
HTTP M. Nottingham
Internet-Draft Fastly
Updates: 7234 (if approved) June 5, 2018
Intended status: Standards Track
Expires: December 7, 2018

HTTP Representation Variants
draft-ietf-httpbis-variants-02

Abstract

 This specification introduces an alternative way to communicate a
 secondary cache key for a HTTP resource, using the HTTP "Variants"
 and "Variant-Key" response header fields. Its aim is to make HTTP
 proactive content negotiation more cache-friendly.

Note to Readers

 RFC EDITOR: please remove this section before publication

 Discussion of this draft takes place on the HTTP working group
 mailing list (ietf-http-wg@w3.org), which is archived at

https://lists.w3.org/Archives/Public/ietf-http-wg/ [1].

 Working Group information can be found at https://httpwg.github.io/
 [2]; source code and issues list for this draft can be found at

https://github.com/httpwg/http-extensions/labels/variants [3].

 There is a prototype implementation of the algorithms herein at
https://github.com/mnot/variants-toy [4].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 7, 2018.

Nottingham Expires December 7, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7234
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.github.io/
https://github.com/httpwg/http-extensions/labels/variants
https://github.com/mnot/variants-toy
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP Representation Variants June 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Notational Conventions 4

2. The "Variants" HTTP Header Field 5
2.1. Relationship to Vary 6

3. The "Variant-Key" HTTP Header Field 7
3.1. Generating a Variant-Key List 7

4. Cache Behaviour . 8
4.1. Compute Possible Keys 9
4.2. Check Vary . 10
4.3. Example of Cache Behaviour 11

5. Origin Server Behaviour 12
5.1. Examples . 12
5.1.1. Single Variant 12
5.1.2. Multiple Variants 13
5.1.3. Partial Coverage 14

6. Defining Content Negotiation Using Variants 14
7. IANA Considerations . 15
8. Security Considerations 15
9. References . 15
9.1. Normative References 16
9.2. Informative References 16
9.3. URIs . 17

Appendix A. Variants for Existing Content Negotiation Mechanisms 17
A.1. Accept . 17
A.2. Accept-Encoding . 18
A.3. Accept-Language . 19

 Acknowledgements . 19
 Author's Address . 20

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Nottingham Expires December 7, 2018 [Page 2]

Internet-Draft HTTP Representation Variants June 2018

1. Introduction

 HTTP proactive content negotiation ([RFC7231], Section 3.4.1) is
 seeing renewed interest, both for existing request headers like
 Content-Language and for newer ones (for example, see
 [I-D.ietf-httpbis-client-hints]).

 Successfully reusing negotiated responses that have been stored in a
 HTTP cache requires establishment of a secondary cache key
 ([RFC7234], Section 4.1). Currently, the Vary header ([RFC7231],
 Section 7.1.4) does this by nominating a set of request headers.

 HTTP's caching model allows a certain amount of latitude in
 normalising those request header field values, so as to increase the
 chances of a cache hit while still respecting the semantics of that
 header. However, normalisation is not formally defined, leading to
 divergence in cache behaviours.

 Even when the headers' semantics are understood, a cache does not
 know enough about the possible alternative representations available
 on the origin server to make an appropriate decision.

 For example, if a cache has stored the following request/response
 pair:

 GET /foo HTTP/1.1
 Host: www.example.com
 Accept-Language: en;q=0.5, fr;q=1.0

 HTTP/1.1 200 OK
 Content-Type: text/html
 Content-Language: en
 Vary: Accept-Language
 Transfer-Encoding: chunked

 [French content]

 Provided that the cache has full knowledge of the semantics of
 Accept-Language and Content-Language, it will know that an English
 representation is available and might be able to infer that a French
 representation is not available. But, it does not know (for example)
 whether a Japanese representation is available without making another
 request, incurring possibly unnecessary latency.

 This specification introduces the HTTP Variants response header field
 (Section 2) to enumerate the available variant representations on the
 origin server, to provide clients and caches with enough information

https://datatracker.ietf.org/doc/html/rfc7231#section-3.4.1
https://datatracker.ietf.org/doc/html/rfc7234#section-4.1
https://datatracker.ietf.org/doc/html/rfc7231#section-7.1.4
https://datatracker.ietf.org/doc/html/rfc7231#section-7.1.4

Nottingham Expires December 7, 2018 [Page 3]

Internet-Draft HTTP Representation Variants June 2018

 to properly satisfy requests - either by selecting a response from
 cache or by forwarding the request towards the origin - by following
 the algorithm defined in Section 4.

 Its companion Variant-Key response header field (Section 3) indicates
 the applicable key(s) that the response is associated with, so that
 it can be reliably reused in the future. When this specification is
 in use, the example above might become:

 GET /foo HTTP/1.1
 Host: www.example.com
 Accept-Language: en;q=0.5, fr;q=1.0

 HTTP/1.1 200 OK
 Content-Type: text/html
 Content-Language: en
 Vary: Accept-Language
 Variants: Accept-Language;de;en;jp
 Variant-Key: en
 Transfer-Encoding: chunked

 [French content]

 Proactive content negotiation mechanisms that wish to be used with
 Variants need to define how to do so explicitly; see Section 6. As a
 result, it is best suited for negotiation over request headers that
 are well-understood.

 Variants also works best when content negotiation takes place over a
 constrained set of representations; since each variant needs to be
 listed in the header field, it is ill-suited for open-ended sets of
 representations.

 Variants can be seen as a simpler version of the Alternates header
 field introduced by [RFC2295]; unlike that mechanism, Variants does
 not require specification of each combination of attributes, and does
 not assume that each combination has a unique URL.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

https://datatracker.ietf.org/doc/html/rfc2295
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Nottingham Expires December 7, 2018 [Page 4]

Internet-Draft HTTP Representation Variants June 2018

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234] with a list extension, defined in Section 7 of
 [RFC7230], that allows for compact definition of comma-separated
 lists using a '#' operator (similar to how the '*' operator indicates
 repetition).

 Additionally, it uses the "field-name", "OWS" and "token" rules from
 [RFC7230], and "type", "subtype", "content-coding" and "language-
 range" from [RFC7231].

2. The "Variants" HTTP Header Field

 The Variants HTTP response header field indicates what
 representations are available for a given resource at the time that
 the response is produced, by enumerating the request header fields
 that it varies on, along with the values that are available for each.

 Variants = 1#variant-item
 variant-item = field-name *(OWS ";" OWS available-value)
 available-value = token
 / "/" / "?" / "\" / "[" / "]"
 / ":" / "@" / "(" / ")"

 Each "variant-item" indicates a request header field that carries a
 value that clients might proactively negotiate for; each parameter on
 it indicates a value for which there is an available representation
 on the origin server.

 So, given this example header field:

 Variants: Accept-Encoding;gzip

 a recipient can infer that the only content-coding available for that
 resource is "gzip" (along with the "identity" non-encoding; see

Appendix A.2).

 Given:

 Variants: accept-encoding

 a recipient can infer that no content-codings (beyond identity) are
 supported. Note that as always, field-name is case-insensitive.

 A more complex example:

 Variants: Accept-Encoding;gzip;br, Accept-Language;en ;fr

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230#section-7
https://datatracker.ietf.org/doc/html/rfc7230#section-7
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231

Nottingham Expires December 7, 2018 [Page 5]

Internet-Draft HTTP Representation Variants June 2018

 Here, recipients can infer that two content-codings in addition to
 "identity" are available, as well as two content languages. Note
 that, as with all HTTP header fields that use the "#" list rule (see

[RFC7230], Section 7), they might occur in the same header field or
 separately, like this:

 Variants: Accept-Encoding;gzip;brotli
 Variants: Accept-Language;en ;fr

 The ordering of available-values after the field-name is significant,
 as it might be used by the header's algorithm for selecting a
 response (in this example, the first language is the default; see

Appendix A.3).

 The ordering of the request header fields themselves indicates
 descending application of preferences; in the example above, a cache
 that has all of the possible permutations stored will honour the
 client's preferences for Accept-Encoding before honouring Accept-
 Language.

 Origin servers SHOULD consistently send Variant header fields on all
 cacheable (as per [RFC7234], Section 3) responses for a resource,
 since its absence will trigger caches to fall back to Vary
 processing.

 Likewise, servers MUST send the Variant-Key response header field
 when sending Variants, since its absence means that the stored
 response will not be reused when this specification is implemented.

2.1. Relationship to Vary

 This specification updates [RFC7234] to allow caches that implement
 it to ignore request header fields in the Vary header for the
 purposes of secondary cache key calculation ([RFC7234], Section 4.1)
 when their semantics are implemented as per this specification and
 their corresponding response header field is listed in Variants.

 If any member of the Vary header does not have a corresponding
 variant that is understood by the implementation, it is still subject
 to the requirements there.

 See Section 5.1.3 for an example.

 In practice, implementation of Vary varies considerably. As a
 result, cache efficiency might drop considerably when Variants does
 not contain all of the headers referenced by Vary, because some
 implementations might choose to disable Variants processing when this
 is the case.

https://datatracker.ietf.org/doc/html/rfc7230#section-7
https://datatracker.ietf.org/doc/html/rfc7234#section-3
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7234#section-4.1

Nottingham Expires December 7, 2018 [Page 6]

Internet-Draft HTTP Representation Variants June 2018

3. The "Variant-Key" HTTP Header Field

 The Variant-Key HTTP response header field is used to indicate the
 values from the Variants header field that identify the
 representation it occurs within.

 Variant-Key = 1#available-values
 available-values = available-value *(";" available-value)

 Each member of the list contains the selected available-value(s), in
 the same order as the variants listed in the Variants header field.

 Therefore, Variant-Key MUST be the same length (in comma-separated
 members) as Variants, and each member MUST correspond in position to
 its companion in Variants.

 For example:

 Variants: Accept-Encoding;gzip;br, Accept-Language;en ;fr
 Variant-Key: gzip, fr

 This header pair indicates that the representation has a "gzip"
 content-coding and "fr" content-language.

 A more complex example involves listing multiple available-values in
 a list member, to indicate that the response can be used to satisfy
 requests with any of those values. For example:

 Variants: Content-Encoding;gzip;br, Content-Language;en ;fr
 Variant-Key: gzip;identity, fr

 indicates that this response can be used for requests whose Content-
 Encoding algorithm selects "gzip" or "identity", as long as the
 Content-Language algorithm selects "fr" - perhaps because there is no
 gzip-compressed French representation.

 This highlights an important aspect of Variant-Key; it is only used
 to indicate what request attributes are associated with the response
 containing it; this is different from headers like Content-Encoding,
 which indicate attributes of the response itself.

3.1. Generating a Variant-Key List

 This algorithm generates a list of normalised strings from Variant-
 Key, suitable for comparison with values generated by Section 4.

Nottingham Expires December 7, 2018 [Page 7]

Internet-Draft HTTP Representation Variants June 2018

 Given stored-headers (a set of headers from a stored response), a
 normalised list of variant-keys for that message can be generated by
 following this algorithm:

 1. Let variant-keys be an empty list.

 2. Let variant-key-header be a string, the result of selecting all
 field-values of stored-headers whose field-name is "Variant-Key"
 and joining them with a comma (",").

 3. Let value-list be the result of splitting variant-key-header on
 commas (",").

 4. For each value in value-list:

 1. Remove all whitespace from value.

 2. Let items be the result of splitting value on ";".

 3. append items to variant-keys.

 5. Return the result of running Compute Possible Keys (Section 4.1)
 on variant-keys, an empty string and an empty list.

4. Cache Behaviour

 Caches that implement the Variants header field and the relevant
 semantics of the field-name it contains can use that knowledge to
 either select an appropriate stored representation, or forward the
 request if no appropriate representation is stored.

 They do so by running this algorithm (or its functional equivalent)
 upon receiving a request:

 Given incoming-request (a mapping of field-names to lists of field
 values), and stored-responses (a list of stored responses suitable
 for reuse as defined in Section 4 of [RFC7234], excepting the
 requirement to calculate a secondary cache key):

 1. If stored-responses is empty, return an empty list.

 2. Order stored-responses by the "Date" header field, most recent to
 least recent.

 3. Let sorted-variants be an empty list.

 4. If the freshest member of stored-responses (as per [RFC7234],
 Section 4.2) has one or more "Variants" header field(s):

https://datatracker.ietf.org/doc/html/rfc7234#section-4
https://datatracker.ietf.org/doc/html/rfc7234#section-4.2
https://datatracker.ietf.org/doc/html/rfc7234#section-4.2

Nottingham Expires December 7, 2018 [Page 8]

Internet-Draft HTTP Representation Variants June 2018

 1. Select one member of stored-responses and let variants-header
 be its "Variants" header field-value(s). This SHOULD be the
 most recent response, but MAY be from an older one as long as
 it is still fresh.

 2. For each variant in variants-header, parsed according to the
 ABNF:

 1. If variant's field-name corresponds to the request header
 field identified by a content negotiation mechanism that
 the implementation supports:

 1. Let request-value be the field-value(s) associated
 with field-name in incoming-request.

 2. Let available-values be a list containing all
 available-value for variant.

 3. Let sorted-values be the result of running the
 algorithm defined by the content negotiation
 mechanism with request-value and available-values.

 4. Append sorted-values to sorted-variants.

 At this point, sorted-variants will be a list of lists, each
 member of the top-level list corresponding to a variant-item
 in the Variants header field-value, containing zero or more
 items indicating available-values that are acceptable to the
 client, in order of preference, greatest to least.

 5. Return result of running Compute Possible Keys (Section 4.1) on
 sorted-variants, an empty string and an empty list.

 This returns a list of strings suitable for comparing to normalised
 Variant-Keys (Section 3.1) that represent possible responses on the
 server that can be used to satisfy the request, in preference order,
 provided that their secondary cache key (after removing the headers
 covered by Variants) matches. Section 4.2 illustrates one way to do
 this.

4.1. Compute Possible Keys

 This algorithm computes the cross-product of the elements of key-
 facets.

 Given key-facets (a list of lists), and key-stub (a string
 representing a partial key), and possible-keys (a list):

Nottingham Expires December 7, 2018 [Page 9]

Internet-Draft HTTP Representation Variants June 2018

 1. Let values be the first member of key-facets.

 2. For each value in values:

 1. If key-stub is an empty string, let this-key be a copy of
 value.

 2. Otherwise:

 1. Let this-key be a copy of key-stub.

 2. Append a comma (",") to this-key.

 3. Append value to this-key.

 3. Let remaining-facets be a copy of all of the members of key-
 facets except the first.

 4. If remaining-facets is empty, append this-key to possible-
 keys.

 5. Otherwise, run Compute Possible Keys on remaining-facets,
 this-key and possible-keys.

 3. Return possible-keys.

4.2. Check Vary

 This algorithm is an example of how an implementation can meet the
 requirement to apply the members of the Vary header field that are
 not covered by Variants.

 Given stored-response (a stored response):

 1. Let filtered-vary be the field-value(s) of stored-response's
 "Vary" header field.

 2. Let processed-variants be a list containing the request header
 fields that identify the content negotiation mechanisms supported
 by the implementation.

 3. Remove any member of filtered-vary that is a case-insensitive
 match for a member of processed-variants.

 4. If the secondary cache key (as calculated in [RFC7234],
 Section 4.1) for stored_response matches incoming-request, using
 filtered-vary for the value of the "Vary" response header, return
 True.

https://datatracker.ietf.org/doc/html/rfc7234#section-4.1
https://datatracker.ietf.org/doc/html/rfc7234#section-4.1

Nottingham Expires December 7, 2018 [Page 10]

Internet-Draft HTTP Representation Variants June 2018

 5. Return False.

 This returns a Boolean that indicates whether stored-response can be
 used to satisfy the request.

 Note that implementation of the Vary header field varies in practice,
 and the algorithm above illustrates only one way to apply it. It is
 equally viable to forward the request if there is a request header
 listed in Vary but not Variants.

4.3. Example of Cache Behaviour

 For example, if the selected variants-header was:

 Variants: Accept-Language;en;fr,de, Accept-Encoding;gzip;br

 and the request contained the headers:

 Accept-Language: fr;q=1.0, en;q=0.1
 Accept-Encoding: gzip

 Then the sorted-variants would be:

 [
 ["fr", "en"] // prefers French, will accept English
 ["gzip", "identity"] // prefers gzip encoding, will accept identity
]

 Which means that the sorted-keys would be:

 [
 'fr gzip',
 'fr identity',
 'en gzip',
 'en identity'
]

 Representing a first preference of a French, gzip'd response. Thus,
 if a cache has a response with:

 Variant-Key: fr, gzip

 it could be used to satisfy the first preference. If not, responses
 corresponding to the other keys could be returned, or the request
 could be forwarded towards the origin.

Nottingham Expires December 7, 2018 [Page 11]

Internet-Draft HTTP Representation Variants June 2018

5. Origin Server Behaviour

 Origin servers that wish to take advantage of Variants will need to
 generate both the Variants (Section 2) and Variant-Key (Section 3)
 header fields in all cacheable responses for a given resource. If
 either is omitted and the response is stored, it will have the effect
 of disabling caching for that resource until it is no longer stored
 (e.g., it expires, or is evicted).

 Likewise, origin servers will need to assure that the members of both
 header field values are in the same order and have the same length,
 since discrepancies will cause caches to avoid using the responses
 they occur in.

 The value of the Variants header should be relatively stable for a
 given resource over time; when it changes, it can have the effect of
 invalidating previously stored responses.

 As per Section 2.1, the Vary header is required to be set
 appropriately when Variants is in use, so that caches that do not
 implement this specification still operate correctly.

 Origin servers are advised to carefully consider which content
 negotiation mechanisms to enumerate in Variants; if a mechanism is
 not supported by a receiving cache, it will "downgrade" to Vary
 handling, which can negatively impact cache efficiency.

5.1. Examples

 The operation of Variants is illustrated by the examples below.

5.1.1. Single Variant

 Given a request/response pair:

 GET /clancy HTTP/1.1
 Host: www.example.com
 Accept-Language: en;q=1.0, fr;q=0.5

 HTTP/1.1 200 OK
 Content-Type: image/gif
 Content-Language: en
 Cache-Control: max-age=3600
 Variants: Accept-Language;en;de
 Variant-Key: en
 Vary: Accept-Language
 Transfer-Encoding: chunked

Nottingham Expires December 7, 2018 [Page 12]

Internet-Draft HTTP Representation Variants June 2018

 Upon receipt of this response, the cache knows that two
 representations of this resource are available, one with a Content-
 Language of "en", and another whose Content-Language is "de".

 Subsequent requests (while this response is fresh) will cause the
 cache to either reuse this response or forward the request, depending
 on what the selection algorithm determines.

 So, if a request with "en" in Accept-Language is received and its
 q-value indicates that it is acceptable, the stored response is used.
 A request that indicates that "de" is acceptable will be forwarded to
 the origin, thereby populating the cache. A cache receiving a
 request that indicates both languages are acceptable will use the
 q-value to make a determination of what response to return.

 A cache receiving a request that does not list either language as
 acceptable (or does not contain an Accept-Language at all) will
 return the "en" representation (possibly fetching it from the
 origin), since it is listed first in the Variants list.

 Note that Accept-Language is listed in Vary, to assure backwards-
 compatibility with caches that do not support Variants.

5.1.2. Multiple Variants

 A more complicated request/response pair:

 GET /murray HTTP/1.1
 Host: www.example.net
 Accept-Language: en;q=1.0, fr;q=0.5
 Accept-Encoding: gzip, br

 HTTP/1.1 200 OK
 Content-Type: image/gif
 Content-Language: en
 Content-Encoding: br
 Variants: Accept-Language;en;jp;de
 Variants: Accept-Encoding;br;gzip
 Variant-Key: en, br
 Vary: Accept-Language, Accept-Encoding
 Transfer-Encoding: chunked

 Here, the cache knows that there are two axes that the response
 varies upon; Content-Language and Content-Encoding. Thus, there are
 a total of nine possible representations for the resource (including
 the identity encoding), and the cache needs to consider the selection
 algorithms for both axes.

Nottingham Expires December 7, 2018 [Page 13]

Internet-Draft HTTP Representation Variants June 2018

 Upon a subsequent request, if both selection algorithms return a
 stored representation, it can be served from cache; otherwise, the
 request will need to be forwarded to origin.

5.1.3. Partial Coverage

 Now, consider the previous example, but where only one of the Vary'd
 axes (Content-Encoding) is listed in Variants:

 GET /bar HTTP/1.1
 Host: www.example.net
 Accept-Language: en;q=1.0, fr;q=0.5
 Accept-Encoding: gzip, br

 HTTP/1.1 200 OK
 Content-Type: image/gif
 Content-Language: en
 Content-Encoding: br
 Variants: Accept-Encoding;br;gzip
 Variant-Key: br
 Vary: Accept-Language, Accept-Encoding
 Transfer-Encoding: chunked

 Here, the cache will need to calculate a secondary cache key as per
[RFC7234], Section 4.1 - but considering only Accept-Language to be

 in its field-value - and then continue processing Variants for the
 set of stored responses that the algorithm described there selects.

6. Defining Content Negotiation Using Variants

 To be usable with Variants, proactive content negotiation mechanisms
 need to be specified to take advantage of it. Specifically, they:

 o MUST define a request header field that advertises the clients
 preferences or capabilities, whose field-name SHOULD begin with
 "Accept-".

 o MUST define the syntax of an available-value that will occur in
 Variants and Variant-Key.

 o MUST define an algorithm for selecting a result. It MUST return a
 list of available-values that are suitable for the request, in
 order of preference, given the value of the request header
 nominated above and an available-values list from the Variants
 header. If the result is an empty list, it implies that the cache
 cannot satisfy the request.

https://datatracker.ietf.org/doc/html/rfc7234#section-4.1

Nottingham Expires December 7, 2018 [Page 14]

Internet-Draft HTTP Representation Variants June 2018

Appendix A fulfils these requirements for some existing proactive
 content negotiation mechanisms in HTTP.

7. IANA Considerations

 This specification registers two values in the Permanent Message
 Header Field Names registry established by [RFC3864]:

 o Header field name: Variants

 o Applicable protocol: http

 o Status: standard

 o Author/Change Controller: IETF

 o Specification document(s): [this document]

 o Related information:

 o Header field name: Variant-Key

 o Applicable protocol: http

 o Status: standard

 o Author/Change Controller: IETF

 o Specification document(s): [this document]

 o Related information:

8. Security Considerations

 If the number or advertised characteristics of the representations
 available for a resource are considered sensitive, the Variants
 header by its nature will leak them.

 Note that the Variants header is not a commitment to make
 representations of a certain nature available; the runtime behaviour
 of the server always overrides hints like Variants.

9. References

https://datatracker.ietf.org/doc/html/rfc3864

Nottingham Expires December 7, 2018 [Page 15]

Internet-Draft HTTP Representation Variants June 2018

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4647] Phillips, A. and M. Davis, "Matching of Language Tags",
BCP 47, RFC 4647, DOI 10.17487/RFC4647, September 2006,

 <https://www.rfc-editor.org/info/rfc4647>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <https://www.rfc-editor.org/info/rfc7234>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [I-D.ietf-httpbis-client-hints]
 Grigorik, I., "HTTP Client Hints", draft-ietf-httpbis-

client-hints-05 (work in progress), January 2018.

 [RFC2295] Holtman, K. and A. Mutz, "Transparent Content Negotiation
 in HTTP", RFC 2295, DOI 10.17487/RFC2295, March 1998,
 <https://www.rfc-editor.org/info/rfc2295>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc4647
https://www.rfc-editor.org/info/rfc4647
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7234
https://www.rfc-editor.org/info/rfc7234
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-client-hints-05
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-client-hints-05
https://datatracker.ietf.org/doc/html/rfc2295
https://www.rfc-editor.org/info/rfc2295

Nottingham Expires December 7, 2018 [Page 16]

Internet-Draft HTTP Representation Variants June 2018

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 DOI 10.17487/RFC3864, September 2004,
 <https://www.rfc-editor.org/info/rfc3864>.

9.3. URIs

 [1] https://lists.w3.org/Archives/Public/ietf-http-wg/

 [2] https://httpwg.github.io/

 [3] https://github.com/httpwg/http-extensions/labels/variants

 [4] https://github.com/mnot/variants-toy

Appendix A. Variants for Existing Content Negotiation Mechanisms

 This appendix defines the required information to use existing
 proactive content negotiation mechanisms (as defined in [RFC7231],
 Section 5.3) with the Variants header field.

A.1. Accept

 This section defines variant handling for the Accept request header
 (section 5.3.2 of [RFC7231]).

 The syntax of an available-value for Accept is:

 accept-available-value = type "/" subtype

 To perform content negotiation for Accept given a request-value and
 available-values:

 1. Let preferred-available be an empty list.

 2. Let preferred-types be a list of the types in the request-value,
 ordered by their weight, highest to lowest, as per Section 5.3.2
 of [RFC7231] (omitting any coding with a weight of 0). If
 "Accept" is not present or empty, preferred-types will be empty.
 If a type lacks an explicit weight, an implementation MAY assign
 one.

 3. If the first member of available-values is not a member of
 preferred-types, append it to preferred-types (thus making it the
 default).

 4. For each preferred-type in preferred-types:

https://datatracker.ietf.org/doc/html/bcp90
https://datatracker.ietf.org/doc/html/rfc3864
https://www.rfc-editor.org/info/rfc3864
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://httpwg.github.io/
https://github.com/httpwg/http-extensions/labels/variants
https://github.com/mnot/variants-toy
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2

Nottingham Expires December 7, 2018 [Page 17]

Internet-Draft HTTP Representation Variants June 2018

 1. If any member of available-values matches preferred-type,
 using the media-range matching mechanism specified in

Section 5.3.2 of [RFC7231] (which is case-insensitive),
 append those members of available-values to preferred-
 available (preserving the precedence order implied by the
 media ranges' specificity).

 5. Return preferred-available.

 Note that this algorithm explicitly ignores extension parameters on
 media types (e.g., "charset").

A.2. Accept-Encoding

 This section defines variant handling for the Accept-Encoding request
 header (section 5.3.4 of [RFC7231]).

 The syntax of an available-value for Accept-Encoding is:

 accept-encoding-available-value = content-coding / "identity"

 To perform content negotiation for Accept-Encoding given a request-
 value and available-values:

 1. Let preferred-available be an empty list.

 2. Let preferred-codings be a list of the codings in the request-
 value, ordered by their weight, highest to lowest, as per

Section 5.3.1 of [RFC7231] (omitting any coding with a weight of
 0). If "Accept-Encoding" is not present or empty, preferred-
 codings will be empty. If a coding lacks an explicit weight, an
 implementation MAY assign one.

 3. If "identity" is not a member of preferred-codings, append
 "identity".

 4. Append "identity" to available-values.

 5. For each preferred-coding in preferred-codings:

 1. If there is a case-insensitive, character-for-character match
 for preferred-coding in available-values, append that member
 of available-values to preferred-available.

 6. Return preferred-available.

https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.4
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.1

Nottingham Expires December 7, 2018 [Page 18]

Internet-Draft HTTP Representation Variants June 2018

 Note that the unencoded variant needs to have a Variant-Key header
 field with a value of "identity" (as defined in Section 5.3.4 of
 [RFC7231]).

A.3. Accept-Language

 This section defines variant handling for the Accept-Language request
 header (section 5.3.5 of [RFC7231]).

 The syntax of an available-value for Accept-Language is:

 accept-encoding-available-value = language-range

 To perform content negotiation for Accept-Language given a request-
 value and available-values:

 1. Let preferred-available be an empty list.

 2. Let preferred-langs be a list of the language-ranges in the
 request-value, ordered by their weight, highest to lowest, as per

Section 5.3.1 of [RFC7231] (omitting any language-range with a
 weight of 0). If a language-range lacks a weight, an
 implementation MAY assign one.

 3. If the first member of available-values is not a member of
 preferred-langs, append it to preferred-langs (thus making it the
 default).

 4. For each preferred-lang in preferred-langs:

 1. If any member of available-values matches preferred-lang,
 using either the Basic or Extended Filtering scheme defined
 in Section 3.3 of [RFC4647], append those members of
 available-values to preferred-available (preserving their
 order).

 5. Return preferred-available.

Acknowledgements

 This protocol is conceptually similar to, but simpler than,
 Transparent Content Negotiation [RFC2295]. Thanks to its authors for
 their inspiration.

 It is also a generalisation of a Fastly VCL feature designed by
 Rogier 'DocWilco' Mulhuijzen.

https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.4
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.4
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.5
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.1
https://datatracker.ietf.org/doc/html/rfc4647#section-3.3
https://datatracker.ietf.org/doc/html/rfc2295

Nottingham Expires December 7, 2018 [Page 19]

Internet-Draft HTTP Representation Variants June 2018

 Thanks to Hooman Beheshti, Ilya Grigorik and Jeffrey Yasskin for
 their review and input.

Author's Address

 Mark Nottingham
 Fastly

 Email: mnot@mnot.net
 URI: https://www.mnot.net/

Nottingham Expires December 7, 2018 [Page 20]

https://www.mnot.net/

