
HyBi Working Group T. Yoshino
Internet-Draft Google, Inc.
Intended status: Standards Track March 19, 2013
Expires: September 20, 2013

Compression Extensions for WebSocket
draft-ietf-hybi-permessage-compression-07

Abstract

 This document specifies a framework for creating WebSocket extensions
 that add compression functionality to the WebSocket Protocol. An
 extension based on this framework compresses the payload data portion
 of non-control WebSocket messages on per-message basis using
 parameters negotiated during the opening handshake. This framework
 provides a general method to apply a compression algorithm to the
 contents of WebSocket messages. For each compression algorithm, an
 extension is defined by specifying parameter negotiation and
 compression algorithm in detail. This document also specifies one
 specific compression extension using the DEFLATE algorithm.

 Please send feedback to the hybi@ietf.org mailing list.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 20, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Yoshino Expires September 20, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft Compression Extensions for WebSocket March 2013

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conformance Requirements and Terminology 4
3. WebSocket Per-message Compression Extension 5
4. Extension Negotiation . 6
4.1. Negotiation Examples 7

5. Framing . 8
5.1. Sending . 8
5.2. Receiving . 9

6. permessage-deflate extension 10
6.1. Method Parameters . 11
6.1.1. Context Takeover Control 11
6.1.2. Limiting the LZ77 sliding window size 11
6.1.3. Example . 12

6.2. Payload Data Transformation 13
6.2.1. Compression . 13
6.2.2. Decompression . 14
6.2.3. Examples . 15

6.3. Intermediaries . 18
6.4. Implementation Notes 18

7. Security Considerations 19
8. IANA Considerations . 20

 8.1. Registration of the "permessage-deflate" WebSocket
 Extension Name . 20
 8.2. Registration of the "Per-message Compressed" WebSocket
 Framing Header Bit . 20

9. Acknowledgements . 21
10. References . 22
10.1. Normative References 22
10.2. Informative References 22

 Author's Address . 23

http://trustee.ietf.org/license-info

Yoshino Expires September 20, 2013 [Page 2]

Internet-Draft Compression Extensions for WebSocket March 2013

1. Introduction

 This document specifies a framework to add compression functionality
 to the WebSocket Protocol [RFC6455]. This framework specifies how to
 define WebSocket Per-message Compression Extensions (PMCEs)
 individually for various compression algorithms based on the
 extension concept of the WebSocket Protocol specified in Section 9 of
 [RFC6455]. A WebSocket client and a peer WebSocket server negotiate
 use of a PMCE and determines parameters to configure the compression
 algorithm during the WebSocket opening handshake. The client and
 server then can exchange non-control messages using frames with
 compressed data in the payload data portion. This framework
 specifies a general method to apply a compression algorithm to the
 contents of WebSocket messages. A document specifying an individual
 PMCE describes how to negotiate configuration parameters for the
 compression algorithm and how to transform (compress and decompress)
 data in the payload data portion in detail. A WebSocket client may
 offer multiple PMCEs during the WebSocket opening handshake. A peer
 WebSocket server received those offers may choose and accept
 preferred one or decline all of them. PMCEs use the RSV1 bit of the
 WebSocket frame header to indicate whether a message is compressed or
 not, so that an endpoint can choose not to compress messages with
 incompressible contents.

 This document also specifies one specific PMCE based on the DEFLATE
 [RFC1951] algorithm. The extension name of the PMCE is "permessage-
 deflate". We chose the DEFLATE since it's widely available as a
 library on various platforms and the overhead of the DEFLATE is
 small. To align the end of compressed data to octet boundary, this
 extension uses the algorithm described in Section 2.1 of the PPP
 Deflate Protocol [RFC1979]. Endpoints can take over the LZ77 sliding
 window [LZ77] used to build frames for previous messages to get
 better compression ratio. For resource-limited devices, this
 extension provides parameters to limit memory usage for compression
 context.

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455#section-9
https://datatracker.ietf.org/doc/html/rfc6455#section-9
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1979

Yoshino Expires September 20, 2013 [Page 3]

Internet-Draft Compression Extensions for WebSocket March 2013

2. Conformance Requirements and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Requirements phrased in the imperative as part of algorithms (such as
 "strip any leading space characters" or "return false and abort these
 steps") are to be interpreted with the meaning of the key word
 ("MUST", "SHOULD", "MAY", etc.) used in introducing the algorithm.

 Conformance requirements phrased as algorithms or specific steps can
 be implemented in any manner, so long as the end result is
 equivalent. In particular, the algorithms defined in this
 specification are intended to be easy to understand and are not
 intended to be performant.

 This document references the procedure to _Fail the WebSocket
 Connection_. This procedure is defined in Section 7.1.7 of
 [RFC6455].

 This document references the event that _the WebSocket Connection is
 established_ and the event that _A WebSocket Message Has Been
 Received_. This event is defined in Section 4.1 of [RFC6455].

 This document uses the Argumented Backus-Naur Form (ABNF) notation of
 [RFC5234]. The DIGIT (decimal 0-9) rule is included by reference, as
 defined in the Appendix B.1 of [RFC5234].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6455#section-7.1.7
https://datatracker.ietf.org/doc/html/rfc6455#section-7.1.7
https://datatracker.ietf.org/doc/html/rfc6455#section-4.1
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B.1

Yoshino Expires September 20, 2013 [Page 4]

Internet-Draft Compression Extensions for WebSocket March 2013

3. WebSocket Per-message Compression Extension

 WebSocket Per-message Compression Extensions (PMCEs) are extensions
 to the WebSocket Protocol enabling compression feature. PMCEs are
 built based on Section 9 of [RFC6455]. PMCEs are individually
 defined for various compression algorithms, and are registered in the
 WebSocket Extension Name Registry created in Section 11.4 of
 [RFC6455]. Each PMCE refers to this framework and defines the
 followings:

 o The content to put in the "Sec-WebSocket-Extensions" header. The
 content includes the extension name of the PMCE and any applicable
 extension parameters.

 o How to interpret extension parameters exchanged during the opening
 handshake

 o How to transform the payload data portion.

 One such extension is defined in Section 6 of this document and is
 registered in Section 8. Other PMCEs may be defined in other
 documents.

Section 4 describes basic extension negotiation process. Section 5
 describes how to apply the compression algorithm with negotiated
 parameters to the contents of WebSocket messages.

https://datatracker.ietf.org/doc/html/rfc6455#section-9
https://datatracker.ietf.org/doc/html/rfc6455#section-11.4
https://datatracker.ietf.org/doc/html/rfc6455#section-11.4

Yoshino Expires September 20, 2013 [Page 5]

Internet-Draft Compression Extensions for WebSocket March 2013

4. Extension Negotiation

 To offer use of a PMCE, a client includes a
 "Sec-WebSocket-Extensions" header element with the extension name of
 the PMCE in the "Sec-WebSocket-Extensions" header in the client's
 opening handshake of the WebSocket connection. Extension parameters
 in the element represent the PMCE offer in detail. For example, a
 client lists preferred configuration parameter values for the
 compression algorithm of the PMCE. A client offers multiple PMCE
 choices to the server by including multiple elements in the
 "Sec-WebSocket-Extensions" header, one for each PMCE offered. The
 set of elements MAY include multiple PMCEs with the same extension
 name to offer use of the same algorithm with different configuration
 parameters.

 To accept use of an offered PMCE, a server includes a
 "Sec-WebSocket-Extensions" header element with the extension name of
 the PMCE in the "Sec-WebSocket-Extensions" header in the server's
 opening handshake of the WebSocket connection. Extension parameters
 in the element represent the configuration parameters of the PMCE to
 use in detail. The element MUST represent a PMCE that is fully
 supported by the server.

 A server MUST NOT accept a PMCE offer together with any extension if
 the PMCE will conflict with the extension on use of the RSV1 bit. A
 client received a response accepting a PMCE offer together with such
 an extension MUST _Fail the WebSocket Connection_.

 A server MUST NOT accept a PMCE offer together with any extension if
 the PMCE will be applied to output of the extension and any of the
 following conditions is met about the extension:

 o The extension requires boundary of fragments to be preserved
 between output from the extension at the sender and input to the
 extension at the receiver.

 o The extension uses the "Extension data" field or any of the
 reserved bits on the WebSocket header as per-frame attribute.

 A client received a response accepting a PMCE offer together with
 such an extension MUST _Fail the WebSocket Connection_.

 A server declines all offered PMCEs by not including any element with
 PMCE names. If a server responds with no PMCE element in the
 "Sec-WebSocket-Extensions" header, both endpoints proceed without
 Per-message Compression once _the WebSocket Connection is
 established_.

Yoshino Expires September 20, 2013 [Page 6]

Internet-Draft Compression Extensions for WebSocket March 2013

 If a server gives an invalid response, such as accepting a PMCE that
 the client did not offer, the client MUST _Fail the WebSocket
 Connection_.

 If a server responds with a valid PMCE element in the
 "Sec-WebSocket-Extensions" header and _the WebSocket Connection is
 established_, both endpoints MUST use the algorithm described in

Section 5 to exchange messages, using the payload data transformation
 (compressing and decompressing) procedure of the PMCE returned by the
 server.

4.1. Negotiation Examples

 The followings are example values for the "Sec-WebSocket-Extensions"
 header offering PMCEs. permessage-foo and permessage-bar in the
 examples are hypothetical extension names of PMCEs for compression
 algorithm foo and bar.

 o Offer the permessage-foo.

 permessage-foo

 o Offer the permessage-foo with a parameter x with a value of 10.

 permessage-foo; x=10

 The value MAY be quoted.

 permessage-foo; x="10"

 o Offer the permessage-foo as first choice and the permessage-bar as
 a fallback plan.

 permessage-foo, permessage-bar

 o Offer the permessage-foo with a parameter use_y which enables a
 feature y as first choice, and the permessage-foo without the
 use_y parameter as a fallback plan.

 permessage-foo; use_y, permessage-foo

Yoshino Expires September 20, 2013 [Page 7]

Internet-Draft Compression Extensions for WebSocket March 2013

5. Framing

 PMCEs operate only on non-control messages.

 This document allocates the RSV1 bit of the WebSocket header for
 PMCEs, and calls the bit the "Per-message Compressed" bit. On a
 WebSocket connection where a PMCE is in use, this bit indicates
 whether a message is compressed or not.

 A message with the "Per-message Compressed" bit set on the first
 fragment of the message is called "compressed message". Frames of a
 compressed message have compressed data in the payload data portion.
 An endpoint received a compressed message decompresses the
 concatenation of the compressed data of the frames of the message by
 following the decompressing procedure specified by the PMCE in use.
 The endpoint uses the bytes corresponding to the application data
 portion in this decompressed data for the _A WebSocket Message Has
 Been Received_ event instead of the received data as-is.

 A message with the "Per-message Compressed" bit unset on the first
 fragment of the message is called "uncompressed message". Frames of
 an uncompressed message have uncompressed original data as-is in the
 payload data portion. An endpoint received an uncompressed message
 uses the concatenation of the application data portion of the frames
 of the message as-is for the _A WebSocket Message Has Been Received_
 event.

5.1. Sending

 To send a message in the form of a compressed message, an endpoint
 uses the following algorithm.

 1. Compress the payload data portion of the original message by
 following the compression procedure of the PMCE.

 2. Build frame(s) by putting the compressed data instead of the
 original data for the payload data portion.

 3. Set the "Per-message Compressed" bit of the first frame.

 4. Send the frame(s).

 To send a message in the form of an uncompressed message, an endpoint
 uses the following algorithm.

 1. Build frame(s) by putting the original data for payload data
 portion as-is.

Yoshino Expires September 20, 2013 [Page 8]

Internet-Draft Compression Extensions for WebSocket March 2013

 2. Unset the "Per-message Compressed" bit of the first frame.

 3. Send the frame(s).

 An endpoint MUST NOT set the "Per-message Compressed" bit of control
 frames and non-first fragments of a data message. An endpoint
 received such a frame MUST _Fail the WebSocket Connection_.

 PMCEs don't change the opcode field. The opcode of the first frame
 of a compress message indicates the opcode of the original message.

 The payload data portion in frames generated by a PMCE is not subject
 to the constraints for the original data type. For example, the
 concatenation of the data corresponding to the application data
 portion of frames of a compressed text message may be not valid
 UTF-8. At the receiver, the payload data portion after decompression
 is subject to the constraints for the original data type again.

5.2. Receiving

 To receive a message in the form of a compressed message, an endpoint
 uses the following algorithm.

 1. Concatenate the payload data portion of the received frames of
 the compressed message.

 2. Decompress the concatenation by following the decompression
 procedure of the PMCE.

 To receive a message in the form of an uncompressed message, an
 endpoint uses the following algorithm.

 1. Concatenate the payload data portion of the received frames of
 the uncompressed message.

 2. Handle the concatenation as-is.

Yoshino Expires September 20, 2013 [Page 9]

Internet-Draft Compression Extensions for WebSocket March 2013

6. permessage-deflate extension

 This section specifies a specific PMCE called "permessage-deflate".
 It compresses the payload data portion of messages using the DEFLATE
 [RFC1951] and the byte boundary aligning method introduced in
 [RFC1979].

 The registered extension name for this extension is
 "permessage-deflate".

 For an offer for this extension, the following 3 extension parameters
 are defined.

 o "s2c_no_context_takeover"

 o "s2c_max_window_bits"

 o "c2s_max_window_bits"

 For a response for this extension, the following 4 extension
 parameters are defined.

 o "s2c_no_context_takeover"

 o "c2s_no_context_takeover"

 o "s2c_max_window_bits"

 o "c2s_max_window_bits"

 A server MUST decline a "permessage-deflate" offer if any of the
 following conditions is met:

 o The offer has any extension parameter not defined for use in an
 offer.

 o The offer has any extension parameter with an invalid value.

 o The offer has multiple extension parameters with the same name.

 o The server doesn't support the offered configuration.

 A client MUST _Fail the WebSocket Connection_ if the server accepted
 a "permessage-deflate" offer with a response meeting any of the
 following condition:

 o The response has any extension parameter not defined for use in a
 response.

https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1979

Yoshino Expires September 20, 2013 [Page 10]

Internet-Draft Compression Extensions for WebSocket March 2013

 o The response has any extension parameter with an invalid value.

 o The response has multiple extension parameters with the same name.

 o The client doesn't support the configuration the response
 represents.

6.1. Method Parameters

6.1.1. Context Takeover Control

 A client MAY attach the "s2c_no_context_takeover" extension
 parameter. The "s2c_no_context_takeover" extension parameter has no
 value. If a server received the "s2c_no_context_takeover" extension
 parameter, the server MUST NOT use the same LZ77 sliding window to
 compress two or more messages. Servers SHOULD be able to accept the
 "s2c_no_context_takeover" parameter. A server accepts an offer with
 this extension parameter by including the "s2c_no_context_takeover"
 extension parameter in the response. If a server accepted an offer
 with this extension parameter, the server MUST empty its LZ77 sliding
 window to compress messages to send each time the server builds a new
 message.

 A server MAY attach the "c2s_no_context_takeover" extension parameter
 to disallow the client to use the LZ77 sliding window used to build
 frames for the last message the client sent to build frames for the
 next message to send. The "c2s_no_context_takeover" extension
 parameter has no value. Clients SHOULD be able to accept the
 "c2s_no_context_takeover" parameter. A client that received this
 parameter MUST reset its LZ77 sliding window for sending to empty for
 each message.

6.1.2. Limiting the LZ77 sliding window size

 A client MAY attach the "s2c_max_window_bits" extension parameter to
 limit the LZ77 sliding window size that the server uses to build
 messages. This extension parameter MUST have a decimal integer value
 in the range between 8 to 15 indicating the base-2 logarithm of the
 LZ77 sliding window size.

 s2c_max_window_bits = 1*DIGIT

 A server declines an offer with this extension parameter if the
 server doesn't support the extension parameter. A server accepts an
 offer with this extension parameter by including the extension
 parameter with the same value as the offer in the response. If a
 server accepts an offer with this extension parameter, the server
 MUST NOT use LZ77 sliding window size greater than the size specified

Yoshino Expires September 20, 2013 [Page 11]

Internet-Draft Compression Extensions for WebSocket March 2013

 by the extension parameter to compress messages

 A client MAY attach the "c2s_max_window_bits" extension parameter if
 the client can adjust LZ77 sliding window size based on the
 "c2s_max_window_bits" sent by the server. This parameter has no
 value.

 If a server received and accepts an offer with the
 "c2s_max_window_bits" extension parameter, the server MAY include the
 "c2s_max_window_bits" parameter in the response to the offer to limit
 the LZ77 sliding window size that the client uses to build messages.
 If a server received and accepts an offer without the
 "c2s_max_window_bits" extension parameter, the server MUST NOT
 include the "c2s_max_window_bits" extension parameter in the response
 to the offer. The "c2s_max_window_bits" extension parameter in the
 server's opening handshake MUST have a decimal integer value in the
 range between 8 to 15 indicating the base-2 logarithm of the LZ77
 sliding window size.

 c2s_max_window_bits = 1*DIGIT

 If a client received the "c2s_max_window_bits" extension parameter,
 the client MUST NOT use LZ77 sliding window size greater than the
 size specified by the extension parameter to build messages.

6.1.3. Example

 The simplest "Sec-WebSocket-Extensions" header in a client's opening
 handshake to offer use of the permessage-deflate is the following:

 Sec-WebSocket-Extensions: permessage-deflate

 Since the "c2s_max_window_bits" extension parameter is not specified,
 the server may not accept the offer with the "c2s_max_window_bits"
 extension parameter. The simplest "Sec-WebSocket-Extensions" header
 in a server's opening handshake to accept use of the permessage-
 deflate is the same.

 The following offer sent by a client is asking the server to use the
 LZ77 sliding window size of 1,024 bytes or less and declaring that
 the client can accept the "c2s_max_window_bits" extension parameter.

 Sec-WebSocket-Extensions:
 permessage-deflate;
 c2s_max_window_bits; s2c_max_window_bits=10

 This offer might be rejected by the server because the server doesn't
 support the "s2c_max_window_bits" extension parameter. This is fine

Yoshino Expires September 20, 2013 [Page 12]

Internet-Draft Compression Extensions for WebSocket March 2013

 if the "s2c_max_window_bits" is mandatory for the client, but if the
 client want to fallback to the "permessage-deflate" without the
 "s2c_max_window_bits", the client should offer the fallback option in
 addition like this:

 Sec-WebSocket-Extensions:
 permessage-deflate;
 c2s_max_window_bits; s2c_max_window_bits=10,
 permessage-deflate;
 c2s_max_window_bits

 This example offers two configurations so that the server can accept
 permessage-deflate by picking supported one from them. To accept the
 first option, the server sends back this for example:

 Sec-WebSocket-Extensions:
 permessage-deflate; s2c_max_window_bits=10

 And to accept the second option, the server sends back this for
 example:

 Sec-WebSocket-Extensions: permessage-deflate

6.2. Payload Data Transformation

6.2.1. Compression

 An endpoint uses the following algorithm to compress a message.

 1. Compress all the octets of the payload data portion of the
 message using the DEFLATE.

 2. If the resulting data does not end with an empty DEFLATE block
 with no compression (the "BTYPE" bit is set to 0), append an
 empty DEFLATE block with no compression to the tail end.

 3. Remove 4 octets (that are 0x00 0x00 0xff 0xff) from the tail end.
 After this step, the last octet of the compressed data contains
 (possibly part of) the DEFLATE header bits with the "BTYPE" bit
 set to 0.

 In using the DEFLATE in the first step above:

 o An endpoints MAY use multiple DEFLATE blocks to compress one
 message.

 o An endpoints MAY use DEFLATE blocks of any type.

Yoshino Expires September 20, 2013 [Page 13]

Internet-Draft Compression Extensions for WebSocket March 2013

 o An endpoints MAY use both DEFLATE blocks with the "BFINAL" bit set
 to 0 and DEFLATE blocks with the "BFINAL" bit set to 1.

 o When any DEFLATE block with the "BFINAL" bit set to 1 doesn't end
 at byte boundary, an endpoint adds minimal padding bits of 0 to
 make it end at byte boundary. The next DEFLATE block follows the
 padded data if any.

 An endpoint MUST NOT use an LZ77 sliding window longer than 32,768
 bytes to compress messages to send.

 If a server accepts an offer with the "c2s_no_context_takeover"
 extension parameter, the client MUST empty its LZ77 sliding window to
 compress messages to send each time the client compresses a new
 message to send. Otherwise, the client MAY take over the LZ77
 sliding window used to build the last compressed message.

 If a server accepts an offer with the "s2c_no_context_takeover"
 extension parameter, the server MUST empty its LZ77 sliding window to
 compress messages to send each time the server compresses a new
 message to send. Otherwise, the server MAY take over the LZ77
 sliding window used to build the last compressed message.

 If a server accepts an offer with the "c2s_max_window_bits" extension
 parameter with a value of w, the client MUST NOT use an LZ77 sliding
 window longer than w-th power of 2 bytes to compress messages to
 send.

 If a server accepts an offer with the "s2c_max_window_bits" extension
 parameter with a value of w, the server MUST NOT use an LZ77 sliding
 window longer than w-th power of 2 bytes to compress messages to
 send.

6.2.2. Decompression

 An endpoint uses the following algorithm to decompress a message.

 1. Append 4 octets of 0x00 0x00 0xff 0xff to the tail end of the
 payload data portion of the message.

 2. Decompress the resulting data using the DEFLATE.

 If a server accepts an offer with the "s2c_no_context_takeover"
 extension parameter, the client MAY empty its LZ77 sliding window to
 decompress received messages each time the client decompresses a new
 received message. Otherwise, the client MUST take over the LZ77
 sliding window used to process the last compressed message.

Yoshino Expires September 20, 2013 [Page 14]

Internet-Draft Compression Extensions for WebSocket March 2013

 If a server accepts an offer with the "c2s_no_context_takeover"
 extension parameter, the server MAY empty its LZ77 sliding window to
 decompress received messages each time the server decompresses a new
 received message. Otherwise, the server MUST take over the LZ77
 sliding window used to process the last compressed message.

 If a server accepts an offer with the "s2c_max_window_bits" extension
 parameter with a value of w, the client MAY reduce the size of its
 LZ77 sliding window to decompress received messages down to the w-th
 power of 2 bytes. Otherwise, the client MUST use a 32,768 byte LZ77
 sliding window to decompress received messages.

 If a server accepts an offer with the "c2s_max_window_bits" extension
 parameter with a value of w, the server MAY reduce the size of its
 LZ77 sliding window to decompress received messages down to the w-th
 power of 2 bytes. Otherwise, the server MUST use a 32,768 byte LZ77
 sliding window to decompress received messages.

6.2.3. Examples

 This section introduces examples of how the permessage-deflate
 transforms messages.

6.2.3.1. A message compressed using 1 compressed DEFLATE block

 Suppose that an endpoint sends a text message "Hello". If the
 endpoint uses 1 compressed DEFLATE block (compressed with fixed
 Huffman code and the "BFINAL" bit is not set) to compress the
 message, the endpoint obtains the compressed data to put in the
 payload data portion as follows.

 The endpoint compresses "Hello" into 1 compressed DEFLATE block and
 flushes the resulting data into a byte array using an empty DEFLATE
 block with no compression:

 0xf2 0x48 0xcd 0xc9 0xc9 0x07 0x00 0x00 0x00 0xff 0xff

 By stripping 0x00 0x00 0xff 0xff from the tail end, the endpoint gets
 the data to put in the payload data portion:

 0xf2 0x48 0xcd 0xc9 0xc9 0x07 0x00

 Suppose that the endpoint sends this compressed message without
 fragmentation. The endpoint builds one frame by putting the whole
 compressed data in the payload data portion of the frame:

 0xc1 0x07 0xf2 0x48 0xcd 0xc9 0xc9 0x07 0x00

Yoshino Expires September 20, 2013 [Page 15]

Internet-Draft Compression Extensions for WebSocket March 2013

 The first 2 octets (0xc1 0x07) are the WebSocket frame header (FIN=1,
 RSV1=1, RSV2=0, RSV3=0, opcode=text, MASK=0, Payload length=7). The
 following figure shows what value is set in each field of the
 WebSocket frame header.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-------+-+-------------+
 |F|R|R|R| opcode|M| Payload len |
 |I|S|S|S| |A| |
 |N|V|V|V| |S| |
 | |1|2|3| |K| |
 +-+-+-+-+-------+-+-------------+
 |1|1|0|0| 1 |0| 7 |
 +-+-+-+-+-------+-+-------------+

 Suppose that the endpoint sends the compressed message with
 fragmentation. The endpoint splits the compressed data into
 fragments and builds frames for each fragment. For example, if the
 fragments are 3 and 4 octet, the first frame is:

 0x41 0x03 0xf2 0x48 0xcd

 and the second frame is:

 0x80 0x04 0xc9 0xc9 0x07 0x00

 Note that the RSV1 bit is set only on the first frame.

6.2.3.2. Sharing LZ77 Sliding Window

 Suppose that a client has sent a message "Hello" as a compressed
 message and will send the same message "Hello" again as a compressed
 message. If the server has accepted the offer with the
 "c2s_no_context_takeover" extension parameter, the server compresses
 the payload data portion of the next message into the same bytes (if
 the server uses the same "BTYPE" value and "BFINAL" value):

 0xf2 0x48 0xcd 0xc9 0xc9 0x07 0x00

 If the server hasn't accepted the offer with the
 "c2s_no_context_takeover" extension parameter, the server can
 compress the payload data portion of the next message into shorter
 bytes utilizing the history in the LZ77 sliding window:

 0xf2 0x00 0x11 0x00 0x00

 Note that even if any uncompressed message (any message with the RSV1

Yoshino Expires September 20, 2013 [Page 16]

Internet-Draft Compression Extensions for WebSocket March 2013

 bit unset) is inserted between the two "Hello" messages, such a
 message doesn't make any change on the LZ77 sliding window.

6.2.3.3. Using a DEFLATE Block with No Compression

 Suppose that an endpoint compresses a text message "Hello" using a
 DEFLATE block with no compression. A DEFLATE block with no
 compression containing "Hello" flushed into a byte array using
 another but empty DEFLATE block with no compression is:

 0x00 0x05 0x00 0xfa 0xff 0x48 0x65 0x6c 0x6c 0x6f 0x00
 0x00 0x00 0xff 0xff

 The endpoint strips the 4 octets at the tail end:

 0x00 0x05 0x00 0xfa 0xff 0x48 0x65 0x6c 0x6c 0x6f 0x00

 The endpoint builds a frame by putting the resulting data in the
 payload data portion of the frame:

 0xc1 0x0b 0x00 0x05 0x00 0xfa 0xff 0x48 0x65 0x6c 0x6c 0x6f 0x00

 The first 2 octets (0xc1 0x0b) are the WebSocket frame header (FIN=1,
 RSV1=1, RSV2=0, RSV3=0, opcode=text, MASK=0, Payload length=7). Note
 that the RSV1 bit is set for this message (only on the first fragment
 if the message is fragmented) because the RSV1 bit is set when the
 DEFLATE is applied to the message and it includes the case only
 DEFLATE blocks with no compression are used.

6.2.3.4. Using a DEFLATE Block with BFINAL Set to 1

 On platform where the flush method using an empty DEFLATE block with
 no compression is not avaiable, implementors can choose to flush data
 using DEFLATE blocks with "BFINAL" set to 1. Using a DEFLATE block
 with "BFINAL" set to 1 and "BTYPE" set to 1, "Hello" is compressed
 into:

 0xf3 0x48 0xcd 0xc9 0xc9 0x07 0x00

 So, payload of a message containing "Hello" compressed using this
 method is:

 0xf3 0x48 0xcd 0xc9 0xc9 0x07 0x00 0x00

 The last 1 octet (0x00) contains the header bits with "BFINAL" set to
 0 and "BTYPE" set to 0, and 7 padding bits of 0. This octet is
 necessary to allow the payload to be decompressed in the same manner
 as messages flushed using DEFLATE blocks with BFINAL unset.

Yoshino Expires September 20, 2013 [Page 17]

Internet-Draft Compression Extensions for WebSocket March 2013

6.2.3.5. Two DEFLATE Blocks in 1 Message

 Two or more DEFLATE blocks may be used in 1 message.

 0xf2 0x48 0x05 0x00 0x00 0x00 0xff 0xff 0xca 0xc9 0xc9 0x07 0x00

 The first 3 octets (0xf2 0x48 0x05) and the least significant two
 bits of the 4th octet (0x00) consist one DEFLATE block with "BFINAL"
 set to 0 and "BTYPE" set to 1 containing "He";. The rest of the 4th
 octet contains the header bits with "BFINAL" set to 0 and "BTYPE" set
 to 0, and the 3 padding bits of 0. Together with the following 4
 octets (0x00 0x00 0xff 0xff), the header bits consist an empty
 DEFLATE block with no compression. A DEFLATE block containing "llo"
 follows the empty DEFLATE block.

6.3. Intermediaries

 When an intermediary forwards messages, the intermediary MAY add,
 change or remove Per-message Compression on the messages. The
 elements in the "Sec-WebSocket-Extensions" for the PMCE in the
 opening handshakes with the connected client and server must be
 altered by the intermediary accordingly to match the new framing.

6.4. Implementation Notes

 On most common software development platforms, their DEFLATE
 compression library provide a method to align compressed data to byte
 boundaries using an empty DEFLATE block with no compression. For
 example, Zlib [Zlib] does this when "Z_SYNC_FLUSH" is passed to the
 deflate function.

 To attain sufficient compression ratio, the LZ77 sliding window size
 of 1,024 or more is RECOMMENDED.

Yoshino Expires September 20, 2013 [Page 18]

Internet-Draft Compression Extensions for WebSocket March 2013

7. Security Considerations

 There is a known exploit for combination of a secure transport
 protocol and a dictionary based compression [CRIME]. Implementors
 should give attention to this point when integrating this extension
 with other extensions or protocols.

Yoshino Expires September 20, 2013 [Page 19]

Internet-Draft Compression Extensions for WebSocket March 2013

8. IANA Considerations

8.1. Registration of the "permessage-deflate" WebSocket Extension Name

 This section describes a WebSocket extension name registration in the
 WebSocket Extension Name Registry [RFC6455].

 Extension Identifier
 permessage-deflate

 Extension Common Name
 WebSocket Per-message Deflate

 Extension Definition
 This document.

 Known Incompatible Extensions
 None

 The "permessage-deflate" extension name is used in the
 "Sec-WebSocket-Extensions" header in the WebSocket opening handshake
 to negotiate use of the permessage-deflate extension.

8.2. Registration of the "Per-message Compressed" WebSocket Framing
 Header Bit

 This section describes a WebSocket framing header bit registration in
 the WebSocket Framing Header Bits Registry [RFC6455].

 Header Bit
 RSV1

 Common Name
 Per-message Compressed

 Meaning
 The message is compressed or not.

 Reference
Section 5 of this document.

 The "Per-message Compressed" framing header bit is used on the first
 fragment of non-control messages to indicate whether the payload data
 portion of the message is compressed by the PMCE or not.

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455

Yoshino Expires September 20, 2013 [Page 20]

Internet-Draft Compression Extensions for WebSocket March 2013

9. Acknowledgements

 Special thanks to Patrick McManus who wrote up the initial
 specification of a DEFLATE-based compression extension for the
 WebSocket Protocol to which I referred to write this specification.

 Thank you to the following people who participated in discussions on
 the HyBi WG and contributed ideas and/or provided detailed reviews
 (the list is likely to be incomplete): Alexey Melnikov, Arman
 Djusupov, Bjoern Hoehrmann, Brian McKelvey, Greg Wilkins, Inaki Baz
 Castillo, Jamie Lokier, Joakim Erdfelt, John A. Tamplin, Julian
 Reschke, Kenichi Ishibashi, Mark Nottingham, Peter Thorson, Roberto
 Peon and Simone Bordet. Note that people listed above didn't
 necessarily endorse the end result of this work.

Yoshino Expires September 20, 2013 [Page 21]

Internet-Draft Compression Extensions for WebSocket March 2013

10. References

10.1. Normative References

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, December 2011.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [LZ77] Ziv, J. and A. Lempel, "A Universal Algorithm for
 Sequential Data Compression", IEEE Transactions on
 Information Theory, Vol. 23, No. 3, pp. 337-343.

10.2. Informative References

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, May 1996.

 [RFC1979] Woods, J., "PPP Deflate Protocol", RFC 1979, August 1996.

 [Zlib] Gailly, J. and M. Adler, "Zlib", <http://zlib.net/>.

 [CRIME] Rizzo, J. and T. Duong, "The CRIME attack", Ekoparty 2012,
 September 2012.

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc1979
http://zlib.net/

Yoshino Expires September 20, 2013 [Page 22]

Internet-Draft Compression Extensions for WebSocket March 2013

Author's Address

 Takeshi Yoshino
 Google, Inc.

 Email: tyoshino@google.com

Yoshino Expires September 20, 2013 [Page 23]

