
Workgroup: HTTPBIS

Internet-Draft:

draft-ietf-httpbis-unprompted-auth-06

Published: 24 January 2024

Intended Status: Standards Track

Expires: 27 July 2024

Authors: D. Schinazi

Google LLC

D. Oliver

Guardian Project

J. Hoyland

Cloudflare Inc.

The Signature HTTP Authentication Scheme

Abstract

Existing HTTP authentication schemes are probeable in the sense that

it is possible for an unauthenticated client to probe whether an

origin serves resources that require authentication. It is possible

for an origin to hide the fact that it requires authentication by

not generating Unauthorized status codes, however that only works

with non-cryptographic authentication schemes: cryptographic

signatures require a fresh nonce to be signed, and there is no

existing way for the origin to share such a nonce without exposing

the fact that it serves resources that require authentication. This

document proposes a new non-probeable cryptographic authentication

scheme.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://

httpwg.org/http-extensions/draft-ietf-httpbis-unprompted-auth.html.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-ietf-httpbis-unprompted-auth/.

Discussion of this document takes place on the HTTP Working Group

mailing list (mailto:ietf-http-wg@w3.org), which is archived at

https://lists.w3.org/Archives/Public/ietf-http-wg/. Working Group

information can be found at https://httpwg.org/.

Source for this draft and an issue tracker can be found at https://

github.com/httpwg/http-extensions/labels/unprompted-auth.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

¶

¶

¶

¶

¶

¶

https://httpwg.org/http-extensions/draft-ietf-httpbis-unprompted-auth.html
https://httpwg.org/http-extensions/draft-ietf-httpbis-unprompted-auth.html
https://datatracker.ietf.org/doc/draft-ietf-httpbis-unprompted-auth/
https://datatracker.ietf.org/doc/draft-ietf-httpbis-unprompted-auth/
mailto:ietf-http-wg@w3.org
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.org/
https://github.com/httpwg/http-extensions/labels/unprompted-auth
https://github.com/httpwg/http-extensions/labels/unprompted-auth

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 July 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Definitions

2. The Signature Authentication Scheme

3. TLS Usage

4. Computing the Authentication Proof

4.1. Key Exporter Context

4.2. Key Exporter Output

4.3. Signature Computation

5. Authentication Parameters

5.1. The k Parameter

5.2. The a Parameter

5.3. The p Parameter

5.4. The s Parameter

5.5. The v Parameter

6. Example

7. Non-Probeable Server Handling

8. Intermediary Considerations

9. Security Considerations

10. IANA Considerations

10.1. HTTP Authentication Schemes Registry

10.2. TLS Keying Material Exporter Labels

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

11. References

11.1. Normative References

11.2. Informative References

Acknowledgments

Authors' Addresses

1. Introduction

HTTP authentication schemes (see Section 11 of [HTTP]) allow origins

to restrict access for some resources to only authenticated

requests. While these schemes commonly involve a challenge where the

origin asks the client to provide authentication information, it is

possible for clients to send such information unprompted. This is

particularly useful in cases where an origin wants to offer a

service or capability only to "those who know" while all others are

given no indication the service or capability exists. Such designs

rely on an externally-defined mechanism by which keys are

distributed. For example, a company might offer remote employee

access to company services directly via its website using their

employee credentials, or offer access to limited special

capabilities for specific employees, while making discovering

(probing for) such capabilities difficult. Members of less well-

defined communities might use more ephemeral keys to acquire access

to geography- or capability-specific resources, as issued by an

entity whose user base is larger than the available resources can

support (by having that entity metering the availability of keys

temporally or geographically).

While digital-signature-based HTTP authentication schemes already

exist ([HOBA]), they rely on the origin explicitly sending a fresh

challenge to the client, to ensure that the signature input is

fresh. That makes the origin probeable as it send the challenge to

unauthenticated clients. This document defines a new signature-based

authentication scheme that is not probeable.

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the notation from Section 1.3 of [QUIC].

2. The Signature Authentication Scheme

This document defines the "Signature" HTTP authentication scheme. It

uses asymmetric cryptography. User agents possess a key ID and a

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9110#section-11
https://rfc-editor.org/rfc/rfc9000#section-1.3

public/private key pair, and origin servers maintain a mapping of

authorized key IDs to their associated public keys.

The client uses a TLS keying material exporter to generate data to

be signed (see Section 4) then sends the signature using the

Authorization or Proxy-Authorization header field. The signature and

additional information are exchanged using authentication parameters

(see Section 5).

3. TLS Usage

This authentication scheme is only defined for uses of HTTP with TLS

[TLS]. This includes any use of HTTP over TLS as typically used for

HTTP/2 [HTTP/2], or HTTP/3 [HTTP/3] where the transport protocol

uses TLS as its authentication and key exchange mechanism

[QUIC-TLS].

Because the TLS keying material exporter is only secure for

authentication when it is uniquely bound to the TLS session

[RFC7627], the Signature authentication scheme requires either one

of the following properties:

The TLS version in use is greater or equal to 1.3 [TLS].

The TLS version in use is 1.2 and the Extended Master Secret

extension [RFC7627] has been negotiated.

Clients MUST NOT use the Signature authentication scheme on

connections that do not meet one of the two properties above. If a

server receives a request that uses this authentication scheme on a

connection that meets neither of the above properties, the server

MUST treat the request as malformed.

4. Computing the Authentication Proof

The user agent computes the authentication proof using a TLS keying

material exporter [KEY-EXPORT] with the following parameters:

the label is set to "EXPORTER-HTTP-Signature-Authentication"

the context is set to the structure described in Section 4.1

the exporter output length is set to 48 bytes (see Section 4.2)

4.1. Key Exporter Context

The TLS key exporter context is described in Figure 1:

¶

¶

¶

¶

* ¶

*

¶

¶

¶

* ¶

* ¶

* ¶

¶

Signature Algorithm:

Key ID:

Public Key:

Scheme:

Host:

Port:

Realm:

Figure 1: Key Exporter Context Format

The key exporter context contains the following fields:

The signature scheme sent in the s Parameter

(see Section 5.4).

The key ID sent in the k Parameter (see Section 5.1).

The public key used by the server to validate the

signature provided by the client (the encoding is described

below).

The scheme for this request, encoded using the format of

the scheme portion of a URI as defined in Section 3.1 of [URI].

The host for this request, encoded using the format of the

host portion of a URI as defined in Section 3.2.2 of [URI].

The port for this request, encoded in network byte order.

Note that the port is either included in the URI, or is the

default port for the scheme in use; see Section 3.2.3 of [URI].

The real of authentication that is sent in the realm

authentication parameter (Section 11.5 of [HTTP]). If the realm

authentication parameter is not present, this SHALL be empty.

This document does not define a means for the origin to

communicate a realm to the client. If a client is not configured

to use a specific realm, it SHALL use an empty realm and SHALL

NOT send the realm authentication parameter.

The Signature Algorithm and Port fields are encoded as unsigned 16-

bit integers in network byte order. The Key ID, Public Key, Scheme,

Host, and Real fields are length prefixed strings; they are preceded

by a Length field that represents their length in bytes. These

length fields are encoded using the variable-length integer encoding

 Signature Algorithm (16),

 Key ID Length (i),

 Key ID (..),

 Public Key Length (i),

 Public Key (..),

 Scheme Length (i),

 Scheme (..),

 Host Length (i),

 Host (..),

 Port (16),

 Realm Length (i),

 Realm (..),

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc3986#section-3.1
https://rfc-editor.org/rfc/rfc3986#section-3.2.2
https://rfc-editor.org/rfc/rfc3986#section-3.2.3
https://rfc-editor.org/rfc/rfc9110#section-11.5

RSASSA-PSS algorithms:

ECDSA algorithms:

EdDSA algorithms:

Signature Input:

Verification:

from Section 16 of [QUIC] and MUST be encoded in the minimum number

of bytes necessary.

The encoding of the public key is determined by the Signature

Algorithm in use as follows:

The public key is an RSAPublicKey structure

[PKCS1] encoded in DER [X.690]. BER encodings which are not DER

MUST be rejected.

The public key is a

UncompressedPointRepresentation structure defined in

Section 4.2.8.2 of [TLS], using the curve specified by the

SignatureScheme.

The public key is the byte string encoding

defined in [EdDSA].

This document does not define the public key encodings for other

algorithms. In order for a SignatureScheme to be usable with the

Signature HTTP authentication scheme, its public key encoding needs

to be defined in a corresponding document.

4.2. Key Exporter Output

The key exporter output is 48 bytes long. Of those, the first 32

bytes are part of the input to the signature and the next 16 bytes

are sent alongside the signature. This allows the recipient to

confirm that the exporter produces the right values. This is

described in Figure 2:

Figure 2: Key Exporter Output Format

The key exporter context contains the following fields:

This is part of the data signed using the client's

chosen asymmetric private key (see Section 4.3).

The verification is transmitted to the server using

the v Parameter (see Section 5.5).

4.3. Signature Computation

Once the Signature Input has been extracted from the key exporter

output (see Section 4.2), it is prefixed with static data before

¶

¶

¶

¶

¶

¶

¶

 Signature Input (256),

 Verification (128),

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-16
https://rfc-editor.org/rfc/rfc8446#section-4.2.8.2

being signed to mitigate issues caused by key reuse. The signature

is computed over the concatenation of:

A string that consists of octet 32 (0x20) repeated 64 times

The context string "HTTP Signature Authentication"

A single 0 byte which serves as a separator

The Signature Input extracted from the key exporter output (see

Section 4.2)

For example, if the Signature Input has all its 32 bytes set to 01,

the content covered by the signature (in hexadecimal format) would

be:

Figure 3: Example Content Covered by Signature

This constructions mirrors that of the TLS 1.3 CertificateVerify

message defined in Section 4.4.3 of [TLS].

The resulting signature is then transmitted to the server using the

p Parameter (see Section 5.3).

5. Authentication Parameters

This specification defines the following authentication parameters.

All of the byte sequences below are encoded using base64url (see

Section 5 of [BASE64]) without quotes and without padding. In other

words, these byte sequence authentication parameters values MUST NOT

include any characters other then ASCII letters, digits, dash and

underscore.

The integer below is encoded without a minus and without leading

zeroes. In other words, the integer authentication parameters value

MUST NOT include any characters other than digits, and MUST NOT

start with a zero unless the full value is "0".

Using the syntax from [ABNF]:

¶

* ¶

* ¶

* ¶

*

¶

¶

20

20

48545450205369676E61747572652041757468656E7469636174696F6E

00

01

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8446#section-4.4.3
https://rfc-editor.org/rfc/rfc4648#section-5

Figure 4: Authentication Parameter Value ABNF

5.1. The k Parameter

The REQUIRED "k" (key ID) parameter is a byte sequence that

identifies which key the user agent wishes to use to authenticate.

This can for example be used to point to an entry into a server-side

database of known keys.

5.2. The a Parameter

The REQUIRED "a" (public key) parameter is a byte sequence that

contains the public key used by the server to validate the signature

provided by the client. This avoids key confusion issues (see

[SEEMS-LEGIT]). The encoding of the public key is described in

Section 4.1.

5.3. The p Parameter

The REQUIRED "p" (proof) parameter is a byte sequence that specifies

the proof that the user agent provides to attest to possessing the

credential that matches its key ID.

5.4. The s Parameter

The REQUIRED "s" (signature) parameter is an integer that specifies

the signature scheme used to compute the proof transmitted in the

"p" directive. Its value is an integer between 0 and 65535 inclusive

from the IANA "TLS SignatureScheme" registry maintained at <https://

www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-

signaturescheme>.

5.5. The v Parameter

The REQUIRED "v" (verification) parameter is a byte sequence that

specifies the verification that the user agent provides to attest to

possessing the key exporter output (see Section 4.2 for details).

This avoids issues with signature schemes where certain keys can

generate signatures that are valid for multiple inputs (see

[SEEMS-LEGIT]).

6. Example

For example, the key ID "basement" authenticating using Ed25519

[ED25519] could produce the following header field:

signature-byte-sequence-param-value = *(ALPHA / DIGIT / "-" / "_")

signature-integer-param-value = %x31-39 1*4(DIGIT) / "0"

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-signaturescheme
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-signaturescheme
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-signaturescheme

Figure 5: Example Header Field

7. Non-Probeable Server Handling

Servers that wish to introduce resources whose existence cannot be

probed need to ensure that they do not reveal any information about

those resources to unauthenticated clients. In particular, such

servers MUST respond to authentication failures with the exact same

response that they would have used for non-existent resources. For

example, this can mean using HTTP status code 404 (Not Found)

instead of 401 (Unauthorized). Such authentication failures can be

caused for example by:

absence of the Authorization (or Proxy-Authorization) field

failure to parse that field

use of the Signature authentication scheme with an unknown key ID

mismatch between key ID and provided public key

failure to validate the verification parameter

failure to validate the signature.

In order to validate the signature, the server needs to first parse

the field containing the signature, then look up the key ID in its

database of public keys, and finally perform the cryptographic

validation. These steps can take time, and an attacker could detect

use of this mechanism if that time is observable by comparing the

timing of a request for a known non-existent resource to the timing

of a request for a potentially authenticated resource. Servers can

mitigate this observability by slightly delaying responses to some

non-existent resources such that the timing of the authentication

verification is not observable. This delay needs to be carefully

considered to avoid having the delay itself leak the fact that this

origin uses this mechanism at all.

Non-probeable resources also need to be non-discoverable for

unauthenticated users. For example, if a server operator wishes to

NOTE: '\' line wrapping per RFC 8792

Authorization: Signature \

 k=YmFzZW1lbnQ, \

 a=VGhpcyBpcyBh-HB1YmxpYyBrZXkgaW4gdXNl_GhlcmU, \

 s=2055, \

 v=dmVyaWZpY2F0aW9u_zE2Qg, \

 p=SW5zZXJ0_HNpZ25hdHVyZSBvZiBub25jZSBoZXJlIHdo\

 aWNoIHRha2VzIDUxMiBiaXRz-GZvciBFZDI1NTE5IQ

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

hide an authenticated resource by pretending it does not exist to

unauthenticated users, then the server operator needs to ensure

there are no unauthenticated pages with links to that resource, and

no other out-of-band ways for unauthenticated users to discover this

resource.

8. Intermediary Considerations

Since the Signature HTTP authentication scheme leverages TLS keying

material exporters, its output cannot be transparently forwarded by

HTTP intermediaries. HTTP intermediaries that support this

specification have two options:

The intermediary can validate the authentication received from

the client, then inform the upstream HTTP server of the presence

of valid authentication.

The intermediary can export the Signature Input and Verification

(see Section 4.2}), and forward it to the upstream HTTP server,

then the upstream server performs the validation.

The mechanism for the intermediary to communicate this information

to the upstream HTTP server is out of scope for this document.

Note that both of these mechanisms require the upstream HTTP server

to trust the intermediary. This is usually the case because the

intermediary already needs access to the TLS certificate private key

in order to respond to requests.

9. Security Considerations

The Signature HTTP authentication scheme allows a user agent to

authenticate to an origin server while guaranteeing freshness and

without the need for the server to transmit a nonce to the user

agent. This allows the server to accept authenticated clients

without revealing that it supports or expects authentication for

some resources. It also allows authentication without the user agent

leaking the presence of authentication to observers due to clear-

text TLS Client Hello extensions.

The authentication proofs described in this document are not bound

to individual HTTP requests; if the key is used for authentication

proofs on multiple requests on the same connection, they will all be

identical. This allows for better compression when sending over the

wire, but implies that client implementations that multiplex

different security contexts over a single HTTP connection need to

ensure that those contexts cannot read each other's header fields.

Otherwise, one context would be able to replay the Authorization

header field of another. This constraint is met by modern Web

browsers. If an attacker were to compromise the browser such that it

¶

¶

*

¶

*

¶

¶

¶

¶

Authentication Scheme Name:

Reference:

Notes:

Value:

DTLS-OK:

Recommended:

Reference:

[ABNF]

[BASE64]

[EdDSA]

could access another context's memory, the attacker might also be

able to access the corresponding key, so binding authentication to

requests would not provide much benefit in practice.

Key material used for the Signature HTTP authentication scheme MUST

NOT be reused in other protocols. Doing so can undermine the

security guarantees of the authentication.

Origins offering this scheme can link requests that use the same

key. However, requests are not linkable across origins if the keys

used are specific to the individual origins using this scheme.

10. IANA Considerations

10.1. HTTP Authentication Schemes Registry

This document, if approved, requests IANA to register the following

entry in the "HTTP Authentication Schemes" Registry maintained at

<https://www.iana.org/assignments/http-authschemes>:

Signature

This document

None

10.2. TLS Keying Material Exporter Labels

This document, if approved, requests IANA to register the following

entry in the "TLS Exporter Labels" registry maintained at <https://

www.iana.org/assignments/tls-parameters#exporter-labels>:

EXPORTER-HTTP-Signature-Authentication

N

Y

This document

11. References

11.1. Normative References

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/rfc/rfc5234>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/rfc/rfc4648>.

Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital

Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/http-authschemes
https://www.iana.org/assignments/tls-parameters#exporter-labels
https://www.iana.org/assignments/tls-parameters#exporter-labels
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc5234
https://www.rfc-editor.org/rfc/rfc4648

[FOLDING]

[HTTP]

[KEY-EXPORT]

[PKCS1]

[QUIC]

[RFC2119]

[RFC7627]

[RFC8174]

[TLS]

[URI]

RFC8032, January 2017, <https://www.rfc-editor.org/rfc/

rfc8032>.

Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,

"Handling Long Lines in Content of Internet-Drafts and

RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,

<https://www.rfc-editor.org/rfc/rfc8792>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Rescorla, E., "Keying Material Exporters for Transport

Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,

March 2010, <https://www.rfc-editor.org/rfc/rfc5705>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A.

Rusch, "PKCS #1: RSA Cryptography Specifications Version

2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016,

<https://www.rfc-editor.org/rfc/rfc8017>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,

Langley, A., and M. Ray, "Transport Layer Security (TLS)

Session Hash and Extended Master Secret Extension", RFC

7627, DOI 10.17487/RFC7627, September 2015, <https://

www.rfc-editor.org/rfc/rfc7627>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

https://www.rfc-editor.org/rfc/rfc8032
https://www.rfc-editor.org/rfc/rfc8032
https://www.rfc-editor.org/rfc/rfc8792
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc5705
https://www.rfc-editor.org/rfc/rfc8017
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc7627
https://www.rfc-editor.org/rfc/rfc7627
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986

[X.690]

[ED25519]

[HOBA]

[HTTP/2]

[HTTP/3]

[MASQUE-ORIGINAL]

[QUIC-TLS]

[SEEMS-LEGIT]

ITU-T, "Information technology - ASN.1 encoding Rules:

Specification of Basic Encoding Rules (BER), Canonical

Encoding Rules (CER) and Distinguished Encoding Rules

(DER)", ISO/IEC 8824-1:2021 , February 2021.

11.2. Informative References

Josefsson, S. and J. Schaad, "Algorithm Identifiers for

Ed25519, Ed448, X25519, and X448 for Use in the Internet

X.509 Public Key Infrastructure", RFC 8410, DOI 10.17487/

RFC8410, August 2018, <https://www.rfc-editor.org/rfc/

rfc8410>.

Farrell, S., Hoffman, P., and M. Thomas, "HTTP Origin-

Bound Authentication (HOBA)", RFC 7486, DOI 10.17487/

RFC7486, March 2015, <https://www.rfc-editor.org/rfc/

rfc7486>.

Thomson, M., Ed. and C. Benfield, Ed., "HTTP/2", RFC

9113, DOI 10.17487/RFC9113, June 2022, <https://www.rfc-

editor.org/rfc/rfc9113>.

Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/

RFC9114, June 2022, <https://www.rfc-editor.org/rfc/

rfc9114>.

Schinazi, D., "The MASQUE Protocol", Work in

Progress, Internet-Draft, draft-schinazi-masque-00, 28

February 2019, <https://datatracker.ietf.org/doc/html/

draft-schinazi-masque-00>.

Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure

QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,

<https://www.rfc-editor.org/rfc/rfc9001>.

Jackson, D., Cremers, C., Cohn-Gordon, K., and R.

Sasse, "Seems Legit: Automated Analysis of Subtle Attacks

on Protocols That Use Signatures", CCS '19: Proceedings

of the 2019 ACM SIGSAC Conference on Computer and

Communications Security, pp. 2165–2180, DOI

10.1145/3319535.3339813, 2019, <https://doi.org/

10.1145/3319535.3339813>.

Acknowledgments

The authors would like to thank many members of the IETF community,

as this document is the fruit of many hallway conversations. In

particular, the authors would like to thank David Benjamin, Nick

Harper, Dennis Jackson, Ilari Liusvaara, François Michel, Lucas

https://www.rfc-editor.org/rfc/rfc8410
https://www.rfc-editor.org/rfc/rfc8410
https://www.rfc-editor.org/rfc/rfc7486
https://www.rfc-editor.org/rfc/rfc7486
https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc9114
https://datatracker.ietf.org/doc/html/draft-schinazi-masque-00
https://datatracker.ietf.org/doc/html/draft-schinazi-masque-00
https://www.rfc-editor.org/rfc/rfc9001
https://doi.org/10.1145/3319535.3339813
https://doi.org/10.1145/3319535.3339813

Pardue, Justin Richer, Ben Schwartz, Martin Thomson, and Chris A.

Wood for their reviews and contributions. The mechanism described in

this document was originally part of the first iteration of MASQUE

[MASQUE-ORIGINAL].

Authors' Addresses

David Schinazi

Google LLC

1600 Amphitheatre Parkway

Mountain View, CA 94043

United States of America

Email: dschinazi.ietf@gmail.com

David M. Oliver

Guardian Project

Email: david@guardianproject.info

URI: https://guardianproject.info

Jonathan Hoyland

Cloudflare Inc.

Email: jonathan.hoyland@gmail.com

¶

mailto:dschinazi.ietf@gmail.com
mailto:david@guardianproject.info
https://guardianproject.info
mailto:jonathan.hoyland@gmail.com

	The Signature HTTP Authentication Scheme
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions

	2. The Signature Authentication Scheme
	3. TLS Usage
	4. Computing the Authentication Proof
	4.1. Key Exporter Context
	4.2. Key Exporter Output
	4.3. Signature Computation

	5. Authentication Parameters
	5.1. The k Parameter
	5.2. The a Parameter
	5.3. The p Parameter
	5.4. The s Parameter
	5.5. The v Parameter

	6. Example
	7. Non-Probeable Server Handling
	8. Intermediary Considerations
	9. Security Considerations
	10. IANA Considerations
	10.1. HTTP Authentication Schemes Registry
	10.2. TLS Keying Material Exporter Labels

	11. References
	11.1. Normative References
	11.2. Informative References

	Acknowledgments
	Authors' Addresses

