
I2NSF Working Group R. Kumar
Internet-Draft Lilac Cloud
Intended status: Informational A. Lohiya
Expires: July 20, 2018 Juniper Networks
 D. Qi
 Bloomberg
 N. Bitar
 S. Palislamovic
 Nokia
 L. Xia
 Huawei
 January 16, 2018

Requirements for Client-Facing Interface to Security Controller
draft-ietf-i2nsf-client-facing-interface-req-04

Abstract

 This document captures requirements for Client-Facing interface to
 the Security Controller as defined by [I-D.ietf-i2nsf-framework].
 The interface is expressed using objects and constructs understood by
 Security Admin as opposed to vendor or device specific expressions
 associated with individual product and feature. This document
 identifies a broad set of requirements needed to express Security
 Policies based on User-constructs which are well understood by the
 User Community. This gives ability to decouple policy definition
 from policy enforcement on a specific security functional element, be
 it a physical or virtual.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 20, 2018.

Kumar, et al. Expires July 20, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Client Interface Requirements January 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions Used in this Document 4
3. Guiding principle for Client-Facing Interface definition . . 5
3.1. User-construct based modeling 5
3.2. Basic rules for Client-Facing Interface definition . . . 6
3.3. Deployment Models for Implementing Security Policies . . 7

4. Functional Requirements for the Client-Facing Interface . . . 10
 4.1. Requirement for Multi-Tenancy in Client-Facing interface 11
 4.2. Requirement for Authentication and Authorization of
 Client-Facing interface 12
 4.3. Requirement for Role-Based Access Control (RBAC) in
 Client-Facing interface 12
 4.4. Requirement to protect Client-Facing interface from
 attacks . 13
 4.5. Requirement to protect Client-Facing interface from
 misconfiguration . 13
 4.6. Requirement to manage policy lifecycle with rich set of
 controls . 13

4.7. Requirement to define dynamic Policy Endpoint Group . . . 14
4.8. Requirement to express rich set of Policy Rules 16
4.9. Requirement to express rich set of Policy Actions 17
4.10. Requirement for consistent policy enforcement 19
4.11. Requirement to detect and correct policy conflicts . . . 19
4.12. Requirement for backward compatibility 19
4.13. Requirement for Third-Party integration 20
4.14. Requirement to collect telemetry data 20

5. Operational Requirements for the Client-Facing Interface . . 20
5.1. API Versioning . 20
5.2. API Extensibility . 21
5.3. APIs and Data Model Transport 21
5.4. Notification and Monitoring 21

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Kumar, et al. Expires July 20, 2018 [Page 2]

Internet-Draft Client Interface Requirements January 2018

5.5. Affinity . 21
5.6. Test Interface . 21

6. Security Considerations 22
7. IANA Considerations . 22
8. Acknowledgements . 22
9. Normative References . 22

 Authors' Addresses . 23

1. Introduction

 Programming security policies in a network has been a fairly complex
 task that often requires deep knowledge of vendor specific devices
 and features. This has been the biggest challenge for both Service
 Providers and Enterprises, henceforth named as Security Admins in
 this document. This challenge is further amplified due to network
 virtualization with security functions deployed in physical and
 virtual form factors, henceforth named as network security function
 (NSF) in this document, from multiple vendors with proprietary
 interfaces.

 Even if Security Admin deploys a single vendor solution with one or
 more security appliances across its entire network, it is still very
 difficult to manage Security Policies that requires mapping of
 business needs to complex security features with vendor specific
 configurations. The Security Admin may use vendor provided
 management systems to provision and manage Security Policies. But,
 the single vendor approach is highly restrictive in today's network
 for following reasons:

 o An organization may not be able to rely on a single vendor because
 the changing security requirements may not align with vendor's
 release cycle.

 o A large organization may have a presence across different sites
 and regions; which means, it may not be possible to deploy same
 solution from the same vendor because of regional regulatory and
 compliance policy.

 o If and when an organization migrates from one vendor to another,
 it is almost impossible to migrate Security Policies from one
 vendor to another without complex and time consuming manual
 workflows.

 o An organization may deploy multiple security functions in either
 virtual or physical form to attain the flexibility, elasticity,
 performance scale and operational efficiency they require.
 Practically, that often requires different sources (vendor, open
 source) to get the best of breed for a given security function.

Kumar, et al. Expires July 20, 2018 [Page 3]

Internet-Draft Client Interface Requirements January 2018

 o An organization may choose all or part of their assets such as
 routers, switches, firewalls, and overlay-networks as policy
 enforcement points for operational and cost efficiency. It would
 be highly complex to manage policy enforcement with different tool
 set for each type of device.

 In order to facilitate deployment of Security Policies across
 different vendor provided NSFs, the Interface to Network Security
 Functions (I2NSF) working group in the IETF is defining a Client-
 Facing interface to Security Controller [I-D. ietf-i2nsf-framework]
 [I-D. ietf-i2nsf-terminology]. Deployment facilitation should be
 agnostic to the type of device, be it physical or virtual, or type of
 enforcement point. Using these interfaces, it becomes possible to
 write different kinds of security management applications (e.g. GUI
 portal, template engine, etc.) allowing Security Admin to express
 Security Policy in an abstract form with choice of wide variety of
 NSF as policy enforcement point. The implementation of security
 management applications or controller is out of scope for I2NSF
 working group.

 This document captures the requirements for Client-Facing interface
 that can be easily used by Security Admin without a need for
 expertise in vendor and device specific feature set. We refer to
 this as "User-construct" based interfaces. To further clarify, in
 the scope of this document, the "User-construct" here does not mean
 some free-from natural language input or an abstract intent such as
 "I want my traffic secure" or "I don't want DDoS attacks in my
 network"; rather the User-construct here means that Security Policies
 are described using expressions such as application names,
 application groups, device groups, user groups etc. with a vocabulary
 of verbs (e.g., drop, tap, throttle), prepositions, conjunctions,
 conditionals, adjectives, and nouns instead of using standard
 n-tuples from the packet header.

2. Conventions Used in this Document

 BSS: Business Support System

 CLI: Command Line Interface

 CMDB: Configuration Management Database

 Controller: Used interchangeably with Security Controller or
 management system throughout this document

 CRUD: Create, Retrieve, Update, Delete

 FW: Firewall

Kumar, et al. Expires July 20, 2018 [Page 4]

Internet-Draft Client Interface Requirements January 2018

 GUI: Graphical User Interface

 IDS: Intrusion Detection System

 IPS: Intrusion Protection System

 LDAP: Lightweight Directory Access Protocol

 NSF: Network Security Function, defined by
 [I-D.ietf-i2nsf-problem-and-use-cases]

 OSS: Operation Support System

 RBAC: Role Based Access Control

 SIEM: Security Information and Event Management

 URL: Universal Resource Locator

 vNSF: Refers to NSF being instantiated on Virtual Machines

3. Guiding principle for Client-Facing Interface definition

 Client-Facing Interface must ensure that a Security Admin can deploy
 a NSF from any vendor and should still be able to use the same
 consistent interface. In essence, this interface allows a Security
 Admin to express a Security Policy enforced on the NSF to be
 independent of vendor and its implementation. Henceforth, in this
 document, we use "security policy management interface"
 interchangeably when we refer to Client-Facing interface.

3.1. User-construct based modeling

 Traditionally, Security Policies have been expressed using vendor
 proprietary interface. The interface is defined by a vendor based on
 proprietary command line text or a GUI based system with
 implementation specific constructs such IP address, protocol and
 L4-L7 information. This requires Security Admin to translate their
 business objectives into vendor provided constructs in order to
 express a Security Policy. But, this alone is not sufficient to
 render a policy in the network; the admin must also understand
 network and application design to locate a specific policy
 enforcement point to make sure policy is effective. To further
 complicate the matters, when changes happen in the network topology,
 the Security Policy may require modifications accordingly. This may
 be a highly manual task based on network design and becomes
 unmanageable in virtualized environment.

Kumar, et al. Expires July 20, 2018 [Page 5]

Internet-Draft Client Interface Requirements January 2018

 The User-construct based framework does not rely on lower level
 semantics due to problem explained above, but rather uses higher
 level constructs such as User-group, Application-group, Device-group,
 Location-group, etcetera. A Security Admin would use these
 constructs to express a security policy instead of proprietary
 implementation or feature specific constructs. The policy defined in
 such a manner is referred to User-construct based policies in this
 draft. The idea is to enable Security Admin to use constructs they
 understand best in expressing Security Policies which simplify their
 tasks and help avoiding human errors in complex security
 provisioning.

3.2. Basic rules for Client-Facing Interface definition

 The basic rules in defining the Client-Facing interfaces are as
 follows:

 o Not dependent on a particular network topology or the NSF location
 in the network

 o Not forced to express Security Policy with proprietary vendor
 specific interfaces for a given NSFa€

 o Independent of NSF type that will implement a specific Security
 Policy; e.g., the interface remains same no matter if a specific
 Security Policy is enforced on a stateful firewall,IDP, IDS,
 Router or a Switch

 o Declarative/Descriptive model instead of Imperative/Prescriptive
 model - What security policy need to be expressed (declarative)
 instead of how it is implemented (imperative)

 o Not dependent on vendor's' implementation or form-factor
 (physical, virtual) of the NSF

 o Not dependent on how a NSF becomes operational - network
 connectivity and other hosting requirements.

 o Not dependent on NSF control plane implementation (if there is
 one), e.g., cluster of NSFs active as one unified service for
 scale and/ or resilience.

 o Not depending on specific data plane implementation of NSF, e.g.
 encapsulation, service function chains.

 Note that the rules stated above only apply to the Client-Facing
 interface, which a Security Admin would use to express a high level
 policy. These rules do not apply to the lower layers, e.g., Security

Kumar, et al. Expires July 20, 2018 [Page 6]

Internet-Draft Client Interface Requirements January 2018

 Controller that convert higher level policies into lower level
 constructs. The lower layers may still need some intelligence such
 as topology awareness, capability of the NSF and its functions,
 supported encapsulations etc., to convert and apply the policies
 accurately on the NSF.

3.3. Deployment Models for Implementing Security Policies

 Traditionally, medium and large Enterprises deploy vendor provided
 management systems to create Security Policies and any changes to
 these Security Policies are made manually over time by Security
 Admin. This approach may not be suitable and nor sufficient for
 modern highly automated data centers that are largely virtualized and
 rely on various management systems and controllers to implement
 dynamic Security Policies over large number of NSF in the network.

 There are two distinct deployment models for Security Controller.
 Although, these have no direct impact on the Client-Facing interface,
 but illustrate the overall Security Policy management framework in an
 organization and how the Client-Facing interface remain same which is
 the main objective of this document. These models are:

 a. Policy management without an explicit management system for
 control of NSFs. In this deployment, Security Controller acts as
 a NSF management system; it takes information passed over Client-
 Facing interface and translates into data on I2NSF NSF-facing
 interface. The NSF-Facing interface is implemented by NSF
 vendors; this would usually be done by having an I2NSF agent
 embedded in the NSF. This deployment model is shown in Figure 1.

Kumar, et al. Expires July 20, 2018 [Page 7]

Internet-Draft Client Interface Requirements January 2018

 RESTful API
 SUPA or I2NSF Policy Management
 ^
 |
 Client-Facing Interface |
 (Independent of individual |
 NSFs, devices, and vendors) |
 |

 | |
 | Security Controller |
 | |

 | ^
 | I2NSF |
 NSF Interface | NSF-facing |
 (Specific to NSFs) | Interface |

 | |
 v |

 ------------- -------------
 | I2NSF Agent | | I2NSF Agent |
 |-------------| |-------------|
 | |---| |
 | NSF | | NSF |
 NSFs | | | |
 (virtual -------------\ /-------------
 and | \ / |
 physical) | X |
 | / \ |
 -------------/ \-------------
 | I2NSF Agent | | I2NSF Agent |
 |-------------| |-------------|
 | |---| |
 | NSF | | NSF |
 | | | |
 ------------- -------------

 Figure 1: Deployment without Management System

 b. Policy management with an explicit management system for control
 of NSFs. This model is similar to the model above except that
 Security Controller interacts with a vendor's dedicated
 management system that proxy I2NSF NSF-Facing interfaces as NSF

Kumar, et al. Expires July 20, 2018 [Page 8]

Internet-Draft Client Interface Requirements January 2018

 may not support NSF-Facing interface. This is a useful model to
 support legacy NSF. This deployment model is shown in Figure 2.

 RESTful API
 SUPA or I2NSF Policy Management
 ^
 |
 Client-facing Interface |
 (Independent of individual |
 NSFs, devices, and vendors) |
 |

 | |
 | Security Controller |
 | |

 | ^
 | I2NSF |
 NSF Interface | NSF-facing |
 (Specific to NSFs) | Interface |

 | |
 v |

 | |
 | I2NSF Proxy Agent / |
 | Management System |
 | |

 | ^
 | Proprietary |
 | Functional |
 | Interface |

 | |
 v |

 ------------- -------------
 | |---| |
 | NSF | | NSF |
 NSFs | | | |
 (virtual -------------\ /-------------
 and | \ / |
 physical) | X |
 | / \ |
 -------------/ \-------------
 | |---| |

Kumar, et al. Expires July 20, 2018 [Page 9]

Internet-Draft Client Interface Requirements January 2018

 | NSF | | NSF |
 | | | |
 ------------- -------------

 Figure 2: Deployment with Management System or I2NSF Proxy Agent

 As mentioned above, these models discussed here don't affect the
 definition of Client-Facing interface, they do give an overall
 context for defining a Security Policy interface based on
 abstraction. This can help in implementing a Security Controller.

4. Functional Requirements for the Client-Facing Interface

 As stated in the guiding principle for defining the I2NSF Client-
 Facing interface, the Security Policies and the Client-Facing
 interface shall be defined from Security Admin's perspective and
 abstracted away from type of NSF, NSF specific implementation,
 controller implementation, network topology, controller NSF-Facing
 interface. Thus, the Security Policy definition shall be
 declarative, expressed using User-construct, and driven by how
 Security Admin view Security Policies from their business needs and
 objectives.

 Security Controller's' implementation is outside the scope of this
 document and the I2NSF working group.

 In order to express and build security policies, high level
 requirement for Client-Facing interface is as follows:

 o Multi-Tenancy

 o Authentication and Authorization

 o Role-Based Access Control (RBAC)

 o Protection from Attacks

 o Protection from Misconfiguration

 o Policy Lifecycle Management

 o Dynamic Policy Endpoint Groups

 o Policy Rules

 o Policy Actions

Kumar, et al. Expires July 20, 2018 [Page 10]

Internet-Draft Client Interface Requirements January 2018

 o Generic Policy Model

 o Policy Conflict Resolution

 o Backward Compatibility

 o Third-Party Integration

 o Telemetry Data

 The above requirements are by no means a complete list and may not be
 sufficient or required for all use-cases, but should be a good
 starting point for a wide variety of use-cases in Service Provider
 and Enterprise networks.

 A specific implementation may not support all these requirements but
 in order to define a base set of requirements which would works for
 most use-cases, this document will make an attempt to classify these
 requirements in three categories:

 MUST: This means, the requirement must be supported by Client-Facing
 interface.

 RECOMMENDED: This means, we recommend that Client-Facing interface
 support this requirement since it might be applicable to large
 number of use-cases but some vendor may choose to omit if their
 focus is only certain market segments.

 MAY: This means, the requirement is not mandatory for Client-Facing
 interface but may be needed for specific use-cases.

4.1. Requirement for Multi-Tenancy in Client-Facing interface

 An organization may have internal tenants and might want a framework
 wherein each tenant manages its own Security Policies with isolation
 from other tenants. This requirement may be applicable to Service
 Providers and Large Enterprises so we classify this requirement in
 RECOMMENDED category. If an implement does not support this
 requirement, it must support a default implicit tenant created by
 Security Controller that owns all the Security Policies.

 A Security Admin may be a Cloud Service Provider with multi-tenant
 deployment, where each tenant is a different customer. Each tenant
 or customer must be able to manage its own Security Policies without
 affecting other tenants.

 It should be noted that tenants may have their own tenants, so a
 recursive relation may exist. For instance, a tenant in a Cloud

Kumar, et al. Expires July 20, 2018 [Page 11]

Internet-Draft Client Interface Requirements January 2018

 Service Provider may have multiple departments or organizations that
 need to manage their own security rules for compliance.

 The following objects are needed to fulfill this requirement:

 Policy-Tenant: An entity that owns and manages Security Policies
 applied to its own asset and resources.

 Policy-Administrator: A user authorized to manage the security
 policies for a Policy-Tenant.

 Policy-User: A user within a Policy-Tenant who is authorized to
 access certain resources of that tenant according to the
 privileges assigned to it.

4.2. Requirement for Authentication and Authorization of Client-Facing
 interface

 A Security Admin must be authenticated and authorized in order to
 manage Security Policies. We classify this requirement in MUST
 category since without proper authentication and authorization, the
 security posture of entire organization can be easily compromised.

 There must be methods defined for Policy-Administrator to be
 authenticated and authorized to use Security Controller. There are
 several authentication methods available such as OAuth [RFC6749],
 XAuth and X.509 certificate based; the authentication may be mutual
 or single-sided based on business needs and outside the scope of
 I2NSF. In addition, there must be a method o authorize the Policy-
 Administrator to perform certain action. It should be noted that,
 Policy-Administrator authentication and authorization to perform
 actions could be part of Security Controller or outside; this
 document does not mandate any specific implementation but requires
 that such a scheme must be implemented.

4.3. Requirement for Role-Based Access Control (RBAC) in Client-Facing
 interface

 A tenant in organization may have multiple users with each user given
 certain privileges. Some user such as "Admin" may have all the
 permission but other may have limited permissions. We classify this
 requirement in RECOMMENDED category since it aligns with Multi-
 Tenancy requirement. If this requirement is not supported, a default
 privilege must be assigned to all the users.

 The following objects are needed to fulfill this requirement:

https://datatracker.ietf.org/doc/html/rfc6749

Kumar, et al. Expires July 20, 2018 [Page 12]

Internet-Draft Client Interface Requirements January 2018

 Policy-Authorization-Role: Defines the permissions assigned to a
 user such as creating and managing policies on specified
 resources. A user may not be allowed to change existing policies
 but only view them.

4.4. Requirement to protect Client-Facing interface from attacks

 The interface must be protections against attacks from malicious
 clients or a client impersonator. Potential attacks could come from
 Botnets, hosts infected with virus or some unauthorized entities.
 This requirement is highly RECOMMENDED since it may not be needed if
 the entire framework is deployed in very controlled environment. But
 if needed, we recommend that Security Controller uses a out-of-band
 communication channel for Client-Facing interface. In addition,it is
 also recommended that traffic Client-Facing interface communication
 be encrypted; furthermore, some straightforward traffic/session
 control mechanisms (i.e., Rate-limit, ACL, White/Black list) can be
 employed on Security Controller to defend against DDoS flooding
 attacks.

4.5. Requirement to protect Client-Facing interface from
 misconfiguration

 There must be protections from mis-configured clients. System and
 policy parameters validations should be implemented to detect this.
 Validation may be based on a set of default parameters or custom
 tuned thresholds such as the number of policy changes submitted,
 number of objects requested in a given time interval, etc. We
 consider this to be a MUST requirement but implementation aspects
 would depend upon each individual API communication.

4.6. Requirement to manage policy lifecycle with rich set of controls

 In order to provide more sophisticated security framework, there
 should be a mechanism so that a policy becomes dynamically active/
 enforced or inactive based on multiple different criteria such as
 Security Admin's manual intervention or some external event. We
 consider requirement listed here to be a MUST for wide variety of
 use-cases.

 One example of dynamic policy management is when Security Admin pre-
 configures all the security policies, but the policies get activated
 or deactivated based on dynamic threat detection. Basically, a
 threat event may activate certain inactive policies, and once a new
 event indicates that the threat has gone away, the policies become
 inactive again.

 There are following ways for dynamically activating policies:

Kumar, et al. Expires July 20, 2018 [Page 13]

Internet-Draft Client Interface Requirements January 2018

 o The policy may be activated by Security Admin manually using a
 client interface such as GUI or CLI.

 o The policy may be dynamically activated by Security Controller upon
 detecting an external event or an event from I2NSF monitoring
 interface

 o The policy can be configured but gets activated or deactivated upon
 specified timing calendar with Security Policy definition.

 Client-Facing interface should support the following policy
 attributes for policy enforcement:

 Admin-Enforced: A policy, once configured, remains active/enforced
 until removed by Security Admin.

 Time-Enforced: A policy configuration specifies the time profile
 that determines when the policy is to be activated/enforced.
 Otherwise, it is de-activated.

 Event-Enforced: A policy configuration specifies the event profile
 that determines when the policy is to be activated/enforced. It
 also specifies the duration attribute of that policy once
 activated based on event. For instance, if the policy is
 activated upon detecting an application flow, the policy could be
 de-activated when the corresponding session is closed or the flow
 becomes inactive for certain time.

 A policy could be a composite policy, that is composed of many rules,
 and subject to updates and modification. For the policy maintenance,
 enforcement, and audit-ability purposes, it becomes important to name
 and version Security Policy. Thus, the policy definition SHALL
 support policy naming and versioning. In addition, the i2NSF Client-
 Facing interface SHALL support the activation, deactivation,
 programmability, and deletion of policies based on name and version.
 In addition, it should support reporting operational state of
 policies by name and version. For instance, a Security Admin may
 probe Security Controller whether a Security Policy is enforced for a
 tenant and/or a sub-tenant (organization) for audit-ability or
 verification purposes.

4.7. Requirement to define dynamic Policy Endpoint Group

 When Security Admin configures a Security Policy, it may have
 requirement to apply this policy to certain subsets of the network.
 The subsets may be identified based on criteria such as Users,
 Devices, and Applications. We refer to such a subset of the network
 as a "Policy Endpoint Group". This requirement is the fundamental

Kumar, et al. Expires July 20, 2018 [Page 14]

Internet-Draft Client Interface Requirements January 2018

 building block of Client-Facing interface; so making it a MUST
 requirement. But object defined here may not support all use-cases
 and may not be required by everyone so it is left up to vendor
 whether all or partial set of these object is supported.

 One of the biggest challenges for a Security Admin is how to make
 sure that a Security Policy remain effective while constant changes
 are happening to the "Policy Endpoint Group" for various reasons
 (e.g., organizational, network and application changes). If a policy
 is created based on static information such as user names,
 application, or network subnets; then every time this static
 information change, policies need to be updated. For example, if a
 policy is created that allows access to an application only from the
 group of Human Resource users (HR-users group), then each time the
 HR-users group changes, the policy needs to be updated.

 We call these dynamic Policy Endpoint Groups "Metadata Driven
 Groups". The metadata is a tag associated with endpoint information
 such as User, Application, or Device. The mapping from metadata to
 dynamic content could come from a standards-based or proprietary
 tools. Security Controller could use any available mechanisms to
 derive this mapping and to make automatic updates to policy content
 if the mapping information changes. The system SHOULD allow for
 multiple, or sets of tags to be applied to a single endpoint.

 Client-Facing interface must support Endpoint Groups as a target for
 a Security Policy. The following metadata driven groups MAY be used
 for configuring Security Polices:

 User-Group: This group identifies a set of users based on a tag or
 static information such as user-names. The tag identifying users,
 is dynamically derived from systems such as Active Directory or
 LDAP. For example, an organization may have different User-
 groups,such as HR-users, Finance-users, Engineering-users, to
 classify a set of users in each department.

 Device-Group: This group identifies a set of devices based on a tag
 or device information. The tag identifying the devices, is
 dynamically derived from systems such as configuration management
 database (CMDB). For example, a Security Admin may want to
 classify all machines running a particular operating system into
 one group and machines running a different operating system into
 another group.

 Application-Group: This group identifies a set of applications based
 on a tag or on application names. The tag identifying
 applications, is dynamically derived from systems such as CMDB.
 For example, a Security Admin may want to classify all

Kumar, et al. Expires July 20, 2018 [Page 15]

Internet-Draft Client Interface Requirements January 2018

 applications running in the Legal department into one group and
 all applications running in the HR department into another group.
 In some cases, the application can semantically associated with a
 VM or a device. However, in other cases, the application may need
 to be associated with a set of identifiers (e.g., transport
 numbers, signature in the application packet payload) that
 identify the application in the corresponding packets. The
 mapping of application names/tags to signatures in the associated
 application packets should be defined and communicated to the NSF.
 The Client-Facing Interface shall support the communication of
 this information.

 Location-Group: This group identifies a set of locations. Tag may
 correspond 1:1 to location. The tag identifying locations is
 either statically defined or dynamically derived from systems such
 as CMDB. For example, a Security Admin may want to classify all
 sites/locations in a geographic region as one group.

4.8. Requirement to express rich set of Policy Rules

 The Policy Rules is a central component of any Security Policy but
 rule requirements may vary based on use-cases and it is hard to
 define a complete set that works for everyone. In order to build a
 rich interface, we are going to take a different approach; we will
 define the building block of rules and let Security Admin build rules
 using these construct so that Security Policies meet their
 requirements:

 Segmentation policies : This set of policies create rules for
 communication between two Endpoint Groups. An organization may
 restrict certain communication between a set of user and
 applications for example. The segmentation policy may be a micro-
 segmentation rule between components of complex applications or
 related to hybrid cloud deployment based on location.

 Threat policies: This set of policies creates rules to prevent
 communication with externally or internally identified threats.
 The threats may be well knows such as threat feeds from external
 sources or dynamically identified by using specialty devices in
 the network.

 Governance and Compliance policies: This set of policies creates
 rules to implement business requirement such as controlling access
 to internal or external resources for meeting regulatory
 compliance or business objectives.

 In order to build a generic rule engine to satisfy diverse set of
 Policy Rules, we propose following objects:

Kumar, et al. Expires July 20, 2018 [Page 16]

Internet-Draft Client Interface Requirements January 2018

 In order to build a generic rule engine to satisfy diverse set of
 Policy Rules, we propose following objects:

 Source Policy Endpoint Group: A source target of the Policy Rule.
 This may be special object "ALL" if all groups meet this criteria.

 Destination Policy Endpoint Group: A destination target of the
 Policy Rule. This may be a special object "ALL", if all groups
 meet this criteria.

 Direction: By default rules are applied in either direction but this
 object can be used to make rule definition uni-directional.

 Threat Group: An object that represents a set of static or dynamic
 threats such as Botnet, GeoIP, URL feeds or virus and malware
 signatures detected dynamically. This object can be used as
 source or destination target in a rule.

 Match Condition: An object that represents a set of allowed
 interactions. It could be as simple as group of application names
 or L4 ports allowed between two Endpoint Groups. It could very
 well that all traffic is allowed between two groups.

 Exceptions: In order to truly build rules which are Security Admin
 and built with user semantics, we should allow to specify
 exceptions to the match criteria. This will greatly simplify
 Security Admin's task. E.g., we could build a rule that allows
 all traffic between two groups except a particular application or
 threat source.

 Actions: Action is what makes rule and Policy work. The Action is
 defined in details in next section. We RECOMMEND that there be a
 one-to-one mapping between rule and action otherwise if multiple
 rules are associated with one action, it may be a difficult to
 manage Security Policy lifecycle as they evolve.

4.9. Requirement to express rich set of Policy Actions

 Security Admin must be able to configure a variety of actions for a
 given Policy Rule. Typically, Security Policy specifies a simple
 action of "deny" or "permit" if a particular condition is matched.
 Although this may be enough for most use-cases, the I2NSF Client-
 Facing interface must provide a more comprehensive set of actions so
 that the interface can be used effectively across various security
 needs.

 Policy action MUST be extensible so that additional policy action
 specifications can easily be added.

Kumar, et al. Expires July 20, 2018 [Page 17]

Internet-Draft Client Interface Requirements January 2018

 The following list of actions SHALL be supported:

 Permit: This action means continue processing the next rule or allow
 the packet to pass if this is the last rule. This is often a
 default action.

 Deny: This action means stop further packet processing and drop the
 packet.

 Drop connection: This action means stop further packet processing,
 drop the packet, and drop connection (for example, by sending a
 TCP reset).

 Log: This action means create a log entry whenever a rule is
 matched.

 Authenticate connection: This action means that whenever a new
 connection is established it should be authenticated.

 Quarantine/Redirect: This action is useful for threat remediation
 purposes. If a security breach or infection point is detected, a
 Security Admin would like to isolate for purpose of remediation or
 controlling attack surface.

 Netflow: This action creates a Netflow record; Need to define
 Netflow server or local file and version of Netflow.

 Count: This action counts the packets that meet the rule condition.

 Encrypt: This action encrypts the packets on an identified flow.
 The flow could be over an IPSEC tunnel, or TLS session for
 instance.

 Decrypt: This action decrypts the packets on an identified flow.
 The flow could be over an IPSEC tunnel, or TLS session for
 instance.

 Throttle: This action defines shaping a flow or a group of flows
 that match the rule condition to a designated traffic profile.

 Mark: This action defines traffic that matches the rule condition by
 a designated DSCP value and/or VLAN 802.1p Tag value.

 Instantiate-NSF: This action instantiates an NSF with a predefined
 profile. An NSF can be any of the FW, IPS, IDS, honeypot, or VPN,
 etc.

Kumar, et al. Expires July 20, 2018 [Page 18]

Internet-Draft Client Interface Requirements January 2018

 The policy actions should support combination of terminating actions
 and non-terminating actions. For example, Syslog and then Permit;
 Count and then Redirect.

 Policy actions SHALL support any L2, L3, L4-L7 policy actions.

4.10. Requirement for consistent policy enforcement

 As proposed in this document that the Client-Facing interface MUST be
 built using higher-level "User-Constructs" that are independent of
 network design and implementations. In order to achieve this, it
 becomes important that Security Controller functionality becomes more
 complex that keep track of various objects that are used to express
 Security Policies. The Security Controller MUST evaluate the
 Security Policies whenever these objects and network topology change
 to make sure that Security Policy is consistently enforced as
 expressed.

 Although this document does not specify how Security Controller
 achieve this and any implementation challenges. It is assumed that
 once Security Controller uses Client-Facing interface to accept
 Security Policies; it would maintain the security posture as per the
 Security Policies during all changes in network or Endpoints and
 other building blocks of the framework.

 An event must be logged by Security Controller when a Security Policy
 is updated due to changes in it's building blocks such as Endpoint
 Group contents or the Security Policy is moved from one enforcement
 point to another because the Endpoint has moved in the network. This
 may help in debugging and auditing for compliance reasons. The
 Security Admin may optionally receive notifications if supported and
 desired.

4.11. Requirement to detect and correct policy conflicts

 Client-Facing interface SHALL be able to detect policy "conflicts",
 and SHALL specify methods on how to resolve these "conflicts"

 For example a newly expressed Security Policy could conflict with
 existing Security Policies applied to a set of Policy Endpoint
 Groups. This MUST be detected and Security Admin be allowed for
 manual correction if needed.

4.12. Requirement for backward compatibility

 It MUST be possible to add new capabilities to Client-Facing
 interface in a backward compatible fashion.

Kumar, et al. Expires July 20, 2018 [Page 19]

Internet-Draft Client Interface Requirements January 2018

4.13. Requirement for Third-Party integration

 The security framework in a network may require the use of a
 specialty device such as honeypot, behavioral analytic, or SIEM for
 threat detection; the device may provide threat information such as
 threat feeds, virus signatures, and malicious file hashes.

 The Client-Facing interface must allow Security Admin to include
 these devices under Security Controller's Client-Facing interface so
 that a Security Policy could be expressed using information from such
 devices; basically it allows ability to integrate third part devices
 into the Security Policy framework.

4.14. Requirement to collect telemetry data

 One of the most important aspect of security is to have visibility
 into the network. As threats become more sophisticated, Security
 Admin must be able to gather different types of telemetry data from
 various NSFs in the network. The collected data could simply be
 logged or sent to security analysis engines for behavioral analysis,
 policy violations, and for threat detection.

 The Client-Facing interface MUST allow Security Admin to collect
 various kinds of data from NSFs. The data source could be syslog,
 flow records, policy violation records, and other available data.

 Client-Facing interface must provide a set of telemetry data
 available to Security Admin from Security Controller. The Security
 Admin should be able to subscribe and receive to this data set.

5. Operational Requirements for the Client-Facing Interface

5.1. API Versioning

 Client-Facing interface must support a version number for each
 RESTful API. This is important since Security Controller could be
 deployed by using multiple componenets and different pieces may come
 from different vendors; it is difficult to isolate and debug issues
 without ablility to track each component's operational behavior.
 Even if the vendor is same for all the components, it is hard to
 imagine that all pieces would be released in lock step by the vendor.

 Without API versioning, it is hard to debug and figure out issues
 when deploying Security Controller and its components built overtime
 across multiple release cycles. Although API versioning does not
 guarantee that Security Controller would always work but it helps in
 debugging if the problem is caused by an API mismatch.

Kumar, et al. Expires July 20, 2018 [Page 20]

Internet-Draft Client Interface Requirements January 2018

5.2. API Extensibility

 Abstraction and standardization of Client-Facing interface is of
 tremendous value to Security Admins as it gives them the flexibility
 of deploying any vendor's NSF without need to redefine their policies
 if or when a NSF is changed.

 If a vendor comes up with new feature or functionality that can't be
 expressed through the currently defined Client-Facing interface,
 there SHALL be a way to extend existing APIs or to create a new API
 that addresses specific vendors's new NSF functionality.

5.3. APIs and Data Model Transport

 The APIs for interface SHALL be derived from the YANG based data
 model. The data model for Client-Facing interface must capture all
 the requirements as defined in this document to express a Security
 Policy. The interface between a client and controller must be
 reliable to ensure robust policy enforcement. One such transport
 mechanism is RESTCONF that uses HTTP operations to provide necessary
 CRUD operations for YANG data objects, but any other mechanism can be
 used.

5.4. Notification and Monitoring

 Client-Facing interface must allow ability to collect various alarms,
 events, statistics about enforcement and policy violations from NSFs
 in the network. The events and alarms may be associated with a
 specific policy or associated with operating conditions of a specific
 NSF in general. The statistics may be a measure of potential
 Security Policy violations or general data that reflect operational
 behavior of a NSF. The events, alarms and statistics may also be
 used as an input to automate Security Policy lifecycle management.

5.5. Affinity

 Client-Facing interface must allow Security Admin to pass any
 additional metadata that a user may want to provide with a Security
 Policy e.g., if the policy needs to be enforced by a very highly
 secure NSF with Trusted Platform Module (TPM) chip. Another example
 would be, if a policy can not be enforced by a multi-tenant NSF.
 This would Security Admin control on operating environment

5.6. Test Interface

 Client-Facing interface must support ability to test a Security
 Policy before it is enforced e.g., a user may want to verify whether
 the policy creates any potential conflicts with existing policies or

Kumar, et al. Expires July 20, 2018 [Page 21]

Internet-Draft Client Interface Requirements January 2018

 if there are enough resources and capability to enforce this policy.
 The test interface would provide a mechanism to Security Admin where
 policies could be tested in the actual environment before
 enforcement.

6. Security Considerations

 Client-Facing interface to Security controller must be protected to
 make sure that entire security posture is not compromised. This
 draft mandates that interface must have proper authentication and
 authorization control mechanisms to ward off malicious attacks. The
 draft does not specify a particular mechanism as different
 organization may have different needs based on their specific
 deployment environment and moreover new methods may evolve to better
 suit contemporary requirements.

 Authentication and authorization alone may not be sufficient for
 Client-Facing interface; the interface API must be validated for
 proper input to guard against attacks. The type of checks and
 verification may be specific to each interface API, but a careful
 consideration must be made to ensure that Security Controller is not
 compromised.

 We recommend that all attack surface must be examined with careful
 consideration of the operating environment and available industry
 best practices must be used such as process and standards to protect
 security controller against malicious or inadvertent attacks.

7. IANA Considerations

 This document requires no IANA actions. RFC Editor: Please remove
 this section before publication.

8. Acknowledgements

 The authors would like to thank Adrian Farrel, Linda Dunbar and Diego
 R.Lopez from IETF I2NSF WG for helpful discussions and advice.

 The authors would also like to thank Kunal Modasiya, Prakash T.
 Sehsadri and Srinivas Nimmagadda from Juniper networks for helpful
 discussions.

9. Normative References

Kumar, et al. Expires July 20, 2018 [Page 22]

Internet-Draft Client Interface Requirements January 2018

 [I-D.ietf-i2nsf-framework]
 Lopez, D., Lopez, E., Dunbar, L., Strassner, J., and R.
 Kumar, "Framework for Interface to Network Security
 Functions", draft-ietf-i2nsf-framework-10 (work in
 progress), November 2017.

 [I-D.ietf-i2nsf-problem-and-use-cases]
 Hares, S., Lopez, D., Zarny, M., Jacquenet, C., Kumar, R.,
 and J. Jeong, "I2NSF Problem Statement and Use cases",

draft-ietf-i2nsf-problem-and-use-cases-16 (work in
 progress), May 2017.

Authors' Addresses

 Rakesh Kumar
 Lilac Cloud
 14435 C Big Basin Way #104
 Saratoga, CA 95070
 US

 Email: rakeshkumarcloud@gmail.com

 Anil Lohiya
 Juniper Networks
 1133 Innovation Way
 Sunnyvale, CA 94089
 US

 Email: alohiya@juniper.net

 Dave Qi
 Bloomberg
 731 Lexington Avenue
 New York, NY 10022
 US

 Email: DQI@bloomberg.net

 Nabil Bitar
 Nokia
 755 Ravendale Drive
 Mountain View, CA 94043
 US

 Email: nabil.bitar@nokia.com

https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-framework-10
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-problem-and-use-cases-16

Kumar, et al. Expires July 20, 2018 [Page 23]

Internet-Draft Client Interface Requirements January 2018

 Senad Palislamovic
 Nokia
 755 Ravendale Drive
 Mountain View, CA 94043
 US

 Email: senad.palislamovic@nokia.com

 Liang Xia
 Huawei
 101 Software Avenue
 Nanjing, Jiangsu 210012
 China

 Email: Frank.Xialiang@huawei.com

Kumar, et al. Expires July 20, 2018 [Page 24]

