
HyBi Working Group T. Yoshino
Internet-Draft Google, Inc.
Intended status: Standards Track October 19, 2012
Expires: April 22, 2013

WebSocket Per-message Compression
draft-ietf-hybi-permessage-compression-04

Abstract

 This specification defines a WebSocket extension that adds
 compression functionality to the WebSocket Protocol. It compresses
 the payload of non-control WebSocket messages using specified
 compression algorithm. One reserved bit RSV1 in the WebSocket frame
 header is allocated to control application of compression for each
 message. This specification provides one compression method
 available for the extension using DEFLATE.

 Please send feedback to the hybi@ietf.org mailing list.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 22, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Yoshino Expires April 22, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft WebSocket Per-message Compression October 2012

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conformance Requirements 4
3. Extension Negotiation . 5
3.1. Negotiation Example 6

4. Framing . 7
4.1. Sending . 7
4.2. Receiving . 7

5. DEFLATE method . 8
5.1. Method Parameters . 8
5.1.1. Disallow compression context takeover 8
5.1.2. Limit maximum LZ77 sliding window size 9
5.1.3. Example . 9

5.2. Application Data Transformation 10
5.2.1. Compression . 10
5.2.2. Decompression . 11
5.2.3. Examples . 12

5.3. Intermediaries . 14
5.4. Implementation Notes 15

6. Security Considerations 16
7. IANA Considerations . 17

 7.1. Registration of the "permessage-compress" WebSocket
 Extension Name . 17
 7.2. Registration of the "Per-message Compressed" WebSocket
 Framing Header Bit . 17

7.3. WebSocket Per-message Compression Method Name Registry . . 18
8. Acknowledgements . 19
9. References . 20
9.1. Normative References 20
9.2. Informative References 20

 Author's Address . 21

Yoshino Expires April 22, 2013 [Page 2]

Internet-Draft WebSocket Per-message Compression October 2012

1. Introduction

 This section is non-normative.

 As well as other communication protocols, the WebSocket Protocol
 [RFC6455] can benefit from compression technology. This
 specification defines a WebSocket extension that applies a
 compression algorithm to octets exchanged over the WebSocket Protocol
 using its extension framework. This extension negotiates what
 compression method to use on opening handshake, and then compresses
 the octets in non-control messages using the method. We can apply
 this extension to various compression algorithms by specifying how to
 negotiate parameters and transform payload. A client may offer
 multiple compression methods on opening handshake, and then the
 server chooses one from them. This extension uses the RSV1 bit of
 the WebSocket frame header to indicate whether the message is
 compressed or not, so that we can choose to skip messages with
 incompressible contents without applying extra compression.

 This specification provides one specific compression method "deflate"
 which is based on DEFLATE [RFC1951] for this extension. We chose
 DEFLATE since it's widely available as library on various platforms
 and the overhead it adds for each chunk is small. To align the end
 of compressed data to octet boundary, this method uses the algorithm
 described in the Section 2.1 of the PPP Deflate Protocol [RFC1979].
 Endpoints can take over the LZ77 sliding window [LZ77] used to build
 previous messages to get better compression ratio. For resource-
 limited devices, method parameters to limit the usage of memory for
 compression context are provided.

 The simplest "Sec-WebSocket-Extensions" header in the client's
 opening handshake to request DEFLATE based per-message compression is
 the following:

 Sec-WebSocket-Extensions: permessage-compress; method=deflate

 The simplest header from the server to accept this extension is the
 same.

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1979

Yoshino Expires April 22, 2013 [Page 3]

Internet-Draft WebSocket Per-message Compression October 2012

2. Conformance Requirements

 Everything in this specification except for sections explicitly
 marked non-normative is normative.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Yoshino Expires April 22, 2013 [Page 4]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft WebSocket Per-message Compression October 2012

3. Extension Negotiation

 The registered extension token for this extension is
 "permessage-compress".

 To request use of the Per-message Compression Extension, a client
 MUST include an element with the "permessage-compress" extension
 token as its extension identifier in the "Sec-WebSocket-Extensions"
 header in its opening handshake. The element MUST contain exactly
 one extension parameter named "method". The value of the "method"
 extension parameter is a list of compression method descriptions,
 ordered by preference. Each compression method description has a
 method name and optional method parameters. The grammar of the list
 is "requested-method-list" defined in the following ABNFs.

 requested-method-list = 1#method-desc
 method-desc = method-name *(";" method-param)
 method-name = token
 method-param = token ["=" (token | quoted-string)]

 The list MAY contain multiple method descriptions with the same
 method name.

 To accept use of the Per-message Compression Extension, a server MUST
 choose one compression method description to accept from ones listed
 by the client, and include an element with the "permessage-compress"
 extension token in the "Sec-WebSocket-Extensions" header in its
 opening handshake. The chosen description is called "accepted
 request". The element in the server's "Sec-WebSocket-Extensions"
 MUST contain exactly one extension parameter named "method". The
 value of the "method" extension parameter MUST be a compression
 method description. This description is called "method agreement".
 The method name in the "method agreement" MUST be one of the accepted
 request. The "method agreement" MUST be derived from the "accepted
 request" and the server's capability. If the server doesn't support
 any of the descriptions listed by the client, the server MUST reject
 use of the Per-message Compression Extension. Its grammar is
 "method-agreement" defined in the following ABNF.

 method-agreement = method-desc

 The value of the "method" parameter MUST be quoted by using
 "quoted-string" syntax if it doesn't conform to token syntax.

 If a client doesn't support the method and its configuration
 specified by the "method agreement", the client MUST _Fail the
 WebSocket Connection_. Otherwise, both endpoints MUST use the
 algorithm described in Section 4 to exchange messages.

Yoshino Expires April 22, 2013 [Page 5]

Internet-Draft WebSocket Per-message Compression October 2012

3.1. Negotiation Example

 This section is non-normative.

 These are "Sec-WebSocket-Extensions" header value examples that
 negotiate the Per-message Compression Extension.

 o Request foo method. Since foo matches token syntax, it doesn't
 need to be quoted.

 permessage-compress; method=foo

 o Request foo method with a parameter x with 10 as its value. Since
 the method parameter value contains a semicolon, it doesn't match
 token syntax. Quotation is needed.

 permessage-compress; method="foo; x=10"

 o Request foo method and bar method. Since the method parameter
 value contains a comma, it doesn't match token syntax. Quotation
 is needed.

 permessage-compress; method="foo, bar"

 o Request foo method with a feature x but also allowing fallback to
 one without the feature.

 permessage-compress; method="foo; use_x, foo"

 o Request foo method with parameter x with "Hello World" (quotation
 for clarification) as its value and bar method. Since "Hello
 World" contains a space, it needs to be quoted. Since quoted
 "Hello World" contains double quotations and a space, it needs to
 be quoted again.

 permessage-compress; method="foo; x=\"Hello World\", bar"

Yoshino Expires April 22, 2013 [Page 6]

Internet-Draft WebSocket Per-message Compression October 2012

4. Framing

 This section describes how to apply the negotiated compression method
 to the contents of WebSocket messages.

 This extension allocates the RSV1 bit of the WebSocket header and
 names it the "Per-message Compressed" bit. Any extension requiring
 the use of the RSV1 bit is incompatible with this extension. This
 bit MAY be set only on the first fragment of a message. This bit
 indicates whether the compression method is applied to the message or
 not. Messages with the "Per-message Compressed" bit set (on its
 first fragment) are called "compressed messages". They have
 compressed data in their payload. Messages with the bit unset are
 called "uncompressed messages". They have uncompressed data in their
 payload.

 This extension MUST NOT be used after any extension for which frame
 boundary needs to be preserved. This extension MUST NOT be used
 after any extension that uses "Extension data" field or any of the
 reserved bits on the WebSocket header as per-frame attribute.

 This extension operates only on data frames.

4.1. Sending

 To send a compressed message, an endpoint MUST use the following
 algorithm.

 1. Compress the payload of the message using the compression method.

 2. Build frame(s) for the message by putting the resulting octets
 instead of the original octets.

 3. Set the "Per-message Compressed" bit of the first fragment to 1.

 To send an uncompressed message, an endpoint MUST set the
 "Per-message Compressed" bit of the first fragment of the message to
 0. The payload of the message MUST be sent as-is without applying
 the compression method.

4.2. Receiving

 To receive a compressed message, an endpoint MUST decompress its
 payload.

 An endpoint MUST receive an uncompressed message as-is without
 decompression.

Yoshino Expires April 22, 2013 [Page 7]

Internet-Draft WebSocket Per-message Compression October 2012

5. DEFLATE method

 This section defines a method named "deflate" for this extension that
 compresses the payload of messages using DEFLATE [RFC1951] and byte
 boundary alignment method introduced in [RFC1979].

5.1. Method Parameters

 The following 4 method parameters are defined for "deflate" method in
 the following subsections.

 o "s2c_no_context_takeover"

 o "c2s_no_context_takeover"

 o "s2c_max_window_bits"

 o "c2s_max_window_bits"

 A server MUST ignore "deflate" method descriptions that:

 o have any method parameter unknown to the server

 o have any method parameter with an invalid value

 o is not supported by the server

 A client MUST _Fail the WebSocket Connection_ if the "method
 agreement":

 o has any method parameter unknown to the client

 o has any method parameter with an invalid value

 o is not supported by the client

5.1.1. Disallow compression context takeover

 A client MAY attach the "s2c_no_context_takeover" method parameter to
 disallow the server to take over the LZ77 sliding window used to
 build previous messages. Servers SHOULD be able to accept the
 "s2c_no_context_takeover" method parameter. If the "accepted
 request" has this method parameter, the server:

 o MUST reset its LZ77 sliding window for sending to empty for each
 message

https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1979

Yoshino Expires April 22, 2013 [Page 8]

Internet-Draft WebSocket Per-message Compression October 2012

 o MUST attach this method parameter to its "method agreement"

 A server MAY attach the "c2s_no_context_takeover" method parameter to
 disallow the client to take over the LZ77 sliding window used to
 build previous messages. Clients SHOULD be able to accept the
 "c2s_no_context_takeover" method parameter. A client that received
 this parameter MUST reset its LZ77 sliding window for sending to
 empty for each message.

 These parameters have no value.

5.1.2. Limit maximum LZ77 sliding window size

 A client MAY attach the "s2c_max_window_bits" method parameter to
 limit the LZ77 sliding window size that the server uses to build
 messages. This parameter MUST have a decimal integer value in the
 range between 8 to 15 indicating the base-2 logarithm of the LZ77
 sliding window size. The ABNF [RFC5234] for the value of this
 parameter is 1*DIGIT. Servers MAY be able to accept the
 "s2c_max_window_bits" method parameter. If the "accepted request"
 has this method parameter, the server:

 o MUST attach this method parameter with the same value as one of
 the "accepted request" to its "method agreement"

 o MUST NOT use LZ77 sliding window size greater than the size
 specified by this parameter to build messages

 A client MAY attach the "c2s_max_window_bits" method parameter if the
 client can adjust LZ77 sliding window size based on the
 "c2s_max_window_bits" sent by the server. This parameter has no
 value.

 If the "accepted request" has the "c2s_max_window_bits" method
 parameter, the server MAY attach the "c2s_max_window_bits" method
 parameter to limit the LZ77 sliding window size that the client uses
 to build messages. Otherwise, the server MUST NOT attach the
 parameter. This parameter sent by the server MUST have a decimal
 integer value in the range between 8 to 15 indicating the base-2
 logarithm of the LZ77 sliding window size. The ABNF for the value of
 this parameter is 1*DIGIT. A client that received this parameter
 MUST NOT use LZ77 sliding window size greater than the size specified
 by this parameter to build messages.

5.1.3. Example

 This section is non-normative.

https://datatracker.ietf.org/doc/html/rfc5234

Yoshino Expires April 22, 2013 [Page 9]

Internet-Draft WebSocket Per-message Compression October 2012

 This example sent by a client is asking the server to use LZ77
 sliding window size of 1,024 bytes or less and declaring that the
 client can accept the "c2s_max_window_bits" parameter.

 Sec-WebSocket-Extensions: permessage-compress;
 method="deflate; c2s_max_window_bits;
 s2c_max_window_bits=10"

 This request might be rejected by the server because it doesn't
 support the "s2c_max_window_bits" parameter. Since there's only one
 method description listed in the header, the server need to give up
 use of the Per-message Compression Extension entirely. If reduction
 of LZ77 sliding window size by the server is mandatory for the
 client, this is fine.

 The next example lists two configurations so that the server can
 accept permessage-compress by picking one of the configurations it
 supports.

 Sec-WebSocket-Extensions: permessage-compress;
 method="deflate; s2c_max_window_bits=10, deflate"

 The server can choose to accept the second description by sending
 back this for example:

 Sec-WebSocket-Extensions: permessage-compress;
 method=deflate

 Since the "c2s_max_window_bits" parameter was not specified for both
 of the method descriptions, the server cannot use the
 "c2s_max_window_bits" parameter.

5.2. Application Data Transformation

5.2.1. Compression

 An endpoint MUST use the following algorithm to compress a message.

 1. Compress all the octets of the payload of the message using
 DEFLATE.

 2. If the resulting data does not end with an empty block with no
 compression ("BTYPE" set to 0), append an empty block with no
 compression to the tail.

 3. Remove 4 octets (that are 0x00 0x00 0xff 0xff) from the tail.
 After this step, the last octet of the compressed data contains
 the (part of) header bits with "BTYPE" set to 0.

Yoshino Expires April 22, 2013 [Page 10]

Internet-Draft WebSocket Per-message Compression October 2012

 In the first step:

 o Multiple blocks MAY be used.

 o Any type of block MAY be used.

 o Both block with "BFINAL" set to 0 and 1 MAY be used.

 o When any block with "BFINAL" set to 1 doesn't end at byte
 boundary, minimal padding bits of 0 MUST be added to make it end
 at byte boundary, and then the next block MUST start at the byte
 boundary if any.

 An endpoint MUST NOT use an LZ77 sliding window greater than 32,768
 bytes to build messages to send.

 If the "method agreement" has the "s2c_no_context_takeover" method
 parameter, the server MUST reset its LZ77 sliding window for sending
 to empty for each message. Otherwise, the server MAY take over the
 LZ77 sliding window used to build the last compressed message.

 If the "method agreement" has the "c2s_no_context_takeover" method
 parameter, the client MUST reset its LZ77 sliding window for sending
 to empty for each message. Otherwise, the client MAY take over the
 LZ77 sliding window used to build the last compressed message.

 If the "method agreement" has the "s2c_max_window_bits" method
 parameter and its value is w, the server MUST NOT use an LZ77 sliding
 window greater than w-th power of 2 bytes to build messages to send.

 If the "method agreement" has the "c2s_max_window_bits" method
 parameter and its value is w, the client MUST NOT use an LZ77 sliding
 window greater than w-th power of 2 bytes to build messages to send.

5.2.2. Decompression

 An endpoint MUST use the following algorithm to decompress a message.

 1. Append 4 octets of 0x00 0x00 0xff 0xff to the tail of the payload
 of the message.

 2. Decompress the resulting octets using DEFLATE.

 If the "method agreement" has the "s2c_no_context_takeover" method
 parameter, the client MAY reset its LZ77 sliding window for receiving
 to empty for each message. Otherwise, the client MUST take over the
 LZ77 sliding window used to parse the last compressed message.

Yoshino Expires April 22, 2013 [Page 11]

Internet-Draft WebSocket Per-message Compression October 2012

 If the "method agreement" has the "c2s_no_context_takeover" method
 parameter, the server MAY reset its LZ77 sliding window for receiving
 to empty for each message. Otherwise, the server MUST take over the
 LZ77 sliding window used to parse the last compressed message.

 If the "method agreement" has the "s2c_max_window_bits" method
 parameter and its value is w, the client MAY reduce the size of the
 LZ77 sliding window to decompress received messages down to the w-th
 power of 2 bytes. Otherwise, the client MUST use a 32,768 byte LZ77
 sliding window to decompress received messages.

 If the "method agreement" has the "c2s_max_window_bits" method
 parameter and its value is w, the server MAY reduce the size of the
 LZ77 sliding window to decompress received messages down to the w-th
 power of 2 bytes. Otherwise, the server MUST use a 32,768 byte LZ77
 sliding window to decompress received messages.

5.2.3. Examples

 This section is non-normative.

 This section introduces examples of how the DEFLATE method transforms
 messages.

5.2.3.1. A message compressed using 1 compressed block

 Suppose that a text message "Hello" is sent using the DEFLATE method.
 When 1 compressed block (compressed with fixed Huffman code, "BFINAL"
 is not set) is used, compressed data to be sent in payload is
 obtained as follows.

 Compress "Hello" into 1 compressed block and flush it into a byte
 array using an empty block with no compression:

 0xf2 0x48 0xcd 0xc9 0xc9 0x07 0x00 0x00 0x00 0xff 0xff

 Strip 0x00 0x00 0xff 0xff from the tail:

 0xf2 0x48 0xcd 0xc9 0xc9 0x07 0x00

 To send it without fragmentation, just build a frame putting the
 whole data in payload data:

 0xc1 0x07 0xf2 0x48 0xcd 0xc9 0xc9 0x07 0x00

 The first 2 octets are the WebSocket protocol's overhead (FIN=1,
 RSV1=1, RSV2=0, RSV3=0, opcode=text, MASK=0, Payload length=7).

Yoshino Expires April 22, 2013 [Page 12]

Internet-Draft WebSocket Per-message Compression October 2012

 To send it after fragmentation, split the compressed payload and
 build frames for each of split data as well as fragmentation process
 done when the compression extension is not used. For example, the
 first fragment may contain 3 octets of the payload:

 0x41 0x03 0xf2 0x48 0xcd

 and the second (last) fragment contain 4 octets of the payload:

 0x80 0x04 0xc9 0xc9 0x07 0x00

 Note that RSV1 is set only on the first fragment.

5.2.3.2. Sharing LZ77 Sliding Window

 Suppose that the next message to send is also "Hello". If it's
 disallowed by the other peer (using some extension parameter) to take
 over the LZ77 sliding window used for the last message, the next
 message is compressed into the same byte array (if the same "BTYPE"
 and "BFINAL" value are used). If it's allowed, the next message can
 be compressed into shorter payload:

 0xf2 0x00 0x11 0x00 0x00

 instead of:

 0xf2 0x48 0xcd 0xc9 0xc9 0x07 0x00

 Note that even if any uncompressed message is inserted between the
 two "Hello" messages, it doesn't affect context sharing between the
 two "Hello" messages.

5.2.3.3. Using a Block with No Compression

 Blocks with no compression can be also used. A block with no
 compression containing "Hello" flushed into a byte array using an
 empty block with no compression is:

 0x00 0x05 0x00 0xfa 0xff 0x48 0x65 0x6c 0x6c 0x6f 0x00
 0x00 0x00 0xff 0xff

 So, payload of a message containing "Hello" converted into a DEFLATE
 block with no compression is:

 0x00 0x05 0x00 0xfa 0xff 0x48 0x65 0x6c 0x6c 0x6f 0x00

 If it's not fragmented, the frame for this message is:

Yoshino Expires April 22, 2013 [Page 13]

Internet-Draft WebSocket Per-message Compression October 2012

 0xc1 0x0b 0x00 0x05 0x00 0xfa 0xff 0x48 0x65 0x6c 0x6c 0x6f 0x00

 The first 2 octets are the WebSocket protocol's overhead (FIN=1,
 RSV1=1, RSV2=0, RSV3=0, opcode=text, MASK=0, Payload length=7). Note
 that RSV1 must be set for this message (only on the first fragment of
 it) because RSV1 indicates whether DEFLATE is applied to the message
 including use of blocks with no compression or not.

5.2.3.4. Using a Block with BFINAL Set to 1

 On platform where the flush method based on an empty block with no
 compression is not avaiable, implementors can choose to flush data
 using blocks with "BFINAL" set to 1. Using a block with "BFINAL" set
 to 1 and "BTYPE" set to 1, "Hello" is compressed into:

 0xf3 0x48 0xcd 0xc9 0xc9 0x07 0x00

 So, payload of a message containing "Hello" compressed using this
 parameter setting is:

 0xf3 0x48 0xcd 0xc9 0xc9 0x07 0x00 0x00

 The last 1 octet contains the header bits with "BFINAL" set to 0 and
 "BTYPE" set to 0, and 7 padding bits of 0. It's necessary to make
 the payload able to be processed by the same manner as messages
 flushed using blocks with BFINAL unset.

5.2.3.5. Two Blocks in 1 Message

 Two or more blocks may be used in 1 message.

 0xf2 0x48 0x05 0x00 0x00 0x00 0xff 0xff 0xca 0xc9 0xc9 0x07 0x00

 The first 3 octets and the least significant two bits of the 4th
 octet consist one block with "BFINAL" set to 0 and "BTYPE" set to 1
 containing "He". The rest of the 4th octet contains the header bits
 with "BFINAL" set to 0 and "BTYPE" set to 0, and the 3 padding bits
 of 0. Together with the following 4 octets (0x00 0x00 0xff 0xff),
 the header bits consist an empty block with no compression. Then, a
 block containing "llo" follows.

5.3. Intermediaries

 When intermediaries forward messages, they MAY decompress and/or
 compress the messages according to the constraints negotiated during
 the opening handshake of the connection(s).

Yoshino Expires April 22, 2013 [Page 14]

Internet-Draft WebSocket Per-message Compression October 2012

5.4. Implementation Notes

 This section is non-normative.

 On most common software development platforms, the operation of
 aligning compressed data to byte boundaries using an empty block with
 no compression is available as a library. For example, Zlib [Zlib]
 does this when "Z_SYNC_FLUSH" is passed to deflate function.

 To get sufficient compression ratio, LZ77 sliding window size of
 1,024 or more is recommended.

Yoshino Expires April 22, 2013 [Page 15]

Internet-Draft WebSocket Per-message Compression October 2012

6. Security Considerations

 There are no security concerns for now.

Yoshino Expires April 22, 2013 [Page 16]

Internet-Draft WebSocket Per-message Compression October 2012

7. IANA Considerations

7.1. Registration of the "permessage-compress" WebSocket Extension Name

 This section describes a WebSocket extension name registration in the
 WebSocket Extension Name Registry [RFC6455].

 Extension Identifier
 permessage-compress

 Extension Common Name
 WebSocket Per-message Compression

 Extension Definition
 This document.

 Known Incompatible Extensions
 None

 The "permessage-compress" token is used in the
 "Sec-WebSocket-Extensions" header in the WebSocket opening handshake
 to negotiate use of the Per-message Compression Extension.

7.2. Registration of the "Per-message Compressed" WebSocket Framing
 Header Bit

 This section describes a WebSocket framing header bit registration in
 the WebSocket Framing Header Bits Registry [RFC6455].

 Header Bit
 RSV1

 Common Name
 Per-message Compressed

 Meaning
 The message is compressed or not.

 Reference
Section 4 of this document.

 The "Per-message Compressed" framing header bit is used on the first
 fragment of non-control messages to indicate whether the payload of
 the message is compressed by the Per-message Compression Extension or
 not.

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455

Yoshino Expires April 22, 2013 [Page 17]

Internet-Draft WebSocket Per-message Compression October 2012

7.3. WebSocket Per-message Compression Method Name Registry

 This specification creates a new IANA registry for names of
 compression methods to be used with the WebSocket Per-message
 Compression Extension in accordance with the principles set out in
 [RFC5226].

 As part of this registry, IANA maintains the following information:

 Method Identifier
 The identifier of the method, as will be used in the method
 description as defined Section 3 of this specification. The value
 must conform to the method-name ABNF as defined in Section 3 of
 this specification.

 Method Common Name
 The name of the method, as the method is generally referred to.

 Method Definition
 A reference to the document in which the method being used with
 this extension is defined.

 WebSocket Per-message Compression method names are to be subject to
 the "First Come First Served" IANA registration policy [RFC5226].

 IANA has added initial values to the registry as follows.

 +------------+-------------+---------------+
 | Identifier | Common Name | Definition |
 +------------+-------------+---------------+
 | deflate | DEFLATE | This document |
 +------------+-------------+---------------+

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Yoshino Expires April 22, 2013 [Page 18]

Internet-Draft WebSocket Per-message Compression October 2012

8. Acknowledgements

 Special thanks to Patrick McManus who wrote up the initial
 specification of DEFLATE based compression extension for the
 WebSocket Protocol to which I referred to write this specification.

Yoshino Expires April 22, 2013 [Page 19]

Internet-Draft WebSocket Per-message Compression October 2012

9. References

9.1. Normative References

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, December 2011.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [LZ77] Ziv, J. and A. Lempel, "A Universal Algorithm for
 Sequential Data Compression", IEEE Transactions on
 Information Theory, Vol. 23, No. 3, pp. 337-343.

9.2. Informative References

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, May 1996.

 [RFC1979] Woods, J., "PPP Deflate Protocol", RFC 1979, August 1996.

 [Zlib] Gailly, J. and M. Adler, "Zlib", <http://zlib.net/>.

https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1979
http://zlib.net/

Yoshino Expires April 22, 2013 [Page 20]

Internet-Draft WebSocket Per-message Compression October 2012

Author's Address

 Takeshi Yoshino
 Google, Inc.

 Email: tyoshino@google.com

Yoshino Expires April 22, 2013 [Page 21]

