
Workgroup: I2NSF Working Group

Internet-Draft:

draft-ietf-i2nsf-registration-interface-dm-12

Published: 15 September 2021

Intended Status: Standards Track

Expires: 19 March 2022

Authors: S. Hyun, Ed.

Myongji University

J. Jeong, Ed.

Sungkyunkwan University

T. Roh

Sungkyunkwan University

S. Wi

Sungkyunkwan University

J. Park

ETRI

I2NSF Registration Interface YANG Data Model

Abstract

This document defines an information model and a YANG data model for

Registration Interface between Security Controller and Developer's

Management System (DMS) in the Interface to Network Security

Functions (I2NSF) framework to register Network Security Functions

(NSF) of the DMS with the Security Controller. The objective of

these information and data models is to support NSF capability

registration and query via I2NSF Registration Interface.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 19 March 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1.  Introduction

2.  Terminology

3.  Objectives

4.  Information Model

4.1.  NSF Capability Registration

4.1.1.  NSF Capability Information

4.1.2.  NSF Access Information

4.2.  NSF Capability Query

5.  Data Model

5.1.  YANG Tree Diagram

5.1.1.  Definition of Symbols in Tree Diagrams

5.1.2.  I2NSF Registration Interface

5.1.3.  NSF Capability Information

5.1.4.  NSF Access Information

5.2.  YANG Data Modules

6.  IANA Considerations

7.  Security Considerations

8.  References

8.1.  Normative References

8.2.  Informative References

Appendix A.  XML Examples of I2NSF Registration Interface Data Model

A.1.  Example 1: Registration for the Capabilities of a General

Firewall

A.2.  Example 2: Registration for the Capabilities of a Time-based

Firewall

A.3.  Example 3: Registration for the Capabilities of a Web Filter

A.4.  Example 4: Registration for the Capabilities of a VoIP/VoLTE

Filter

A.5.  Example 5: Registration for the Capabilities of a DDoS

Mitigator

A.6.  Example 6: Query for the Capabilities of a Time-based

Firewall

Appendix B.  NSF Lifecycle Management in NFV Environments

Appendix C.  Acknowledgments

Appendix D.  Contributors

Appendix E.  Changes from draft-ietf-i2nsf-registration-interface-

dm-11

Authors' Addresses

¶



1. Introduction

A number of Network Security Functions (NSF) may exist in the

Interface to Network Security Functions (I2NSF) framework [RFC8329].

Since each of these NSFs likely has different security capabilities

from each other, it is important to register the security

capabilities of the NSF with the security controller. In addition,

it is required to search NSFs of some required security capabilities

on demand. As an example, if additional security capabilities are

required to serve some security service request(s) from an I2NSF

user, the security controller SHOULD be able to request the DMS for

NSFs that have the required security capabilities.

This document describes an information model (see Section 4) and a

YANG [RFC7950] data model (see Section 5) for the I2NSF Registration

Interface [RFC8329] between the security controller and the

developer's management system (DMS) to support NSF capability

registration and query via the registration interface. It also

describes the operations which SHOULD be performed by the security

controller and the DMS via the Registration Interface using the

defined model.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the following terms defined in [RFC8329] and [I-

D.ietf-i2nsf-capability-data-model].

Network Security Function (NSF): A function that is responsible

for a specific treatment of received packets. A Network Security

Function can act at various layers of a protocol stack (e.g., at

the network layer or other OSI layers). Sample Network Security

Service Functions are as follows: Firewall, Intrusion Prevention/

Detection System (IPS/IDS), Deep Packet Inspection (DPI),

Application Visibility and Control (AVC), network virus and

malware scanning, sandbox, Data Loss Prevention (DLP),

Distributed Denial of Service (DDoS) mitigation and TLS proxy.

Data Model: A data model is a representation of concepts of

interest to an environment in a form that is dependent on data

repository, data definition language, query language,

implementation language, and protocol.

Information Model: An information model is a representation of

concepts of interest to an environment in a form that is

¶

¶

¶

¶

*

¶

*

¶

*



1)

2)

independent of data repository, data definition language, query

language, implementation language, and protocol.

YANG: This document follows the guidelines of [RFC8407], uses the

common YANG types defined in [RFC6991], and adopts the Network

Management Datastore Architecture (NMDA). The meaning of the

symbols in tree diagrams is defined in [RFC8340].

3. Objectives

Registering NSFs to I2NSF framework: Developer's Management

System (DMS) in I2NSF framework is typically run by an NSF

vendor, and uses Registration Interface to provide NSFs developed

by the NSF vendor to Security Controller. DMS registers NSFs and

their capabilities to I2NSF framework through Registration

Interface. For the registered NSFs, Security Controller maintains

a catalog of the capabilities of those NSFs.

Updating the capabilities of registered NSFs: After an NSF is

registered into Security Controller, some modifications on the

capability of the NSF MAY be required later. In this case, DMS

uses Registration Interface to update the capability of the NSF,

and this update SHOULD be reflected in the catalog of NSFs.

Asking DMS about some required capabilities: In cases that some

security capabilities are required to serve the security service

request from an I2NSF user, Security Controller searches through

the registered NSFs to find ones that can provide the required

capabilities. But Security Controller might fail to find any NSFs

having the required capabilities among the registered NSFs. In

this case, Security Controller needs to request DMS for

additional NSF(s) that can provide the required security

capabilities via Registration Interface.

4. Information Model

The I2NSF registration interface is used by Security Controller and

Developer's Management System (DMS) in I2NSF framework. The

following summarizes the operations done through the registration

interface:

DMS registers NSFs and their capabilities to Security

Controller via the registration interface. DMS also uses the

registration interface to update the capabilities of the NSFs

registered previously.

In case that Security Controller fails to find some required

capabilities from any registered NSF that can provide ,

Security Controller queries DMS about NSF(s) having the

required capabilities via the registration interface.

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶



Figure 1 shows the information model of the I2NSF registration

interface, which consists of two submodels: NSF capability

registration and NSF capability query. Each submodel is used for the

operations listed above. The remainder of this section will provide

in-depth explanations of each submodel.

Figure 1: I2NSF Registration Interface Information Model

4.1. NSF Capability Registration

This submodel is used by DMS to register an NSF with Security

Controller. Figure 2 shows how this submodel is constructed. The

most important part in Figure 2 is the NSF capability, and this

specifies the set of capabilities that the NSF to be registered can

offer. The NSF Name contains a unique name of this NSF with the

specified set of capabilities. When registering the NSF, DMS

additionally includes the network access information of the NSF

which is required to enable network communications with the NSF.

The following will further explain the NSF capability information

and the NSF access information in more detail.

Figure 2: NSF Capability Registration Sub-Model

¶

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  |      I2NSF Registration Interface Information Model       |

  |                                                           |

  |         +-+-+-+-+-+-+-+-+-+  +-+-+-+-+-+-+-+-+-+          |

  |         | NSF Capability  |  | NSF Capability  |          |

  |         | Registration    |  | Query           |          |

  |         +-+-+-+-+-+-+-+-+-+  +-+-+-+-+-+-+-+-+-+          |

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

                       +-+-+-+-+-+-+-+-+-+

                       | NSF Capability  |

                       | Registration    |

                       +-+-+-+-+^+-+-+-+-+

                                |

          +---------------------+--------------------+

          |                     |                    |

          |                     |                    |

    +-+-+-+-+-+-+       +-+-+-+-+-+-+-+-+      +-+-+-+-+-+-+-+

    |   NSF     |       | NSF Capability|      | NSF Access  |

    |   Name    |       | Information   |      | Information |

    +-+-+-+-+-+-+       +-+-+-+-+-+-+-+-+      +-+-+-+-+-+-+-+



4.1.1. NSF Capability Information

NSF Capability Information basically describes the security

capabilities of an NSF. In Figure 3, we show capability objects of

an NSF. Following the information model of NSF capabilities defined

in [I-D.ietf-i2nsf-capability-data-model], we share the same I2NSF

security capabilities: Time Capabilities, Event Capabilities,

Condition Capabilities, Action Capabilities, Resolution Strategy

Capabilities, Default Action Capabilities, and IPsec Method 

[RFC9061]. Also, NSF Capability Information additionally contains

the performance capabilities of an NSF as shown in Figure 3.

Figure 3: NSF Capability Information

4.1.1.1. Performance Capabilities

This information represents the processing capability of an NSF.

Assuming that the current workload status of each NSF is being

collected through NSF monitoring [I-D.ietf-i2nsf-nsf-monitoring-

¶

                          +-+-+-+-+-+-+-+-+-+

                          | NSF Capability  |

                          |   Information   |

                          +-+-+-+-^-+-+-+-+-+

                                  |

                                  |

           +----------------------+----------------------+

           |                                             |

           |                                             |

   +-+-+-+-+-+-+-+-+                             +-+-+-+-+-+-+-+-+

   |    I2NSF      |                             |  Performance  |

   | Capabilities  |                             |  Capabilities |

   +-+-+-+-+-+-+-+-+                             +-+-+-+-+-+-+-+-+

           |

    +------+--------------+-----------------+-----------------+-------+

    |                     |                 |                 |       |

+-+-+-+-+-+-+-+   +-+-+-+-+-+-+-+   +-+-+-+-+-+-+-+   +-+-+-+-+-+-+-+ |

|     Time    |   |    Event    |   |  Condition  |   |   Action    | |

| Capabilities|   | Capabilities|   | Capabilities|   | Capabilities| |

+-+-+-+-+-+-+-+   +-+-+-+-+-+-+-+   +-+-+-+-+-+-+-+   +-+-+-+-+-+-+-+ |

                                                                      |

                  +---------------------+---------------------+-------+

                  |                     |                     |

            +-+-+-+-+-+-+-+       +-+-+-+-+-+-+-+       +-+-+-+-+-+-+

            | Resolution  |       |   Default   |       |   IPsec   |

            | Strategy    |       |   Action    |       |   Method  |

            | Capabilities|       | Capabilities|       +-+-+-+-+-+-+

            +-+-+-+-+-+-+-+       +-+-+-+-+-+-+-+



data-model], this capability information of the NSF can be used to

determine whether the NSF is in congestion by comparing it with the

current workload of the NSF. Moreover, this information can specify

an available amount of each type of resource, such as processing

power which are available on the NSF. (The registration interface

can control the usages and limitations of the created instance and

make the appropriate request according to the status.) As

illustrated in Figure 4, this information consists of two items:

Processing and Bandwidth. Processing information describes the NSF's

available processing power. Bandwidth describes the information

about available network amount in two cases, outbound, inbound.

These two information can be used for the NSF's instance request.

Figure 4: Performance Capability Overview

4.1.2. NSF Access Information

NSF Access Information contains the followings that are required to

communicate with an NSF: IPv4 address, IPv6 address, port number,

and supported transport protocol(s) (e.g., Virtual Extensible LAN

(VXLAN) [RFC7348], Generic Protocol Extension for VXLAN (VXLAN-GPE) 

[I-D.ietf-nvo3-vxlan-gpe], Generic Route Encapsulation (GRE),

Ethernet etc.). In this document, NSF Access Information is used to

identify a specific NSF instance (i.e. NSF Access Information is the

signature(unique identifier) of an NSF instance in the overall

system).

4.2. NSF Capability Query

Security Controller MAY require some additional capabilities to

serve the security service request from an I2NSF user, but none of

the registered NSFs has the required capabilities. In this case,

Security Controller makes a description of the required capabilities

by using the NSF capability information sub-model in Section 4.1.1,

and sends DMS a query about which NSF(s) can provide these

capabilities.

¶

                         +-+-+-+-+-+-+-+-+-+

                         |   Performance   |

                         |   Capabilities  |

                         +-+-+-+-^-+-+-+-+-+

                                 |

                     +----------------------------+

                     |                            |

                     |                            |

             +-+-+-+-+-+-+-+-+            +-+-+-+-+-+-+-+

             |  Processing   |            |  Bandwidth  |

             +-+-+-+-+-+-+-+-+            +-+-+-+-+-+-+-+

¶

¶



5. Data Model

5.1. YANG Tree Diagram

This section provides the YANG Tree diagram of the I2NSF

registration interface.

5.1.1. Definition of Symbols in Tree Diagrams

A simplified graphical representation of the data model is used in

this section. The meaning of the symbols used in the following

diagrams [RFC8431] is as follows:

Brackets "[" and "]" enclose list keys.

Abbreviations before data node names: "rw" means configuration

(read-write) and "ro" state data (read-only).

Symbols after data node names: "?" means an optional node and "*"

denotes a "list" and "leaf-list".

Parentheses enclose choice and case nodes, and case nodes are

also marked with a colon (":").

Ellipsis ("...") stands for contents of subtrees that are not

shown.

5.1.2. I2NSF Registration Interface

Figure 5: YANG Tree of I2NSF Registration Interface

The I2NSF registration interface is used for the following purposes.

Developer's Management System (DMS) registers NSFs and their

capabilities into Security Controller via the registration

interface. In case that Security Controller fails to find any NSF

among the registered NSFs which can provide some required

capabilities, Security Controller uses the registration interface to

query DMS about NSF(s) having the required capabilities. The

following sections describe the YANG data models to support these

operations.

¶

¶

¶

¶

¶

¶

¶

        module : ietf-i2nsf-reg-interface

              +--rw nsf-capability-registration

              |  uses nsf-registrations

        rpcs :

              +---x i2nsf-capability-query

              |  uses nsf-capability-query

¶



5.1.2.1. NSF Capability Registration

This section expands the i2nsf-nsf-registrations in Figure 5.

Figure 6: YANG Tree of NSF Capability Registration Module

When registering an NSF to Security Controller, DMS uses this module

to describe what capabilities the NSF can offer. DMS includes the

network access information of the NSF which is required to make a

network connection with the NSF as well as the capability

description of the NSF.

5.1.2.2. NSF Capability Query

This section expands the nsf-capability-query in Figure 5.

Figure 7: YANG Tree of NSF Capability Query Module

Security Controller MAY require some additional capabilities to

provide the security service requested by an I2NSF user, but none of

¶

      NSF Capability Registration

       +--rw nsf-registrations

           +--rw nsf-information*  [capability-name]

              +--rw capability-name                       string

              +--rw nsf-capability-info

              |  uses nsf-capability-info

                    +--rw security-capability

                    |  uses ietf-i2nsf-capability

                    +--rw performance-capability

                    |  uses performance-capability

              +--rw nsf-access-info

              |  uses nsf-access-info

                    +--rw capability-name

                    +--rw ip

                    +--rw port

¶

¶

      I2NSF Capability Query

        +---x nsf-capability-query

            +---w input

            |  +---w query-nsf-capability

            |  |   uses ietf-i2nsf-capability

            +--ro output

                +--ro nsf-access-info

                |  uses nsf-access-info

                    +--rw capability-name

                    +--rw ip

                    +--rw port



the registered NSFs has the required capabilities. In this case,

Security Controller makes a description of the required capabilities

using this module and then queries DMS about which NSF(s) can

provide these capabilities. Use NETCONF RPCs to send a NSF

capability query. Input data is query-i2nsf-capability-info and

output data is nsf-access-info. In Figure 7, the ietf-i2nsf-

capability refers to the module defined in [I-D.ietf-i2nsf-

capability-data-model].

5.1.3. NSF Capability Information

This section expands the nsf-capability-info in Figure 6 and Figure

7.

Figure 8: YANG Tree of I2NSF NSF Capability Information

In Figure 8, the ietf-i2nsf-capability refers to the module defined

in [I-D.ietf-i2nsf-capability-data-model]. The performance-

capability is used to specify the performance capability of an NSF.

5.1.3.1. NSF Performance Capability

This section expands the nsf-performance-capability in Figure 8.

Figure 9: YANG Tree of I2NSF NSF Performance Capability

This module is used to specify the performance capabilities of an

NSF when registering or initiating the NSF.

¶

¶

      NSF Capability Information

        +--rw nsf-capability-info

          +--rw security-capability

          |  uses ietf-i2nsf-capability

          +--rw performance-capability

          |  uses nsf-performance-capability

¶

¶

      NSF Performance Capability

        +--rw nsf-performance-capability

         +--rw processing

         |   +--rw processing-average  uint16

         |   +--rw processing-peak     uint16

         +--rw bandwidth

         |   +--rw outbound

         |   |  +--rw outbound-average  uint16

         |   |  +--rw outbound-peak     uint16

         |   +--rw inbound

         |   |  +--rw inbound-average   uint16

         |   |  +--rw inbound-peak      uint16

¶



5.1.4. NSF Access Information

This section expands the nsf-access-info in Figure 6.

Figure 10: YANG Tree of I2NSF NSF Access Informantion

This module contains the network access information of an NSF that

is required to enable network communications with the NSF. The field

of ip can have either an IPv4 address or an IPv6 address.

5.2. YANG Data Modules

This section provides a YANG module of the data model for the

registration interface between Security Controller and Developer's

Management System, as defined in Section 4.

This YANG module imports from [RFC6991], and makes a reference to 

[I-D.ietf-i2nsf-capability-data-model].

¶

      NSF Access Information

        +--rw nsf-access-info

          +--rw capability-name      string

          +--rw ip      inet:ip-address-no-zone

          +--rw port    inet:port-number

¶

¶

¶



<CODE BEGINS> file "ietf-i2nsf-reg-interface@2021-09-15.yang"

    module ietf-i2nsf-reg-interface {

     yang-version 1.1;

     namespace "urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface";

     prefix nsfreg;

  // RFC Ed.: replace occurences of XXXX with actual RFC number and

  // remove this note

     import ietf-inet-types {

      prefix inet;

      reference "RFC 6991";

     }

     import ietf-i2nsf-capability {

      prefix cap;

   // RFC Ed.: replace YYYY with actual RFC number of

   // draft-ietf-i2nsf-capability-data-model and remove this note.

      reference "RFC YYYY: I2NSF Capability YANG Data Model";

     }

     organization

      "IETF I2NSF (Interface to Network Security Functions)

       Working Group";

     contact

      "WG Web: <https://tools.ietf.org/wg/i2nsf>

       WG List: <mailto:i2nsf@ietf.org>

       Editor: Sangwon Hyun

       <mailto:shyun@mju.ac.kr>

       Editor: Jaehoon Paul Jeong

       <mailto:pauljeong@skku.edu>";

     description

      "This module defines a YANG data model for I2NSF

       Registration Interface.

       Copyright (c) 2021 IETF Trust and the persons

       identified as authors of the code. All rights reserved.

       Redistribution and use in source and binary forms, with or

       without modification, is permitted pursuant to, and subject

       to the license terms contained in, the Simplified BSD License

       set forth in Section 4.c of the IETF Trust's Legal Provisions

       Relating to IETF Documents

       (https://trustee.ietf.org/license-info).



       This version of this YANG module is part of RFC XXXX; see

       the RFC itself for full legal notices.";

    // RFC Ed.: replace XXXX with actual RFC number and remove

    // this note

     revision "2021-09-15" {

      description "Initial revision";

      reference

       "RFC XXXX: I2NSF Registration Interface YANG Data Model";

    // RFC Ed.: replace XXXX with actual RFC number and remove

    // this note

     }

     grouping nsf-performance-capability {

      description

       "Description of the performance capabilities of an NSF";

      container processing {

       description

        "Processing power of an NSF in the unit of GHz (gigahertz)";

       leaf processing-average {

        type uint16;

        units "GHz";

        description

         "Average processing power";

       }

       leaf processing-peak {

        type uint16;

        units "GHz";

        description

         "Peak processing power";

       }

      }

      container bandwidth {

       description

        "Network bandwidth available on an NSF

         in the unit of Mbps (megabits per second)";

       container outbound {

        description

         "Outbound network bandwidth";

        leaf outbound-average {

         type uint32;

         units "Mbps";

         description

          "Average outbound bandwidth";



        }

        leaf outbound-peak {

         type uint32;

         units "Mbps";

         description

          "Peak outbound bandwidth";

        }

       }

       container inbound {

        description

         "Inbound network bandwidth";

        leaf inbound-average {

         type uint32;

         units "Mbps";

         description

          "Average inbound bandwidth";

        }

        leaf inbound-peak {

         type uint32;

         units "Mbps";

         description

          "Peak inbound bandwidth";

        }

       }

      }

     }

     grouping nsf-capability-info {

      description

       "Capability description of an NSF";

      container security-capability {

       description

        "Description of the security capabilities of an NSF";

       uses cap:nsf-capabilities;

    // RFC Ed.: replace YYYY with actual RFC number of

    // draft-ietf-i2nsf-capability-data-model and remove this note.

       reference "RFC YYYY: I2NSF Capability YANG Data Model";

      }

      container performance-capability {

       description

        "Description of the performance capabilities of an NSF";

       uses nsf-performance-capability;

      }

     }

     grouping nsf-access-info {

      description

       "Information required to access an NSF";

      leaf capability-name {



       type string;

       description

         "Unique name of this NSF's capability";

      }

      leaf ip {

       type inet:ip-address-no-zone;

       description

        "Either an IPv4 address or an IPv6 address of this NSF";

      }

      leaf port {

       type inet:port-number;

       description

        "Port available on this NSF";

      }

     }

     container nsf-registrations {

      description

       "Information of an NSF that DMS registers

        to Security Controller";

      list nsf-information {

       key "capability-name";

       description

        "Required information for registration";

       leaf capability-name {

        type string;

        mandatory true;

        description

         "Unique name of this registered NSF";

       }

       container nsf-capability-info {

        description

         "Capability description of this NSF";

        uses nsf-capability-info;

       }

       container nsf-access-info {

        description

         "Network access information of this NSF";

        uses nsf-access-info;

       }

      }

     }

     rpc nsf-capability-query {

      description

       "Description of the capabilities that the

        Security Controller requests to the DMS";

      input {

       container query-nsf-capability {



        description

         "Description of the capabilities to request";

        uses cap:nsf-capabilities;

     // RFC Ed.: replace YYYY with actual RFC number of

     // draft-ietf-i2nsf-capability-data-model and remove this note.

        reference "RFC YYYY: I2NSF Capability YANG Data Model";

        }

      }

      output {

       container nsf-access-info {

        description

         "Network access information of an NSF

          with the requested capabilities";

        uses nsf-access-info;

       }

      }

     }

    }

<CODE ENDS>

Figure 11: Registration Interface YANG Data Model

6. IANA Considerations

This document requests IANA to register the following URI in the

"IETF XML Registry" [RFC3688]:

This document requests IANA to register the following YANG module in

the "YANG Module Names" registry [RFC7950][RFC8525]:

7. Security Considerations

The YANG module specified in this document defines a data schema

designed to be accessed through network management protocols such as

NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is

¶

URI: urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface

Registrant Contact: The IESG.

XML: N/A; the requested URI is an XML namespace.

¶

¶

Name: ietf-i2nsf-reg-interface

Namespace: urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface

Prefix: nsfreg

Reference: RFC XXXX

// RFC Ed.: replace XXXX with actual RFC number and remove

// this note

¶



the secure transport layer, and the required secure transport is

Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS,

and the required secure transport is TLS [RFC8446].

The NETCONF access control model [RFC8341] provides a means of

restricting access to specific NETCONF or RESTCONF users to a

preconfigured subset of all available NETCONF or RESTCONF protocol

operations and content.

There are a number of data nodes defined in this YANG module that

are writable/creatable/deletable (i.e., config true, which is the

default). These data nodes MAY be considered sensitive or vulnerable

in some network environments. Write operations (e.g., edit-config)

to these data nodes without proper protection can have a negative

effect on network operations. These are the subtrees and data nodes

and their sensitivity/vulnerability:

nsf-registrations: The attacker MAY exploit this to register a

compromised or malicious NSF instead of a legitimate NSF with the

Security Controller.

nsf-performance-capability: The attacker MAY provide incorrect

information of the performance capability of any target NSF by

illegally modifying this.

nsf-capability-info: The attacker MAY provide incorrect

information of the security capability of any target NSF by

illegally modifying this.

nsf-access-info: The attacker MAY provide incorrect network

access information of any target NSF by illegally modifying this.

Some of the readable data nodes in this YANG module MAY be

considered sensitive or vulnerable in some network environments. It

is thus important to control read access (e.g., via get, get-config,

or notification) to these data nodes. These are the subtrees and

data nodes and their sensitivity/vulnerability:

nsf-registrations: The attacker MAY try to gather some sensitive

information of a registered NSF by sniffing this.

nsf-performance-capability: The attacker MAY gather the

performance capability information of any target NSF and misuse

the information for subsequent attacks.

nsf-capability-info: The attacker MAY gather the security

capability information of any target NSF and misuse the

information for subsequent attacks.

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶



[RFC2119]

[RFC3688]

[RFC6241]

[RFC6242]

[RFC6991]

[RFC7950]

[RFC8040]

[RFC8174]

nsf-access-info: The attacker MAY gather the network access

information of any target NSF and misuse the information for

subsequent attacks.

The RPC operation in this YANG module MAY be considered sensitive or

vulnerable in some network environments. It is thus important to

control access to this operation. The following is the operation and

its sensitivity/vulnerability:

nsf-capability-query: The attacker MAY exploit this RPC operation

to deteriorate the availability of the DMS and/or gather the

information of some interested NSFs from the DMS.

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>. 

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, 

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>. 

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, 

<https://www.rfc-editor.org/info/rfc6241>. 

Wasserman, M., "Using the NETCONF Protocol over Secure

Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, 

<https://www.rfc-editor.org/info/rfc6242>. 

Schoenwaelder, J., Ed., "Common YANG Data Types", RFC

6991, DOI 10.17487/RFC6991, July 2013, <https://www.rfc-

editor.org/info/rfc6991>. 

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, 

<https://www.rfc-editor.org/info/rfc7950>. 

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, 

<https://www.rfc-editor.org/info/rfc8040>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/info/rfc8174>. 

*

¶

¶

*

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc6991
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174


[RFC8340]

[RFC8341]

[RFC8407]

[RFC8431]

[RFC8446]

[RFC8525]

[I-D.ietf-i2nsf-capability-data-model]

[RFC3849]

[RFC5737]

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", 

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, 

<https://www.rfc-editor.org/info/rfc8340>. 

Bierman, A. and M. Bjorklund, "Network Configuration

Access Control Model", STD 91, RFC 8341, DOI 10.17487/

RFC8341, March 2018, <https://www.rfc-editor.org/info/

rfc8341>. 

Bierman, A., "Guidelines for Authors and Reviewers of

Documents Containing YANG Data Models", BCP 216, RFC

8407, DOI 10.17487/RFC8407, October 2018, <https://

www.rfc-editor.org/info/rfc8407>. 

Wang, L., Chen, M., Dass, A., Ananthakrishnan, H., Kini,

S., and N. Bahadur, "A YANG Data Model for the Routing

Information Base (RIB)", RFC 8431, DOI 10.17487/RFC8431, 

September 2018, <https://www.rfc-editor.org/info/

rfc8431>. 

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, 

August 2018, <https://www.rfc-editor.org/info/rfc8446>. 

Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen,

K., and R. Wilton, "YANG Library", RFC 8525, DOI

10.17487/RFC8525, March 2019, <https://www.rfc-

editor.org/info/rfc8525>. 

Hares, S., Jeong, J. (., Kim, J. (., Moskowitz, R., and 

Q. Lin, "I2NSF Capability YANG Data Model", Work in

Progress, Internet-Draft, draft-ietf-i2nsf-capability-

data-model-17, 14 August 2021, <https://www.ietf.org/

archive/id/draft-ietf-i2nsf-capability-data-

model-17.txt>. 

8.2. Informative References

Huston, G., Lord, A., and P. Smith, "IPv6 Address Prefix

Reserved for Documentation", RFC 3849, DOI 10.17487/

RFC3849, July 2004, <https://www.rfc-editor.org/info/

rfc3849>. 

Arkko, J., Cotton, M., and L. Vegoda, "IPv4 Address

Blocks Reserved for Documentation", RFC 5737, DOI

10.17487/RFC5737, January 2010, <https://www.rfc-

editor.org/info/rfc5737>. 

https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8431
https://www.rfc-editor.org/info/rfc8431
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8525
https://www.rfc-editor.org/info/rfc8525
https://www.ietf.org/archive/id/draft-ietf-i2nsf-capability-data-model-17.txt
https://www.ietf.org/archive/id/draft-ietf-i2nsf-capability-data-model-17.txt
https://www.ietf.org/archive/id/draft-ietf-i2nsf-capability-data-model-17.txt
https://www.rfc-editor.org/info/rfc3849
https://www.rfc-editor.org/info/rfc3849
https://www.rfc-editor.org/info/rfc5737
https://www.rfc-editor.org/info/rfc5737


[RFC7348]

[RFC8329]

[I-D.ietf-i2nsf-nsf-monitoring-data-model]

[RFC9061]

[I-D.ietf-nvo3-vxlan-gpe]

[nfv-framework]

Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,

L., Sridhar, T., Bursell, M., and C. Wright, "Virtual

eXtensible Local Area Network (VXLAN): A Framework for

Overlaying Virtualized Layer 2 Networks over Layer 3

Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014, 

<https://www.rfc-editor.org/info/rfc7348>. 

Lopez, D., Lopez, E., Dunbar, L., Strassner, J., and R.

Kumar, "Framework for Interface to Network Security

Functions", RFC 8329, DOI 10.17487/RFC8329, February

2018, <https://www.rfc-editor.org/info/rfc8329>. 

Jeong, J. (., Lingga, P., Hares, S., Xia, L. (., and H.

Birkholz, "I2NSF NSF Monitoring Interface YANG Data

Model", Work in Progress, Internet-Draft, draft-ietf-

i2nsf-nsf-monitoring-data-model-09, 24 August 2021, 

<https://www.ietf.org/archive/id/draft-ietf-i2nsf-nsf-

monitoring-data-model-09.txt>. 

Marin-Lopez, R., Lopez-Millan, G., and F. Pereniguez-

Garcia, "A YANG Data Model for IPsec Flow Protection

Based on Software-Defined Networking (SDN)", RFC 9061, 

DOI 10.17487/RFC9061, July 2021, <https://www.rfc-

editor.org/info/rfc9061>. 

(Editor), F. M., (editor), L. K., and U.

E. (editor), "Generic Protocol Extension for VXLAN

(VXLAN-GPE)", Work in Progress, Internet-Draft, draft-

ietf-nvo3-vxlan-gpe-11, 6 March 2021, <https://

www.ietf.org/archive/id/draft-ietf-nvo3-vxlan-

gpe-11.txt>. 

"Network Functions Virtualisation (NFV);

Architectureal Framework", ETSI GS NFV 002 ETSI GS NFV

002 V1.1.1, October 2013. 

Appendix A. XML Examples of I2NSF Registration Interface Data Model

This section describes XML examples of the I2NSF Registration

Interface data model under the assumption of registering several

types of NSFs and querying NSF capability.

A.1. Example 1: Registration for the Capabilities of a General

Firewall

This section shows an XML example for registering the capabilities

of a general firewall in either IPv4 networks [RFC5737] or IPv6

networks [RFC3849].

¶

¶

https://www.rfc-editor.org/info/rfc7348
https://www.rfc-editor.org/info/rfc8329
https://www.ietf.org/archive/id/draft-ietf-i2nsf-nsf-monitoring-data-model-09.txt
https://www.ietf.org/archive/id/draft-ietf-i2nsf-nsf-monitoring-data-model-09.txt
https://www.rfc-editor.org/info/rfc9061
https://www.rfc-editor.org/info/rfc9061
https://www.ietf.org/archive/id/draft-ietf-nvo3-vxlan-gpe-11.txt
https://www.ietf.org/archive/id/draft-ietf-nvo3-vxlan-gpe-11.txt
https://www.ietf.org/archive/id/draft-ietf-nvo3-vxlan-gpe-11.txt




<nsf-registrations

 xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"

 xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">

 <nsf-information>

  <capability-name>general_firewall_capability</capability-name>

  <nsf-capability-info>

   <security-capability>

    <condition-capabilities>

     <generic-nsf-capabilities>

      <ipv4-capability>cap:next-header</ipv4-capability>

      <ipv4-capability>cap:source-address</ipv4-capability>

      <ipv4-capability>cap:destination-address</ipv4-capability>

      <tcp-capability>cap:source-port-number</tcp-capability>

      <tcp-capability>cap:destination-port-number</tcp-capability>

     </generic-nsf-capabilities>

    </condition-capabilities>

    <action-capabilities>

     <ingress-action-capability>

      cap:pass

     </ingress-action-capability>

     <ingress-action-capability>

      cap:drop

     </ingress-action-capability>

     <ingress-action-capability>

      cap:mirror

     </ingress-action-capability>

     <egress-action-capability>

      cap:pass

     </egress-action-capability>

     <egress-action-capability>

      cap:drop

     </egress-action-capability>

     <egress-action-capability>

      cap:mirror

     </egress-action-capability>

    </action-capabilities>

   </security-capability>

   <performance-capability>

    <processing>

     <processing-average>1000</processing-average>

     <processing-peak>5000</processing-peak>

    </processing>

    <bandwidth>

     <outbound>

      <outbound-average>1000</outbound-average>

      <outbound-peak>5000</outbound-peak>

     </outbound>

     <inbound>

      <inbound-average>1000</inbound-average>



      <inbound-peak>5000</inbound-peak>

     </inbound>

    </bandwidth>

   </performance-capability>

  </nsf-capability-info>

  <nsf-access-info>

   <capability-name>general_firewall</capability-name>

   <ip>192.0.2.11</ip>

   <port>3000</port>

  </nsf-access-info>

 </nsf-information>

</nsf-registrations>



Figure 12: Configuration XML for Registration of a General Firewall in

an IPv4 Network

Figure 12 shows the configuration XML for registering a general

firewall in an IPv4 network [RFC5737] and its capabilities as

follows.

The instance name of the NSF is general_firewall.

The NSF can inspect IPv4 protocol header field, source

address(es), and destination address(es)

The NSF can inspect the port number(s) for the transport layer

protocol, i.e., TCP.

The NSF can determine whether the packets are allowed to pass,

drop, or mirror.

The NSF can support IPsec not through IKEv2, but through a

Security Controller [RFC9061].

The NSF can have processing power and bandwidth.

The IPv4 address of the NSF is 192.0.2.11.

The port of the NSF is 3000.

¶

1. ¶

2. 

¶

3. 

¶

4. 

¶

5. 

¶

6. ¶

7. ¶

8. ¶



<nsf-registrations

 xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"

 xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">

 <nsf-information>

  <capability-name>general_firewall_capability</capability-name>

  <nsf-capability-info>

   <security-capability>

    <condition-capabilities>

     <generic-nsf-capabilities>

      <ipv6-capability>cap:next-header</ipv6-capability>

      <ipv6-capability>cap:source-address</ipv6-capability>

      <ipv6-capability>cap:destination-address</ipv6-capability>

      <tcp-capability>cap:source-port-number</tcp-capability>

      <tcp-capability>cap:destination-port-number</tcp-capability>

     </generic-nsf-capabilities>

    </condition-capabilities>

    <action-capabilities>

     <ingress-action-capability>

      cap:pass

     </ingress-action-capability>

     <ingress-action-capability>

      cap:drop

     </ingress-action-capability>

     <ingress-action-capability>

      cap:mirror

     </ingress-action-capability>

     <egress-action-capability>

      cap:pass

     </egress-action-capability>

     <egress-action-capability>

      cap:drop

     </egress-action-capability>

     <egress-action-capability>

      cap:mirror

     </egress-action-capability>

    </action-capabilities>

   </security-capability>

   <performance-capability>

    <processing>

     <processing-average>1000</processing-average>

     <processing-peak>5000</processing-peak>

    </processing>

    <bandwidth>

     <outbound>

      <outbound-average>1000</outbound-average>

      <outbound-peak>5000</outbound-peak>

     </outbound>

     <inbound>

      <inbound-average>1000</inbound-average>



      <inbound-peak>5000</inbound-peak>

     </inbound>

    </bandwidth>

   </performance-capability>

  </nsf-capability-info>

  <nsf-access-info>

   <capability-name>general_firewall</capability-name>

   <ip>2001:DB8:0:1::11</ip>

   <port>3000</port>

  </nsf-access-info>

 </nsf-information>

</nsf-registrations>



Figure 13: Configuration XML for Registration of a General Firewall in

an IPv6 Network

In addition, Figure 13 shows the configuration XML for registering a

general firewall in an IPv6 network [RFC3849] and its capabilities

as follows.

The instance name of the NSF is general_firewall.

The NSF can inspect IPv6 next header, flow direction, source

address(es), and destination address(es)

The NSF can inspect the port number(s) and flow direction for

the transport layer protocol, i.e., TCP and UDP.

The NSF can determine whether the packets are allowed to pass,

drop, or mirror.

The NSF can have processing power and bandwidth.

The IPv6 address of the NSF is 2001:DB8:0:1::11.

The port of the NSF is 3000.

A.2. Example 2: Registration for the Capabilities of a Time-based

Firewall

This section shows an XML example for registering the capabilities

of a time-based firewall in either IPv4 networks [RFC5737] or IPv6

networks [RFC3849].

¶

1. ¶

2. 

¶

3. 

¶

4. 

¶

5. ¶

6. ¶

7. ¶

¶



<nsf-registrations

 xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"

 xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">

 <nsf-information>

  <capability-name>time_based_firewall_capability</capability-name>

  <nsf-capability-info>

   <security-capability>

    <event-capabilities>

     <time-capabilities>cap:absolute-time</time-capabilities>

     <time-capabilities>cap:periodic-time</time-capabilities>

    </event-capabilities>

    <condition-capabilities>

     <generic-nsf-capabilities>

      <ipv4-capability>cap:next-header</ipv4-capability>

      <ipv4-capability>cap:source-address</ipv4-capability>

      <ipv4-capability>cap:destination-address</ipv4-capability>

      <tcp-capability>cap:source-port-number</tcp-capability>

      <tcp-capability>cap:destination-port-number</tcp-capability>

     </generic-nsf-capabilities>

    </condition-capabilities>

    <action-capabilities>

     <ingress-action-capability>

      cap:pass

     </ingress-action-capability>

     <ingress-action-capability>

      cap:drop

     </ingress-action-capability>

     <ingress-action-capability>

      cap:mirror

     </ingress-action-capability>

     <egress-action-capability>

      cap:pass

     </egress-action-capability>

     <egress-action-capability>

      cap:drop

     </egress-action-capability>

     <egress-action-capability>

      cap:mirror

     </egress-action-capability>

    </action-capabilities>

   </security-capability>

   <performance-capability>

    <processing>

     <processing-average>1000</processing-average>

     <processing-peak>5000</processing-peak>

    </processing>

    <bandwidth>

     <outbound>

      <outbound-average>1000</outbound-average>



      <outbound-peak>5000</outbound-peak>

     </outbound>

     <inbound>

      <inbound-average>1000</inbound-average>

      <inbound-peak>5000</inbound-peak>

     </inbound>

    </bandwidth>

   </performance-capability>

  </nsf-capability-info>

  <nsf-access-info>

   <capability-name>time_based_firewall</capability-name>

   <ip>192.0.2.11</ip>

   <port>3000</port>

  </nsf-access-info>

 </nsf-information>

</nsf-registrations>



Figure 14: Configuration XML for Registration of a Time-based Firewall

in an IPv4 Network

Figure 14 shows the configuration XML for registering a time-based

firewall in an IPv4 network [RFC5737] and its capabilities as

follows.

The instance name of the NSF is time_based_firewall.

The NSF can enforce the security policy rule according to

absolute time and periodic time.

The NSF can inspect the IPv4 protocol header field, IPv4 source

address(es), IPv4 destination address(es), TCP source port

number(s), and TCP destination port number(s).

The NSF can determine whether the packets are allowed to pass,

drop, or mirror.

The NSF can have processing power and bandwidth.

The IPv4 address of the NSF is 192.0.2.11.

The port of the NSF is 3000.

¶

1. ¶

2. 

¶

3. 

¶

4. 

¶

5. ¶

6. ¶

7. ¶



<nsf-registrations

 xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"

 xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">

 <nsf-information>

  <capability-name>time_based_firewall_capability</capability-name>

  <nsf-capability-info>

   <security-capability>

    <event-capabilities>

     <time-capabilities>cap:absolute-time</time-capabilities>

     <time-capabilities>cap:periodic-time</time-capabilities>

    </event-capabilities>

    <condition-capabilities>

     <generic-nsf-capabilities>

      <ipv6-capability>cap:next-header</ipv6-capability>

      <ipv6-capability>cap:source-address</ipv6-capability>

      <ipv6-capability>cap:destination-address</ipv6-capability>

      <tcp-capability>cap:source-port-number</tcp-capability>

      <tcp-capability>cap:destination-port-number</tcp-capability>

     </generic-nsf-capabilities>

    </condition-capabilities>

    <action-capabilities>

     <ingress-action-capability>

      cap:pass

     </ingress-action-capability>

     <ingress-action-capability>

      cap:drop

     </ingress-action-capability>

     <ingress-action-capability>

      cap:mirror

     </ingress-action-capability>

     <egress-action-capability>

      cap:pass

     </egress-action-capability>

     <egress-action-capability>

      cap:drop

     </egress-action-capability>

     <egress-action-capability>

      cap:mirror

     </egress-action-capability>

    </action-capabilities>

   </security-capability>

   <performance-capability>

    <processing>

     <processing-average>1000</processing-average>

     <processing-peak>5000</processing-peak>

    </processing>

    <bandwidth>

     <outbound>

      <outbound-average>1000</outbound-average>



      <outbound-peak>5000</outbound-peak>

     </outbound>

     <inbound>

      <inbound-average>1000</inbound-average>

      <inbound-peak>5000</inbound-peak>

     </inbound>

    </bandwidth>

   </performance-capability>

  </nsf-capability-info>

  <nsf-access-info>

   <capability-name>time_based_firewall</capability-name>

   <ip>2001:DB8:0:1::11</ip>

   <port>3000</port>

  </nsf-access-info>

 </nsf-information>

</nsf-registrations>



Figure 15: Configuration XML for Registration of a Time-based Firewall

in an IPv6 Network

In addition, Figure 15 shows the configuration XML for registering a

time-based firewall in an IPv6 network [RFC3849] and its

capabilities as follows.

The instance name of the NSF is time_based_firewall.

The NSF can enforce the security policy rule according to

absolute time and periodic time.

The NSF can inspect the IPv6 next header field, IPv6 source

address(es), IPv6 destination address(es), TCP source port

number(s), and TCP destination port number(s).

The NSF can determine whether the packets are allowed to pass,

drop, or mirror.

The NSF can have processing power and bandwidth.

The IPv6 address of the NSF is 2001:DB8:0:1::11.

The port of the NSF is 3000.

A.3. Example 3: Registration for the Capabilities of a Web Filter

This section shows an XML example for registering the capabilities

of a web filter in either IPv4 networks [RFC5737] or IPv6 networks 

[RFC3849].

¶

1. ¶

2. 

¶

3. 

¶

4. 

¶

5. ¶

6. ¶

7. ¶

¶



<nsf-registrations

 xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"

 xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">

 <nsf-information>

  <capability-name>web_filter</capability-name>

  <nsf-capability-info>

   <security-capability>

    <condition-capabilities>

     <advanced-nsf-capabilities>

      <url-capability>cap:user-defined</url-capability>

     </advanced-nsf-capabilities>

    </condition-capabilities>

    <action-capabilities>

     <ingress-action-capability>

      cap:pass

     </ingress-action-capability>

     <ingress-action-capability>

      cap:drop

     </ingress-action-capability>

     <ingress-action-capability>

      cap:mirror

     </ingress-action-capability>

     <egress-action-capability>

      cap:pass

     </egress-action-capability>

     <egress-action-capability>

      cap:drop

     </egress-action-capability>

     <egress-action-capability>

      cap:mirror

     </egress-action-capability>

    </action-capabilities>

   </security-capability>

   <performance-capability>

    <processing>

     <processing-average>1000</processing-average>

     <processing-peak>5000</processing-peak>

    </processing>

    <bandwidth>

     <outbound>

      <outbound-average>1000</outbound-average>

      <outbound-peak>5000</outbound-peak>

     </outbound>

     <inbound>

      <inbound-average>1000</inbound-average>

      <inbound-peak>5000</inbound-peak>

     </inbound>

    </bandwidth>

   </performance-capability>



  </nsf-capability-info>

  <nsf-access-info>

   <capability-name>web_filter</capability-name>

   <ip>192.0.2.11</ip>

   <port>3000</port>

  </nsf-access-info>

 </nsf-information>

</nsf-registrations>



Figure 16: Configuration XML for Registration of a Web Filter in an

IPv4 Network

Figure 16 shows the configuration XML for registering a web filter

in an IPv4 network [RFC5737] and its capabilities are as follows.

The instance name of the NSF is web_filter.

The NSF can inspect URL from a pre-defined database or a added

new URL by user (user-defined).

The NSF can determine whether the packets are allowed to pass,

drop, or mirror.

The NSF can have processing power and bandwidth.

The IPv4 address of the NSF is 192.0.2.11.

The port of the NSF is 3000.

¶

1. ¶

2. 

¶

3. 

¶

4. ¶

5. ¶

6. ¶



<nsf-registrations

 xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"

 xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">

 <nsf-information>

  <capability-name>web_filter</capability-name>

  <nsf-capability-info>

   <security-capability>

    <condition-capabilities>

     <advanced-nsf-capabilities>

      <url-capability>cap:user-defined</url-capability>

      <url-capability>cap:pre-defined</url-capability>

     </advanced-nsf-capabilities>

    </condition-capabilities>

    <action-capabilities>

     <ingress-action-capability>

      cap:pass

     </ingress-action-capability>

     <ingress-action-capability>

      cap:drop

     </ingress-action-capability>

     <ingress-action-capability>

      cap:mirror

     </ingress-action-capability>

     <egress-action-capability>

      cap:pass

     </egress-action-capability>

     <egress-action-capability>

      cap:drop

     </egress-action-capability>

     <egress-action-capability>

      cap:mirror

     </egress-action-capability>

    </action-capabilities>

   </security-capability>

   <performance-capability>

    <processing>

     <processing-average>1000</processing-average>

     <processing-peak>5000</processing-peak>

    </processing>

    <bandwidth>

     <outbound>

      <outbound-average>1000</outbound-average>

      <outbound-peak>5000</outbound-peak>

     </outbound>

     <inbound>

      <inbound-average>1000</inbound-average>

      <inbound-peak>5000</inbound-peak>

     </inbound>

    </bandwidth>



   </performance-capability>

  </nsf-capability-info>

  <nsf-access-info>

   <capability-name>web_filter</capability-name>

   <ip>2001:DB8:0:1::11</ip>

   <port>3000</port>

  </nsf-access-info>

 </nsf-information>

</nsf-registrations>



Figure 17: Configuration XML for Registration of a Web Filter in an

IPv6 Network

In addition, Figure 17 shows the configuration XML for registering a

web filter in an IPv6 network [RFC3849] and its capabilities are as

follows.

The instance name of the NSF is web_filter.

The NSF can inspect URL from a pre-defined database or a added

new URL by user (user-defined).

The NSF can determine whether the packets are allowed to pass,

drop, or mirror.

The NSF can have processing power and bandwidth.

The IPv6 address of the NSF is 2001:DB8:0:1::11.

The port of the NSF is 3000.

A.4. Example 4: Registration for the Capabilities of a VoIP/VoLTE

Filter

This section shows an XML example for registering the capabilities

of a VoIP/VoLTE filter in either IPv4 networks [RFC5737] or IPv6

networks [RFC3849].

¶

1. ¶

2. 

¶

3. 

¶

4. ¶

5. ¶

6. ¶

¶



<nsf-registrations

 xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"

 xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">

 <nsf-information>

  <capability-name>voip_volte_filter</capability-name>

  <nsf-capability-info>

   <security-capability>

    <condition-capabilities>

     <advanced-nsf-capabilities>

      <voip-volte-capability>cap:call-id</voip-volte-capability>

     </advanced-nsf-capabilities>

    </condition-capabilities>

    <action-capabilities>

     <ingress-action-capability>

      cap:pass

     </ingress-action-capability>

     <ingress-action-capability>

      cap:drop

     </ingress-action-capability>

     <ingress-action-capability>

      cap:mirror

     </ingress-action-capability>

     <egress-action-capability>

      cap:pass

     </egress-action-capability>

     <egress-action-capability>

      cap:drop

     </egress-action-capability>

     <egress-action-capability>

      cap:mirror

     </egress-action-capability>

    </action-capabilities>

   </security-capability>

   <performance-capability>

    <processing>

     <processing-average>1000</processing-average>

     <processing-peak>5000</processing-peak>

    </processing>

    <bandwidth>

     <outbound>

      <outbound-average>1000</outbound-average>

      <outbound-peak>5000</outbound-peak>

     </outbound>

     <inbound>

      <inbound-average>1000</inbound-average>

      <inbound-peak>5000</inbound-peak>

     </inbound>

    </bandwidth>

   </performance-capability>



  </nsf-capability-info>

  <nsf-access-info>

   <capability-name>voip_volte_filter</capability-name>

   <ip>192.0.2.11</ip>

   <port>3000</port>

  </nsf-access-info>

 </nsf-information>

</nsf-registrations>



Figure 18: Configuration XML for Registration of a VoIP/VoLTE Filter in

an IPv4 Network

Figure 18 shows the configuration XML for registering a VoIP/VoLTE

filter in an IPv4 network [RFC5737] and its capabilities are as

follows.

The instance name of the NSF is voip_volte_filter.

The NSF can inspect a call id for VoIP/VoLTE packets.

The NSF can determine whether the packets are allowed to pass,

drop, or mirror.

The NSF can have processing power and bandwidth.

The IPv4 address of the NSF is 192.0.2.11.

The port of the NSF is 3000.

¶

1. ¶

2. ¶

3. 

¶

4. ¶

5. ¶

6. ¶



<nsf-registrations

 xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"

 xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">

 <nsf-information>

  <capability-name>voip_volte_filter</capability-name>

  <nsf-capability-info>

   <security-capability>

    <condition-capabilities>

     <advanced-nsf-capabilities>

      <voip-volte-capability>cap:call-id</voip-volte-capability>

     </advanced-nsf-capabilities>

    </condition-capabilities>

    <action-capabilities>

     <ingress-action-capability>

      cap:pass

     </ingress-action-capability>

     <ingress-action-capability>

      cap:drop

     </ingress-action-capability>

     <ingress-action-capability>

      cap:mirror

     </ingress-action-capability>

     <egress-action-capability>

      cap:pass

     </egress-action-capability>

     <egress-action-capability>

      cap:drop

     </egress-action-capability>

     <egress-action-capability>

      cap:mirror

     </egress-action-capability>

    </action-capabilities>

   </security-capability>

   <performance-capability>

    <processing>

     <processing-average>1000</processing-average>

     <processing-peak>5000</processing-peak>

    </processing>

    <bandwidth>

     <outbound>

      <outbound-average>1000</outbound-average>

      <outbound-peak>5000</outbound-peak>

     </outbound>

     <inbound>

      <inbound-average>1000</inbound-average>

      <inbound-peak>5000</inbound-peak>

     </inbound>

    </bandwidth>

   </performance-capability>



  </nsf-capability-info>

  <nsf-access-info>

   <capability-name>voip_volte_filter</capability-name>

   <ip>2001:DB8:0:1::11</ip>

   <port>3000</port>

  </nsf-access-info>

 </nsf-information>

</nsf-registrations>



Figure 19: Configuration XML for Registration of a VoIP/VoLTE Filter in

an IPv6 Network

Figure 19 shows the configuration XML for registering a VoIP/VoLTE

filter in an IPv6 network [RFC3849] and its capabilities are as

follows.

The instance name of the NSF is voip_volte_filter.

The NSF can inspect a call id for VoIP/VoLTE packets.

The NSF can determine whether the packets are allowed to pass,

drop, or mirror.

The NSF can have processing power and bandwidth.

The IPv6 address of the NSF is 2001:DB8:0:1::11.

The port of the NSF is 3000.

A.5. Example 5: Registration for the Capabilities of a DDoS Mitigator

This section shows an XML example for registering the capabilities

of a DDoS mitigator in either IPv4 networks [RFC5737] or IPv6

networks [RFC3849].

¶

1. ¶

2. ¶

3. 

¶

4. ¶

5. ¶

6. ¶

¶



<nsf-registrations

 xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"

 xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">

 <nsf-information>

  <capability-name>anti_DDoS</capability-name>

  <nsf-capability-info>

   <security-capability>

    <condition-capabilities>

     <advanced-nsf-capabilities>

      <anti-ddos-capability>

       cap:packet-rate

      </anti-ddos-capability>

      <anti-ddos-capability>

       cap:flow-rate

      </anti-ddos-capability>

      <anti-ddos-capability>

       cap:byte-rate

      </anti-ddos-capability>

     </advanced-nsf-capabilities>

    </condition-capabilities>

    <action-capabilities>

     <ingress-action-capability>

      cap:pass

     </ingress-action-capability>

     <ingress-action-capability>

      cap:drop

     </ingress-action-capability>

     <ingress-action-capability>

      cap:mirror

     </ingress-action-capability>

     <ingress-action-capability>

      cap:rate-limit

     </ingress-action-capability>

     <egress-action-capability>

      cap:pass

     </egress-action-capability>

     <egress-action-capability>

      cap:drop

     </egress-action-capability>

     <egress-action-capability>

      cap:mirror

     </egress-action-capability>

     <egress-action-capability>

      cap:rate-limit

     </egress-action-capability>

    </action-capabilities>

   </security-capability>

   <performance-capability>

    <processing>



     <processing-average>1000</processing-average>

     <processing-peak>5000</processing-peak>

    </processing>

    <bandwidth>

     <outbound>

      <outbound-average>1000</outbound-average>

      <outbound-peak>5000</outbound-peak>

     </outbound>

     <inbound>

      <inbound-average>1000</inbound-average>

      <inbound-peak>5000</inbound-peak>

     </inbound>

    </bandwidth>

   </performance-capability>

  </nsf-capability-info>

  <nsf-access-info>

   <capability-name>

    http_and_https_flood_mitigation

   </capability-name>

   <ip>192.0.2.11</ip>

   <port>3000</port>

  </nsf-access-info>

 </nsf-information>

</nsf-registrations>



Figure 20: Configuration XML for Registration of a DDoS Mitigator in an

IPv4 Network

Figure 20 shows the configuration XML for registering a DDoS

mitigator in an IPv4 network [RFC5737] and its capabilities are as

follows.

The instance name of the NSF is anti_DDoS.

The NSF can detect the amount of packet, flow, and byte rate in

the network for potential DDoS Attack.

The NSF can determine whether the packets are allowed to pass,

drop, or mirror.

The NSF can have processing power and bandwidth.

The IPv4 address of the NSF is 192.0.2.11.

The port of the NSF is 3000.

¶

1. ¶

2. 

¶

3. 

¶

4. ¶

5. ¶

6. ¶



<nsf-registrations

 xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"

 xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">

 <nsf-information>

  <capability-name>

   anti_DDoS

  </capability-name>

  <nsf-capability-info>

   <security-capability>

    <condition-capabilities>

     <advanced-nsf-capabilities>

      <anti-ddos-capability>

       cap:packet-rate

      </anti-ddos-capability>

      <anti-ddos-capability>

       cap:flow-rate

      </anti-ddos-capability>

      <anti-ddos-capability>

       cap:byte-rate

      </anti-ddos-capability>

     </advanced-nsf-capabilities>

    </condition-capabilities>

    <action-capabilities>

     <ingress-action-capability>

      cap:pass

     </ingress-action-capability>

     <ingress-action-capability>

      cap:drop

     </ingress-action-capability>

     <ingress-action-capability>

      cap:mirror

     </ingress-action-capability>

     <ingress-action-capability>

      cap:rate-limit

     </ingress-action-capability>

     <egress-action-capability>

      cap:pass

     </egress-action-capability>

     <egress-action-capability>

      cap:drop

     </egress-action-capability>

     <egress-action-capability>

      cap:mirror

     </egress-action-capability>

     <egress-action-capability>

      cap:rate-limit

     </egress-action-capability>

    </action-capabilities>

   </security-capability>



   <performance-capability>

    <processing>

     <processing-average>1000</processing-average>

     <processing-peak>5000</processing-peak>

    </processing>

    <bandwidth>

     <outbound>

      <outbound-average>1000</outbound-average>

      <outbound-peak>5000</outbound-peak>

     </outbound>

     <inbound>

      <inbound-average>1000</inbound-average>

      <inbound-peak>5000</inbound-peak>

     </inbound>

    </bandwidth>

   </performance-capability>

  </nsf-capability-info>

  <nsf-access-info>

   <capability-name>anti_DDoS</capability-name>

   <ip>2001:DB8:0:1::11</ip>

   <port>3000</port>

  </nsf-access-info>

 </nsf-information>

</nsf-registrations>



Figure 21: Configuration XML for Registration of a DDoS Mitigator in an

IPv6 Network

In addition, Figure 21 shows the configuration XML for registering a

DDoS mitigator in an IPv6 network [RFC3849] and its capabilities are

as follows.

The instance name of the NSF is anti_DDoS.

The NSF can detect the amount of packet, flow, and byte rate in

the network for potential DDoS Attack.

The NSF can determine whether the packets are allowed to pass,

drop, mirror, or rate-limit.

The NSF can have processing power and bandwidth.

The IPv6 address of the NSF is 2001:DB8:0:1::11.

The port of the NSF is 3000.

A.6. Example 6: Query for the Capabilities of a Time-based Firewall

This section shows an XML example for querying the capabilities of a

time-based firewall in either IPv4 networks [RFC5737] or IPv6

networks [RFC3849].

¶

1. ¶

2. 

¶

3. 

¶

4. ¶

5. ¶

6. ¶

¶



<rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <nsf-capability-query

  xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"

  xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">

  <query-i2nsf-capability-info>

   <time-capabilities>absolute-time</time-capabilities>

   <time-capabilities>periodic-time</time-capabilities>

   <condition-capabilities>

    <generic-nsf-capabilities>

     <ipv4-capability>cap:next-header</ipv4-capability>

     <ipv4-capability>cap:source-address</ipv4-capability>

     <ipv4-capability>cap:destination-address</ipv4-capability>

    </generic-nsf-capabilities>

   </condition-capabilities>

   <action-capabilities>

    <ingress-action-capability>

     cap:pass

    </ingress-action-capability>

    <ingress-action-capability>

     cap:drop

    </ingress-action-capability>

    <ingress-action-capability>

     cap:mirror

    </ingress-action-capability>

    <egress-action-capability>

     cap:pass

    </egress-action-capability>

    <egress-action-capability>

     cap:drop

    </egress-action-capability>

    <egress-action-capability>

     cap:mirror

    </egress-action-capability>

   </action-capabilities>

  </query-i2nsf-capability-info>

 </nsf-capability-query>

</rpc>

<rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <nsf-access-info

  xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface">

  <capability-name>time-based-firewall</capability-name>

  <ip>192.0.2.11</ip>

  <port>3000</port>

 </nsf-access-info>

</rpc-reply>



Figure 22: Configuration XML for Query of a Time-based Firewall in an

IPv4 Network

Figure 22 shows the XML configuration for querying the capabilities

of a time-based firewall in an IPv4 network [RFC5737]. The access

information of the announced time-based firewall has the IPv4

address of 192.0.2.11 and the port number of 3000.¶



<rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <nsf-capability-query

  xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface"

  xmlns:cap="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">

  <query-i2nsf-capability-info>

   <time-capabilities>absolute-time</time-capabilities>

   <time-capabilities>periodic-time</time-capabilities>

   <condition-capabilities>

    <generic-nsf-capabilities>

     <ipv6-capability>cap:next-header</ipv6-capability>

     <ipv6-capability>cap:source-address</ipv6-capability>

     <ipv6-capability>cap:destination-address</ipv6-capability>

    </generic-nsf-capabilities>

   </condition-capabilities>

   <action-capabilities>

    <ingress-action-capability>

     cap:pass

    </ingress-action-capability>

    <ingress-action-capability>

     cap:drop

    </ingress-action-capability>

    <ingress-action-capability>

     cap:mirror

    </ingress-action-capability>

    <egress-action-capability>

     cap:pass

    </egress-action-capability>

    <egress-action-capability>

     cap:drop

    </egress-action-capability>

    <egress-action-capability>

     cap:mirror

    </egress-action-capability>

   </action-capabilities>

  </query-i2nsf-capability-info>

 </nsf-capability-query>

</rpc>

<rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <nsf-access-info

  xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-reg-interface">

  <capability-name>time-based-firewall</capability-name>

  <ip>2001:DB8:0:1::11</ip>

  <port>3000</port>

 </nsf-access-info>

</rpc-reply>



Figure 23: Configuration XML for Query of a Time-based Firewall in an

IPv6 Network

In addition, Figure 23 shows the XML configuration for querying the

capabilities of a time-based firewall in an IPv6 network [RFC3849].

The access information of the announced time-based firewall has the

IPv6 address of 2001:DB8:0:1::11 and the port number of 3000.

Appendix B. NSF Lifecycle Management in NFV Environments

Network Functions Virtualization (NFV) can be used to implement

I2NSF framework. In NFV environments, NSFs are deployed as virtual

network functions (VNFs). Security Controller can be implemented as

an Element Management (EM) of the NFV architecture, and is connected

with the VNF Manager (VNFM) via the Ve-Vnfm interface [nfv-

framework]. Security Controller can use this interface for the

purpose of the lifecycle management of NSFs. If some NSFs need to be

instantiated to enforce security policies in the I2NSF framework,

Security Controller could request the VNFM to instantiate them

through the Ve-Vnfm interface. Or if an NSF, running as a VNF, is

not used by any traffic flows for a time period, Security Controller

MAY request deinstantiating it through the interface for efficient

resource utilization.

Appendix C. Acknowledgments

This work was supported by Institute of Information & Communications

Technology Planning & Evaluation (IITP) grant funded by the Korea

MSIT (Ministry of Science and ICT) (No. 2016-0-00078, Cloud Based

Security Intelligence Technology Development for the Customized

Security Service Provisioning). This work was supported in part by

the IITP (2020-0-00395, Standard Development of Blockchain based

Network Management Automation Technology).

Appendix D. Contributors

This document is made by the group effort of I2NSF working group.

Many people actively contributed to this document, such as Reshad

Rahman. The authors sincerely appreciate their contributions.

The following are co-authors of this document:

Patrick Lingga Department of Electrical and Computer Engineering

Sungkyunkwan University 2066 Seo-ro Jangan-gu Suwon, Gyeonggi-do

16419 Republic of Korea EMail: patricklink@skku.edu

Jinyong Tim Kim Department of Electronic, Electrical and Computer

Engineering Sungkyunkwan University 2066 Seo-ro Jangan-gu Suwon,

Gyeonggi-do 16419 Republic of Korea EMail: timkim@skku.edu

¶

¶

¶

¶

¶

¶

¶



Chaehong Chung Department of Electronic, Electrical and Computer

Engineering Sungkyunkwan University 2066 Seo-ro Jangan-gu Suwon,

Gyeonggi-do 16419 Republic of Korea EMail: darkhong@skku.edu

Susan Hares Huawei 7453 Hickory Hill Saline, MI 48176 USA EMail:

shares@ndzh.com

Diego R. Lopez Telefonica I+D Jose Manuel Lara, 9 Seville, 41013

Spain EMail: diego.r.lopez@telefonica.com

Appendix E. Changes from draft-ietf-i2nsf-registration-interface-dm-11

The following changes are made from draft-ietf-i2nsf-registration-

interface-dm-11:

This version has been updated to synchronize with other I2NSF

documents.

Authors' Addresses

Sangwon Hyun (editor)

Department of Computer Engineering

Myongji University

116 Myongji-ro, Cheoin-gu

Yongin

Gyeonggi-do

17058

Republic of Korea

Email: shyun@mju.ac.kr

Jaehoon Paul Jeong (editor)

Department of Computer Science and Engineering

Sungkyunkwan University

2066 Seobu-Ro, Jangan-Gu

Suwon

Gyeonggi-Do

16419

Republic of Korea

Phone: +82 31 299 4957

Email: pauljeong@skku.edu

URI: http://iotlab.skku.edu/people-jaehoon-jeong.php

Taekyun Roh

Department of Electronic, Electrical and Computer Engineering

Sungkyunkwan University

2066 Seobu-Ro, Jangan-Gu

Suwon

Gyeonggi-Do

¶

¶

¶

¶

*

¶

mailto:shyun@mju.ac.kr
tel:+82%2031%20299%204957
mailto:pauljeong@skku.edu
http://iotlab.skku.edu/people-jaehoon-jeong.php


16419

Republic of Korea

Phone: +82 31 290 7222

Email: tkroh0198@skku.edu

Sarang Wi

Department of Electronic, Electrical and Computer Engineering

Sungkyunkwan University

2066 Seobu-Ro, Jangan-Gu

Suwon

Gyeonggi-Do

16419

Republic of Korea

Phone: +82 31 290 7222

Email: dnl9795@skku.edu

Jung-Soo Park

Electronics and Telecommunications Research Institute

218 Gajeong-Ro, Yuseong-Gu

Daejeon

305-700

Republic of Korea

Phone: +82 42 860 6514

Email: pjs@etri.re.kr

tel:+82%2031%20290%207222
mailto:tkroh0198@skku.edu
tel:+82%2031%20290%207222
mailto:dnl9795@skku.edu
tel:+82%2042%20860%206514
mailto:pjs@etri.re.kr

	I2NSF Registration Interface YANG Data Model
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Objectives
	4. Information Model
	4.1. NSF Capability Registration
	4.1.1. NSF Capability Information
	4.1.1.1. Performance Capabilities

	4.1.2. NSF Access Information

	4.2. NSF Capability Query

	5. Data Model
	5.1. YANG Tree Diagram
	5.1.1. Definition of Symbols in Tree Diagrams
	5.1.2. I2NSF Registration Interface
	5.1.2.1. NSF Capability Registration
	5.1.2.2. NSF Capability Query

	5.1.3. NSF Capability Information
	5.1.3.1. NSF Performance Capability

	5.1.4. NSF Access Information

	5.2. YANG Data Modules

	6. IANA Considerations
	7. Security Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. XML Examples of I2NSF Registration Interface Data Model
	A.1. Example 1: Registration for the Capabilities of a General Firewall
	A.2. Example 2: Registration for the Capabilities of a Time-based Firewall
	A.3. Example 3: Registration for the Capabilities of a Web Filter
	A.4. Example 4: Registration for the Capabilities of a VoIP/VoLTE Filter
	A.5. Example 5: Registration for the Capabilities of a DDoS Mitigator
	A.6. Example 6: Query for the Capabilities of a Time-based Firewall

	Appendix B. NSF Lifecycle Management in NFV Environments
	Appendix C. Acknowledgments
	Appendix D. Contributors
	Appendix E. Changes from draft-ietf-i2nsf-registration-interface-dm-11
	Authors' Addresses


