
I2NSF L. Xia
Internet Draft J. Strassner
Intended status: Standard Track Huawei
Expires: January 02, 2019 C. Basile
 PoliTO
 D. Lopez
 TID
 July 02, 2018

Information Model of NSFs Capabilities
draft-ietf-i2nsf-capability-02.txt

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on January 02, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Xia, et al. Expires January 02, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft I2NSF Capability IM July 2018

 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Abstract

 This draft defines the concept of an NSF (Network Security Function)
 capability, as well as its information model. Capabilities are a set
 of features that are available from a managed entity, and are
 represented as data that unambiguously characterizes an NSF.
 Capabilities enable management entities to determine the set of
 features from available NSFs that will be used, and simplify the
 management of NSFs.

Table of Contents

1. Introduction ... 2
2. Conventions used in this document 3

2.1. Acronyms .. 3
3. Capability Information Model Design 4

3.1. Design Principles and ECA Policy Model Overview 5
3.2. Relation with the External Information Model 8
3.3. I2NSF Capability Information Model Theory of Operation .. 9

3.3.1. I2NSF Capability Information Model 11
3.3.2. The SecurityCapability class 13
3.3.3. I2NSF Condition Clause Operator Types 14
3.3.4. Capability Selection and Usage 16
3.3.5. Capability Algebra 17

4. IANA Considerations ... 19
5. References .. 19

5.1. Normative References 19
5.2. Informative References 20

6. Acknowledgments ... 22

 1. Introduction

 The rapid development of virtualized systems requires advanced
 security protection in various scenarios. Examples include network

https://trustee.ietf.org/license-info

Xia, et al. Expires January 02, 2019 [Page 2]

Internet-Draft I2NSF Capability IM July 2018

 devices in an enterprise network, User Equipment in a mobile
 network, devices in the Internet of Things, or residential access
 users [RFC8192].

 NSFs produced by multiple security vendors provide various security
 capabilities to customers. Multiple NSFs can be combined together to
 provide security services over the given network traffic, regardless
 of whether the NSFs are implemented as physical or virtual
 functions.

 Security Capabilities describe the functions that Network Security
 Functions (NSFs) are available to provide for security policy
 enforcement purposes. Security Capabilities are independent of the
 actual security control mechanisms that will implement them.

 Every NSF SHOULD be described with the set of capabilities it
 offers. Security Capabilities enable security functionality to be
 described in a vendor-neutral manner. That is, it is not needed to
 refer to a specific product or technology when designing the
 network; rather, the functions characterized by their capabilities
 are considered. Security Capabilities are a market enabler,
 providing a way to define customized security protection by
 unambiguously describing the security features offered by a given
 NSF.

 This document is organized as follows. Section 2 defines conventions
 and acronyms used. Section 3 discusses the design principles for
 I2NSF capability information model, the related ECA model, and
 provides detailed information model design of I2NSF network security
 capability.

 2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [RFC2119].

 This document uses terminology defined in [I-D.draft-ietf-i2nsf-
terminology] for security related and I2NSF scoped terminology.

 2.1. Acronyms

 I2NSF - Interface to Network Security Functions

 NSF - Network Security Function

 DNF - Disjunctive Normal Form

https://datatracker.ietf.org/doc/html/rfc8192
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-terminology
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-terminology

Xia, et al. Expires January 02, 2019 [Page 3]

Internet-Draft I2NSF Capability IM July 2018

 3. Capability Information Model Design

 A Capability Information Model (CapIM) is a formalization of the
 functionality that an NSF advertises. This enables the precise
 specification of what an NSF can do in terms of security policy
 enforcement, so that computer-based tasks can unambiguously refer
 to, use, configure, and manage NSFs. Capabilities MUST be defined in
 a vendor- and technology-independent manner (e.g., regardless of the
 differences among vendors and individual products).

 Humans are able to refer to categories of security controls and
 understand each other. For instance, security experts agree on what
 is meant by the terms "NAT", "filtering", and "VPN concentrator".
 As a further example, network security experts unequivocally refer
 to "packet filters" as stateless devices able to allow or deny
 packet forwarding based on various conditions (e.g., source and
 destination IP addresses, source and destination ports, and IP
 protocol type fields) [Alshaer].

 However, more information is required in case of other devices, like
 stateful firewalls or application layer filters. These devices
 filter packets or communications, but there are differences in the
 packets and communications that they can categorize and the states
 they maintain. Humans deal with these differences by asking more
 questions to determine the specific category and functionality of
 the device. Machines can follow a similar approach, which is
 commonly referred to as question-answering [Hirschman] [Galitsky].
 In this context, the CapIM and the derived Data Models provide
 important and rich information sources.

 Analogous considerations can be applied for channel protection
 protocols, where we all understand that they will protect packets by
 means of symmetric algorithms whose keys could have been negotiated
 with asymmetric cryptography, but they may work at different layers
 and support different algorithms and protocols. To ensure
 protection, these protocols apply integrity, optionally
 confidentiality, anti-reply protections, and authenticate peers.

 The CapIM is intended to clarify these ambiguities by providing a
 formal description of NSF functionality. The set of functions that
 are advertised MAY be restricted according to the privileges of the
 user or application that is viewing those functions. I2NSF
 Capabilities enable unambiguous specification of the security
 capabilities available in a (virtualized) networking environment,

Xia, et al. Expires January 02, 2019 [Page 4]

Internet-Draft I2NSF Capability IM July 2018

 and their automatic processing by means of computer-based
 techniques.

 This includes enabling the security controller to properly identify
 and manage NSFs, and allow NSFs to properly declare their
 functionality, so that they can be used in the correct way.

 3.1. Design Principles and ECA Policy Model Overview

 This document defines an information model for representing NSF
 capabilities. Some basic design principles for security capabilities
 and the systems that manage them are:

 o Independence: each security capability SHOULD be an independent
 function, with minimum overlap or dependency on other
 capabilities. This enables each security capability to be
 utilized and assembled together freely. More importantly, changes
 to one capability SHOULD NOT affect other capabilities. This
 follows the Single Responsibility Principle [Martin] [OODSRP].

 o Abstraction: each capability MUST be defined in a vendor-
 independent manner.

 o Advertisement: A dedicated, well-known interface MUST be used to
 advertise and register the capabilities of each NSF. This same
 interface MUST be used by other I2NSF Components to determine
 what Capabilities are currently available to them.

 o Execution: a dedicated, well-known interface MUST be used to
 configure and monitor the use of a capability. This provides a
 standardized ability to describe its functionality, and report
 its processing results. This facilitates multi-vendor
 interoperability.

 o Automation: the system MUST have the ability to auto-discover,
 auto-negotiate, and auto-update its security capabilities (i.e.,
 without human intervention). These features are especially useful
 for the management of a large number of NSFs. They are essential
 for adding smart services (e.g., refinement, analysis, capability
 reasoning, and optimization) to the security scheme employed.
 These features are supported by many design patterns, including
 the Observer Pattern [OODOP], the Mediator Pattern [OODMP], and a
 set of Message Exchange Patterns [Hohpe].

Xia, et al. Expires January 02, 2019 [Page 5]

Internet-Draft I2NSF Capability IM July 2018

 o Scalability: the management system SHOULD have the capability to
 scale up/down or scale in/out. Thus, it can meet various
 performance requirements derived from changeable network traffic
 or service requests. In addition, security capabilities that are
 affected by scalability changes SHOULD support reporting
 statistics to the security controller to assist its decision on
 whether it needs to invoke scaling or not.

 Based on the above principles, this document defines a capability
 model that enables an NSF to register (and hence advertise) its set
 of capabilities that other I2NSF Components can use. These
 capabilities MAY have their access control restricted by policy;
 this is out of scope for this document. The set of capabilities
 provided by a given set of NSFs unambiguously define the security
 offered by the set of NSFs used. The security controller can compare
 the requirements of users and applications to the set of
 capabilities that are currently available in order to choose which
 capabilities of which NSFs are needed to meet those requirements.
 Note that this choice is independent of vendor, and instead relies
 specifically on the capabilities (i.e., the description) of the
 functions provided.

 Furthermore, when an unknown threat (e.g., zero-day exploits and
 unknown malware) is reported by an NSF, new capabilities may be
 created, and/or existing capabilities may be updated (e.g., by
 updating its signature and algorithm). This results in enhancing the
 existing NSFs (and/or creating new NSFs) to address the new threats.
 New capabilities may be sent to and stored in a centralized
 repository, or stored separately in a vendor's local repository. In
 either case, a standard interface facilitates the update process.
 This document specifies a metadata model that MAY be used to further
 describe and/or prescribe the characteristics and behavior of the
 I2NSF capability model. For example, in this case, metadata could be
 used to describe the updating of the capability, and prescribe the
 particular version that an implementation should use. This initial
 version of the model covers and has been validated to describe NSFs
 that are designed with a set of capabilities (which covers most of
 the existing NSFs). Checking the behavior of the model with systems
 that change capabilities dynamically at runtime has been extensively
 explored (e.g., impact on automatic registration).

 The "Event-Condition-Action" (ECA) policy model in [RFC8329] is used
 as the basis for the design of the capability model; definitions of
 all I2NSF policy-related terms are also defined in [I-D.draft-ietf-

i2nsf-terminology]. The following three terms define the structure
 and behavior of an I2NSF imperative policy rule:

https://datatracker.ietf.org/doc/html/rfc8329
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-terminology
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-terminology

Xia, et al. Expires January 02, 2019 [Page 6]

Internet-Draft I2NSF Capability IM July 2018

 o Event: An Event is defined as any important occurrence in time of
 a change in the system being managed, and/or in the environment
 of the system being managed. When used in the context of I2NSF
 Policy Rules, it is used to determine whether the Condition
 clause of the I2NSF Policy Rule can be evaluated or not. Examples
 of an I2NSF Event include time and user actions (e.g., logon,
 logoff, and actions that violate an ACL).

 o Condition: A condition is defined as a set of attributes,
 features, and/or values that are to be compared with a set of
 known attributes, features, and/or values in order to determine
 whether or not the set of Actions in that (imperative) I2NSF
 Policy Rule can be executed or not. Examples of I2NSF Conditions
 include matching attributes of a packet or flow, and comparing
 the internal state of an NSF to a desired state.

 o Action: An action is used to control and monitor aspects of flow-
 based NSFs when the event and condition clauses are satisfied.
 NSFs provide security functions by executing various Actions.
 Examples of I2NSF Actions include providing intrusion detection
 and/or protection, web and flow filtering, and deep packet
 inspection for packets and flows.

 An I2NSF Policy Rule is made up of three Boolean clauses: an Event
 clause, a Condition clause, and an Action clause. This structure is
 also called an ECA (Event-Condition-Action) Policy Rule. A Boolean
 clause is a logical statement that evaluates to either TRUE or
 FALSE. It may be made up of one or more terms; if more than one term
 is present, then each term in the Boolean clause is combined using
 logical connectives (i.e., AND, OR, and NOT).

 An I2NSF ECA Policy Rule has the following semantics:

 IF <event-clause> is TRUE

 IF <condition-clause> is TRUE

 THEN execute <action-clause> [constrained by metadata]

 END-IF

 END-IF

Xia, et al. Expires January 02, 2019 [Page 7]

Internet-Draft I2NSF Capability IM July 2018

 Technically, the "Policy Rule" is really a container that aggregates
 the above three clauses, as well as metadata. Aggregating metadata
 enables business logic to be used to prescribe behavior. For
 example, suppose a particular ECA Policy Rule contains three actions
 (A1, A2, and A3, in that order). Action A2 has a priority of 10;
 actions A1 and A3 have no priority specified. Then, metadata may be
 used to restrict the set of actions that can be executed when the
 event and condition clauses of this ECA Policy Rule are evaluated to
 be TRUE; two examples are: (1) only the first action (A1) is
 executed, and then the policy rule returns to its caller, or (2) all
 actions are executed, starting with the highest priority.

 The above ECA policy model is very general and easily extensible.

 3.2. Relation with the External Information Model

 Note: the symbology used from this point forward is taken from
section 3.3 of [I-D.draft-ietf-supa-generic-policy-info-model].

 The I2NSF NSF-Facing Interface is used to select and manage the NSFs
 using their capabilities. This is done using the following approach:

 1) Each NSF registers its capabilities with the management system
 through a dedicated interface, and hence, makes its capabilities
 available to the management system;

 2) The security controller compares the needs of the security service
 with the set of capabilities from all available NSFs that it
 manages using the CapIM;

 3) The security controller uses the CapIM to select the final set of
 NSFs to be used;

 4) The security controller takes the above information and creates or
 uses one or more data models from the CapIM to manage the NSFs;

 5) Control and monitoring can then begin.

 This assumes that an external information model is used to define
 the concept of an ECA Policy Rule and its components (e.g., Event,
 Condition, and Action objects). This enables I2NSF Policy Rules [I-
 D.draft-ietf-i2nsf-terminology] to be subclassed from an external
 information model.

 The external ECA Information Model supplies at least a set of
 objects that represent a generic ECA Policy Rule, and a set of
 objects that represent Events, Conditions, and Actions that can be

https://datatracker.ietf.org/doc/html/draft-ietf-supa-generic-policy-info-model
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-terminology

Xia, et al. Expires January 02, 2019 [Page 8]

Internet-Draft I2NSF Capability IM July 2018

 aggregated by the generic ECA Policy Rule. This enables appropriate
 I2NSF Components to reuse this generic model for different purposes,
 as well as specialize it (i.e., create new model objects) to
 represent concepts that are specific to I2NSF and/or an application
 that is using I2NSF.

 It is assumed that the external ECA Information Model also has the
 ability to aggregate metadata. This enables metadata to be used to
 prescribe and/or describe characteristics and behavior of the ECA
 Policy Rule. Specifically, Capabilities are subclassed from this
 external metadata model. If the desired Capabilities are already
 defined in the CapIM, then no further action is necessary.
 Otherwise, new Capabilities SHOULD be defined either by defining new
 classes that can wrap existing classes using the decorator pattern
 [Gamma] or by another mechanism (e.g., through subclassing); the
 parent class of the new Capability SHOULD be either an existing
 CapIM metadata class or a class defined in the external metadata
 information model. In either case, the ECA objects can use the
 existing aggregation between them and the Metadata class to add
 metadata to appropriate ECA objects.

 Detailed descriptions of each portion of the information model are
 given in the following sections.

 3.3. I2NSF Capability Information Model Theory of Operation

 Capabilities are typically used to represent NSF functions that can
 be invoked. Capabilities are objects, and hence, can be used in the
 event, condition, and/or action clauses of an I2NSF ECA Policy Rule.

 The I2NSF CapIM refines a predefined (and external) metadata model;
 the application of I2NSF Capabilities is done by refining a
 predefined (and external) ECA Policy Rule information model that
 defines how to use, manage, or otherwise manipulate a set of
 capabilities. In this approach, an I2NSF Policy Rule is a container
 that is made up of three clauses: an event clause, a condition
 clause, and an action clause. When the I2NSF policy engine receives
 a set of events, it matches those events to events in active ECA
 Policy Rules. If the event matches, then this triggers the
 evaluation of the condition clause of the matched I2NSF Policy Rule.
 The condition clause is then evaluated; if it matches, then the set
 of actions in the matched I2NSF Policy Rule MAY be executed. The
 operation of each of these clauses MAY be affected by metadata that
 is aggregated by either the ECA Policy Rule and/or by each clause,
 as well as the selected resolution strategy.

Xia, et al. Expires January 02, 2019 [Page 9]

Internet-Draft I2NSF Capability IM July 2018

 Condition clauses are logical formulas that combine one or more
 conditions that evaluate to a Boolean (i.e., true or false) result.
 The values in a condition clause are built on values received or
 owned by the NSF. For instance, the condition clause 'ip source ==
 1.2.3.4' is true when the IP address is equal to 1.2.3.4. Two or
 more conditions require a formal mechanism to represent how to
 operate on each condition to produce a result. For the purposes of
 this document, every condition clause MUST be expressed in either
 conjunctive or disjunctive normal form. Informally, conjunctive
 normal form expresses a clause as a set of sub-clauses that are
 logically ANDed together, where each sub-clause contains only terms
 that use OR and/or NOT operators). Similarly, disjunctive normal
 form is a set of sub-clauses that are logically ORed together, where
 each sub-clause contains only terms that use AND and/or NOT
 operators.

 This document defines additional important extensions to both the
 external ECA Policy Rule model and the external Metadata model that
 are used by the I2NSF CapIM; examples include resolution strategy,
 external data, and default actions. All these extensions come from
 the geometric model defined in [Bas12]. A more detailed description
 is provided in Appendix E; a summary of the important points of this
 geometric model follows.

 Formally, given a set of actions in an I2NSF Policy Rule, the
 resolution strategy maps all the possible subsets of actions to an
 outcome. In other words, the resolution strategy is included in an
 I2NSF Policy to decide how to evaluate all the actions from the
 matching I2NSF Policy Rule.

 Some concrete examples of resolution strategy are:

 o First Matching Rule (FMR)

 o Last Matching Rule (LMR)

 o Prioritized Matching Rule (PMR) with Errors (PMRE)

 o Prioritized Matching Rule with No Errors (PMRN)

 In the above, a PMR strategy is defined as follows:

 1. Order all actions by their Priority (highest is first, no
 priority is last); actions that have the same priority may be
 appear in any order in their relative location.

Xia, et al. Expires January 02, 2019 [Page 10]

Internet-Draft I2NSF Capability IM July 2018

 2. For PMRE: if any action fails to execute properly, temporarily
 stop execution of all actions. Invoke the error handler of the
 failed action. If the error handler is able to recover from the
 error, then continue execution of any remaining actions; else,
 terminate execution of the ECA Policy Rule.

 3. For PMRN: if any action fails to execute properly, stop
 execution of all actions. Invoke the error handler of the failed
 action, but regardless of the result, execution of the ECA
 Policy Rule MUST be terminated.

 Regardless of the resolution strategy, when no rule matches a
 packet, a default action MAY be executed.

 Resolution strategies may use, besides intrinsic rule data (i.e.,
 event, condition, and action clauses), "external data" associated to
 each rule, such as priority, identity of the creator, and creation
 time. Two examples of this are attaching metadata to the policy
 action and/or policy rule, and associating the policy rule with
 another class to convey such information.

 3.3.1. I2NSF Capability Information Model

 Figure 1 below shows one example of an external model. This is a
 simplified version of the MEF Policy model [PDO]. For our purposes:

 o MCMPolicyObject is an abstract class, and is derived from
 MCMManagedEntity [MCM]

 o MCMPolicyStructure is an abstract superclass for building
 different types of Policy Rules (currently, for I2NSF, only
 imperative (i.e., ECA) Policy Rules are considered)

 o An I2NSFECAPolicyRule could be subclassed from MCMECAPolicyRule

 o I2NSF Events, Conditions, and Actions could be subclasses from
 MCMPolicyEvent, MCMPolicyCondition, and MCMPolicyAction

 o MCMMetaData is aggregated by MCMEntity, which is the superclass
 of MCMManagedEntity. So all Policy objects may aggregate
 MCMMetaData

Xia, et al. Expires January 02, 2019 [Page 11]

Internet-Draft I2NSF Capability IM July 2018

 +------------------------+
 +---------------+ |HasPolicyStructure |
 |MCMPolicyObject| |ComponentDecoratorDetail|
 +-------A-------+ +---------------------*--+
 | *
 | *
 +---------------+----------------+ *
 | | *
+-------+----------+ +----------+----------------+1..* *
|MCMPolicyStructure| |MCMPolicyStructureComponent|<------*+
+--------A---------+ +-----------A---------------+ |
 | | |
 | +------------+--------+ |
 | | | 0..1 ^
 +-------+--------+ +-------+-------+ +-----------+---------------V+
 |MCMECAPolicyRule| |MCMPolicyClause| |MCMPolicyClauseComponent |
 +----------------+ +---------------+ |Decorator |
 +---------------A------------+
 |
 |
 +--------+---------+
 |MCMPolicyComponent|
 +--------A---------+
 |
 |
 +--------------------+---------------+----+
 +-------+------+ +---------+--------+ +--------+------+
 |MCMPolicyEvent| |MCMPolicyCondition| |MCMPolicyAction|
 +--------------+ +------------------+ +---------------+

 Figure 1 Exemplary External Information Model (from the MEF)

 The CapIM model uses the Decorator Pattern [Gamma]. The decorator
 pattern enables a base object to be "wrapped" by zero or more
 decorator objects. The Decorator MAY attach additional
 characteristics and behavior, in the form of attributes at runtime
 in a transparent manner without requiring recompilation and/or
 redeployment. This is done by using composition instead of
 inheritance. Objects can "wrap" (more formally, extend the interface

Xia, et al. Expires January 02, 2019 [Page 12]

Internet-Draft I2NSF Capability IM July 2018

 of) an object. In essence, a new object can be built out of pre-
 existing objects.

 The Decorator Pattern is applied to allow NSF instances to aggregate
 I2NSFSecurityCapability instances. By means of this aggregation, an
 NSF can be associated to the functions it provides in terms of
 security policy enforcement, both at specification time (i.e., when
 a vendor provides a new NSF), statically, when a NSF is added to a
 (virtualized) networking environment, and dynamically, during
 network operations. Figure 2 shows an NSF aggregating zero or more
 SecurityCapabilities. This may be thought of as an NSF possessing
 (or defining) zero or more Security Capabilities. This "possession"
 (or "definition") is represented in UML as an aggregated, called
 HasSecurityCapability. The hasSecurityCapabilityDetail is an
 association class that allows NSF instances to aggregate
 I2NSFSecurityCapability instances. An NSF MAY be described by 0 or
 more SecurityCapabilities.

 Since there can be many types of NSF that have many different types
 of I2NSFSecurityCapabilities, the definition of a SecurityCapability
 must be done using the context of an NSF. This is realized by an
 association class in UML. HasSecurityCapabilityDetail is an
 association class. This yields the following design:

 +-----+0..n 0..n+--------------------+
 | |/ \ HasSecurityCapability | |
 | NSF | A ----------+----------------+ SecurityCapability |
 | |\ / ^ | |
 +-----+ | +--------------------+
 |
 +-------------+---------------+
 | HasSecurityCapabilityDetail |
 + ----------------------------+

 Figure 2 Defining SecurityCapabilities of an NSF

 This enables the HasSecurityCapabilityDetail association class to be
 the target of a Policy Rule. That is, the
 HasSecurityCapabilityDetail class has attributes and methods that
 define which I2NSFSecurityCapabilities of this NSF are visible and
 can be used [MCM].

 3.3.2. The SecurityCapability class

 The SecurityCapability class defines the concept of metadata that
 define security-related capabilities. It is subclassed from an
 appropriate class of an external metadata information

Xia, et al. Expires January 02, 2019 [Page 13]

Internet-Draft I2NSF Capability IM July 2018

 model.Subclasses of the SecurityCapability class can be used to
 answer the following questions:

 o What are the events that are caught by the NSF to trigger the
 condition clause evaluation (Event subclass)?

 o What kind of condition clauses can be specified on the NSF to
 define valid rules? This question splits into two questions:
 (1) what are the conditions that can be specified (Condition
 subclass), and (2) how to build a valid condition clause from a
 set of individual conditions (ClauseEvaluation class).

 o What are the actions that the NSF can enforce (Action class)?

 o How to define a correct policy on the NSF?

 3.3.3. I2NSF Condition Clause Operator Types

 After having analyzed the literature and some existing NSFs, the
 types of selectors are categorized as exact-match, range-based,
 regex-based, and custom-match [Bas15][Lunt].

 Exact-match selectors are (unstructured) sets: elements can only be
 checked for equality, as no order is defined on them. As an
 example, the protocol type field of the IP header is an unordered
 set of integer values associated to protocols. The assigned protocol
 numbers are maintained by the IANA
 (http://www.iana.org/assignments/protocol-numbers/protocol-

numbers.xhtml).

 In this selector, it is only meaningful to specify condition clauses
 that use either the "equals" or "not equals operators":

 proto = tcp, udp (protocol type field equals to TCP or UDP)

 proto != tcp (protocol type field different from TCP)

 No other operators are allowed on exact-match selectors. For
 example, the following is an invalid condition clause, even if
 protocol types map to integers:

 proto < 62 (invalid condition)

 Range-based selectors are ordered sets where it is possible to
 naturally specify ranges as they can be easily mapped to integers.
 As an example, the ports in the TCP protocol may be represented

http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

Xia, et al. Expires January 02, 2019 [Page 14]

Internet-Draft I2NSF Capability IM July 2018

 using a range-based selector (e.g., 1024-65535). For example, the
 following are examples of valid condition clauses:

 source_port = 80

 source_port < 1024

 source_port < 30000 && source_port >= 1024

 We include, in range-based selectors, the category of selectors that
 have been defined by Al-Shaer et al. as "prefix-match" [Alshaer].
 These selectors allow the specification of ranges of values by means
 of simple regular expressions. The typical case is the IP address
 selector (e.g., 10.10.1.*). There is no need to distinguish between
 prefix match and range-based selectors as 10.10.1.* easily maps to
 [10.10.1.0, 10.10.1.255].

 Another category of selector types includes the regex-based
 selectors, where the matching is performed by using regular
 expressions. This selector type is used frequently at the
 application layer, where data are often represented as strings of
 text. The regex-based selector type also includes string-based
 selectors, where matching is evaluated using string matching
 algorithms (SMA) [Cormen]. Indeed, for our purposes, string matching
 can be mapped to regular expressions, even if in practice SMA are
 much faster. For instance, Squid (http://www.squid-cache.org/), a
 popular Web caching proxy that offers various access control
 capabilities, allows the definition of conditions on URLs that can
 be evaluated with SMA (e.g., dstdomain) or regex matching (e.g.,
 dstdom_regex).

 As an example, the condition clause:

 URL = *.website.*

 matches all the URLs that contain a subdomain named website and the
 ones whose path contain the string ".website.". As another example,
 the condition clause:

 MIME_type = video/*

 matches all MIME objects whose type is video.

 Finally, the idea of a custom check selector is introduced. For
 instance, malware analysis can look for specific patterns, and
 returns a Boolean value if the pattern is found or not.

http://www.squid-cache.org/

Xia, et al. Expires January 02, 2019 [Page 15]

Internet-Draft I2NSF Capability IM July 2018

 In order to be properly used by high-level policy-based processing
 systems (such as reasoning systems and policy translation systems),
 these custom check selectors can be modeled as black-boxes (i.e., a
 function that has a defined set of inputs and outputs for a
 particular state), which provide an associated Boolean output.

 More examples of custom check selectors will be presented in the
 next versions of the draft. Some examples are already present in

Section 6.

 3.3.4. Capability Selection and Usage

 Capability selection and usage are based on the set of security
 traffic classification and action features that an NSF provides;
 these are defined by the capability model. If the NSF has the
 classification features needed to identify the packets/flows
 required by a policy, and can enforce the needed actions, then that
 particular NSF is capable of enforcing the policy.

 NSFs may also have specific characteristics that automatic processes
 or administrators need to know when they have to generate
 configurations, like the available resolution strategies and the
 possibility to set default actions.

 The capability information model can be used for two purposes:
 describing the features provided by generic security functions, and
 describing the features provided by specific products. The term
 Generic Network Security Function (GNSF) refers to the classes of
 security functions that are known by a particular system. The idea
 is to have generic components whose behavior is well understood, so
 that the generic component can be used even if it has some vendor-
 specific functions. These generic functions represent a point of
 interoperability, and can be provided by any product that offers the
 required capabilities. GNSF examples include packet filter, URL
 filter, HTTP filter, VPN gateway, anti-virus, anti-malware, content
 filter, monitoring, and anonymity proxy; these will be described
 later in a revision of this draft as well as in an upcoming data
 model contribution.

 The next section will introduce the algebra to compose the
 information model of capability registration, defined to associate
 NSFs to capabilities and to check whether a NSF has the capabilities
 needed to enforce policies.

Xia, et al. Expires January 02, 2019 [Page 16]

Internet-Draft I2NSF Capability IM July 2018

3.3.5. Capability Algebra

 We introduce a Capability Algebra to ensure that the actions of
 different policy rules do not conflict with each.

 Formally, two I2NSF Policy Rules conflict with each other if:

 o the event clauses of each evaluate to TRUE

 o the condition clauses of each evaluate to TRUE

 o the action clauses affect the same object in different ways

 For example, if we have two Policy Rules in the same Policy:

 R1: During 8am-6pm, if traffic is external, then run through FW
 R2: During 7am-8pm, conduct anti-malware investigation

 There is no conflict between R1 and R2, since the actions are
 different. However, consider these two rules:

 R3: During 8am-6pm, John gets GoldService
 R4: During 10am-4pm, FTP from all users gets BronzeService

 R3 and R4 are now in conflict, between the hours of 10am and 4pm,
 because the actions of R3 and R4 are different and apply to the same
 user (i.e., John).

 Let us define the concept of a "matched" policy rule as one in which
 its event and condition clauses both evaluate to true. Then, the
 behavior of the Policy Rule, as specified by the CapIM, is defined
 by a 6-tuple {Ac, Cc, Ec, RSc, Dc, EVc}, where:

 o Ac is the set of Actions currently available from the NSF;

 o Cc is the set of Capabilities currently available from the NSF;

 o Ec is the set of Events that an NSF can catch. Note that for NSF
 (e.g., a packet filter) that are not able to react to events,
 this set will be empty;

 o RSc is the set of Resolution Strategies that can be used to
 specify how to resolve conflicts that occur between the actions
 of the same or different policy rules that are matched and
 contained in this particular NSF;

Xia, et al. Expires January 02, 2019 [Page 17]

Internet-Draft I2NSF Capability IM July 2018

 o Dc defines the notion of a Default action. This action can be
 either an explicit action that has been chosen {a}, or a set of
 actions {F}, where F is a dummy symbol (i.e., a placeholder
 value) that can be used to indicate that the default action can
 be freely selected by the policy editor. This is denoted as {F} U
 {a}.

 EVc defines the set of Condition Clause Evaluation Rules that can be
 used at the NSF to decide when the condition clause is true given
 the result of the evaluation of the individual conditions. Before
 introducing the rest of the capability model, we will introduce the
 symbols that we will use to represent set operations:

 o "U" is the union operation, A U B returns a new set that includes
 all the elements in A and all the elements in B

 o "\" is the set minus operation, A \ B returns all the elements
 that are in A but not in B.

 Given two sets of capabilities, denoted as cap1=(Ac1,Cc1,
 Ec1,RSc1,Dc1,EVc1) and cap2=(Ac2,Cc2,Ec2,RSc2,Dc2,EVc2)
 two set operations are defined for manipulating capabilities:

 o capability addition: cap1+cap2 = {Ac1 U Ac2, Cc1 U Cc2, Ec1 U
 Ec2, RSc1 U RSc2, Dc1 U DC2, EVc1 U EVc2}

 o capability subtraction: cap_1-cap_2 = {Ac1 \ Ac2, Cc1 \ Cc2, Ec1
 \ Ec2, RSc1 U RSc2, Dc1 U DC2, EVc1 U EVc2}

 In the above formulae, "U" is the set union operator and "\" is the
 set difference operator.

 The addition and subtraction of capabilities are defined as the
 addition (set union) and subtraction (set difference) of both the
 capabilities and their associated actions. Note that the Resolution
 Strategies and Default Actions are added in both cases.

 As an example, assume that a packet filter capability, Cpf, is
 defined. Further, assume that a second capability, called Ctime,
 exists, and that it defines time-based conditions. Suppose we need
 to construct a new generic packet filter, Cpfgen, that adds time-
 based conditions to Cpf. Conceptually, this is simply the addition
 of the Cpf and Ctime capabilities, as follows:

 Apf = {Allow, Deny}
 Cpf = {IPsrc,IPdst,Psrc,Pdst,protType}
 Epf = {}

Xia, et al. Expires January 02, 2019 [Page 18]

Internet-Draft I2NSF Capability IM July 2018

 RSpf = {FMR}
 Dpf = {A1}
 EVpf = {DNF}

 Atime = {Allow, Deny, Log}
 Ctime = {timestart, timeend, datestart, datestop}
 Etime = {}
 RStime = {LMR}
 Dtime = {A2}
 EVtime = {}

 Then, Cpfgen is defined as:

 Cpfgen = {Apf U Atime, Cpf U Ctime, Epf U Etime, RSpf U RStime,
 Dpf U Time, EVpf U EVtime}
 = {Allow, Deny, Log},
 {{IPsrc,IPdst,Psrc,Pdst,protType} U {timestart, timeend,
 datestart, datestop}}
 {}
 {FMR, LMR}
 {A1, A2}
 {DNF}

 In other words, Cpfgen provides three actions (Allow, Deny, Log),
 filters traffic based on a 5-tuple that is logically ANDed with a
 time period, can use either FMR or LMR (but obviously not both), and
 can provide either A1 or A2 (but again, not both) as a default
 action. In any case, multiple conditions will be processed with DNF
 when evaluating the condition clause.

 4. IANA Considerations

 TBD

 5. References

 5.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Xia, et al. Expires January 02, 2019 [Page 19]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft I2NSF Capability IM July 2018

 [RFC2234] Crocker, D. and Overell, P.(Editors), "Augmented BNF for
 Syntax Specifications: ABNF", RFC 2234, Internet Mail
 Consortium and Demon Internet Ltd., November 1997.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC5511] Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax
 Used to Form Encoding Rules in Various Routing Protocol
 Specifications", RFC 5511, April 2009.

 [RFC3198] Westerinen, A., Schnizlein, J., Strassner, J., Scherling,
 M., Quinn, B., Herzog, S., Huynh, A., Carlson, M., Perry,
 J., and S. Waldbusser, "Terminology for Policy-Based
 Management", RFC 3198, DOI 10.17487/RFC3198,
 November 2001, <http://www.rfc-editor.org/info/rfc3198>.

 [RFC8192] Hares, S., Lopez, D., Zarny, M., Jacquenet, C., Kumar,
 R., and J. Jeong, "Interface to Network Security Functions
 (I2NSF): Problem Statement and Use Cases", RFC 8192,
 DOI 10.17487/RFC8192, July 2017,
 <https://www.rfc-editor.org/info/rfc8192>.

 [RFC8329] Lopez, D., Lopez, E., Dunbar, L., Strassner, J. and R.
 Kumar, "Framework for Interface to Network Security
 Functions", RFC 8329, February 2018.

 5.2. Informative References

 [INCITS359 RBAC] NIST/INCITS, "American National Standard for
 Information Technology - Role Based Access Control",
 INCITS 359, April, 2003

 [I-D.draft-ietf-i2nsf-terminology] Hares, S., et.al., "Interface to
 Network Security Functions (I2NSF) Terminology", Work in
 Progress, January, 2018

 [I-D.draft-ietf-supa-generic-policy-info-model] Strassner, J.,
 Halpern, J., Coleman, J., "Generic Policy Information
 Model for Simplified Use of Policy Abstractions (SUPA)",
 Work in Progress, May, 2017.

 [Alshaer] Al Shaer, E. and H. Hamed, "Modeling and management of
 firewall policies", 2004.

https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc5511
https://datatracker.ietf.org/doc/html/rfc3198
http://www.rfc-editor.org/info/rfc3198
https://datatracker.ietf.org/doc/html/rfc8192
https://www.rfc-editor.org/info/rfc8192
https://datatracker.ietf.org/doc/html/rfc8329
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-terminology
https://datatracker.ietf.org/doc/html/draft-ietf-supa-generic-policy-info-model

Xia, et al. Expires January 02, 2019 [Page 20]

Internet-Draft I2NSF Capability IM July 2018

 [Bas12] Basile, C., Cappadonia, A., and A. Lioy, "Network-Level
 Access Control Policy Analysis and Transformation", 2012.

 [Bas15] Basile, C. and A. Lioy, "Analysis of application-layer
 filtering policies with application to HTTP", 2015.

 [Cormen] Cormen, T., "Introduction to Algorithms", 2009.

 [Galitsky] Galitsky, B. and Pampapathi, R., "Can many agents answer
 questions better than one", First Monday, 2005;

http://dx.doi.org/10.5210/fm.v10i1.1204

 [Gamma] Gamma, E., Helm, R. Johnson, R., Vlissides, J., "Design
 Patterns: Elements of Reusable Object-Oriented
 Software", Addison-Wesley, Nov, 1994.
 ISBN 978-0201633610

 [Hirschman]Hirschman, L., and Gaizauskas, R., "Natural Language
 Question Answering: The View from Here", Natural Language
 Engineering 7:4, pgs 275-300, Cambridge University Press,
 2001

 [Hohpe] Hohpe, G. and Woolf, B., "Enterprise Integration
 Patterns", Addison-Wesley, 2003, ISBN 0-32-120068-3

 [Lunt] van Lunteren, J. and T. Engbersen, "Fast and scalable
 packet classification", 2003.

 [Martin] Martin, R.C., "Agile Software Development, Principles,
 Patterns, and Practices", Prentice-Hall, 2002,
 ISBN: 0-13-597444-5

 [MCM] MEF, "MEF Core Model", Technical Specification MEF X,
 April 2018

 [OODMP] http://www.oodesign.com/mediator-pattern.html

 [OODSOP] http://www.oodesign.com/observer-pattern.html

 [OODSRP] http://www.oodesign.com/single-responsibility-
principle.html

 [PDO] MEF, "Policy Driven Orchestration", Technical
 Specification MEF Y, January 2018

 [Taylor] Taylor, D. and J. Turner, "Scalable packet classification
 using distributed crossproducting of field labels", 2004.

http://dx.doi.org/10.5210/fm.v10i1.1204
http://www.oodesign.com/mediator-pattern.html
http://www.oodesign.com/observer-pattern.html
http://www.oodesign.com/single-responsibility-principle.html
http://www.oodesign.com/single-responsibility-principle.html

Xia, et al. Expires January 02, 2019 [Page 21]

Internet-Draft I2NSF Capability IM July 2018

 6. Acknowledgments

 This document was prepared using 2-Word-v2.0.template.dot.

Xia, et al. Expires January 02, 2019 [Page 22]

Internet-Draft I2NSF Capability IM July 2018

Authors' Addresses

 Cataldo Basile
 Politecnico di Torino
 Corso Duca degli Abruzzi, 34
 Torino, 10129
 Italy
 Email: cataldo.basile@polito.it

 Liang Xia (Frank)
 Huawei
 101 Software Avenue, Yuhuatai District
 Nanjing, Jiangsu 210012
 China
 Email: Frank.xialiang@huawei.com

 John Strassner
 Huawei
 2330 Central Expressway
 Santa Clara, CA 95050 USA
 Email: John.sc.Strassner@huawei.com

 Diego R. Lopez
 Telefonica I+D
 Zurbaran, 12
 Madrid, 28010
 Spain
 Phone: +34 913 129 041
 Email: diego.r.lopez@telefonica.com

Xia, et al. Expires January 02, 2019 [Page 23]

