This specification defines a convention for HTTP response header fields that allow cache directives to be targeted at specific caches or classes of caches. It also defines one such header field, targeted at Content Delivery Network (CDN) caches.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://datatracker.ietf.org/doc/draft-ietf-httpbis-targeted-cache-control/.

Discussion of this document takes place on the HTTP Working Group mailing list (mailto:ietf-http-wg@w3.org), which is archived at https://lists.w3.org/Archives/Public/ietf-http-wg/. Working Group information can be found at https://httpwg.org/.

Source for this draft and an issue tracker can be found at https://github.com/httpwg/http-extensions/labels/targeted-cc.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
1. Introduction

Modern deployments of HTTP often use multiple layers of caching. For example, a website might use a cache on the origin server itself; it
might deploy a caching layer in the same network as the origin server, it might use one or more Content Delivery Networks (CDNs) that are distributed throughout the Internet, and it might benefit from browser caching as well.

Because it is often desirable to control these different classes of caches separately, some means of targeting cache directives at them is necessary. For example, if a publisher has a mechanism to invalidate the contents of a cache that it has a relationship with (such as a CDN cache), they might be more comfortable assigning a more generous caching policy to it, while still wanting to restrict the behavior of other caches.

The HTTP Cache-Control response header field (defined in Section 5.2 of [HTTP-CACHING]) is widely used to direct caching behavior. However, it is relatively undifferentiated; while some cache directives (e.g., s-maxage) are targeted at a specific class of caches (for s-maxage, shared caches), targeting is not consistently available across all existing cache directives (e.g., stale-while-revalidate). This is problematic, especially as the number of caching extensions grows, along with the number of potential targets.

Some implementations have defined ad hoc control mechanisms to overcome this issue, but their interoperability is low. Section 2 defines a standard framework for targeted cache control using HTTP response headers, and Section 3 defines one such header: the CDN-Cache-Control response header field.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

2. Targeted Cache-Control Header Fields

A Targeted Cache-Control Header Field (hereafter, "targeted field") is an HTTP response header field that has the same semantics as the Cache-Control response header field ([HTTP-CACHING], Section 5.2).
However, it has a distinct field name that indicates the target for its cache directives.

For example:

CDN-Cache-Control: max-age=60

is a targeted field that applies to Content Delivery Networks (CDNs), as defined in Section 3.

2.1. Syntax

Targeted fields are Dictionary Structured Fields (Section 3.2 of [STRUCTURED-FIELDS]). Each member of the dictionary is an HTTP cache response directive (Section 5.2.2 of [HTTP-CACHING]) including extension response directives (as per Section 5.2.3 of [HTTP-CACHING]). Note that while targeted fields often have the same syntax as Cache-Control fields, differences in error handling mean that using a Cache-Control parser rather than a Structured Fields parser can introduce interoperability issues.

Because cache directives are not defined in terms of structured data types, it is necessary to map their values into the appropriate types. Section 5.2 of [HTTP-CACHING] defines cache directive values to be either absent, a quoted-string, or a token.

This means that cache directives that have no value will be mapped to a Boolean (Section 3.3.6 of [STRUCTURED-FIELDS]). When the value is a quoted-string, it will be mapped to a String (Section 3.3.3 of [STRUCTURED-FIELDS]), and when it is a token, it will map to a Token (Section 3.3.4 of [STRUCTURED-FIELDS]), an Integer (Section 3.3.1 of [STRUCTURED-FIELDS]) or a Decimal (Section 3.3.2 of [STRUCTURED-FIELDS]), depending on the content of the value.

For example, the max-age directive (Section 5.2.2.1 of [HTTP-CACHING]) has an integer value; no-store (Section 5.2.2.5 of [HTTP-CACHING]) always has a boolean true value, and no-cache (Section 5.2.2.4 of [HTTP-CACHING]) has a value that can either be boolean true or a string containing a comma-delimited list of field
Implementations MUST NOT generate values that violate these inferred constraints on the cache directive's value. In particular, string values whose first character is not alphabetic or "*" MUST be generated as structured Strings, so they are not mistaken for other types.

Implementations SHOULD NOT consume values that violate these inferred constraints. For example, a consuming implementation that coerces a max-age with a decimal value into an integer would behave differently than other implementations, potentially causing interoperability issues.

Parameters received on cache directives are to be ignored, unless other handling is explicitly specified.

If a targeted field in a given response is empty, or a parsing error is encountered, that field MUST be ignored by the cache (i.e., it behaves as if the field were not present, likely falling back to other cache-control mechanisms present).

2.2 Cache Behavior

A cache that implements this specification maintains a _target list_ - an ordered list of the targeted field names that it uses for caching policy, with the order reflecting priority from most applicable to least. The target list might be fixed, user-configurable, or generated per request, depending upon the implementation.

For example, a CDN cache might support both CDN-Cache-Control and a header specific to that CDN, ExampleCDN-Cache-Control, with the latter overriding the former. Its target list would be:

[ExampleCDN-Cache-Control, CDN-Cache-Control]

When a cache that implements this specification receives a response with one or more of the header field names on its target list, the
cache MUST select the first (in target list order) field with a valid, non-empty value and use its value to determine the caching policy for the response, and MUST ignore the Cache-Control and Expires header fields in that response, unless no valid, non-empty value is available from the listed header fields.

Note that this occurs on a response-by-response basis; if no member of the cache's target list is present, valid and non-empty, a cache falls back to other cache control mechanisms as required by HTTP [HTTP-CACHING].

Targeted fields that are not on a cache's target list MUST NOT change that cache's behaviour, and MUST be passed through.

Caches that use a targeted field MUST implement the semantics of the following cache directives:

* max-age
* must-revalidate
* no-store
* no-cache
* private

2.3. Interaction with HTTP Freshness

HTTP caching has a single, end-to-end freshness model defined in Section 4.2 of [HTTP-CACHING]. When additional freshness mechanisms are only available to some caches along a request path (for example, using targeted fields), their interactions need to be carefully
considered. In particular, a targeted cache might have longer freshness lifetimes available to it than other caches, causing it to serve responses that appear to be prematurely (or even immediately) stale to those other caches, negatively impacting cache efficiency.

For example, a response stored by a CDN cache might be served with the following headers:

Age: 1800
Cache-Control: max-age=600
CDN-Cache-Control: max-age=3600

From the CDN's perspective, this response is still fresh after being cached for 30 minutes, while from other caches' standpoint, this response is already stale. See [AGE-PENALTY] for more discussion.

When the targeted cache has a strong coherence mechanism (e.g., the origin server has the ability to proactively invalidate cached responses), it is often desirable to mitigate these effects. Some techniques seen in deployments include:

* Removing the Age header field
* Updating the Date header field value to the current time
* Updating the Expires header field value to the current time, plus any Cache-Control: max-age value

This specification does not place any specific requirements on implementations to mitigate these effects, but definitions of targeted fields can do so.

2.4. Defining Targeted Fields

A targeted field for a particular class of cache can be defined by requesting registration in the Hypertext Transfer Protocol (HTTP) Field Name Registry (https://www.iana.org/assignments/http-fields/).

Registration requests can use this document as the specification document, in which case the Comments field should clearly define the
class of caches that the targeted field applies to. Alternatively, if other documentation for the field has been created, it can be used as the specification document.

By convention, targeted fields have the suffix "-Cache-Control": e.g., "ExampleCDN-Cache-Control". However, this suffix MUST NOT be used on its own to identify targeted fields; it is only a convention.

3. The CDN-Cache-Control Targeted Field

The CDN-Cache-Control response header field is a targeted field (Section 2) that allows origin servers to control the behaviour of CDN caches interposed between them and clients, separately from other caches that might handle the response.

It applies to caches that are part of a distributed network that operate on behalf of an origin server (commonly called a Content Delivery Network or CDN).

CDN caches that use CDN-Cache-Control will typically forward this header so that downstream CDN caches can use it as well. However, they MAY remove it when this is undesirable (for example, when configured to do so because it is known not to be used downstream).

3.1. Examples

For example, the following header fields would instruct a CDN cache (i.e., a cache with a target list of [CDN-Cache-Control]) to consider the response fresh for 600 seconds, other shared caches to consider the response fresh for 120 seconds, and any remaining caches to consider the response fresh for 60 seconds:

```
Cache-Control: max-age=60, s-maxage=120
CDN-Cache-Control: max-age=600
```

These header fields would instruct a CDN cache to consider the response fresh for 600 seconds, while all other caches would be prevented from storing it:
Cache-Control: no-store

Because CDN-Cache-Control is not present, this header field would prevent all caches from storing the response:

Cache-Control: no-store

Whereas these would prevent all caches except for CDN caches from storing the response:

Cache-Control: no-store
CDN-Cache-Control: none

(note that 'none' is not a registered cache directive; it is here to avoid sending a header field with an empty value, which would be ignored)

4. IANA Considerations

Please register the following entry in the Hypertext Transfer Protocol (HTTP) Field Name Registry defined by [HTTP]:

* Field Name: CDN-Cache-Control
* Status: permanent
* Specification Document: [this document]
* Comments: Cache directives targeted at Content Delivery Networks

5. Security Considerations

The security considerations of HTTP caching [HTTP-CACHING] apply.

The ability to carry multiple caching policies on a response can result in confusion about how a response will be cached in different systems, potentially resulting in unintentional reuse of responses with sensitive information. For this reason, care must be exercised.

6. References

6.1. Normative References
6.2. Informative References

[AGE-PENALTY]

Authors' Addresses

Stephen Ludin
Akamai

Email: sludin@ludin.org

Mark Nottingham
Fastly
Prahran
Australia