
I2NSF Working Group R. Kumar
Internet-Draft A. Lohiya
Intended status: Informational Juniper Networks
Expires: May 1, 2017 D. Qi
 Bloomberg
 N. Bitar
 S. Palislamovic
 Nokia
 L. Xia
 Huawei
 October 28, 2016

Requirements for Client-Facing Interface to Security Controller
draft-ietf-i2nsf-client-facing-interface-req-00

Abstract

 This document captures the requirements for the client-facing
 interface to the security controller. The interfaces are based on
 user constructs understood by a security admin instead of a vendor or
 a device specific mechanism requiring deep knowledge of individual
 products and features. This document identifies the requirements
 needed to enforce the user-construct oriented policies onto network
 security functions (NSFs) irrespective of how those functions are
 realized. The function may be physical or virtual in nature and may
 be implemented in networking or dedicated appliances.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 1, 2017.

Kumar, et al. Expires May 1, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Client Interface Requirements October 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions Used in this Document 4

 3. Guiding principles for definition of Client-Facing Interfaces 5
3.1. User-construct based modeling 5
3.2. Basic rules for client interface definition 6
3.3. Deployment Models for Implementing Security Policies . . 7

4. Functional Requirements for the Client-Facing Interface . . . 10
4.1. Requirement for Multi-Tenancy in client interface 11

 4.2. Requirement for Authentication and Authorization of
 client interface . 12
 4.3. Requirement for Role-Based Access Control (RBAC) in
 client interface . 12

4.4. Requirement to protect client interface from attacks . . 12
 4.5. Requirement to protect client interface from
 misconfiguration . 13
 4.6. Requirement to manage policy lifecycle with diverse needs 13

4.7. Requirement to define dynamic policy Endpoint group . . . 14
4.8. Requirement to express rich set of policy rules 15
4.9. Requirement to express rich set of policy actions 16
4.10. Requirement to express policy in a generic model 18
4.11. Requirement to detect and correct policy conflicts . . . 18
4.12. Requirement for backward compatibility 18
4.13. Requirement for Third-Party integration 19
4.14. Requirement to collect telemetry data 19

5. Operational Requirements for the Client-Facing Interface . . 19
5.1. API Versioning . 19
5.2. API Extensiblity . 20
5.3. APIs and Data Model Transport 20
5.4. Notification . 20
5.5. Affinity . 20
5.6. Test Interface . 20

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Kumar, et al. Expires May 1, 2017 [Page 2]

Internet-Draft Client Interface Requirements October 2016

6. IANA Considerations . 21
7. Acknowledgements . 21
8. Normative References . 21

 Authors' Addresses . 21

1. Introduction

 Programming security policies in a network has been a fairly complex
 task that often requires very deep knowledge of vendor specific
 devices. This has been the biggest challenge for both service
 providers and enterprises, henceforth named as security administrator
 in this document. The challenge is amplified due to virtualization
 with security appliances in physical and virtual form factor from a
 wide variety of vendors; each vendor have their own proprietary
 interfaces to express security policies on their devices.

 Even if a security administrator deploys a single vendor solution
 with one or more security appliances across its entire network, it is
 still difficult to manage security policies due to complexity of
 security features, and difficulty in mapping business requirement to
 vendor specific configuration. The security administrator may use
 either vendor provided CLIs or management system with some
 abstraction to help provision and manage security policies. But, the
 single vendor approach is highly restrictive in today's network for
 the following reasons:

 o The security administrator cannot rely on a single vendor because
 one vendor may not be able to keep up with their security
 requirements or specific deployment model.

 o A large organization may have a presence across different sites
 and regions; which means, it may not be possible to deploy same
 solution from single vendor due to regulatory requirement or
 organizational policy.

 o If and when security administrator migrates from one vendor to
 another, it is almost impossible to migrate security policies from
 one vendor solution to another without complex manual workflows.

 o Security administrators deploy various security functions in
 virtual or physical forms to attain the flexibility, elasticity,
 performance, and operational efficiency they require.
 Practically, that often requires different sources (vendor, open
 source) to get the best of breed for any such security function.

 o The security administrator might choose various devices or network
 services (such as routers, switches, firewall devices, and
 overlay-networks) as enforcement points for security policies.

Kumar, et al. Expires May 1, 2017 [Page 3]

Internet-Draft Client Interface Requirements October 2016

 This my be for reason (such as network design simplicity, cost,
 most-effective place, scale and performance).

 In order to ease the deployment of security policies across different
 vendors and devices, the Interface to Network Security Functions
 (I2NSF) working group in the IETF is defining a client-facing
 interface from the security controller to clients [I-D. ietf-i2nsf-
 framework] [I-D. ietf-i2nsf-terminology]. Deployment facilitation
 should be agnostic to the type of device, be it physical or virtual,
 or type of the policy, be it dynamic or static. Using these
 interfaces, it would become possible to write different kinds of
 application (e.g. GUI portal, template engine, etc.) to control the
 implementation of security policies on security functional elements,
 though how these applications are implemente are completely out of
 the scope of the I2NSF working group, which is only focused on the
 interfaces.

 This document captures the requirements for the client-facing
 interface that can be easily used by security administrators without
 knowledge of specific security devices or features. We refer to this
 as "user-construct" based interfaces. To further clarify, in the
 scope of this document, the "user-construct" here does not mean some
 free-from natural language input or an abstract intent such as "I
 want my traffic secure" or "I don't want DDoS attacks in my network";
 rather the user-construct here means that policies are described
 using client-oriented expressions such as application names,
 application groups, device groups, user groups etc. with a vocabulary
 of verbs (e.g., drop, tap, throttle), prepositions, conjunctions,
 conditionals, adjectives, and nouns instead of using standard
 n-tuples from the packet header.

2. Conventions Used in this Document

 BSS: Business Support System

 CLI: Command Line Interface

 CMDB: Configuration Management Database

 Controller: Used interchangeably with Service Provider Security
 Controller or management system throughout this document

 CRUD: Create, Retrieve, Update, Delete

 FW: Firewall

 GUI: Graphical User Interface

Kumar, et al. Expires May 1, 2017 [Page 4]

Internet-Draft Client Interface Requirements October 2016

 IDS: Intrusion Detection System

 IPS: Intrusion Protection System

 LDAP: Lightweight Directory Access Protocol

 NSF: Network Security Function, defined by
 [I-D.ietf-i2nsf-problem-and-use-cases]

 OSS: Operation Support System

 RBAC: Role Based Access Control

 SIEM: Security Information and Event Management

 URL: Universal Resource Locator

 vNSF: Refers to NSF being instantiated on Virtual Machines

3. Guiding principles for definition of Client-Facing Interfaces

 The "Client-Facing Interface" ensures that a security administrator
 can deploy any device from any vendor and still be able to use a
 consistent interface. In essence, this interface gives ability to
 security admins to express their security policies independent of how
 security functions are implemented in their deployment. Henceforth,
 in this document, we use "security policy management interface"
 interchangeably when we refer to the client-facing interface.

3.1. User-construct based modeling

 Traditionally, security policies have been expressed using
 proprietary interfaces. These interface are defined by a vendor
 either based on CLI or a GUI system; but more often these interfaces
 are built using vendor specific networking construct such IP address,
 protocol and application constructs with L4-L7 information. This
 requires security operator to translate their oragnzational business
 objectives into actionable security policies on the device using
 vendor specific configuration. But, this alone is not sufficient to
 render policies in the network as operator also need to identify the
 device in the network topology where a policy need to be enforced in
 a complex environment with potenial multiple policy enforcement
 points.

 The User-construct based framework defines constructs such as user-
 group, application-group, device-group and location-group. The
 security admin would use these constructs to express a security
 policy instead of proprietary vendor specific constructs. The policy

Kumar, et al. Expires May 1, 2017 [Page 5]

Internet-Draft Client Interface Requirements October 2016

 defined in such a manner is referred to user-construct based policies
 in this draft. The idea is to enable security admin to use
 constructs they understand best in expressing security policies;
 which simplify their tasks and help avoiding human errors in complex
 security provisioning.

3.2. Basic rules for client interface definition

 The basic rules in defining the client-facing interfaces are as
 follows:

 o Not depending on particular network topology or the actual NSF
 location in the network

 o Not requiring the exact knowledge of the concrete features and
 capabilities supported in the deployed NSFsa€

 o Independent of the nature of the function that will apply the
 expressed policies be it stateful firewall,IDP, IDS, Router,
 Switch

 o Declarative/Descriptive model instead of Imperative/Prescriptive
 model - What security policies need to be enforced (declarative)
 instead of how they would be actually implemented (imperative)

 o Not depending on any specific vendor implementation or form-factor
 (physical, virtual) of the NSF

 o Not depending on how a NSF becomes operational - Network
 connectivity and other hosting requirements.

 o Not depending on NSF control plane implementation (if there is
 one) E.g., cluster of NSFs active as one unified service for scale
 and/ or resilience.

 o Not depending on specific data plane implementation of NSF i.e.
 Encapsulation, Service function chains.

 Note that the rules stated above only apply to the client-facing
 interface where a user will define a high level policy. These rules
 do not apply to the lower layers e.g. security controller that
 convert the higher level policies into lower level constructs. The
 lower layers may still need some intelligence such as topology
 awareness, capability of the NSF and its functions, supported
 encapsulations etc. to convert and apply the policies accurately on
 the NSF devices.

Kumar, et al. Expires May 1, 2017 [Page 6]

Internet-Draft Client Interface Requirements October 2016

3.3. Deployment Models for Implementing Security Policies

 Traditionally, medium and larger operators deploy management systems
 to manage their statically-defined security policies. This approach
 may not be suitable nor sufficient for modern automated and dynamic
 data centers that are largely virtualized and rely on various
 management systems and controllers to dynamically implement security
 policies over any types of resources.

 There are two different deployment models in which the client-facing
 interface referred to in this document could be implemented. These
 models have no direct impact on the client-facing interface, but
 illustrate the overall security policy and management framework and
 where the various processing functions reside. These models are:

 a. Management without an explicit management system for control of
 devices and NSFs. In this deployment, the security controller
 acts as a NSF policy management system that takes information
 passed over the client security policy interface and translates
 into data on the I2NSF NSF-facing interface. The I2NSF
 interfaces are implemented by security device/function vendors.
 This would usually be done by having an I2NSF agent embedded in
 the security device or NSF. This deployment model is shown in
 Figure 1.

Kumar, et al. Expires May 1, 2017 [Page 7]

Internet-Draft Client Interface Requirements October 2016

 RESTful API
 SUPA or I2NSF Policy Management
 ^
 |
 Client-facing Interface |
 (Independent of individual |
 NSFs, devices,and vendors)|
 |

 | |
 | Security Controller |
 | |

 | ^
 | I2NSF |
 NSF Interface | NSF-facing |
 (Specific to NSFs) | Interface |

 | |
 v |

 ------------- -------------
 | I2NSF Agent | | I2NSF Agent |
 |-------------| |-------------|
 | |---| |
 | NSF | | NSF |
 NSFs | | | |
 (virtual -------------\ /-------------
 and | \ / |
 physical) | X |
 | / \ |
 -------------/ \-------------
 | I2NSF Agent | | I2NSF Agent |
 |-------------| |-------------|
 | |---| |
 | NSF | | NSF |
 | | | |
 ------------- -------------

 Figure 1: Deployment without Management System

 b. Management with an explicit management system for control of
 devices and NSFs. This model is similar to the model above
 except that security controller interacts with a dedicated
 management system which could either proxy I2NSF NSF-facing
 interfaces or could provide a layer where security devices or

Kumar, et al. Expires May 1, 2017 [Page 8]

Internet-Draft Client Interface Requirements October 2016

 NSFs do not support an I2NSF agent to process I2NSF NSF-facing
 interfaces. This deployment model is shown in Figure 2.

 RESTful API
 SUPA or I2NSF Policy Management
 ^
 |
 Client-facing Interface |
 (Independent of individual |
 NSFs,devices,and vendors) |
 |

 | |
 | Security Controller |
 | |

 | ^
 | I2NSF |
 NSF Interface | NSF-facing |
 (Specific to NSFs) | Interface |

 | |
 v |

 | |
 | I2NSF Proxy Agent / |
 | Management System |
 | |

 | ^
 | Proprietary |
 | Functional |
 | Interface |

 | |
 v |

 ------------- -------------
 | |---| |
 | NSF | | NSF |
 NSFs | | | |
 (virtual -------------\ /-------------
 and | \ / |
 physical) | X |
 | / \ |
 -------------/ \-------------
 | |---| |

Kumar, et al. Expires May 1, 2017 [Page 9]

Internet-Draft Client Interface Requirements October 2016

 | NSF | | NSF |
 | | | |
 ------------- -------------

 Figure 2: Deployment with Management System or I2NSF Proxy Agent

 Although the deployment models discussed here don't necessarily
 affect the client security policy interface, they do give an overall
 context for defining a security policy interface based on
 abstraction.

4. Functional Requirements for the Client-Facing Interface

 As stated in the guiding principles for defining I2NSF client-facing
 interface, the security policies and the client-facing interface
 shall be defined from a user/client perspective and abstracted away
 from the type of NSF, NSF specific implementation, controller
 implementation, NSF topology, NSF interfaces, controller NSF-facing
 interfaces. Thus, the security policy definition shall be
 declarative, expressing the user construct, and driven by how
 security administrators view security policies from the definition,
 communication and deployment perspective.

 The security controller's implementation is outside the scope of this
 document and the I2NSF working group.

 In order to express and build security policies, high level
 requirements for the client-facing are as follows:

 o Multi-Tenancy

 o Authentication and Authorization

 o Role-Based Access Control (RBAC)

 o Protection from Attacks

 o Protection from Misconfiguration

 o Policy Lifecycle Management

 o Dynamic Policy Endpoint Groups

 o Policy Rules

 o Policy Actions

Kumar, et al. Expires May 1, 2017 [Page 10]

Internet-Draft Client Interface Requirements October 2016

 o Generic Policy Model

 o Policy Conflict Resolution

 o Backward Compatibility

 o Third-Party Integration

 o Telemetry Data

 The above requirements are by no means a complete list and may not be
 sufficient for all use-cases and all operators, but should be a good
 starting point for a wide variety of use-cases in Service Provider
 and Enterprise networks.

4.1. Requirement for Multi-Tenancy in client interface

 A security administrator that uses security policies may have
 internal tenants and would like to have a framework wherein each
 tenant manages its own security policies with isolation from other
 tenants.

 An operator may be a cloud service provider with multi-tenant
 deployments, where each tenant is a different customer. Each tenant
 or customer must be allowed to manage its own security policies.

 It should be noted that tenants may have their own tenants, so a
 recursive relation may exist. For instance, a tenant in a cloud
 service provider may have multiple departments or organizations that
 need to manage their own security rules.

 Some key concepts are listed below and used throughout the document
 hereafter:

 Policy-Tenant: An entity that owns and manages the security Policies
 applied on its resources.

 Policy-Administrator: A user authorized to manage the security
 policies for a Policy-Tenant.

 Policy-User: A user within a Policy-Tenant who is authorized to
 access certain resources of that tenant according to the
 privileges assigned to it.

Kumar, et al. Expires May 1, 2017 [Page 11]

Internet-Draft Client Interface Requirements October 2016

4.2. Requirement for Authentication and Authorization of client
 interface

 Security administrators MUST authenticate to and be authorized by the
 security controller before they are able to issue control commands
 and any policy data exchange commences.

 There must be methods defined for the Policy-Administrator to be
 authenticated and authorized to use the security controller. There
 are several authentication methods available such as OAuth, XAuth and
 X.509 certificate based. The authentication scheme between Policy-
 Administrator and security controller may also be mutual instead of
 one-way. Any specific method may be determined based on
 organizational and deployment needs and outside the scope of I2NSF.
 In addition, there must be a method to authorize the Policy-
 Administrator for performing certain action. It should be noted
 that, depending on the deployment model, Policy-Administrator
 authentication and authorization to perform actions communicated to
 the controller could be performed as part of a portal or another
 system prior to communication the action to the controller.

4.3. Requirement for Role-Based Access Control (RBAC) in client
 interface

 Policy-Authorization-Role represents a role assigned to a Policy-User
 that determines whether a user or has read-write access, read-only
 access, or no access for certain resources. A User can be mapped to
 a Policy-Authorization-Role using an internal or external identity
 provider or mapped statically.

4.4. Requirement to protect client interface from attacks

 There Must be protections from attacks, malicious or otherwise, from
 clients or a client impersonator. Potential attacks could come from
 a botnet or a host or hosts infected with virus or some unauthorized
 entity. It is recommended that security controller use a dedicated
 IP interface for client-facing communications and those
 communications should be carried over an isolated out-of-band
 network. In addition, it is recommended that traffic between clients
 and security controllers be encrypted. Furthermore, some
 straightforward traffic/session control mechanisms (i.e., Rate-limit,
 ACL, White/Black list) can be employed on the security controller to
 defend against DDoS flooding attacks.

Kumar, et al. Expires May 1, 2017 [Page 12]

Internet-Draft Client Interface Requirements October 2016

4.5. Requirement to protect client interface from misconfiguration

 There Must be protections from mis-configured clients. System and
 policy validations should be implemented to detect this. Validation
 may be based on a set of default parameters or custom tuned
 thresholds such as the number of policy changes submitted, number of
 objects requested in a given time interval, etc.

4.6. Requirement to manage policy lifecycle with diverse needs

 In order to provide more sophisticated security framework, there
 should be a mechanism to express that a policy becomes dynamically
 active/enforced or inactive based on either security administrator's
 manual intervention or an event.

 One example of dynamic policy management is when the security
 administrator pre-configures all the security policies, but the
 policies get activated or deactivated based on dynamic threats.
 Basically, a threat event may activate certain inactive policies, and
 once a new event indicates that the threat has gone away, the
 policies become inactive again.

 There are following ways for dynamically activating policies:

 o The policy may be dynamically activated by the I2NSF client or
 associated management entity, and dynamically communicated over the
 I2NSF client-facing interface to the controller to program I2NSF
 functions using the I2NSF NSF-facing interface

 o The policy may be pulled dynamically by the controller upon
 detecting an event over the I2NSF monitoring interface

 o The policy may be statically pushed to the controller and
 dynamically programmed on the NSFs upon potentially detecting another
 event

 o The policy can be programmed in the NSF, and activated or
 deactivated upon policy attributes, like time or admin enforced.

 The client-facing interface should support the following policy
 attributes for policy enforcement:

 Admin-Enforced: The policy, once configured, remains active/enforced
 until removed by the security administrator.

 Time-Enforced: The policy configuration specifies the time profile
 that determines when policy is activated/enforced. Otherwise, it
 is de-activated.

Kumar, et al. Expires May 1, 2017 [Page 13]

Internet-Draft Client Interface Requirements October 2016

 Event-Enforced: The policy configuration specifies the event profile
 that determines when policy is activated/enforced. It also
 specifies the duration attribute of that policy once activated
 based on event. For instance, if the policy is activated upon
 detecting an application flow, the policy could be de-activated
 when the corresponding session is closed or the flow becomes
 inactive for certain time.

 A policy could be a composite policy, that is composed of many rules,
 and subject to updates and modification. For the policy maintenance,
 enforcement, and auditability purposes, it becomes important to name
 and version the policies. Thus, the policy definition SHALL support
 policy naming and versioning. In addition, the i2NSF client-facing
 interface SHALL support the activation, deactivation,
 programmability, and deletion of policies based on name and version.
 In addition, it should support reporting on the state of policies by
 name and version. For instance, a client may probe the controller
 about the current policies enforced for a tenant and/or a sub-tenant
 (organization) for auditability or verification purposes.

4.7. Requirement to define dynamic policy Endpoint group

 When the security administrator configures a security policy, it may
 have requirement to apply this policy to certain subsets of the
 network. The subsets may be identified based on criteria such as
 users, devices, and applications. We refer to such a subset of the
 network as a "Policy Endpoint Group".

 One of the biggest challenges for a security administrator is how to
 make sure that security policies remain effective while constant
 changes are happening to the "Policy Endpoint Group" for various
 reasons (e.g., organizational, network and application changes). If
 a policy is created based on static information such as user names,
 application, or network subnets; then every time this static
 information change, policies need to be updated. For example, if a
 policy is created that allows access to an application only from the
 group of Human Resource users (the HR-users group), then each time
 the HR- users group changes, the policy needs to be updated.

 We call these dynamic Policy Endpoint Groups "Meta-data Driven
 Groups". The meta-data is a tag associated with endpoint information
 such as users, applications, and devices. The mapping from meta-data
 to dynamic content could come either from standards-based or
 proprietary tools. The security controller could use any available
 mechanisms to derive this mapping and to make automatic updates to
 the policy content if the mapping information changes. The system
 SHOULD allow for multiple, or sets of tags to be applied to a single
 network object.

Kumar, et al. Expires May 1, 2017 [Page 14]

Internet-Draft Client Interface Requirements October 2016

 The client-facing policy interface must support endpoint groups for
 user-construct based policy management. The following meta-data
 driven groups MAY be used for configuring security polices:

 User-Group: This group identifies a set of users based on a tag or
 on static information. The tag to identify user is dynamically
 derived from systems such as Active Directory or LDAP. For
 example, an operator may have different user-groups, such as HR-
 users, Finance-users, Engineering-users, to classify a set of
 users in each department.

 Device-Group: This group identifies a set of devices based on a tag
 or on static information. The tag to identify device is
 dynamically derived from systems such as configuration mannagement
 database (CMDB). For example, a security administrator may want
 to classify all machines running one operating system into one
 group and machines running another operating system into another
 group.

 Application-Group: This group identifies a set of applications based
 on a tag or on static information. The tag to identify
 application is dynamically derived from systems such as CMDB. For
 example, a security administrator may want to classify all
 applications running in the Legal department into one group and
 all applications running under a specific operating system into
 another group. In some cases, the application can semantically
 associated with a VM or a device. However, in other cases, the
 application may need to be associated with a set of identifiers
 (e.g., transport numbers, signature in the application packet
 payload) that identify the application in the corresponding
 packets. The mapping of application names/tags to signatures in
 the associated application packets should be defined and
 communicated to the NSF. The client-facing Interface shall
 support the communication of this information.

 Location-Group: This group identifies a set of location tags. Tag
 may correspond 1:1 to location. The tag to identify location is
 either statically defined or dynamically derived from systems such
 as CMDB. For example, a security administrator may want to
 classify all sites/locations in a geographic region as one group.

4.8. Requirement to express rich set of policy rules

 The security policy rules can be as simple as specifying a match for
 the user or application specified through "Policy Endpoint Group" and
 take one of the "Policy Actions" or more complicated rules that
 specify how two different "Policy Endpoint Groups" interact with each

Kumar, et al. Expires May 1, 2017 [Page 15]

Internet-Draft Client Interface Requirements October 2016

 other. The client-facing interface must support mechanisms to allow
 the following rule matches.

 Policy Endpoint Groups: The rule must allow a way to match either a
 single or a member of a list of "Policy Endpoint Groups".

 There must be a way to express a match between two "Policy Endpoint
 Groups" so that a policy can be effective for communication between
 two groups.

 Direction: The rule must allow a way to express whether the security
 administrator wants to match the "Policy Endpoint Group" as the
 source or destination. The default should be to match both
 directions, if the direction rule is not specified in the policy.

 Threats: The rule should allow the security administrator to express
 a match for threats that come either in the form of feeds (such as
 botnet feeds, GeoIP feeds, URL feeds, or feeds from a SIEM) or
 speciality security appliances. Threats could be identified by
 Tags/names in policy rules. The tag is a label of one or more
 event types that may be detected by a threat detection system.

 The threat could be from malware and this requires a way to match for
 virus signatures or file hashes.

4.9. Requirement to express rich set of policy actions

 The security administrator must be able to configure a variety of
 actions within a security policy. Typically, security policy
 specifies a simple action of "deny" or "permit" if a particular
 condition is matched. Although this may be enough for most of the
 simple policies, the I2NSF client-facing interface must also provide
 a more comprehensive set of actions so that the interface can be used
 effectively across various security functions.

 Policy action MUST be extensible so that additional policy action
 specifications can easily be added.

 The following list of actions SHALL be supported:

 Permit: This action means continue processing the next rule or allow
 the packet to pass if this is the last rule. This is often a
 default action.

 Deny: This action means stop further packet processing and drop the
 packet.

Kumar, et al. Expires May 1, 2017 [Page 16]

Internet-Draft Client Interface Requirements October 2016

 Drop connection: This action means stop further packet processing,
 drop the packet, and drop connection (for example, by sending a
 TCP reset).

 Log: This action means create a log entry whenever a rule is
 matched.

 Authenticate connection: This action means that whenever a new
 connection is established it should be authenticated.

 Quarantine/Redirect: This action may be relevant for event driven
 policy where certain events would activate a configured policy
 that quarantines or redirects certain packets or flows. The
 redirect action must specify whether the packet is to be tunneled
 and in that case specify the tunnel or encapsulation method and
 destination identifier.

 Netflow: This action creates a Netflow record; Need to define
 Netflow server or local file and version of Netflow.

 Count: This action counts the packets that meet the rule condition.

 Encrypt: This action encrypts the packets on an identified flow.
 The flow could be over an Ipsec tunnel, or TLS session for
 instance.

 Decrypt: This action decrypts the packets on an identified flow.
 The flow could be over an Ipsec tunnel, or TLS session for
 instance.

 Throttle: This action defines shaping a flow or a group of flows
 that match the rule condition to a designated traffic profile.

 Mark: This action defines traffic that matches the rule condition by
 a designated DSCP value and/or VLAN 802.1p Tag value.

 Instantiate-NSF: This action instantiates an NSF with a predefined
 profile. An NSF can be any of the FW, LB, IPS, IDS, honeypot, or
 VPN, etc.

 WAN-Accelerate: This action optimizes packet delivery using a set of
 predefined packet optimization methods.

 Load-Balance: This action load balances connections based on
 predefined LB schemes or profiles.

Kumar, et al. Expires May 1, 2017 [Page 17]

Internet-Draft Client Interface Requirements October 2016

 The policy actions should support combination of terminating actions
 and non-terminating actions. For example, Syslog and then Permit;
 Count and then Redirect.

 Policy actions SHALL support any L2, L3, L4-L7 policy actions.

4.10. Requirement to express policy in a generic model

 Client-facing interface SHALL provide a generic metadata model that
 defines once and then be used by appropriate model elements any
 times, regardless of where they are located in the class hierarchy,
 as necessary.

 Client-facing interface SHALL provide a generic context model that
 enables the context of an entity, and its surrounding environment, to
 be measured, calculated, and/or inferred.

 Client-facing interface SHALL provide a generic policy model that
 enables context-aware policy rules to be defined to change the
 configuration and monitoring of resources and services as context
 changes.

 Client-facing interface SHALL provide the ability to apply policy or
 multiple sets of policies to any given object. Policy application
 process SHALL allow for nesting capabilities of given policies or set
 of policies. For example, an object or any given set of objects
 could have application team applying certain set of policy rules,
 while network team would apply different set of their policy rules.
 Lastly, security team would have an ability to apply its set of
 policy rules, being the last policy to be evaluated against.

4.11. Requirement to detect and correct policy conflicts

 Client-facing interface SHALL be able to detect policy "conflicts",
 and SHALL specify methods on how to resolve these "conflicts"

 For example: two clients issues conflicting set of security policies
 to be applied to the same Policy Endpoint Group.

4.12. Requirement for backward compatibility

 It MUST be possible to add new capabilities to client-facing
 interface in a backward compatible fashion.

Kumar, et al. Expires May 1, 2017 [Page 18]

Internet-Draft Client Interface Requirements October 2016

4.13. Requirement for Third-Party integration

 The security policies in the security administrator's network may
 require the use of specialty devices such as honeypots, behavioral
 analytics, or SIEM in the network, and may also involve threat feeds,
 virus signatures, and malicious file hashes as part of comprehensive
 security policies.

 The client-facing interface must allow the security administrator to
 configure these threat sources and any other information to provide
 integration and fold this into policy management.

4.14. Requirement to collect telemetry data

 One of the most important aspect of security is to have visibility
 into the networks. As threats become more sophisticated, the
 security administrator must be able to gather different types of
 telemetry data from various devices in the network. The collected
 data could simply be logged or sent to security analysis engines for
 behavioral analysis, policy violations, and for threat detection.

 The client-facing interface MUST allow the security administrator to
 collect various kinds of data from NSFs. The data source could be
 syslog, flow records, policy violation records, and other available
 data.

 Detailed client-facing interface telemetry data should be available
 between clients and security controllers. Clients should be able to
 subscribe and receive these telemetry data.

 client should be able to receive notifications when a policy is
 dynamically updated.

5. Operational Requirements for the Client-Facing Interface

5.1. API Versioning

 The client-facing interface must support a version number for each
 RESTful API. This is very important because the client application
 and the controller application may most likely come from different
 vendors. Even if the vendor is same, it is hard to imagine that two
 different applications would be released in lock step.

 Without API versioning, it is hard to debug and figure out issues if
 application breaks. Although API versioning does not guarantee that
 applications will always work, it helps in debugging if the problem
 is caused by an API mismatch.

Kumar, et al. Expires May 1, 2017 [Page 19]

Internet-Draft Client Interface Requirements October 2016

5.2. API Extensiblity

 Abstraction and standardization of the client-facing interface is of
 tremendous value to security administrators as it gives them the
 flexibility of deploying any vendor's NSF without needing to redefine
 their policies or change the client interface. However this might
 also look like as an obstacle to innovation.

 If a vendor comes up with new feature or functionality that can't be
 expressed through the currently defined client-facing interface,
 there must be a way to extend existing APIs or to create a new API
 that is relevant for that NSF vendor only.

5.3. APIs and Data Model Transport

 The APIs for client interface must be derived from the YANG based
 data model. The YANG data model for client interface must capture
 all the requirements as defined in this document to express a
 security policy. The interface between a client and controller must
 be reliable to ensure robust policy enforcement. One such transport
 mechanism is RESTCONF that uses HTTP operations to provide necessary
 CRUD operations for YANG data objects, but any other mechanism can be
 used.

5.4. Notification

 The client-facing interface must allow the security administrator to
 collect various alarms and events from the NSF in the network. The
 events and alarms may be either related to security policy
 enforcement or NSF operation. The events and alarms could also be
 used as a input to the security policy for autonomous handling.

5.5. Affinity

 The client-facing interface must allow the security administrator to
 pass any additional metadata that a user may want to provide for a
 security policy e.g. certain security policy needs to be applied only
 on linux machine or windows machine or that a security policy must be
 applied on the device with Trusted Platform Module chip.

5.6. Test Interface

 The client-facing interface must allow the security administrator the
 ability to test the security policies before the policies are
 actually applied e.g. a user may want to verify if a policy creates
 potential conflicts with the existing policies or whether a certain
 policy can be implemented. The test interface provides such
 capabilities without actually applying the policies.

Kumar, et al. Expires May 1, 2017 [Page 20]

Internet-Draft Client Interface Requirements October 2016

6. IANA Considerations

 This document requires no IANA actions. RFC Editor: Please remove
 this section before publication.

7. Acknowledgements

 The authors would like to thank Adrian Farrel, Linda Dunbar and Diego
 R.Lopez from IETF I2NSF WG for helpful discussions and advice.

 The authors would also like to thank Kunal Modasiya, Prakash T.
 Sehsadri and Srinivas Nimmagadda from Juniper networks for helpful
 discussions.

8. Normative References

 [I-D.ietf-i2nsf-problem-and-use-cases]
 Hares, S., Dunbar, L., Lopez, D., Zarny, M., and C.
 Jacquenet, "I2NSF Problem Statement and Use cases", draft-

ietf-i2nsf-problem-and-use-cases-02 (work in progress),
 October 2016.

Authors' Addresses

 Rakesh Kumar
 Juniper Networks
 1133 Innovation Way
 Sunnyvale, CA 94089
 US

 Email: rkkumar@juniper.net

 Anil Lohiya
 Juniper Networks
 1133 Innovation Way
 Sunnyvale, CA 94089
 US

 Email: alohiya@juniper.net

https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-problem-and-use-cases-02
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-problem-and-use-cases-02

Kumar, et al. Expires May 1, 2017 [Page 21]

Internet-Draft Client Interface Requirements October 2016

 Dave Qi
 Bloomberg
 731 Lexington Avenue
 New York, NY 10022
 US

 Email: DQI@bloomberg.net

 Nabil Bitar
 Nokia
 755 Ravendale Drive
 Mountain View, CA 94043
 US

 Email: nabil.bitar@nokia.com

 Senad Palislamovic
 Nokia
 755 Ravendale Drive
 Mountain View, CA 94043
 US

 Email: senad.palislamovic@nokia.com

 Liang Xia
 Huawei
 101 Software Avenue
 Nanjing, Jiangsu 210012
 China

 Email: Frank.Xialiang@huawei.com

Kumar, et al. Expires May 1, 2017 [Page 22]

