseudonym [":" port]

received-protocol = [protocol-name "/"] protocol-version

relative-part = <relative-part, see [RFC3986], Section 4.2>

rfc850-date = day-name-l "," SP date2 SP time-of-day SP GMT

second = 2DIGIT

segment = <segment, see [RFC3986], Section 3.3>

subtype = token

suffix-length = 1*DIGIT

suffix-range = "-" suffix-length

tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." /

 "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA

time-of-day = hour ":" minute ":" second

token = 1*tchar

token68 = 1*(ALPHA / DIGIT / "-" / "." / "_" / "~" / "+" / "/")

 *"="

type = token

unsatisfied-range = "*/" complete-length

uri-host = <host, see [RFC3986], Section 3.2.2>

weak = %x57.2F ; W/

weight = OWS ";" OWS "q=" qvalue

year = 4DIGIT

Appendix B. Changes from previous RFCs

B.1. Changes from RFC 2818

None yet.

B.2. Changes from RFC 7230

The sections introducing HTTP's design goals, history, architecture,

conformance criteria, protocol versioning, URIs, message routing,

and header fields have been moved here (without substantive change).

"Field value" now refers to the value after multiple instances are

combined with commas - by far the most common use. To refer to a

single header line's value, use "field line value". (Section 5)

Trailer field semantics now transcend the specifics of chunked

encoding. Use of trailer fields has been further limited to only

allow generation as a trailer field when the sender knows the field

defines that usage and to only allow merging into the header section

if the recipient knows the corresponding field definition permits

and defines how to merge. In all other cases, implementations are

encouraged to either store the trailer fields separately or discard

them instead of merging. (Section 5.6.2)

Made the priority of the absolute form of the request URI over the

Host header by origin servers explicit, to align with proxy

handling. (Section 6.6)

¶

¶

¶

¶

¶

¶

The grammar definition for the Via field's "received-by" was

expanded in 7230 due to changes in the URI grammar for host

[RFC3986] that are not desirable for Via. For simplicity, we have

removed uri-host from the received-by production because it can be

encompassed by the existing grammar for pseudonym. In particular,

this change removed comma from the allowed set of charaters for a

host name in received-by. (Section 6.7.1)

Added status code 308 (previously defined in [RFC7538]) so that it's

defined closer to status codes 301, 302, and 307. (Section 10.4.9)

Added status code 422 (previously defined in Section 11.2 of

[RFC4918]) because of its general applicability. (Section 10.5.20)

The description of an origin and authoritative access to origin

servers has been extended for both "http" and "https" URIs to

account for alternative services and secured connections that are

not necessarily based on TCP. (Section 2.5.1, Section 2.5.2, Section

6.2, Section 6.4)

B.3. Changes from RFC 7231

Minimum URI lengths to be supported by implementations are now

recommended. (Section 2.5)

Clarify that control characters in field values are to be rejected

or mapped to SP. (Section 5.4)

The term "effective request URI" has been replaced with "target

URI". (Section 6.1)

Range units are compared in a case insensitive fashion. (Section

7.1.4)

Restrictions on client retries have been loosened, to reflect

implementation behavior. (Section 8.2.2)

Clarified that request bodies on GET and DELETE are not

interoperable. (Section 8.3.1, Section 8.3.5)

Removed a superfluous requirement about setting Content-Length from

the description of the OPTIONS method. (Section 8.3.7)

Allow Accept and Accept-Encoding in response messages; the latter

was introduced by [RFC7694]. (Section 9.4)

B.4. Changes from RFC 7232

Clarify that If-Unmodified-Since doesn't apply to a resource without

a concept of modification time. (Section 9.2.6)

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc4918#section-11.2

B.5. Changes from RFC 7233

Refactored the range-unit and ranges-specifier grammars to simplify

and reduce artificial distinctions between bytes and other

(extension) range units, removing the overlapping grammar of other-

range-unit by defining range units generically as a token and

placing extensions within the scope of a range-spec (other-range).

This disambiguates the role of list syntax (commas) in all range

sets, including extension range units, for indicating a range-set of

more than one range. Moving the extension grammar into range

specifiers also allows protocol specific to byte ranges to be

specified separately.

B.6. Changes from RFC 7235

None yet.

B.7. Changes from RFC 7538

None yet.

B.8. Changes from RFC 7615

None yet.

Appendix C. Changes from RFC 7694

This specification includes the extension defined in [RFC7694], but

leaves out examples and deployment considerations.

Appendix D. Change Log

This section is to be removed before publishing as an RFC.

D.1. Between RFC723x and draft 00

The changes were purely editorial:

Change boilerplate and abstract to indicate the "draft" status,

and update references to ancestor specifications.

Remove version "1.1" from document title, indicating that this

specification applies to all HTTP versions.

Adjust historical notes.

Update links to sibling specifications.

Replace sections listing changes from RFC 2616 by new empty

sections referring to RFC 723x.

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

* ¶

* ¶

*

¶

Remove acknowledgements specific to RFC 723x.

Move "Acknowledgements" to the very end and make them unnumbered.

D.2. Since draft-ietf-httpbis-semantics-00

The changes in this draft are editorial, with respect to HTTP as a

whole, to merge core HTTP semantics into this document:

Merged introduction, architecture, conformance, and ABNF

extensions from RFC 7230 (Messaging).

Rearranged architecture to extract conformance, http(s) schemes,

and protocol versioning into a separate major section.

Moved discussion of MIME differences to [Messaging] since that is

primarily concerned with transforming 1.1 messages.

Merged entire content of RFC 7232 (Conditional Requests).

Merged entire content of RFC 7233 (Range Requests).

Merged entire content of RFC 7235 (Auth Framework).

Moved all extensibility tips, registration procedures, and

registry tables from the IANA considerations to normative

sections, reducing the IANA considerations to just instructions

that will be removed prior to publication as an RFC.

D.3. Since draft-ietf-httpbis-semantics-01

Improve [Welch] citation (<https://github.com/httpwg/http-core/

issues/63>)

Remove HTTP/1.1-ism about Range Requests (<https://github.com/

httpwg/http-core/issues/71>)

Cite RFC 8126 instead of RFC 5226 (<https://github.com/httpwg/

http-core/issues/75>)

Cite RFC 7538 instead of RFC 7238 (<https://github.com/httpwg/

http-core/issues/76>)

Cite RFC 8288 instead of RFC 5988 (<https://github.com/httpwg/

http-core/issues/77>)

Cite RFC 8187 instead of RFC 5987 (<https://github.com/httpwg/

http-core/issues/78>)

* ¶

* ¶

¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://github.com/httpwg/http-core/issues/63
https://github.com/httpwg/http-core/issues/63
https://github.com/httpwg/http-core/issues/71
https://github.com/httpwg/http-core/issues/71
https://github.com/httpwg/http-core/issues/75
https://github.com/httpwg/http-core/issues/75
https://github.com/httpwg/http-core/issues/76
https://github.com/httpwg/http-core/issues/76
https://github.com/httpwg/http-core/issues/77
https://github.com/httpwg/http-core/issues/77
https://github.com/httpwg/http-core/issues/78
https://github.com/httpwg/http-core/issues/78

Cite RFC 7578 instead of RFC 2388 (<https://github.com/httpwg/

http-core/issues/79>)

Cite RFC 7595 instead of RFC 4395 (<https://github.com/httpwg/

http-core/issues/80>)

improve ABNF readability for qdtext (<https://github.com/httpwg/

http-core/issues/81>, <https://www.rfc-editor.org/errata/

eid4891>)

Clarify "resource" vs "representation" in definition of status

code 416 (<https://github.com/httpwg/http-core/issues/83>,

<https://www.rfc-editor.org/errata/eid4664>)

Resolved erratum 4072, no change needed here (<https://

github.com/httpwg/http-core/issues/84>, <https://www.rfc-

editor.org/errata/eid4072>)

Clarify DELETE status code suggestions (<https://github.com/

httpwg/http-core/issues/85>, <https://www.rfc-editor.org/errata/

eid4436>)

In Section 7.3.4, fix ABNF for "other-range-resp" to use VCHAR

instead of CHAR (<https://github.com/httpwg/http-core/issues/86>,

<https://www.rfc-editor.org/errata/eid4707>)

Resolved erratum 5162, no change needed here (<https://

github.com/httpwg/http-core/issues/89>, <https://www.rfc-

editor.org/errata/eid5162>)

Replace "response code" with "response status code" and "status-

code" (the ABNF production name from the HTTP/1.1 message format)

by "status code" (<https://github.com/httpwg/http-core/issues/

94>, <https://www.rfc-editor.org/errata/eid4050>)

Added a missing word in Section 10.4 (<https://github.com/httpwg/

http-core/issues/98>, <https://www.rfc-editor.org/errata/

eid4452>)

In Section 5.5, fixed an example that had trailing whitespace

where it shouldn't (<https://github.com/httpwg/http-core/issues/

104>, <https://www.rfc-editor.org/errata/eid4169>)

In Section 10.3.7, remove words that were potentially misleading

with respect to the relation to the requested ranges (<https://

github.com/httpwg/http-core/issues/102>, <https://www.rfc-

editor.org/errata/eid4358>)

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://github.com/httpwg/http-core/issues/79
https://github.com/httpwg/http-core/issues/79
https://github.com/httpwg/http-core/issues/80
https://github.com/httpwg/http-core/issues/80
https://github.com/httpwg/http-core/issues/81
https://github.com/httpwg/http-core/issues/81
https://www.rfc-editor.org/errata/eid4891
https://www.rfc-editor.org/errata/eid4891
https://github.com/httpwg/http-core/issues/83
https://www.rfc-editor.org/errata/eid4664
https://github.com/httpwg/http-core/issues/84
https://github.com/httpwg/http-core/issues/84
https://www.rfc-editor.org/errata/eid4072
https://www.rfc-editor.org/errata/eid4072
https://github.com/httpwg/http-core/issues/85
https://github.com/httpwg/http-core/issues/85
https://www.rfc-editor.org/errata/eid4436
https://www.rfc-editor.org/errata/eid4436
https://github.com/httpwg/http-core/issues/86
https://www.rfc-editor.org/errata/eid4707
https://github.com/httpwg/http-core/issues/89
https://github.com/httpwg/http-core/issues/89
https://www.rfc-editor.org/errata/eid5162
https://www.rfc-editor.org/errata/eid5162
https://github.com/httpwg/http-core/issues/94
https://github.com/httpwg/http-core/issues/94
https://www.rfc-editor.org/errata/eid4050
https://github.com/httpwg/http-core/issues/98
https://github.com/httpwg/http-core/issues/98
https://www.rfc-editor.org/errata/eid4452
https://www.rfc-editor.org/errata/eid4452
https://github.com/httpwg/http-core/issues/104
https://github.com/httpwg/http-core/issues/104
https://www.rfc-editor.org/errata/eid4169
https://github.com/httpwg/http-core/issues/102
https://github.com/httpwg/http-core/issues/102
https://www.rfc-editor.org/errata/eid4358
https://www.rfc-editor.org/errata/eid4358

D.4. Since draft-ietf-httpbis-semantics-02

Included (Proxy-)Auth-Info header field definition from RFC 7615

(<https://github.com/httpwg/http-core/issues/9>)

In Section 8.3.3, clarify POST caching (<https://github.com/

httpwg/http-core/issues/17>)

Add Section 10.5.19 to reserve the 418 status code (<https://

github.com/httpwg/http-core/issues/43>)

In Section 2.1 and Section 9.1.1, clarified when a response can

be sent (<https://github.com/httpwg/http-core/issues/82>)

In Section 7.1.1.1, explain the difference between the "token"

production, the RFC 2978 ABNF for charset names, and the actual

registration practice (<https://github.com/httpwg/http-core/

issues/100>, <https://www.rfc-editor.org/errata/eid4689>)

In Section 2.5, removed the fragment component in the URI scheme

definitions as per Section 4.3 of [RFC3986], furthermore moved

fragment discussion into a separate section (<https://github.com/

httpwg/http-core/issues/103>, <https://www.rfc-editor.org/errata/

eid4251>, <https://www.rfc-editor.org/errata/eid4252>)

In Section 4.2, add language about minor HTTP version number

defaulting (<https://github.com/httpwg/http-core/issues/115>)

Added Section 10.5.20 for status code 422, previously defined in

Section 11.2 of [RFC4918] (<https://github.com/httpwg/http-core/

issues/123>)

In Section 10.5.17, fixed prose about byte range comparison

(<https://github.com/httpwg/http-core/issues/135>, <https://

www.rfc-editor.org/errata/eid5474>)

In Section 2.1, explain that request/response correlation is

version specific (<https://github.com/httpwg/http-core/issues/

145>)

D.5. Since draft-ietf-httpbis-semantics-03

In Section 10.4.9, include status code 308 from RFC 7538

(<https://github.com/httpwg/http-core/issues/3>)

In Section 7.1.1, clarify that the charset parameter value is

case-insensitive due to the definition in RFC 2046 (<https://

github.com/httpwg/http-core/issues/13>)

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://github.com/httpwg/http-core/issues/9
https://github.com/httpwg/http-core/issues/17
https://github.com/httpwg/http-core/issues/17
https://github.com/httpwg/http-core/issues/43
https://github.com/httpwg/http-core/issues/43
https://github.com/httpwg/http-core/issues/82
https://github.com/httpwg/http-core/issues/100
https://github.com/httpwg/http-core/issues/100
https://www.rfc-editor.org/errata/eid4689
https://rfc-editor.org/rfc/rfc3986#section-4.3
https://github.com/httpwg/http-core/issues/103
https://github.com/httpwg/http-core/issues/103
https://www.rfc-editor.org/errata/eid4251
https://www.rfc-editor.org/errata/eid4251
https://www.rfc-editor.org/errata/eid4252
https://github.com/httpwg/http-core/issues/115
https://rfc-editor.org/rfc/rfc4918#section-11.2
https://github.com/httpwg/http-core/issues/123
https://github.com/httpwg/http-core/issues/123
https://github.com/httpwg/http-core/issues/135
https://www.rfc-editor.org/errata/eid5474
https://www.rfc-editor.org/errata/eid5474
https://github.com/httpwg/http-core/issues/145
https://github.com/httpwg/http-core/issues/145
https://github.com/httpwg/http-core/issues/3
https://github.com/httpwg/http-core/issues/13
https://github.com/httpwg/http-core/issues/13

Define a separate registry for HTTP header field names (<https://

github.com/httpwg/http-core/issues/42>)

In Section 9.4, refactor and clarify description of wildcard

("*") handling (<https://github.com/httpwg/http-core/issues/46>)

Deprecate Accept-Charset (<https://github.com/httpwg/http-core/

issues/61>)

In Section 9.2.1, mention Cache-Control: immutable (<https://

github.com/httpwg/http-core/issues/69>)

In Section 5.1, clarify when header field combination is allowed

(<https://github.com/httpwg/http-core/issues/74>)

In Section 13.4, instruct IANA to mark Content-MD5 as obsolete

(<https://github.com/httpwg/http-core/issues/93>)

Use RFC 7405 ABNF notation for case-sensitive string constants

(<https://github.com/httpwg/http-core/issues/133>)

Rework Section 2.1 to be more version-independent (<https://

github.com/httpwg/http-core/issues/142>)

In Section 8.3.5, clarify that DELETE needs to be successful to

invalidate cache (<https://github.com/httpwg/http-core/issues/

167>, <https://www.rfc-editor.org/errata/eid5541>)

D.6. Since draft-ietf-httpbis-semantics-04

In Section 5.4, fix field-content ABNF (<https://github.com/

httpwg/http-core/issues/19>, <https://www.rfc-editor.org/errata/

eid4189>)

Move Section 5.4.1.4 into its own section (<https://github.com/

httpwg/http-core/issues/45>)

In Section 7.2.1, reference MIME Sniffing (<https://github.com/

httpwg/http-core/issues/51>)

In Section 5.5, simplify the #rule mapping for recipients

(<https://github.com/httpwg/http-core/issues/164>, <https://

www.rfc-editor.org/errata/eid5257>)

In Section 8.3.7, remove misleading text about "extension" of

HTTP is needed to define method payloads (<https://github.com/

httpwg/http-core/issues/204>)

Fix editorial issue in Section 7 (<https://github.com/httpwg/

http-core/issues/223>)

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://github.com/httpwg/http-core/issues/42
https://github.com/httpwg/http-core/issues/42
https://github.com/httpwg/http-core/issues/46
https://github.com/httpwg/http-core/issues/61
https://github.com/httpwg/http-core/issues/61
https://github.com/httpwg/http-core/issues/69
https://github.com/httpwg/http-core/issues/69
https://github.com/httpwg/http-core/issues/74
https://github.com/httpwg/http-core/issues/93
https://github.com/httpwg/http-core/issues/133
https://github.com/httpwg/http-core/issues/142
https://github.com/httpwg/http-core/issues/142
https://github.com/httpwg/http-core/issues/167
https://github.com/httpwg/http-core/issues/167
https://www.rfc-editor.org/errata/eid5541
https://github.com/httpwg/http-core/issues/19
https://github.com/httpwg/http-core/issues/19
https://www.rfc-editor.org/errata/eid4189
https://www.rfc-editor.org/errata/eid4189
https://github.com/httpwg/http-core/issues/45
https://github.com/httpwg/http-core/issues/45
https://github.com/httpwg/http-core/issues/51
https://github.com/httpwg/http-core/issues/51
https://github.com/httpwg/http-core/issues/164
https://www.rfc-editor.org/errata/eid5257
https://www.rfc-editor.org/errata/eid5257
https://github.com/httpwg/http-core/issues/204
https://github.com/httpwg/http-core/issues/204
https://github.com/httpwg/http-core/issues/223
https://github.com/httpwg/http-core/issues/223

In Section 10.5.20, rephrase language not to use "entity"

anymore, and also avoid lowercase "may" (<https://github.com/

httpwg/http-core/issues/224>)

Move discussion of retries from [Messaging] into Section 8.2.2

(<https://github.com/httpwg/http-core/issues/230>)

D.7. Since draft-ietf-httpbis-semantics-05

Moved transport-independent part of the description of trailers

into Section 5.6 (<https://github.com/httpwg/http-core/issues/

16>)

Loosen requirements on retries based upon implementation behavior

(<https://github.com/httpwg/http-core/issues/27>)

In Section 13.9, update IANA port registry for TCP/UDP on ports

80 and 443 (<https://github.com/httpwg/http-core/issues/36>)

In Section 5.7, revise guidelines for new header field names

(<https://github.com/httpwg/http-core/issues/47>)

In Section 8.2.3, remove concept of "cacheable methods" in favor

of prose (<https://github.com/httpwg/http-core/issues/54>,

<https://www.rfc-editor.org/errata/eid5300>)

In Section 12.1, mention that the concept of authority can be

modified by protocol extensions (<https://github.com/httpwg/http-

core/issues/143>)

Create new subsection on payload body in Section 7.3.3, taken

from portions of message body (<https://github.com/httpwg/http-

core/issues/159>)

Moved definition of "Whitespace" into new container "Generic

Syntax" (<https://github.com/httpwg/http-core/issues/162>)

In Section 2.5, recommend minimum URI size support for

implementations (<https://github.com/httpwg/http-core/issues/

169>)

In Section 7.1.4, refactored the range-unit and ranges-specifier

grammars (<https://github.com/httpwg/http-core/issues/196>,

<https://www.rfc-editor.org/errata/eid5620>)

In Section 8.3.1, caution against a request body more strongly

(<https://github.com/httpwg/http-core/issues/202>)

Reorganized text in Section 5.7 (<https://github.com/httpwg/http-

core/issues/214>)

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://github.com/httpwg/http-core/issues/224
https://github.com/httpwg/http-core/issues/224
https://github.com/httpwg/http-core/issues/230
https://github.com/httpwg/http-core/issues/16
https://github.com/httpwg/http-core/issues/16
https://github.com/httpwg/http-core/issues/27
https://github.com/httpwg/http-core/issues/36
https://github.com/httpwg/http-core/issues/47
https://github.com/httpwg/http-core/issues/54
https://www.rfc-editor.org/errata/eid5300
https://github.com/httpwg/http-core/issues/143
https://github.com/httpwg/http-core/issues/143
https://github.com/httpwg/http-core/issues/159
https://github.com/httpwg/http-core/issues/159
https://github.com/httpwg/http-core/issues/162
https://github.com/httpwg/http-core/issues/169
https://github.com/httpwg/http-core/issues/169
https://github.com/httpwg/http-core/issues/196
https://www.rfc-editor.org/errata/eid5620
https://github.com/httpwg/http-core/issues/202
https://github.com/httpwg/http-core/issues/214
https://github.com/httpwg/http-core/issues/214

In Section 10.5.4, replace "authorize" with "fulfill" (<https://

github.com/httpwg/http-core/issues/218>)

In Section 8.3.7, removed a misleading statement about Content-

Length (<https://github.com/httpwg/http-core/issues/235>,

<https://www.rfc-editor.org/errata/eid5806>)

In Section 12.1, add text from RFC 2818 (<https://github.com/

httpwg/http-core/issues/236>)

Changed "cacheable by default" to "heuristically cacheable"

throughout (<https://github.com/httpwg/http-core/issues/242>)

D.8. Since draft-ietf-httpbis-semantics-06

In Section 6.7.1, simplify received-by grammar (and disallow

comma character) (<https://github.com/httpwg/http-core/issues/

24>)

In Section 5.3, give guidance on interoperable field names

(<https://github.com/httpwg/http-core/issues/30>)

In Section 1.2.1, define the semantics and possible replacement

of whitespace when it is known to occur (<https://github.com/

httpwg/http-core/issues/53>, <https://www.rfc-editor.org/errata/

eid5163>)

In Section 5, introduce field terminology and distinguish between

field line values and field values; use terminology consistently

throughout (<https://github.com/httpwg/http-core/issues/111>)

Moved #rule definition into Section 5.4 and whitespace into

Section 1.2 (<https://github.com/httpwg/http-core/issues/162>)

In Section 7.1.4, explicitly call out range unit names as case-

insensitive, and encourage registration (<https://github.com/

httpwg/http-core/issues/179>)

In Section 7.1.2, explicitly call out content codings as case-

insensitive, and encourage registration (<https://github.com/

httpwg/http-core/issues/179>)

In Section 5.3, explicitly call out field names as case-

insensitive (<https://github.com/httpwg/http-core/issues/179>)

In Section 12.11, cite [Bujlow] (<https://github.com/httpwg/http-

core/issues/185>)

In Section 10, formally define "final" and "interim" status codes

(<https://github.com/httpwg/http-core/issues/245>)

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://github.com/httpwg/http-core/issues/218
https://github.com/httpwg/http-core/issues/218
https://github.com/httpwg/http-core/issues/235
https://www.rfc-editor.org/errata/eid5806
https://github.com/httpwg/http-core/issues/236
https://github.com/httpwg/http-core/issues/236
https://github.com/httpwg/http-core/issues/242
https://github.com/httpwg/http-core/issues/24
https://github.com/httpwg/http-core/issues/24
https://github.com/httpwg/http-core/issues/30
https://github.com/httpwg/http-core/issues/53
https://github.com/httpwg/http-core/issues/53
https://www.rfc-editor.org/errata/eid5163
https://www.rfc-editor.org/errata/eid5163
https://github.com/httpwg/http-core/issues/111
https://github.com/httpwg/http-core/issues/162
https://github.com/httpwg/http-core/issues/179
https://github.com/httpwg/http-core/issues/179
https://github.com/httpwg/http-core/issues/179
https://github.com/httpwg/http-core/issues/179
https://github.com/httpwg/http-core/issues/179
https://github.com/httpwg/http-core/issues/185
https://github.com/httpwg/http-core/issues/185
https://github.com/httpwg/http-core/issues/245

In Section 8.3.5, caution against a request body more strongly

(<https://github.com/httpwg/http-core/issues/258>)

In Section 11.2.3, note that Etag can be used in trailers

(<https://github.com/httpwg/http-core/issues/262>)

In Section 13.4, consider reserved fields as well (<https://

github.com/httpwg/http-core/issues/273>)

In Section 2.5.4, be more correct about what was deprecated by

RFC 3986 (<https://github.com/httpwg/http-core/issues/278>,

<https://www.rfc-editor.org/errata/eid5964>)

In Section 5.1, recommend comma SP when combining field lines

(<https://github.com/httpwg/http-core/issues/148>)

In Section 6.6, make explicit requirements on origin server to

use authority from absolute-form when available (<https://

github.com/httpwg/http-core/issues/191>)

In Section 2.5.1, Section 2.5.2, Section 6.2, and Section 6.4,

refactored schemes to define origin and authoritative access to

an origin server for both "http" and "https" URIs to account for

alternative services and secured connections that are not

necessarily based on TCP (<https://github.com/httpwg/http-core/

issues/237>)

In Section 1.1, reference RFC 8174 as well (<https://github.com/

httpwg/http-core/issues/303>)

D.9. Since draft-ietf-httpbis-semantics-07

In Section 9.3, explicitly reference the definition of

representation data as including any content codings (<https://

github.com/httpwg/http-core/issues/11>)

Move TE: trailers from [Messaging] into Section 5.6.2 (<https://

github.com/httpwg/http-core/issues/18>)

In Section 7.2.4, adjust requirements for handling multiple

content-length values (<https://github.com/httpwg/http-core/

issues/59>)

In Section 9.2.3 and Section 9.2.4, clarified condition

evaluation (<https://github.com/httpwg/http-core/issues/72>)

In Section 5.4, remove concept of obs-fold, as that is HTTP/1-

specific (<https://github.com/httpwg/http-core/issues/116>)

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://github.com/httpwg/http-core/issues/258
https://github.com/httpwg/http-core/issues/262
https://github.com/httpwg/http-core/issues/273
https://github.com/httpwg/http-core/issues/273
https://github.com/httpwg/http-core/issues/278
https://www.rfc-editor.org/errata/eid5964
https://github.com/httpwg/http-core/issues/148
https://github.com/httpwg/http-core/issues/191
https://github.com/httpwg/http-core/issues/191
https://github.com/httpwg/http-core/issues/237
https://github.com/httpwg/http-core/issues/237
https://github.com/httpwg/http-core/issues/303
https://github.com/httpwg/http-core/issues/303
https://github.com/httpwg/http-core/issues/11
https://github.com/httpwg/http-core/issues/11
https://github.com/httpwg/http-core/issues/18
https://github.com/httpwg/http-core/issues/18
https://github.com/httpwg/http-core/issues/59
https://github.com/httpwg/http-core/issues/59
https://github.com/httpwg/http-core/issues/72
https://github.com/httpwg/http-core/issues/116

In Section 7.4, introduce the concept of request payload

negotiation (Section 7.4.3) and define for Accept-Encoding

(<https://github.com/httpwg/http-core/issues/119>)

In Section 10.3.6, Section 10.5.9, and Section 10.5.14, remove

HTTP/1-specific, connection-related requirements (<https://

github.com/httpwg/http-core/issues/144>)

In Section 8.3.6, correct language about what is forwarded

(<https://github.com/httpwg/http-core/issues/170>)

Throughout, replace "effective request URI", "request-target" and

similar with "target URI" (<https://github.com/httpwg/http-core/

issues/259>)

In Section 5.7 and Section 10.7.2, describe how extensions should

consider scope of applicability (<https://github.com/httpwg/http-

core/issues/265>)

In Section 2.1, don't rely on the HTTP/1.1 Messaging

specification to define "message" (<https://github.com/httpwg/

http-core/issues/311>)

In Section 7.2.5 and Section 9.6.2, note that URL resolution is

necessary (<https://github.com/httpwg/http-core/issues/321>)

In Section 7, explicitly reference 206 as one of the status codes

that provide representation data (<https://github.com/httpwg/

http-core/issues/325>)

In Section 9.2.6, refine requirements so that they don't apply to

resources without a concept of modification time (<https://

github.com/httpwg/http-core/issues/326>)

In Section 11.3.2, specify the scope as a request, not a target

resource (<https://github.com/httpwg/http-core/issues/331>)

In Section 2.1, introduce concept of "complete" messages

(<https://github.com/httpwg/http-core/issues/334>)

In Section 6.1, Section 8.3.6, and Section 8.3.7, refine use of

"request target" (<https://github.com/httpwg/http-core/issues/

340>)

Throughout, remove "status-line" and "request-line", as these are

HTTP/1.1-specific (<https://github.com/httpwg/http-core/issues/

361>)

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://github.com/httpwg/http-core/issues/119
https://github.com/httpwg/http-core/issues/144
https://github.com/httpwg/http-core/issues/144
https://github.com/httpwg/http-core/issues/170
https://github.com/httpwg/http-core/issues/259
https://github.com/httpwg/http-core/issues/259
https://github.com/httpwg/http-core/issues/265
https://github.com/httpwg/http-core/issues/265
https://github.com/httpwg/http-core/issues/311
https://github.com/httpwg/http-core/issues/311
https://github.com/httpwg/http-core/issues/321
https://github.com/httpwg/http-core/issues/325
https://github.com/httpwg/http-core/issues/325
https://github.com/httpwg/http-core/issues/326
https://github.com/httpwg/http-core/issues/326
https://github.com/httpwg/http-core/issues/331
https://github.com/httpwg/http-core/issues/334
https://github.com/httpwg/http-core/issues/340
https://github.com/httpwg/http-core/issues/340
https://github.com/httpwg/http-core/issues/361
https://github.com/httpwg/http-core/issues/361

D.10. Since draft-ietf-httpbis-semantics-08

In Section 10.5.17, remove duplicate definition of what makes a

range satisfiable and refer instead to each range unit's

definition (<https://github.com/httpwg/http-core/issues/12>)

In Section 7.1.4.2 and Section 9.3, clarify that a selected

representation of zero length can only be satisfiable as a suffix

range and that a server can still ignore Range for that case

(<https://github.com/httpwg/http-core/issues/12>)

In Section 9.4.1 and Section 10.5.16, allow "Accept" as response

field (<https://github.com/httpwg/http-core/issues/48>)

Appendix A now uses the sender variant of the "#" list expansion

(<https://github.com/httpwg/http-core/issues/192>)

In Section 11.1.4, make the field list-based even when "*" is

present (<https://github.com/httpwg/http-core/issues/272>)

In Section 5.3.2, add optional "Comments" entry (<https://

github.com/httpwg/http-core/issues/273>)

In Section 5.8, reserve "*" as field name (<https://github.com/

httpwg/http-core/issues/274>)

In Section 13.2, reserve "*" as method name (<https://github.com/

httpwg/http-core/issues/274>)

In Section 9.2.3 and Section 9.2.4, state that multiple "*" is

unlikely to be interoperable (<https://github.com/httpwg/http-

core/issues/305>)

In Section 9.4.1, avoid use of obsolete media type parameter on

text/html (<https://github.com/httpwg/http-core/issues/375>,

<https://www.rfc-editor.org/errata/eid6149>)

Rephrase prose in Section 2.1 to become version-agnostic

(<https://github.com/httpwg/http-core/issues/372>)

In Section 5.4, instruct recipients how to deal with control

characters in field values (<https://github.com/httpwg/http-core/

issues/377>)

In Section 5.4, update note about field ABNF (<https://

github.com/httpwg/http-core/issues/380>)

Add Section 4 about Extending and Versioning HTTP (<https://

github.com/httpwg/http-core/issues/384>)

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

https://github.com/httpwg/http-core/issues/12
https://github.com/httpwg/http-core/issues/12
https://github.com/httpwg/http-core/issues/48
https://github.com/httpwg/http-core/issues/192
https://github.com/httpwg/http-core/issues/272
https://github.com/httpwg/http-core/issues/273
https://github.com/httpwg/http-core/issues/273
https://github.com/httpwg/http-core/issues/274
https://github.com/httpwg/http-core/issues/274
https://github.com/httpwg/http-core/issues/274
https://github.com/httpwg/http-core/issues/274
https://github.com/httpwg/http-core/issues/305
https://github.com/httpwg/http-core/issues/305
https://github.com/httpwg/http-core/issues/375
https://www.rfc-editor.org/errata/eid6149
https://github.com/httpwg/http-core/issues/372
https://github.com/httpwg/http-core/issues/377
https://github.com/httpwg/http-core/issues/377
https://github.com/httpwg/http-core/issues/380
https://github.com/httpwg/http-core/issues/380
https://github.com/httpwg/http-core/issues/384
https://github.com/httpwg/http-core/issues/384

In Section 10.1, include status 308 in list of heuristically

cacheable status codes (<https://github.com/httpwg/http-core/

issues/385>)

In Section 7.2.2, make it clearer that "identity" is not to be

included (<https://github.com/httpwg/http-core/issues/388>)

D.11. Since draft-ietf-httpbis-semantics-09

Switch to xml2rfc v3 mode for draft generation (<https://

github.com/httpwg/http-core/issues/394>)

Acknowledgments

This edition of the HTTP specification builds on the many

contributions that went into RFC 1945, RFC 2068, RFC 2145, RFC 2616,

and RFC 2818, including substantial contributions made by the

previous authors, editors, and Working Group Chairs: Tim Berners-

Lee, Ari Luotonen, Roy T. Fielding, Henrik Frystyk Nielsen, Jim

Gettys, Jeffrey C. Mogul, Larry Masinter, Paul J. Leach, Eric

Rescorla, and Yves Lafon.

See Section 10 of [RFC7230] for further acknowledgements from prior

revisions.

In addition, this document has reincorporated the HTTP

Authentication Framework, previously defined in RFC 7235 and RFC

2617. We thank John Franks, Phillip M. Hallam-Baker, Jeffery L.

Hostetler, Scott D. Lawrence, Paul J. Leach, Ari Luotonen, and

Lawrence C. Stewart for their work on that specification. See

Section 6 of [RFC2617] for further acknowledgements.

New acks to be added here.

Authors' Addresses

Roy T. Fielding (editor)

Adobe

345 Park Ave

San Jose, CA 95110

United States of America

Email: fielding@gbiv.com

URI: https://roy.gbiv.com/

Mark Nottingham (editor)

Fastly

Email: mnot@mnot.net

URI: https://www.mnot.net/

*

¶

*

¶

*

¶

¶

¶

¶

¶

https://github.com/httpwg/http-core/issues/385
https://github.com/httpwg/http-core/issues/385
https://github.com/httpwg/http-core/issues/388
https://github.com/httpwg/http-core/issues/394
https://github.com/httpwg/http-core/issues/394
https://rfc-editor.org/rfc/rfc7230#section-10
https://rfc-editor.org/rfc/rfc2617#section-6
mailto:fielding@gbiv.com
https://roy.gbiv.com/
mailto:mnot@mnot.net
https://www.mnot.net/

Julian F. Reschke (editor)

greenbytes GmbH

Hafenweg 16

48155 Münster

Germany

Email: julian.reschke@greenbytes.de

URI: https://greenbytes.de/tech/webdav/

mailto:julian.reschke@greenbytes.de
https://greenbytes.de/tech/webdav/

	HTTP Semantics
	Abstract
	Editorial Note
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Notation
	1.2. Syntax Notation
	1.2.1. Whitespace

	2. Architecture
	2.1. Client/Server Messaging
	2.2. Intermediaries
	2.3. Caches
	2.4. Uniform Resource Identifiers
	2.5. Resources
	2.5.1. http URI Scheme
	2.5.2. https URI Scheme
	2.5.3. http and https URI Normalization and Comparison
	2.5.4. Deprecated userinfo
	2.5.5. Fragment Identifiers on http(s) URI References

	3. Conformance
	3.1. Implementation Diversity
	3.2. Role-based Requirements
	3.3. Parsing Elements
	3.4. Error Handling

	4. Extending and Versioning HTTP
	4.1. Extending HTTP
	4.2. Protocol Versioning

	5. Header and Trailer Fields
	5.1. Field Ordering and Combination
	5.2. Field Limits
	5.3. Field Names
	5.3.1. Field Extensibility
	5.3.2. Field Name Registry

	5.4. Field Values
	5.4.1. Common Field Value Components
	5.4.1.1. Tokens
	5.4.1.2. Quoted Strings
	5.4.1.3. Comments
	5.4.1.4. Parameters
	5.4.1.5. Date/Time Formats

	5.5. ABNF List Extension: #rule
	5.5.1. Sender Requirements
	5.5.2. Recipient Requirements

	5.6. Trailer Fields
	5.6.1. Purpose
	5.6.2. Limitations
	5.6.3. Trailer

	5.7. Considerations for New HTTP Fields
	5.8. Fields Defined In This Document

	6. Message Routing
	6.1. Identifying a Target Resource
	6.2. Determining Origin
	6.3. Routing Inbound
	6.4. Direct Authoritative Access
	6.4.1. http origins
	6.4.2. https origins
	6.4.3. Initiating HTTP Over TLS
	6.4.3.1. Identifying HTTPS Servers
	6.4.3.2. Identifying HTTPS Clients

	6.5. Reconstructing the Target URI
	6.6. Host
	6.7. Message Forwarding
	6.7.1. Via
	6.7.2. Transformations

	7. Representations
	7.1. Representation Data
	7.1.1. Media Type
	7.1.1.1. Charset
	7.1.1.2. Canonicalization and Text Defaults
	7.1.1.3. Multipart Types

	7.1.2. Content Codings
	7.1.2.1. Compress Coding
	7.1.2.2. Deflate Coding
	7.1.2.3. Gzip Coding
	7.1.2.4. Content Coding Registry

	7.1.3. Language Tags
	7.1.4. Range Units
	7.1.4.1. Range Specifiers
	7.1.4.2. Byte Ranges
	7.1.4.3. Other Range Units
	7.1.4.4. Range Unit Registry

	7.2. Representation Metadata
	7.2.1. Content-Type
	7.2.2. Content-Encoding
	7.2.3. Content-Language
	7.2.4. Content-Length
	7.2.5. Content-Location

	7.3. Payload
	7.3.1. Purpose
	7.3.2. Identification
	7.3.3. Payload Body
	7.3.4. Content-Range
	7.3.5. Media Type multipart/byteranges

	7.4. Content Negotiation
	7.4.1. Proactive Negotiation
	7.4.2. Reactive Negotiation
	7.4.3. Request Payload Negotiation
	7.4.4. Quality Values

	8. Request Methods
	8.1. Overview
	8.2. Common Method Properties
	8.2.1. Safe Methods
	8.2.2. Idempotent Methods
	8.2.3. Methods and Caching

	8.3. Method Definitions
	8.3.1. GET
	8.3.2. HEAD
	8.3.3. POST
	8.3.4. PUT
	8.3.5. DELETE
	8.3.6. CONNECT
	8.3.7. OPTIONS
	8.3.8. TRACE

	8.4. Method Extensibility
	8.4.1. Method Registry
	8.4.2. Considerations for New Methods

	9. Request Header Fields
	9.1. Controls
	9.1.1. Expect
	9.1.2. Max-Forwards

	9.2. Preconditions
	9.2.1. Evaluation
	9.2.2. Precedence
	9.2.3. If-Match
	9.2.4. If-None-Match
	9.2.5. If-Modified-Since
	9.2.6. If-Unmodified-Since
	9.2.7. If-Range

	9.3. Range
	9.4. Negotiation
	9.4.1. Accept
	9.4.2. Accept-Charset
	9.4.3. Accept-Encoding
	9.4.4. Accept-Language

	9.5. Authentication Credentials
	9.5.1. Challenge and Response
	9.5.2. Protection Space (Realm)
	9.5.3. Authorization
	9.5.4. Proxy-Authorization
	9.5.5. Authentication Scheme Extensibility
	9.5.5.1. Authentication Scheme Registry
	9.5.5.2. Considerations for New Authentication Schemes

	9.6. Request Context
	9.6.1. From
	9.6.2. Referer
	9.6.3. User-Agent

	10. Response Status Codes
	10.1. Overview of Status Codes
	10.2. Informational 1xx
	10.2.1. 100 Continue
	10.2.2. 101 Switching Protocols

	10.3. Successful 2xx
	10.3.1. 200 OK
	10.3.2. 201 Created
	10.3.3. 202 Accepted
	10.3.4. 203 Non-Authoritative Information
	10.3.5. 204 No Content
	10.3.6. 205 Reset Content
	10.3.7. 206 Partial Content
	10.3.7.1. Single Part
	10.3.7.2. Multiple Parts
	10.3.7.3. Combining Parts

	10.4. Redirection 3xx
	10.4.1. 300 Multiple Choices
	10.4.2. 301 Moved Permanently
	10.4.3. 302 Found
	10.4.4. 303 See Other
	10.4.5. 304 Not Modified
	10.4.6. 305 Use Proxy
	10.4.7. 306 (Unused)
	10.4.8. 307 Temporary Redirect
	10.4.9. 308 Permanent Redirect

	10.5. Client Error 4xx
	10.5.1. 400 Bad Request
	10.5.2. 401 Unauthorized
	10.5.3. 402 Payment Required
	10.5.4. 403 Forbidden
	10.5.5. 404 Not Found
	10.5.6. 405 Method Not Allowed
	10.5.7. 406 Not Acceptable
	10.5.8. 407 Proxy Authentication Required
	10.5.9. 408 Request Timeout
	10.5.10. 409 Conflict
	10.5.11. 410 Gone
	10.5.12. 411 Length Required
	10.5.13. 412 Precondition Failed
	10.5.14. 413 Payload Too Large
	10.5.15. 414 URI Too Long
	10.5.16. 415 Unsupported Media Type
	10.5.17. 416 Range Not Satisfiable
	10.5.18. 417 Expectation Failed
	10.5.19. 418 (Unused)
	10.5.20. 422 Unprocessable Payload
	10.5.21. 426 Upgrade Required

	10.6. Server Error 5xx
	10.6.1. 500 Internal Server Error
	10.6.2. 501 Not Implemented
	10.6.3. 502 Bad Gateway
	10.6.4. 503 Service Unavailable
	10.6.5. 504 Gateway Timeout
	10.6.6. 505 HTTP Version Not Supported

	10.7. Status Code Extensibility
	10.7.1. Status Code Registry
	10.7.2. Considerations for New Status Codes

	11. Response Header Fields
	11.1. Control Data
	11.1.1. Date
	11.1.2. Location
	11.1.3. Retry-After
	11.1.4. Vary

	11.2. Validators
	11.2.1. Weak versus Strong
	11.2.2. Last-Modified
	11.2.2.1. Generation
	11.2.2.2. Comparison

	11.2.3. ETag
	11.2.3.1. Generation
	11.2.3.2. Comparison
	11.2.3.3. Example: Entity-Tags Varying on Content-Negotiated Resources

	11.2.4. When to Use Entity-Tags and Last-Modified Dates

	11.3. Authentication Challenges
	11.3.1. WWW-Authenticate
	11.3.2. Proxy-Authenticate
	11.3.3. Authentication-Info
	11.3.3.1. Parameter Value Format

	11.3.4. Proxy-Authentication-Info

	11.4. Response Context
	11.4.1. Accept-Ranges
	11.4.2. Allow
	11.4.3. Server

	12. Security Considerations
	12.1. Establishing Authority
	12.2. Risks of Intermediaries
	12.3. Attacks Based on File and Path Names
	12.4. Attacks Based on Command, Code, or Query Injection
	12.5. Attacks via Protocol Element Length
	12.6. Disclosure of Personal Information
	12.7. Privacy of Server Log Information
	12.8. Disclosure of Sensitive Information in URIs
	12.9. Disclosure of Fragment after Redirects
	12.10. Disclosure of Product Information
	12.11. Browser Fingerprinting
	12.12. Validator Retention
	12.13. Denial-of-Service Attacks Using Range
	12.14. Authentication Considerations
	12.14.1. Confidentiality of Credentials
	12.14.2. Credentials and Idle Clients
	12.14.3. Protection Spaces
	12.14.4. Additional Response Fields

	13. IANA Considerations
	13.1. URI Scheme Registration
	13.2. Method Registration
	13.3. Status Code Registration
	13.4. HTTP Field Name Registration
	13.5. Authentication Scheme Registration
	13.6. Content Coding Registration
	13.7. Range Unit Registration
	13.8. Media Type Registration
	13.9. Port Registration

	14. References
	14.1. Normative References
	14.2. Informative References

	Appendix A. Collected ABNF
	Appendix B. Changes from previous RFCs
	B.1. Changes from RFC 2818
	B.2. Changes from RFC 7230
	B.3. Changes from RFC 7231
	B.4. Changes from RFC 7232
	B.5. Changes from RFC 7233
	B.6. Changes from RFC 7235
	B.7. Changes from RFC 7538
	B.8. Changes from RFC 7615
	Appendix C. Changes from RFC 7694
	Appendix D. Change Log
	D.1. Between RFC723x and draft 00
	D.2. Since draft-ietf-httpbis-semantics-00
	D.3. Since draft-ietf-httpbis-semantics-01
	D.4. Since draft-ietf-httpbis-semantics-02
	D.5. Since draft-ietf-httpbis-semantics-03
	D.6. Since draft-ietf-httpbis-semantics-04
	D.7. Since draft-ietf-httpbis-semantics-05
	D.8. Since draft-ietf-httpbis-semantics-06
	D.9. Since draft-ietf-httpbis-semantics-07
	D.10. Since draft-ietf-httpbis-semantics-08
	D.11. Since draft-ietf-httpbis-semantics-09
	Acknowledgments
	Authors' Addresses

