
HyBi Working Group I.F. Fette

Internet-Draft Google, Inc.

Intended status: Standards Track February 26, 2011

Expires: August 30, 2011

The WebSocket protocol

draft-ietf-hybi-thewebsocketprotocol-06

Abstract

The WebSocket protocol enables two-way communication between a user

agent running untrusted code running in a controlled environment to a

remote host that has opted-in to communications from that code. The

security model used for this is the Origin-based security model

commonly used by Web browsers. The protocol consists of an initial

handshake followed by basic message framing, layered over TCP. The goal

of this technology is to provide a mechanism for browser-based

applications that need two-way communication with servers that does not

rely on opening multiple HTTP connections (e.g. using XMLHttpRequest or

<iframe>s and long polling).

Please send feedback to the hybi@ietf.org mailing list.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on August 30, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Background

1.2. Protocol overview

1.3. Opening handshake

1.4. Closing handshake

1.5. Design philosophy

1.6. Security model

1.7. Relationship to TCP and HTTP

1.8. Establishing a connection

1.9. Subprotocols using the WebSocket protocol

2. Conformance requirements

2.1. Terminology

3. WebSocket URIs

3.1. Parsing WebSocket URIs

3.2. Constructing WebSocket URIs

3.3. Valid WebSocket URIs

4. Data Framing

4.1. Overview

4.2. Client-to-Server Masking

4.3. Base Framing Protocol

4.4. Fragmentation

4.5. Control Frames

4.5.1. Close

4.5.2. Ping

4.5.3. Pong

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

4.6. Data Frames

4.7. Examples

4.8. Extensibility

5. Opening Handshake

5.1. Client Requirements

5.2. Server-side requirements

5.2.1. Reading the client's opening handshake

5.2.2. Sending the server's opening handshake

6. Error Handling

6.1. Handling errors in UTF-8 from the server

6.2. Handling errors in UTF-8 from the client

7. Closing the connection

7.1. Definitions

7.1.1. Close the WebSocket Connection

7.1.2. Start the WebSocket Closing Handshake

7.1.3. The WebSocket Connection Is Closed

7.1.4. Fail the WebSocket Connection

7.2. Abnormal closures

7.2.1. Client-initiated closure

7.2.2. Server-initiated closure

7.3. Normal closure of connections

7.4. Status codes

7.4.1. Defined Status Codes

7.4.2. Reserved status code ranges

8. Extensions

8.1. Negotiating extensions

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

8.2. Known extensions

8.2.1. Compression

9. Security considerations

10. IANA considerations

10.1. Registration of ws: scheme

10.2. Registration of wss: scheme

10.3. Registration of the "WebSocket" HTTP Upgrade keyword

10.4. Sec-WebSocket-Key

10.5. Sec-WebSocket-Extensions

10.6. Sec-WebSocket-Accept

10.7. Sec-WebSocket-Origin

10.8. Sec-WebSocket-Protocol

10.9. Sec-WebSocket-Version

11. Using the WebSocket protocol from other specifications

12. Acknowledgements

13. Appendix: List of Changes

13.1. Changes from -05 to -06

14. References

Author's Address

1. Introduction

1.1. Background

This section is non-normative.

Historically, creating an instant messenger chat client as a Web

application has required an abuse of HTTP to poll the server for

updates while sending upstream notifications as distinct HTTP calls.

This results in a variety of problems:

The server is forced to use a number of different underlying TCP

connections for each client: one for sending information to the

client, and a new one for each incoming message.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

The wire protocol has a high overhead, with each client-to-server

message having an HTTP header.

The client-side script is forced to maintain a mapping from the

outgoing connections to the incoming connection to track replies.

A simpler solution would be to use a single TCP connection for traffic

in both directions. This is what the WebSocket protocol provides.

Combined with the WebSocket API, it provides an alternative to HTTP

polling for two-way communication from a Web page to a remote server.

[WSAPI]

The same technique can be used for a variety of Web applications:

games, stock tickers, multiuser applications with simultaneous editing,

user interfaces exposing server-side services in real time, etc.

1.2. Protocol overview

This section is non-normative.

The protocol has two parts: a handshake, and then the data transfer.

The handshake from the client looks as follows:

 GET /chat HTTP/1.1

 Host: server.example.com

 Upgrade: websocket

 Connection: Upgrade

 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

 Sec-WebSocket-Origin: http://example.com

 Sec-WebSocket-Protocol: chat, superchat

 Sec-WebSocket-Version: 6

The handshake from the server looks as follows:

 HTTP/1.1 101 Switching Protocols

 Upgrade: websocket

 Connection: Upgrade

 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

 Sec-WebSocket-Protocol: chat

The leading line from the client follows the Request-Line format. The

leading line from the server follows the Status-Line format. The

Request-Line and Status-Line productions are defined in [RFC2616].

After the leading line in both cases come an unordered set of headers.

The meaning of these headers is specified in Section 5 of this

document. Additional headers may also be present, such as cookies

required to identify the user. The format and parsing of headers is as

defined in [RFC2616].

*

*

Once the client and server have both sent their handshakes, and if the

handshake was successful, then the data transfer part starts. This is a

two-way communication channel where each side can, independently from

the other, send data at will.

Clients and servers, after a successful handshake, transfer data back

and forth in conceptual units referred to in this specification as

"messages". A message is a complete unit of data at an application

level, with the expectation that many or most applications implementing

this protocol (such as web user agents) provide APIs in terms of

sending and receiving messages. The websocket message does not

necessarily correspond to a particular network layer framing, as a

fragmented message may be coalesced, or vice versa, e.g. by an

intermediary.

Data is sent on the wire in the form of frames that have an associated

type. Broadly speaking, there are types for textual data, which is

interpreted as UTF-8 text, binary data (whose interpretation is left up

to the application), and control frames, which are not intended to

carry data for the application, but instead for protocol-level

signaling, such as to signal that the connection should be closed. This

version of the protocol defines six frame types and leaves ten reserved

for future use.

The WebSocket protocol uses this framing so that specifications that

use the WebSocket protocol can expose such connections using an event-

based mechanism instead of requiring users of those specifications to

implement buffering and piecing together of messages manually.

1.3. Opening handshake

This section is non-normative.

The opening handshake is intended to be compatible with HTTP-based

server-side software and intermediaries, so that a single port can be

used by both HTTP clients talking to that server and WebSocket clients

talking to that server. To this end, the WebSocket client's handshake

is an HTTP Upgrade request:

 GET /chat HTTP/1.1

 Host: server.example.com

 Upgrade: websocket

 Connection: Upgrade

 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

 Sec-WebSocket-Origin: http://example.com

 Sec-WebSocket-Protocol: chat, superchat

 Sec-WebSocket-Version: 6

Headers in the handshake are sent by the client in a random order; the

order is not meaningful.

Additional headers are used to select options in the WebSocket

protocol. Options available in this version are the subprotocol

selector, |Sec-WebSocket-Protocol|, and |Cookie|, which can used for

sending cookies to the server (e.g. as an authentication mechanism).

The |Sec-WebSocket-Protocol| request-header field can be used to

indicate what subprotocols (application-level protocols layered over

the WebSocket protocol) are acceptable to the client. The server

selects one of the acceptable protocols and echoes that value in its

handshake to indicate that it has selected that protocol.

 Sec-WebSocket-Protocol: chat

The "Request-URI" of the GET method [RFC2616] is used to identify the

endpoint of the WebSocket connection, both to allow multiple domains to

be served from one IP address and to allow multiple WebSocket endpoints

to be served by a single server.

The client includes the hostname in the Host header of its handshake as

per [RFC2616], so that both the client and the server can verify that

they agree on which host is in use.

The |Sec-WebSocket-Origin| header is used to protect against

unauthorized cross-origin use of a WebSocket server by scripts using

the |WebSocket| API in a Web browser. The server is informed of the

script origin generating the WebSocket connection request. If the

server does not wish to accept connections from this origin, it can

choose to abort the connection. This header is sent by browser clients,

for non-browser clients this header may be sent if it makes sense in

the context of those clients.

Finally, the server has to prove to the client that it received the

client's WebSocket handshake, so that the server doesn't accept

connections that are not WebSocket connections. This prevents an

attacker from tricking a WebSocket server by sending it carefully-

crafted packets using |XMLHttpRequest| or a |form| submission.

To prove that the handshake was received, the server has to take two

pieces of information and combine them to form a response. The first

piece of information comes from the |Sec-WebSocket-Key| header in the

client handshake:

 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

For this header, the server has to take the value (as present in the

header, e.g. the base64-encoded version), and concatenate this with the

GUID "258EAFA5-E914-47DA-95CA-C5AB0DC85B11" in string form, which is

unlikely to be used by network endpoints that do not understand the

WebSocket protocol. A SHA-1 hash, base64-encoded, of this concatenation

is then returned in the server's handshake [FIPS.180-2.2002].

Concretely, if as in the example above, header |Sec-WebSocket-Key| had

the value "dGhlIHNhbXBsZSBub25jZQ==", the server would concatenate the

string "258EAFA5-E914-47DA-95CA-C5AB0DC85B11" to form the string

"dGhlIHNhbXBsZSBub25jZQ==258EAFA5-E914-47DA-95CA-C5AB0DC85B11". The

server would then take the SHA-1 hash of this, giving the value 0xb3

0x7a 0x4f 0x2c 0xc0 0x62 0x4f 0x16 0x90 0xf6 0x46 0x06 0xcf 0x38 0x59

0x45 0xb2 0xbe 0xc4 0xea. This value is then base64-encoded, to give

the value "s3pPLMBiTxaQ9kYGzzhZRbK+xOo=". This value would then be

echoed in the header |Sec-WebSocket-Accept|.

The handshake from the server is much simpler than the client

handshake. The first line is an HTTP Status-Line, with the status code

101:

 HTTP/1.1 101 Switching Protocols

Any status code other than 101 MUST be treated as a failure if

semantics of that status code are not defined in the context of a

WebSocket connection, and the websocket connection aborted. The headers

follow the status code.

The |Connection| and |Upgrade| headers complete the HTTP Upgrade. The |

Sec-WebSocket-Accept| header indicates whether the server is willing to

accept the connection. If present, this header must include a hash of

the client's nonce sent in |Sec-WebSocket-Key| along with a predefined

GUID. Any other value must not be interpreted as an acceptance of the

connection by the server.

 HTTP/1.1 101 Switching Protocols

 Upgrade: websocket

 Connection: Upgrade

 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

These fields are checked by the Web browser when it is acting as a |

WebSocket| client for scripted pages. If the |Sec-WebSocket-Accept|

value does not match the expected value, or if the header is missing,

or if the HTTP status code is not 101, the connection will not be

established and WebSockets frames will not be sent.

Option fields can also be included. In this version of the protocol,

the main option field is |Sec-WebSocket-Protocol|, which indicates the

subprotocol that the server has selected. Web browsers verify that the

server included one of the values as was specified in the |WebSocket|

constructor. A server that speaks multiple subprotocols has to make

sure it selects one based on the client's handshake and specifies it in

its handshake.

 Sec-WebSocket-Protocol: chat

The server can also set cookie-related option fields to set cookies, as

in HTTP.

1.4. Closing handshake

This section is non-normative.

The closing handshake is far simpler than the opening handshake.

Either peer can send a control frame with data containing a specified

control sequence to begin the closing handshake (detailed in Section

4.5.1). Upon receiving such a frame, the other peer sends a close frame

in response, if it hasn't already sent one. Upon receiving that control

frame, the first peer then closes the connection, safe in the knowledge

that no further data is forthcoming.

After sending a control frame indicating the connection should be

closed, a peer does not send any further data; after receiving a

control frame indicating the connection should be closed, a peer

discards any further data received.

It is safe for both peers to initiate this handshake simultaneously.

The closing handshake is intended to replace the TCP closing handshake

(FIN/ACK), on the basis that the TCP closing handshake is not always

reliable end-to-end, especially in the presence of man-in-the-middle

proxies and other intermediaries.

By sending a close frame and waiting for a close frame in response,

1.5. Design philosophy

This section is non-normative.

The WebSocket protocol is designed on the principle that there should

be minimal framing (the only framing that exists is to make the

protocol frame-based instead of stream-based, and to support a

distinction between Unicode text and binary frames). It is expected

that metadata would be layered on top of WebSocket by the application

layer, in the same way that metadata is layered on top of TCP by the

application layer (HTTP).

Conceptually, WebSocket is really just a layer on top of TCP that adds

a Web "origin"-based security model for browsers; adds an addressing

and protocol naming mechanism to support multiple services on one port

and multiple host names on one IP address; layers a framing mechanism

on top of TCP to get back to the IP packet mechanism that TCP is built

on, but without length limits; and re-implements the closing handshake

in-band. Other than that, it adds nothing. Basically it is intended to

be as close to just exposing raw TCP to script as possible given the

constraints of the Web. It's also designed in such a way that its

servers can share a port with HTTP servers, by having its handshake be

a valid HTTP Upgrade handshake also.

The protocol is intended to be extensible; future versions will likely

introduce additional concepts such as multiplexing.

1.6. Security model

This section is non-normative.

The WebSocket protocol uses the origin model used by Web browsers to

restrict which Web pages can contact a WebSocket server when the

WebSocket protocol is used from a Web page. Naturally, when the

WebSocket protocol is used by a dedicated client directly (i.e. not

from a Web page through a Web browser), the origin model is not useful,

as the client can provide any arbitrary origin string.

This protocol is intended to fail to establish a connection with

servers of pre-existing protocols like SMTP or HTTP, while allowing

HTTP servers to opt-in to supporting this protocol if desired. This is

achieved by having a strict and elaborate handshake, and by limiting

the data that can be inserted into the connection before the handshake

is finished (thus limiting how much the server can be influenced).

It is similarly intended to fail to establish a connection when data

from other protocols, especially HTTP, is sent to a WebSocket server,

for example as might happen if an HTML |form| were submitted to a

WebSocket server. This is primarily achieved by requiring that the

server prove that it read the handshake, which it can only do if the

handshake contains the appropriate parts which themselves can only be

sent by a WebSocket handshake. In particular, at the time of writing of

this specification, fields starting with |Sec-| cannot be set by an

attacker from a Web browser using only HTML and JavaScript APIs such as

|XMLHttpRequest|.

1.7. Relationship to TCP and HTTP

This section is non-normative.

The WebSocket protocol is an independent TCP-based protocol. Its only

relationship to HTTP is that its handshake is interpreted by HTTP

servers as an Upgrade request.

Based on the expert recommendation of the IANA, the WebSocket protocol

by default uses port 80 for regular WebSocket connections and port 443

for WebSocket connections tunneled over TLS.

1.8. Establishing a connection

This section is non-normative.

When a connection is to be made to a port that is shared by an HTTP

server (a situation that is quite likely to occur with traffic to ports

80 and 443), the connection will appear to the HTTP server to be a

regular GET request with an Upgrade offer. In relatively simple setups

with just one IP address and a single server for all traffic to a

single hostname, this might allow a practical way for systems based on

the WebSocket protocol to be deployed. In more elaborate setups (e.g.

with load balancers and multiple servers), a dedicated set of hosts for

WebSocket connections separate from the HTTP servers is probably easier

to manage. At the time of writing of this specification, it should be

noted that connections on port 80 and 443 have significantly different

success rates, with connections on port 443 being significantly more

likely to succeed, though this may change with time.

1.9. Subprotocols using the WebSocket protocol

This section is non-normative.

The client can request that the server use a specific subprotocol by

including the |Sec-WebSocket-Protocol| field in its handshake. If it is

specified, the server needs to include the same field and one of the

selected subprotocol values in its response for the connection to be

established.

These subprotocol names do not need to be registered, but if a

subprotocol is intended to be implemented by multiple independent

WebSocket servers, potential clashes with the names of subprotocols

defined independently can be avoided by using names that contain the

domain name of the subprotocol's originator. For example, if Example

Corporation were to create a Chat subprotocol to be implemented by many

servers around the Web, they could name it "chat.example.com". If the

Example Organization called their competing subprotocol

"example.org's chat protocol", then the two subprotocols could be

implemented by servers simultaneously, with the server dynamically

selecting which subprotocol to use based on the value sent by the

client.

Subprotocols can be versioned in backwards-incompatible ways by

changing the subprotocol name, e.g. going from "bookings.example.net"

to "v2.bookings.example.net". These subprotocols would be considered

completely separate by WebSocket clients. Backwards-compatible

versioning can be implemented by reusing the same subprotocol string

but carefully designing the actual subprotocol to support this kind of

extensibility.

2. Conformance requirements

All diagrams, examples, and notes in this specification are non-

normative, as are all sections explicitly marked non-normative.

Everything else in this specification is normative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",

"RECOMMENDED", "MAY", and "OPTIONAL" in the normative parts of this

document are to be interpreted as described in RFC2119. For

readability, these words do not appear in all uppercase letters in this

specification. [RFC2119]

Requirements phrased in the imperative as part of algorithms (such as

"strip any leading space characters" or "return false and abort these

steps") are to be interpreted with the meaning of the key word ("must",

"should", "may", etc) used in introducing the algorithm.

Conformance requirements phrased as algorithms or specific steps may be

implemented in any manner, so long as the end result is equivalent. (In

particular, the algorithms defined in this specification are intended

to be easy to follow, and not intended to be performant.)

Implementations may impose implementation-specific limits on otherwise

unconstrained inputs, e.g. to prevent denial of service attacks, to

guard against running out of memory, or to work around platform-

specific limitations.

The conformance classes defined by this specification are user agents

and servers.

2.1. Terminology

ASCII shall mean the character-encoding scheme defined in

[ANSI.X3-4.1986].

Converting a string to ASCII lowercase means replacing all characters

in the range U+0041 to U+005A (i.e. LATIN CAPITAL LETTER A to LATIN

CAPITAL LETTER Z) with the corresponding characters in the range U+0061

to U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL LETTER Z).

Comparing two strings in an ASCII case-insensitive manner means

comparing them exactly, code point for code point, except that the

characters in the range U+0041 to U+005A (i.e. LATIN CAPITAL LETTER A

to LATIN CAPITAL LETTER Z) and the corresponding characters in the

range U+0061 to U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL LETTER

Z) are considered to also match.

The term "URI" is used in this section in a manner consistent with the

terminology used in HTML, namely, to denote a string that might or

might not be a valid URI or IRI and to which certain error handling

behaviors will be applied when the string is parsed. [RFC3986]

When an implementation is required to send data as part of the

WebSocket protocol, the implementation may delay the actual

transmission arbitrarily, e.g. buffering data so as to send fewer IP

packets.

3. WebSocket URIs

3.1. Parsing WebSocket URIs

The steps to parse a WebSocket URI's components from a string /uri/ are

as follows. These steps return either a /host/, a /port/, a /resource

name/, and a /secure/ flag, or they fail.

If the /uri/ string is not an absolute URI, then fail this

algorithm. [RFC3986] [RFC3987]

Resolve the /uri/ string using the resolve a Web address

algorithm defined by the Web addresses specification, with the

URI character encoding set to UTF-8. [RFC3629] [RFC3986]

[RFC3987]

NOTE: It doesn't matter what it is resolved relative to, since

we already know it is an absolute URI at this point.

If /uri/ does not have a <scheme> component whose value, when

converted to ASCII lowercase, is either "ws" or "wss", then

fail this algorithm.

1.

2.

3.

If /uri/ has a <fragment> component, then fail this algorithm.

If the <scheme> component of /uri/ is "ws", set /secure/ to

false; otherwise, if the <scheme> component is "wss", set /

secure/ to true; otherwise, fail this algorithm.

Let /host/ be the value of the <host> component of /uri/,

converted to ASCII lowercase.

If /uri/ has a <port> component, then let /port/ be that

component's value; otherwise, there is no explicit /port/.

If there is no explicit /port/, then: if /secure/ is false, let

/port/ be 80, otherwise let /port/ be 443.

Let /resource name/ be the value of the <path> component (which

might be empty) of /uri/.

If /resource name/ is the empty string, set it to a single

character U+002F SOLIDUS (/).

If /uri/ has a <query> component, then append a single U+003F

QUESTION MARK character (?) to /resource name/, followed by the

value of the <query> component.

Return /host/, /port/, /resource name/, and /secure/.

3.2. Constructing WebSocket URIs

The steps to construct a WebSocket URI from a /host/, a /port/, a /

resource name/, and a /secure/ flag, are as follows:

Let /uri/ be the empty string.

If the /secure/ flag is false, then append the string "ws://"

to /uri/. Otherwise, append the string "wss://" to /uri/.

Append /host/ to /uri/.

If the /secure/ flag is false and port is not 80, or if the /

secure/ flag is true and port is not 443, then append the

string ":" followed by /port/ to /uri/.

Append /resource name/ to /uri/.

Return /uri/.

4.

5.

6.

7.

8.

9.

10.

11.

12.

1.

2.

3.

4.

5.

6.

3.3. Valid WebSocket URIs

For a WebSocket URI to be considered valid, the following conditions

MUST hold.

The /host/ must be ASCII-only (i.e. it must have been punycode-

encoded already if necessary, and MUST NOT contain any characters

above U+007E).

The /resource name/ string must be a non-empty string of

characters in the range U+0021 to U+007E that starts with a

U+002F SOLIDUS character (/).

Any WebSocket URIs not meeting the above criteria are considered

invalid, and a client MUST NOT attempt to make a connection to an

invalid WebSocket URI. A client SHOULD attempt to parse a URI obtained

from any external source (such as a web site or a user) using the steps

specified in Section 3.1 to obtain a valid WebSocket URI, but MUST NOT

attempt to connect with such an unparsed URI, and instead only use the

parsed version and only if that version is considered valid by the

criteria above.

4. Data Framing

4.1. Overview

In the WebSocket protocol, data is transmitted using a sequence of

frames. Frames sent from the client to the server are masked to avoid

confusing network intermediaries, such as intercepting proxies. Frames

sent from the server to the client are not masked.

The base framing protocol defines a frame type with an opcode, a

payload length, and designated locations for extension and application

data, which together define the payload data. Certain bits and opcodes

are reserved for future expansion of the protocol. As such, In the

absence of extensions negotiated during the opening handshake (Section

5), all reserved bits MUST be 0 and reserved opcode values MUST NOT be

used.

A data frame MAY be transmitted by either the client or the server at

any time after handshake completion and before that endpoint has sent a

close message (Section 4.5.1).

4.2. Client-to-Server Masking

The client MUST mask all frames sent to the server.

The masking-key is contained completely within the frame.

The masking-key is a 32-bit value chosen at random by the client. The

masking-key MUST be derived from a strong source of entropy, and the

masking-key for a given frame MUST NOT make it simple for a server to

predict the masking-key for a subsequent frame.

*

*

 masked-frame = masking-key masked-data

 masking-key = 4full-octet

 masked-data = *full-octet

 full-octet = %x00-FF

Each masked frame consists of a 32-bit masking-key followed by masked-

data:

The masked-data is the clear-text frame "encrypted" using a simple XOR

cipher as follows.

Octet i of the masked-data is the XOR of octet i of the clear text

frame with octet i modulo 4 of the masking-key:

 j = i MOD 4

 masked-octet-i = clear-text-octet-i XOR octet-j-of-masking-key

When preparing a masked-frame, the client MUST pick a fresh masking-key

uniformly at random from the set of allowed 32-bit values. The

unpredictability of the masking-nonce is essential to prevent the

author of malicious application data from selecting the bytes that

appear on the wire.

4.3. Base Framing Protocol

This wire format for the data transfer part is described by the ABNF

given in detail in this section. A high level overview of the framing

is given in the following figure. [RFC5234]

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-------+-+-------------+-------------------------------+

 |F|R|R|R| opcode|R| Payload len | Extended payload length |

 |I|S|S|S| (4) |S| (7) | (16/63) |

 |N|V|V|V| |V| | (if payload len==126/127) |

 | |1|2|3| |4| | |

 +-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +

 | Extended payload length continued, if payload len == 127 |

 + - - - - - - - - - - - - - - - +-------------------------------+

 | | Extension data |

 +-------------------------------+ - - - - - - - - - - - - - - - +

 : :

 +---+

 : Application data :

 +---+

FIN:

RSV1, RSV2, RSV3, RSV4:

Opcode:

Payload length:

Extension data:

Application data:

1 bit

Indicates that this is the final fragment in a message. The first

fragment may also be the final fragment.

1 bit each

Must be 0 unless an extension is negotiated which defines meanings

for non-zero values

4 bits

Defines the interpretation of the payload data

7 bits

The length of the payload: if 0-125, that is the payload length. If

126, the following 2 bytes interpreted as a 16 bit unsigned integer

are the payload length. If 127, the following 8 bytes interpreted as

a 64-bit unsigned integer (the high bit must be 0) are the payload

length. Multibyte length quantities are expressed in network byte

order. The payload length is the length of the Extension data + the

length of the Application Data. The length of the Extension data may

be zero, in which case the Payload length is the length of the

Application data.

n bytes

The extension data is 0 bytes unless there is a reserved op-code or

reserved bit present in the frame which indicates an extension has

been negotiated. Any extension MUST specify the length of the

extension data, or how that length may be calculated, and its use

MUST be negotiated during the handshake. If present, the extension

data is included in the total payload length.

n bytes

Arbitrary application data, taking up the remainder of the frame

after any extension data. The length of the Application data is

equal to the payload length minus the length of the Extension data.

The base framing protocol is formally defined by the following ABNF

[RFC5234]:

 ws-frame = frame-fin

 frame-rsv1

 frame-rsv2

 frame-rsv3

 frame-opcode

 frame-rsv4

 frame-length

 frame-extension

 application-data;

 frame-fin = %x0 ; more frames of this message follow

 / %x1 ; final frame of message

 frame-rsv1 = %x0 ; 1 bit, must be 0

 frame-rsv2 = %x0 ; 1 bit, must be 0

 frame-rsv3 = %x0 ; 1 bit, must be 0

 frame-opcode = %x0 ; continuation frame

 / %x1 ; connection close

 / %x2 ; ping

 / %x3 ; pong

 / %x4 ; text frame

 / %x5 ; binary frame

 / %x6-F ; reserved

 frame-rsv4 = %x0 ; 1 bit, must be 0

 frame-length = %x00-7D

 / %x7E frame-length-16

 / %x7F frame-length-63

 frame-length-16 = %x0000-FFFF

 frame-length-63 = %x0000000000000000-7FFFFFFFFFFFFFFF

 frame-extension = *(%x00-FF) ; to be defined later

 application-data = *(%x00-FF)

4.4. Fragmentation

The primary purpose of fragmentation is to allow sending a message that

is of unknown size when the message is started without having to buffer

that message. If messages couldn't be fragmented, then an endpoint

would have to buffer the entire message so its length could be counted

before first byte is sent. With fragmentation, a server or intermediary

may choose a reasonable size buffer, and when the buffer is full write

a fragment to the network.

A secondary use-case for fragmentation is for multiplexing, where it is

not desirable for a large message on one logical channel to monopolize

the output channel, so the MUX needs to be free to split the message

into smaller fragments to better share the output channel.

The following rules apply to fragmentation:

An unfragmented message consists of a single frame with the FIN

bit set and an opcode other than 0.

A fragmented message consists of a single frame with the FIN bit

clear and an opcode other than 0, followed by zero or more frames

with the FIN bit clear and the opcode set to 0, and terminated by

a single frame with the FIN bit set and an opcode of 0. Its

content is the concatenation of the application data from each of

those frames in order. As an example, for a text message sent as

three fragments, the first fragment would have an opcode of 0x4

and a FIN bit clear, the second fragment would have an opcode of

0x0 and a FIN bit clear, and the third fragment would have an

opcode of 0x0 and a FIN bit that is set.

Control frames MAY be injected in the middle of a fragmented

message. Control frames themselves MUST NOT be fragmented. Note:

if control frames could not be interjected, the latency of a

ping, for example, would be very long if behind a large message.

As such, an endpoint MUST be capable of handling control frames

in the middle of a fragmented message.

A sender MAY create fragments of any size for non control

messages.

Clients and servers MUST support receiving both fragmented and

unfragmented messages.

An intermediary MAY change the fragmentation of a message if the

message uses only opcode and reserved bit values known to the

intermediary.

As a consequence of these rules, all fragments of a message are

of the same type, as set by the first fragment’s opcode. Since

Control frames cannot be fragmented, the type for all fragments

in a message MUST be either text or binary, or one of the

reserved opcodes.

4.5. Control Frames

Control frames have opcodes of 0x01 (Close), 0x02 (Ping), or 0x03

(Pong). Control frames are used to communicate state about the

websocket. Control frames can be interjected in the middle of a

fragmented message.

*

*

*

*

*

*

*

Text

All control frames MUST be 125 bytes or less in length and MUST NOT be

fragmented.

4.5.1. Close

The Close message contains an opcode of 0x01.

The Close message MAY contain a body (the "application data" portion of

the frame) that indicates a reason for closing, such as an endpoint

shutting down, an endpoint having received a message too large, or an

endpoint having received a message that does not conform to the format

expected by the other endpoint. If there is a body, the first two bytes

of the body MUST be a 2-byte integer (in network byte order)

representing a status code defined in Section 7.4. Following the 2-byte

integer the body MAY contain UTF-8 encoded data, the interpretation of

which is not defined by this specification.

The application MUST NOT send any more data messages after sending a

close message.

If an endpoint receives a Close message and that endpoint did not

previously send a Close message, the endpoint MUST send a Close message

in response. It SHOULD do so as soon as is practical.

After both sending and receiving a close message, an endpoint considers

the websocket connection closed, and SHOULD close the underlying TCP

connection.

If a client and server both send a Close message at the same time, both

endpoints will have sent and received a Close message and should

consider the websocket connection closed and close the underlying TCP

connection.

4.5.2. Ping

The Ping message contains an opcode of 0x02.

Upon receipt of a Ping message, an endpoint MUST send a Pong message in

response. It SHOULD do so as soon as is practical. The message bodies

of the Ping and Pong MUST be the same.

4.5.3. Pong

The Pong message contains an opcode of 0x03.

Upon receipt of a Ping message, an endpoint MUST send a Pong message in

response. It SHOULD do so as soon as is practical. The message bodies

of the Ping and Pong MUST be the same. A Pong is issued only in

response to the most recent Ping.

4.6. Data Frames

All frame types not listed in Section 4.5 are data frames, which

transport application-layer data. The opcode determines the

interpretation of the application data:

Binary

The payload data is text data encoded as UTF-8.

The payload data is arbitrary binary data whose interpretation is

solely up to the application layer.

4.7. Examples

This section is non-normative.

A single-frame text message

0x84 0x05 0x48 0x65 0x6c 0x6c 0x6f (contains "Hello")

A fragmented text message

0x04 0x03 0x48 0x65 0x6c (contains "Hel")

0x80 0x02 0x6c 0x6f (contains "lo")

Ping request and response

0x82 0x05 0x48 0x65 0x6c 0x6c 0x6f (contains a body of

"Hello", but the contents of the body are arbitrary)

0x83 0x05 0x48 0x65 0x6c 0x6c 0x6f (contains a body of

"Hello", matching the body of the ping)

256 bytes binary message in a single frame

0x85 0x7E 0x0100 [256 bytes of binary data]

64KiB binary message in a single frame

0x85 0x7F 0x0000000000010000 [65536 bytes of binary data]

4.8. Extensibility

The protocol is designed to allow for extensions, which will add

capabilities to the base protocols. The endpoints of a connection MUST

negotiate the use of any extensions during the handshake. This

specification provides opcodes 0x6 through 0xF, the extension data

field, and the frame-rsv1, frame-rsv2, frame-rsv3, and frame-rsv4 bits

of the frame header for use by extensions. The negotiation of

extensions is discussed in further detail in Section 8.1. Below are

*

-

*

-

-

*

-

-

*

-

*

-

some anticipated uses of extensions. This list is neither complete nor

proscriptive.

Extension data may be placed in the payload before the

application data.

Reserved bits can be allocated for per-frame needs.

Reserved opcode values can be defined.

Reserved bits can be allocated to the opcode field if more opcode

values are needed.

A reserved bit or an "extension" opcode can be defined which

allocates additional bits out of the payload area to define

larger opcodes or more per-frame bits.

5. Opening Handshake

5.1. Client Requirements

User agents running in controlled environments, e.g. browsers on mobile

handsets tied to specific carriers, may offload the management of the

connection to another agent on the network. In such a situation, the

user agent for the purposes of conformance is considered to include

both the handset software and any such agents.

 CONNECT example.com:80 HTTP/1.1

 Host: example.com

 CONNECT example.com:80 HTTP/1.1

 Host: example.com

 Proxy-authorization: Basic ZWRuYW1vZGU6bm9jYXBlcyE=

When the user agent is to establish a WebSocket connection to a

WebSocket URI /uri/, it must meet the following requirements. In the

following text, we will use terms from Section 3 such as "/host/" and

"/secure/ flag" as defined in that section.

The WebSocket URI and its components MUST be valid according to

Section 3.3. If any of the requirements are not met, the client

MUST fail the WebSocket connection and abort these steps.

If the user agent already has a WebSocket connection to the

remote host (IP address) identified by /host/, even if known by

another name, the user agent MUST wait until that connection

has been established or for that connection to have failed.

There MUST be no more than one connection in a CONNECTING

*

*

*

*

*

1.

2.

state. If multiple connections to the same IP address are

attempted simultaneously, the user agent MUST serialize them so

that there is no more than one connection at a time running

through the following steps.

If the user agent cannot determine the IP address of the remote

host (for example because all communication is being done

through a proxy server that performs DNS queries itself), then

the user agent MUST assume for the purposes of this step that

each host name refers to a distinct remote host, but should

instead limit the total number of simultaneous connections that

are not established to a reasonably low number (e.g., in a Web

browser, to the number of tabs the user has open).

NOTE: This makes it harder for a script to perform a denial of

service attack by just opening a large number of WebSocket

connections to a remote host. A server can further reduce the

load on itself when attacked by making use of this by pausing

before closing the connection, as that will reduce the rate at

which the client reconnects.

NOTE: There is no limit to the number of established WebSocket

connections a user agent can have with a single remote host.

Servers can refuse to connect users with an excessive number of

connections, or disconnect resource-hogging users when

suffering high load.

Proxy Usage: If the user agent is configured to use a proxy

when using the WebSocket protocol to connect to host /host/

and/or port /port/, then the user agent SHOULD connect to that

proxy and ask it to open a TCP connection to the host given by

/host/ and the port given by /port/.

EXAMPLE: For example, if the user agent uses an HTTP proxy

for all traffic, then if it was to try to connect to port 80

on server example.com, it might send the following lines to

the proxy server:

If there was a password, the connection might look like:

If the user agent is not configured to use a proxy, then a

direct TCP connection SHOULD be opened to the host given by /

host/ and the port given by /port/.

NOTE: Implementations that do not expose explicit UI for

selecting a proxy for WebSocket connections separate from other

proxies are encouraged to use a SOCKS proxy for WebSocket

3.

*

*

connections, if available, or failing that, to prefer the proxy

configured for HTTPS connections over the proxy configured for

HTTP connections.

For the purpose of proxy autoconfiguration scripts, the URI to

pass the function must be constructed from /host/, /port/, /

resource name/, and the /secure/ flag using the steps to

construct a WebSocket URI.

NOTE: The WebSocket protocol can be identified in proxy

autoconfiguration scripts from the scheme ("ws:" for

unencrypted connections and "wss:" for encrypted connections).

If the connection could not be opened, either because a direct

connection failed or because any proxy used returned an error,

then the user agent MUST fail the WebSocket connection and

abort the connection attempt.

If /secure/ is true, the user agent MUST perform a TLS

handshake over the connection. If this fails (e.g. the server's

certificate could not be verified), then the user agent MUST

fail the WebSocket connection and abort the connection.

Otherwise, all further communication on this channel MUST run

through the encrypted tunnel. [RFC2246]

User agents MUST use the Server Name Indication extension in

the TLS handshake. [RFC4366]

Once a connection to the server has been established (including a

connection via a proxy or over a TLS-encrypted tunnel), the client MUST

send a handshake to the server. The handshake consists of an HTTP

upgrade request, along with a list of required and optional headers.

The requirements for this handshake are as follows.

The handshake must be a valid HTTP request as specified by

[RFC2616].

The Method of the request MUST be GET and the HTTP version MUST

be at least 1.1.

For example, if the WebSocket URI is "ws://example.com/chat",

The first line sent SHOULD be "GET /chat HTTP/1.1"

The request must contain a "Request-URI" as part of the GET

method. This MUST match the /resource name/ Section 3.

The request MUST contain a "Host" header whose value is equal

to the authority component of the WebSocket URI.

4.

5.

1.

2.

3.

4.

The request MUST contain an "Upgrade" header whose value is

equal to "websocket".

The request MUST contain a "Connection" header whose value MUST

include the "Upgrade" token.

The request MUST include a header with the name "Sec-WebSocket-

Key". The value of this header MUST be a nonce consisting of a

randomly selected 16-byte value that has been base64-encoded

[RFC3548]. The nonce MUST be randomly selected randomly for

each connection.

NOTE: As an example, if the randomly selected value was the

sequence of bytes 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09

0x0a 0x0b 0x0c 0x0d 0x0e 0x0f 0x10, the value of the header

would be "AQIDBAUGBwgJCgsMDQ4PEC=="

The request MUST include a header with the name "Sec-WebSocket-

Origin" if the request is coming from a browser client. If the

connection is from a non-browser client, the request MAY

include this header if the semantics of that client match the

use-case described here for browser clients. The value of this

header MUST be the ASCII serialization of origin of the context

in which the code establishing the connection is running, and

MUST be lower-case. The value MUST NOT contain letters in the

range U+0041 to U+005A (i.e. LATIN CAPITAL LETTER A to LATIN

CAPITAL LETTER Z) [I-D.ietf-websec-origin].

As an example, if code is running on www.example.com attempting

to establish a connection to ww2.example.com, the value of the

header would be "http://www.example.com".

The request MUST include a header with the name "Sec-WebSocket-

Version". The value of this header must be 6.

The request MAY include a header with the name "Sec-WebSocket-

Protocol". If present, this value indicates the subprotocol(s)

the client wishes to speak. The elements that comprise this

value MUST be non-empty strings with characters in the range

U+0021 to U+007E and MUST all be unique. The ABNF for the value

of this header is 1#(token | quoted-string), where the

definitions of constructs and rules are as given in [RFC2616].

The request MAY include a header with the name "Sec-WebSocket-

Extensions". If present, this value indicates the protocol-

level extension(s) the client wishes to speak. The

interpretation and format of this header is described in

Section 8.1.

5.

6.

7.

8.

9.

10.

11.

The request MAY include headers associated with sending

cookies, as defined by the appropriate specifications [I-

D.ietf-httpstate-cookie].

Once the client's opening handshake has been sent, the client MUST wait

for a response from the server before sending any further data. The

client MUST validate the server's response as follows:

If the status code received from the server is not 101, the

client MUST fail the WebSocket connection.

If the response lacks an Upgrade header or the Upgrade header

contains a value that is not an ASCII case-insensitive match for

the value "websocket", the client MUST fail the WebSocket

connection.

If the response lacks a Connection header or the Connection

header contains a value that is not an ASCII case-insensitive

match for the value "Upgrade", the client MUST fail the WebSocket

connection.

If the response lacks a Sec-WebSocket-Accept header or the Sec-

WebSocket-Accept contains a value other than the base64-encoded

SHA-1 of the concatenation of the Sec-WebSocket-Key (as a string,

not base64-decoded) with the string "258EAFA5-E914-47DA-95CA-

C5AB0DC85B11", the client MUST fail the WebSocket connection.

Where the algorithm above requires that a user agent fail the WebSocket

connection, the user agent may first read an arbitrary number of

further bytes from the connection (and then discard them) before

actually failing the WebSocket connection. Similarly, if a user agent

can show that the bytes read from the connection so far are such that

there is no subsequent sequence of bytes that the server can send that

would not result in the user agent being required to fail the WebSocket

connection, the user agent may immediately fail the WebSocket

connection without waiting for those bytes.

NOTE: The previous paragraph is intended to make it conforming for user

agents to implement the algorithm in subtly different ways that are

equivalent in all ways except that they terminate the connection at

earlier or later points. For example, it enables an implementation to

buffer the entire handshake response before checking it, or to verify

each field as it is received rather than collecting all the fields and

then checking them as a block.

5.2. Server-side requirements

This section only applies to servers.

Servers may offload the management of the connection to other agents on

the network, for example load balancers and reverse proxies. In such a

situation, the server for the purposes of conformance is considered to

12.

*

*

*

*

include all parts of the server-side infrastructure from the first

device to terminate the TCP connection all the way to the server that

processes requests and sends responses.

EXAMPLE: For example, a data center might have a server that responds

to WebSocket requests with an appropriate handshake, and then passes

the connection to another server to actually process the data frames.

For the purposes of this specification, the "server" is the combination

of both computers.

5.2.1. Reading the client's opening handshake

When a client starts a WebSocket connection, it sends its part of the

opening handshake. The server must parse at least part of this

handshake in order to obtain the necessary information to generate the

server part of the handshake.

The client handshake consists of the following parts. If the server,

while reading the handshake, finds that the client did not send a

handshake that matches the description below, the server must abort the

WebSocket connection.

An HTTP/1.1 or higher GET request, including a "Request-URI"

[RFC2616] that should be interpreted as a /resource name/

Section 3.

A "Host" header containing the server's authority.

A "Sec-WebSocket-Key" header with a base64-encoded value that,

when decoded, is 16 bytes in length.

A "Sec-WebSocket-Version" header, with a value of 6.

Optionally, a "Sec-WebSocket-Origin" header. This header is

sent by all browser clients. A connection attempt lacking this

header SHOULD NOT be interpreted as coming from a browser

client.

Optionally, a "Sec-WebSocket-Protocol header, with a list of

values indicating which protocols the client would like to

speak, ordered by preference.

Optionally, a "Sec-WebSocket-Extensions" header, with a list of

values indicating which extensions the client would like to

speak. The interpretation of this header is discussed in

Section 8.1.

Optionally, other headers, such as those used to send cookies

to a server. Unknown headers MUST be ignored.

1.

2.

3.

4.

5.

6.

7.

8.

/origin/

/key/

/version/

/resource name/

5.2.2. Sending the server's opening handshake

When a client establishes a WebSocket connection to a server, the

server must complete the following steps to accept the connection and

send the server's opening handshake.

If the server supports encryption, perform a TLS handshake over

the connection. If this fails (e.g. the client indicated a host

name in the extended client hello "server_name" extension that

the server does not host), then close the connection;

otherwise, all further communication for the connection

(including the server handshake) must run through the encrypted

tunnel. [RFC2246]

Establish the following information:

The |Sec-WebSocket-Origin| header in the client's

handshake indicates the origin of the script establishing

the connection. The origin is serialized to ASCII and

converted to lowercase. The server MAY use this information

as part of a determination of whether to accept the incoming

connection.

The |Sec-WebSocket-Key| header in the client's handshake

includes a base64-encoded value that, if decoded, is 16

bytes in length. This (encoded) value is used in the

creation of the server's handshake to indicate an acceptance

of the connection. It is not necessary for the server to

base64-decode the Sec-WebSocket-Key value.

The |Sec-WebSocket-Version| header in the client's

handshake includes the version of the WebSocket protocol the

client is attempting to communicate with. If this version

does not match a version understood by the server, the

server MUST abort the WebSocket connection. The server MAY

send a non-200 response code with a |Sec-WebSocket-Version|

header indicating the version(s) the server is capable of

understanding along with this non-200 response code.

An identifier for the service provided by the

server. If the server provides multiple services, then the

value should be derived from the resource name given in the

1.

2.

/subprotocol/

/extensions/

client's handshake from the Request-URI [RFC2616] of the GET

method.

A (possibly empty) list representing the

subprotocol the server is ready to use. If the server

supports multiple subprotocols, then the value should be

derived from the client's handshake, specifically by

selecting one of the values from the "Sec-WebSocket-

Protocol" field. The absence of such a field is equivalent

to the null value. The empty string is not the same as the

null value for these purposes.

A (possibly empty) list representing the

protocol-level extensions the server is ready to use. If the

server supports multiple extensions, then the value should

be derived from the client's handshake, specifically by

selecting one or more of the values from the "Sec-WebSocket-

Extensions" field. The absence of such a field is equivalent

to the null value. The empty string is not the same as the

null value for these purposes. Extensions not listed by the

client MUST NOT be listed. The method by which these values

should be selected and interpreted is discussed in Section

8.1.

If the server chooses to accept the incoming connection, it

must reply with a valid HTTP response indicating the following.

A 101 response code. Such a response could look like

"HTTP/1.1 101 Switching Protocols"

A "Sec-WebSocket-Accept" header. The value of this header

is constructed by concatenating /key/, defined above in

[server_handshake_info] of Section 5.2.2, with the string

"258EAFA5-E914-47DA-95CA-C5AB0DC85B11", taking the SHA-1

hash of this concatenated value to obtain a 20-byte value,

and base64-encoding this 20-byte hash.

NOTE: As an example, if the value of the "Sec-WebSocket-

Key" header in the client's handshake were

"dGhlIHNhbXBsZSBub25jZQ==", the server would append the

string "258EAFA5-E914-47DA-95CA-C5AB0DC85B11" to form the

string "dGhlIHNhbXBsZSBub25jZQ==258EAFA5-E914-47DA-95CA-

C5AB0DC85B11". The server would then take the SHA-1 hash

of this string, giving the value 0xb3 0x7a 0x4f 0x2c 0xc0

0x62 0x4f 0x16 0x90 0xf6 0x46 0x06 0xcf 0x38 0x59 0x45

0xb2 0xbe 0xc4 0xea. This value is then base64-encoded, to

give the value "s3pPLMBiTxaQ9kYGzzhZRbK+xOo=", which would

be returned in the "Sec-WebSocket-Accept" header.

3.

1.

2.

Optionally, a "Sec-WebSocket-Protocol" header, with a

value /subprotocol/ as defined in [server_handshake_info]

of Section 5.2.2.

Optionally, a "Sec-WebSocket-Extensions" header, with a

value /extensions/ as defined in [server_handshake_info]

of Section 5.2.2.

This completes the server's handshake. If the server finishes these

steps without aborting the WebSocket connection, and if the client does

not then fail the WebSocket connection, then the connection is

established and the server may begin sending and receiving data, as

described in the next section.

6. Error Handling

6.1. Handling errors in UTF-8 from the server

When a client is to interpret a byte stream as UTF-8 but finds that the

byte stream is not in fact a valid UTF-8 stream, then any bytes or

sequences of bytes that are not valid UTF-8 sequences must be

interpreted as a U+FFFD REPLACEMENT CHARACTER.

6.2. Handling errors in UTF-8 from the client

When a server is to interpret a byte stream as UTF-8 but finds that the

byte stream is not in fact a valid UTF-8 stream, behavior is undefined.

A server could close the connection, convert invalid byte sequences to

U+FFFD REPLACEMENT CHARACTERs, store the data verbatim, or perform

application-specific processing. Subprotocols layered on the WebSocket

protocol might define specific behavior for servers.

7. Closing the connection

7.1. Definitions

7.1.1. Close the WebSocket Connection

To Close the WebSocket Connection, an endpoint closes the underlying

TCP connection. An endpoint SHOULD use a method that cleanly closes the

TCP connection, discarding any trailing bytes that may be received. And

endpoint MAY close the connection via any means available when

necessary, such as when under attack.

As an example of how to obtain a clean closure in C using Berkeley

sockets, one would call shutdown() with SHUT_WR on the socket, call

recv() until obtaining a return value of 0 indicating that the peer has

also performed an orderly shutdown, and finally calling close() on the

socket.

3.

4.

7.1.2. Start the WebSocket Closing Handshake

To start the WebSocket closing handshake, and endpoint MUST send a

Close control frame, as described in Section 4.5.1. Upon receiving a

Close control frame, the other party sends a Close control frame in

response. Once an endpoint has both sent and received a Close control

frame, that endpoint should Close the WebSocket Connection as defined

in Section 7.1.1.

7.1.3. The WebSocket Connection Is Closed

When the underlying TCP connection is closed, it is said that the

WebSocket connection is closed. If the tcp connection was closed after

the WebSocket closing handshake was completed, the WebSocket connection

is said to have been closed cleanly.

7.1.4. Fail the WebSocket Connection

Certain algorithms and specifications require a user agent to fail the

WebSocket connection. To do so, the user agent must Close the WebSocket

Connection, and MAY report the problem to the user (which would be

especially useful for developers) in an appropriate manner.

Except as indicated above or as specified by the application layer

(e.g. a script using the WebSocket API), user agents SHOULD NOT close

the connection.

7.2. Abnormal closures

7.2.1. Client-initiated closure

Certain algorithms, namely during the initial handshake, require the

user agent to fail the WebSocket connection. To do so, the user agent

must Close the WebSocket connection as previously defined, and may

report the problem to the user via an appropriate mechanism (which

would be especially useful for developers).

Except as indicated above or as specified by the application layer

(e.g. a script using the WebSocket API), user agents should not close

the connection.

7.2.2. Server-initiated closure

Certain algorithms require or recommend that the server abort the

WebSocket connection during the opening handshake. To do so, the server

must simply close the WebSocket connection (Section 7.1.1).

7.3. Normal closure of connections

Servers MAY close the WebSocket connection whenever desired. User

agents SHOULD NOT close the WebSocket connection arbitrarily. In either

1000

1001

1002

1003

1004

0-999

case, an endpoint initiates a closure by following the procedures to

start the WebSocket closing handshake (Section 7.1.2).

7.4. Status codes

When closing an established connection (e.g. when sending a Close

frame, after the handshake has completed), an endpoint MAY indicate a

reason for closure. The interpretation of this reason by an endpoint,

and the action an endpoint should take given this reason, are left

undefined by this specification. This specification defines a set of

pre-defined status codes, and specifies which ranges may be used by

extensions, frameworks, and end applications. The status code and any

associated textual message are optional components of a Close frame.

7.4.1. Defined Status Codes

Endpoints MAY use the following pre-defined status codes when sending a

Close frame.

1000 indicates a normal closure, meaning whatever purpose the

connection was established for has been fulfilled.

1001 indicates that an endpoint is "going away", such as a server

going down, or a browser having navigated away from a page.

1002 indicates that an endpoint is terminating the connection due to

a protocol error.

1003 indicates that an endpoint is terminating the connection

because it has received a type of data it cannot accept (e.g. an

endpoint that understands only text data may send this if it

receives a binary message.)

1004 indicates that an endpoint is terminating the connection

because it has received a message that is too large.

7.4.2. Reserved status code ranges

Status codes in the range 0-999 are not used.

1000-1999

2000-2999

3000-3999

4000-4999

Status codes in the range 1000-1999 are reserved for definition by

this protocol.

Status codes in the range 2000-2999 are reserved for use by

extensions.

Status codes in the range 3000-3999 MAY be used by libraries and

frameworks. The interpretation of these codes is undefined by this

protocol. End applications MUST NOT use status codes in this range.

Status codes in the range 4000-4999 MAY be used by application code.

The interpretaion of these codes is undefined by this protocol.

8. Extensions

WebSocket clients MAY request extensions to this specification, and

WebSocket servers MAY accept some or all extensions requested by the

client. A server MUST NOT respond with any extension not requested by

the client. If extension parameters are included in negotiations

between the client and the server, those parameters MUST be chosen in

accordance with the specification of the extension to which the

parameters apply.

8.1. Negotiating extensions

A client requests extensions by including a "Sec-WebSocket-Extensions"

header, which follows the normal rules for HTTP headers (see [RFC2616]

section 4.2) and the value of the header is defined by the following

ABNF:

 extension-list = 1#extension

 extension = extension-token *(";" extension-param)

 extension-token = registered-token | private-use-token

 registered-token = token

 private-use-token = "x-" token

 extension-param = token ["=" (token | quoted-string)]

Note that like other HTTP headers, this header may be split or combined

across multiple lines. Ergo, the following are equivalent:

 Sec-WebSocket-Extensions: foo

 Sec-WebSocket-Extensions: bar; baz=2

is exactly equivalent to

 Sec-WebSocket-Extensions: foo, bar; baz=2

Any extension-token used must either be a registered token

(registration TBD), or have a prefix of "x-" to indicate a private-use

token. The parameters supplied with any given extension MUST be defined

for that extension. Note that the client is only offering to use any

advertised extensions, and MUST NOT use them unless the server accepts

the extension.

Note that the order of extensions is significant. Any interactions

between multiple extensions MAY be defined in the documents defining

the extensions. In the absence of such definition, the interpretation

is that the headers listed by the client in its request represent a

preference of the headers it wishes to use, with the first options

listed being most preferable. The extensions listed by the server in

response represent the extensions actually in use. Should the

extensions modify the data and/or framing, the order of operations on

the data should be assumed to be the same as the order in which the

extensions are listed in the server's response in the opening

handshake.

For example, if there are two extensions "foo" and "bar", if the header

|Sec-WebSocket-Extensions| sent by the server has the value "foo, bar"

then operations on the data will be made as bar(foo(data)), be those

changes to the data itself (such as compression) or changes to the

framing thay may "stack".

Non-normative examples of acceptable extension headers:

 Sec-WebSocket-Extensions: deflate-stream

 Sec-WebSocket-Extensions: mux; max-channels=4; flow-control, deflate-stream

 Sec-WebSocket-Extensions: x-private-extension

A server accepts one or more extensions by including a |Sec-WebSocket-

Extensions| header containing one or more extensions which were

requested by the client. The interpretation of any extension

parameters, and what constitutes a valid response by a server to a

requested set of parameters by a client, will be defined by each such

extension.

8.2. Known extensions

Extensions provide a mechanism for implementations to opt-in to

additional protocol features. This section defines the meaning of well-

known extensions but implementations may use extensions defined

separately as well.

8.2.1. Compression

The registered extension token for this compression extension is

"deflate-stream".

The extension does not have any per message extension data and it does

not define the use of any WebSocket reserved bits or op codes.

Senders using this extension MUST apply RFC 1951 encodings to all bytes

of the data stream following the handshake including both data and

control messages. The data stream MAY include multiple blocks of both

compressed and uncompressed types as defined by RFC 1951. [RFC1951]

Senders MUST NOT delay the transmission of any portion of a WebSocket

message because the deflate encoding of the message does not end on a

byte boundary. The encodings for adjacent messages MAY appear in the

same byte if no delay in transmission is occurred by doing so.

9. Security considerations

While this protocol is intended to be used by scripts in Web pages, it

can also be used directly by hosts. Such hosts are acting on their own

behalf, and can therefore send fake "Origin" fields, misleading the

server. Servers should therefore be careful about assuming that they

are talking directly to scripts from known origins, and must consider

that they might be accessed in unexpected ways. In particular, a server

should not trust that any input is valid.

EXAMPLE: For example, if the server uses input as part of SQL queries,

all input text should be escaped before being passed to the SQL server,

lest the server be susceptible to SQL injection.

Servers that are not intended to process input from any Web page but

only for certain sites should verify the "Origin" field is an origin

they expect, and should only respond with the corresponding "Sec-

WebSocket-Origin" if it is an accepted origin. Servers that only accept

input from one origin can just send back that value in the "Sec-

WebSocket-Origin" field, without bothering to check the client's value.

If at any time a server is faced with data that it does not understand,

or that violates some criteria by which the server determines safety of

input, or when the server sees a handshake that does not correspond to

the values the server is expecting (e.g. incorrect path or origin), the

server should just disconnect. It is always safe to disconnect.

The biggest security risk when sending text data using this protocol is

sending data using the wrong encoding. If an attacker can trick the

server into sending data encoded as ISO-8859-1 verbatim (for instance),

URI scheme name.

Status.

URI scheme syntax.

URI scheme semantics.

Encoding considerations.

rather than encoded as UTF-8, then the attacker could inject arbitrary

frames into the data stream.

In addition to endpoints being the target of attacks via WebSockets,

other parts of web infrastructure, such as proxies, may be the subject

of an attack. In particular, an intermediary may interpret a WebSocket

message from a client as a request, and a message from the server as a

response to that request. For instance, an attacker could get a browser

to establish a connection to its server, get the browser to send a

message that looks to an intermediary like a GET request for a common

piece of JavaScript on another domain, and send back a message that is

interpreted as a cacheable response to that request, thus poisioning

the cache for other users. To prevent this attack, messages sent from

clients are masked on the wire with a 32-bit value, to prevent an

attacker from controlling the bits on the wire and thus lessen the

probability of an attacker being able to construct a message that can

be misinterpreted by a proxy as a non-WebSocket request.

10. IANA considerations

10.1. Registration of ws: scheme

 "ws" ":" hier-part ["?" query]

A |ws:| URI identifies a WebSocket server and resource name.

ws

Permanent.

In ABNF terms using the terminals from the URI

specifications: [RFC5234][RFC3986]

The path and query components form the resource name sent to the

server to identify the kind of service desired. Other components

have the meanings described in RFC3986.

The only operation for this scheme is to open a

connection using the WebSocket protocol.

Characters in the host component that are

excluded by the syntax defined above must be converted from Unicode

Applications/protocols that use this URI scheme name.

Interoperability considerations.

Security considerations.

Contact.

Author/Change controller.

References.

URI scheme name.

Status.

URI scheme syntax.

to ASCII by applying the IDNA ToASCII algorithm to the Unicode host

name, with both the AllowUnassigned and UseSTD3ASCIIRules flags set,

and using the result of this algorithm as the host in the URI.

[RFC3490]

Characters in other components that are excluded by the syntax

defined above must be converted from Unicode to ASCII by first

encoding the characters as UTF-8 and then replacing the

corresponding bytes using their percent-encoded form as defined in

the URI and IRI specification. [RFC3986] [RFC3987]

WebSocket

protocol.

None.

See "Security considerations" section above.

Ian Hickson <ian@hixie.ch>

Ian Hickson <ian@hixie.ch>

This document.

10.2. Registration of wss: scheme

 "wss" ":" hier-part ["?" query]

A |wss:| URI identifies a WebSocket server and resource name, and

indicates that traffic over that connection is to be encrypted.

wss

Permanent.

In ABNF terms using the terminals from the URI

specifications: [RFC5234][RFC3986]

The path and query components form the resource name sent to the

URI scheme semantics.

Encoding considerations.

Applications/protocols that use this URI scheme name.

Interoperability considerations.

Security considerations.

Contact.

Author/Change controller.

References.

Name of token.

Author/Change controller.

Contact.

server to identify the kind of service desired. Other components

have the meanings described in RFC3986.

The only operation for this scheme is to open a

connection using the WebSocket protocol, encrypted using TLS.

Characters in the host component that are

excluded by the syntax defined above must be converted from Unicode

to ASCII by applying the IDNA ToASCII algorithm to the Unicode host

name, with both the AllowUnassigned and UseSTD3ASCIIRules flags set,

and using the result of this algorithm as the host in the URI.

[RFC3490]

Characters in other components that are excluded by the syntax

defined above must be converted from Unicode to ASCII by first

encoding the characters as UTF-8 and then replacing the

corresponding bytes using their percent-encoded form as defined in

the URI and IRI specification. [RFC3986] [RFC3987]

WebSocket

protocol over TLS.

None.

See "Security considerations" section above.

Ian Hickson <ian@hixie.ch>

Ian Hickson <ian@hixie.ch>

This document.

10.3. Registration of the "WebSocket" HTTP Upgrade keyword

WebSocket

Ian Hickson <ian@hixie.ch>

Ian Hickson <ian@hixie.ch>

References.

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Related information

Header field name

Applicable protocol

Status

Author/Change controller

This document.

10.4. Sec-WebSocket-Key

This section describes a header field for registration in the Permanent

Message Header Field Registry. [RFC3864]

Sec-WebSocket-Key

http

reserved; do not use outside WebSocket handshake

IETF

This document is the relevant specification.

None.

The |Sec-WebSocket-Key| header is used in the WebSocket handshake. It

is sent from the client to the server to provide part of the

information used by the server to prove that it received a valid

WebSocket handshake. This helps ensure that the server does not accept

connections from non-WebSocket clients (e.g. HTTP clients) that are

being abused to send data to unsuspecting WebSocket servers.

10.5. Sec-WebSocket-Extensions

This section describes a header field for registration in the Permanent

Message Header Field Registry. [RFC3864]

Sec-WebSocket-Extensions

http

reserved; do not use outside WebSocket handshake

IETF

Specification document(s)

Related information

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Related information

This document is the relevant specification.

None.

The |Sec-WebSocket-Extensions| header is used in the WebSocket

handshake. It is initially sent from the client to the server, and then

subsequently sent from the servver to the client, to agree on a set of

protocol-level extensions to use during the connection.

10.6. Sec-WebSocket-Accept

This section describes a header field for registration in the Permanent

Message Header Field Registry. [RFC3864]

Sec-WebSocket-Accept

http

reserved; do not use outside WebSocket handshake

IETF

This document is the relevant specification.

None.

The |Sec-WebSocket-Accept| header is used in the WebSocket handshake.

It is sent from the server to the client to confirm that the server is

willing to initiate the connection.

10.7. Sec-WebSocket-Origin

This section describes a header field for registration in the Permanent

Message Header Field Registry. [RFC3864]

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Related information

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Related information

Sec-WebSocket-Origin

http

reserved; do not use outside WebSocket handshake

IETF

This document is the relevant specification.

None.

The |Sec-WebSocket-Origin| header is used in the WebSocket handshake.

It is sent from the server to the client to confirm the origin of the

script that opened the connection. This enables user agents to verify

that the server is willing to serve the script that opened the

connection.

10.8. Sec-WebSocket-Protocol

This section describes a header field for registration in the Permanent

Message Header Field Registry. [RFC3864]

Sec-WebSocket-Protocol

http

reserved; do not use outside WebSocket handshake

IETF

This document is the relevant specification.

None.

The |Sec-WebSocket-Protocol| header is used in the WebSocket handshake.

It is sent from the client to the server and back from the server to

the client to confirm the subprotocol of the connection. This enables

Header field name

Applicable protocol

Status

Author/Change controller

Specification document(s)

Related information

scripts to both select a subprotocol and be sure that the server agreed

to serve that subprotocol.

10.9. Sec-WebSocket-Version

This section describes a header field for registration in the Permanent

Message Header Field Registry. [RFC3864]

Sec-WebSocket-Version

http

reserved; do not use outside WebSocket handshake

IETF

This document is the relevant specification.

None.

The |Sec-WebSocket-Version| header is used in the WebSocket handshake.

It is sent from the client to the server to indicate the protocol

version of the connection. This enables servers to correctly interpret

the handshake and subsequent data being sent from the data, and close

the connection if the server cannot interpret that data in a safe

manner.

11. Using the WebSocket protocol from other specifications

The WebSocket protocol is intended to be used by another specification

to provide a generic mechanism for dynamic author-defined content, e.g.

in a specification defining a scripted API.

Such a specification first needs to "establish a WebSocket connection",

providing that algorithm with:

The destination, consisting of a /host/ and a /port/.

A /resource name/, which allows for multiple services to be

identified at one host and port.

A /secure/ flag, which is true if the connection is to be

encrypted, and false otherwise.

An ASCII serialization of an origin that is being made

responsible for the connection. [I-D.ietf-websec-origin]

*

*

*

*

Optionally a string identifying a protocol that is to be layered

over the WebSocket connection.

The /host/, /port/, /resource name/, and /secure/ flag are usually

obtained from a URI using the steps to parse a WebSocket URI's

components. These steps fail if the URI does not specify a WebSocket.

If a connection can be established, then it is said that the "WebSocket

connection is established".

If at any time the connection is to be closed, then the specification

needs to use the "close the WebSocket connection" algorithm.

When the connection is closed, for any reason including failure to

establish the connection in the first place, it is said that the

"WebSocket connection is closed".

While a connection is open, the specification will need to handle the

cases when "a WebSocket message has been received" with text /data/.

To send some text /data/ to an open connection, the specification needs

to "send /data/ using the WebSocket".

12. Acknowledgements

Special thanks are due to Ian Hickson, who was the original author and

editor of this protocol. The initial design of this specification

benefitted from the participation of many people in the WHATWG and

WHATWG mailing list. Contributions to that specification are not

tracked by section, but a list of all who contributed to that

specification is given in the WHATWG HTML specification at http://

whatwg.org/html5.

Special thanks also to John Tamplin for providing a significant amount

of text for the Data Framing section of this specification.

Special thanks also to Adam Barth for providing a significant amount of

text and background research for the Data Masking section of this

specification.

13. Appendix: List of Changes

This section is not normative. This section was added at the request of

the chairs to help track changes between versions. This section will be

removed from the final version of this document.

13.1. Changes from -05 to -06

Two major areas were changed in this draft. The closing handshake was

clarified and re-written to add in terminology matching the API

specification. The close frame was given an optional status code to

indicate closure reason, and the notion of a body indicating which side

initiated the close removed. Aside from this, many areas were clarified

in areas previously ambiguous, though the meaning should remain

consistent with the intent of previous drafts. Certain other material

changes that are not as large as those previously mentioned are listed

*

below, though for a complete list readers are reminded that a tool is

available to diff two versions at http://tools.ietf.org/tools/rfcdiff/.

The list below is my attempt at a changelog, not an authoritative

guarantee, plese use the diff tool for a complete list.

Clarified that Sec-WebSocket-Origin is optional for non-browser

clients.

Clarified the semantics of the closing handshake to be that the

connection is closed when an endpoint has both sent and received

a close frame.

Changed text around final HTTP responses and the WebSocket

handshake.

Removed Sec-WebSocket-Nonce

Attempted to convert use of URL to URI terminology. (Ticket 41)

Attempted to resolve Ticket 42 re: HTML spec reference.

Edited potentially misleadin text around the word "even" in

Section 1.6 and what applied to XHR vs more broadly.

Removed non-material text from 1.8 about establishing a

connection.

Clarified text in the section about fragmentation (4.4). No

material changes, clarification only.

Clarified that control frames (4.5) may be interjected in the

middle of a fragmented message.

Clarified what was meant by the body of a close frame.

Clarified the intent in 5.1 that there be only one connection in

CONNECTING state.

Cleaned 1.5 up to note that compression was already introduced in

the spec, left in multiplexing as a future definition.

Randomly selected randomly - typo fix.

Added a change log in the appendix.

Included in security considerations a description of the attack

presented by Adam Barth.

Changed some referneces from Web-Socket to WebSocket

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Clarified in 3.1 that only ws and wss are valid options, and that

other schemes should result in a failure.

Various cleanups around terminology of "host", "endpoint", and

"user agent".

Defined status codes and reserved ranges for close frames.

Added text that a TCP connection should be shut down cleanly.

Clarified whether the upgrade header exactly equaled upgrade or

contained an upgrade token.

14. References

[ANSI.X3-4.1986]

American National Standards Institute, "Coded

Character Set - 7-bit American Standard Code

for Information Interchange", ANSI X3.4, 1986.

[FIPS.180-2.2002]

National Institute of Standards and

Technology, "Secure Hash Standard", FIPS PUB

180-2, August 2002.

[RFC1951]

Deutsch, P., "DEFLATE Compressed Data Format

Specification version 1.3", RFC 1951, May

1996.

[RFC2119]

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC

2119, March 1997.

[RFC2246]
Dierks, T. and C. Allen, "The TLS Protocol

Version 1.0", RFC 2246, January 1999.

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk,

H., Masinter, L., Leach, P. and T. Berners-

Lee, "Hypertext Transfer Protocol -- HTTP/

1.1", RFC 2616, June 1999.

[RFC3490]

Faltstrom, P., Hoffman, P. and A. Costello,

"Internationalizing Domain Names in

Applications (IDNA)", RFC 3490, March 2003.

[RFC3548]
Josefsson, S., "The Base16, Base32, and Base64

Data Encodings", RFC 3548, July 2003.

[RFC3629]

Yergeau, F., "UTF-8, a transformation format

of ISO 10646", STD 63, RFC 3629, November

2003.

[RFC3864]

Klyne, G., Nottingham, M. and J. Mogul,

"Registration Procedures for Message Header

Fields", BCP 90, RFC 3864, September 2004.

[RFC3986]

Berners-Lee, T., Fielding, R. and L. Masinter,

"Uniform Resource Identifier (URI): Generic

Syntax", STD 66, RFC 3986, January 2005.

[RFC3987]

*

*

*

*

*

mailto:ghost@aladdin.com
http://tools.ietf.org/html/rfc1951
http://tools.ietf.org/html/rfc1951
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:tdierks@certicom.com
mailto:callen@certicom.com
http://tools.ietf.org/html/rfc2246
http://tools.ietf.org/html/rfc2246
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc3490
http://tools.ietf.org/html/rfc3490
http://tools.ietf.org/html/rfc3548
http://tools.ietf.org/html/rfc3548
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3864
http://tools.ietf.org/html/rfc3864
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986

Duerst, M. and M. Suignard, "Internationalized

Resource Identifiers (IRIs)", RFC 3987,

January 2005.

[RFC4366]

Blake-Wilson, S., Nystrom, M., Hopwood, D.,

Mikkelsen, J. and T. Wright, "Transport Layer

Security (TLS) Extensions", RFC 4366, April

2006.

[RFC5234]

Crocker, D. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC

5234, January 2008.

[I-D.ietf-

httpstate-cookie]

Barth, A, "HTTP State Management Mechanism",

Internet-Draft draft-ietf-httpstate-cookie-20,

December 2010.

[I-D.ietf-websec-

origin]

Barth, A, "The Web Origin Concept", Internet-

Draft draft-ietf-websec-origin-00, December

2010.

[WSAPI]
Hickson, I.E., "The Web Sockets API", August

2010.

Author's Address

Ian Fette Fette Google, Inc. EMail: ifette+ietf@google.com URI:

http://www.ianfette.com/

http://tools.ietf.org/html/rfc3987
http://tools.ietf.org/html/rfc3987
http://tools.ietf.org/html/rfc4366
http://tools.ietf.org/html/rfc4366
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/draft-ietf-httpstate-cookie-20
http://tools.ietf.org/html/draft-ietf-websec-origin-00
mailto:ifette+ietf@google.com
http://www.ianfette.com/

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Background
	1.2. Protocol overview
	1.3. Opening handshake
	1.4. Closing handshake
	1.5. Design philosophy
	1.6. Security model
	1.7. Relationship to TCP and HTTP
	1.8. Establishing a connection
	1.9. Subprotocols using the WebSocket protocol
	2. Conformance requirements
	2.1. Terminology
	3. WebSocket URIs
	3.1. Parsing WebSocket URIs
	3.2. Constructing WebSocket URIs
	3.3. Valid WebSocket URIs
	4. Data Framing
	4.1. Overview
	4.2. Client-to-Server Masking
	4.3. Base Framing Protocol
	4.4. Fragmentation
	4.5. Control Frames
	4.5.1. Close
	4.5.2. Ping
	4.5.3. Pong
	4.6. Data Frames
	4.7. Examples
	4.8. Extensibility
	5. Opening Handshake
	5.1. Client Requirements
	5.2. Server-side requirements
	5.2.1. Reading the client's opening handshake
	5.2.2. Sending the server's opening handshake
	6. Error Handling
	6.1. Handling errors in UTF-8 from the server
	6.2. Handling errors in UTF-8 from the client
	7. Closing the connection
	7.1. Definitions
	7.1.1. Close the WebSocket Connection
	7.1.2. Start the WebSocket Closing Handshake
	7.1.3. The WebSocket Connection Is Closed
	7.1.4. Fail the WebSocket Connection
	7.2. Abnormal closures
	7.2.1. Client-initiated closure
	7.2.2. Server-initiated closure
	7.3. Normal closure of connections
	7.4. Status codes
	7.4.1. Defined Status Codes
	7.4.2. Reserved status code ranges
	8. Extensions
	8.1. Negotiating extensions
	8.2. Known extensions
	8.2.1. Compression
	9. Security considerations
	10. IANA considerations
	10.1. Registration of ws: scheme
	10.2. Registration of wss: scheme
	10.3. Registration of the "WebSocket" HTTP Upgrade keyword
	10.4. Sec-WebSocket-Key
	10.5. Sec-WebSocket-Extensions
	10.6. Sec-WebSocket-Accept
	10.7. Sec-WebSocket-Origin
	10.8. Sec-WebSocket-Protocol
	10.9. Sec-WebSocket-Version
	11. Using the WebSocket protocol from other specifications
	12. Acknowledgements
	13. Appendix: List of Changes
	13.1. Changes from -05 to -06
	14. References
	Author's Address

