
Network Working Group                                    N. Bahadur, Ed.
Internet-Draft                                            R. Folkes, Ed.
Intended status: Informational                    Juniper Networks, Inc.
Expires: March 20, 2014                                          S. Kini
                                                                Ericsson
                                                               J. Medved
                                                                   Cisco
                                                      September 16, 2013

Routing Information Base Info Model
draft-ietf-i2rs-rib-info-model-00

Abstract

   Routing and routing functions in enterprise and carrier networks are
   typically performed by network devices (routers and switches) using a
   routing information base (RIB).  Protocols and configuration push
   data into the RIB and the RIB manager install state into the
   hardware; for packet forwarding.  This draft specifies an information
   model for the RIB to enable defining a standardized data model.  Such
   a data model can be used to define an interface to the RIB from an
   entity that may even be external to the network device.  This
   interface can be used to support new use-cases being defined by the
   IETF I2RS WG.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on March 20, 2014.

Copyright Notice

   Copyright (c) 2013 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Bahadur, et al.          Expires March 20, 2014                 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/


Internet-Draft     Routing Information Base Info Model    September 2013

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Bahadur, et al.          Expires March 20, 2014                 [Page 2]

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info


Internet-Draft     Routing Information Base Info Model    September 2013

Table of Contents

1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  4
1.1.  Conventions used in this document  . . . . . . . . . . . .  6

2.  RIB data . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
2.1.  RIB definition . . . . . . . . . . . . . . . . . . . . . .  6
2.2.  Routing instance . . . . . . . . . . . . . . . . . . . . .  7
2.3.  Route  . . . . . . . . . . . . . . . . . . . . . . . . . .  8
2.4.  Nexthop  . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1.  Nexthop types  . . . . . . . . . . . . . . . . . . . . 12
2.4.2.  Nexthop list attributes  . . . . . . . . . . . . . . . 13
2.4.3.  Nexthop content  . . . . . . . . . . . . . . . . . . . 14
2.4.4.  Nexthop attributes . . . . . . . . . . . . . . . . . . 14
2.4.5.  Nexthop vendor attributes  . . . . . . . . . . . . . . 15
2.4.6.  Special nexthops . . . . . . . . . . . . . . . . . . . 15

3.  Reading from the RIB . . . . . . . . . . . . . . . . . . . . . 16
4.  Writing to the RIB . . . . . . . . . . . . . . . . . . . . . . 16
5.  Events and Notifications . . . . . . . . . . . . . . . . . . . 16
6.  RIB grammar  . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.  Using the RIB grammar  . . . . . . . . . . . . . . . . . . . . 19
7.1.  Using route preference and metric  . . . . . . . . . . . . 20
7.2.  Using different nexthops types . . . . . . . . . . . . . . 20
7.2.1.  Tunnel nexthops  . . . . . . . . . . . . . . . . . . . 20
7.2.2.  Replication lists  . . . . . . . . . . . . . . . . . . 20
7.2.3.  Weighted lists . . . . . . . . . . . . . . . . . . . . 21
7.2.4.  Protection lists . . . . . . . . . . . . . . . . . . . 21
7.2.5.  Nexthop chains . . . . . . . . . . . . . . . . . . . . 22
7.2.6.  Lists of lists . . . . . . . . . . . . . . . . . . . . 22

7.3.  Performing multicast . . . . . . . . . . . . . . . . . . . 22
7.4.  Solving optimized exit control . . . . . . . . . . . . . . 23

8.  RIB operations at scale  . . . . . . . . . . . . . . . . . . . 23
8.1.  RIB reads  . . . . . . . . . . . . . . . . . . . . . . . . 24
8.2.  RIB writes . . . . . . . . . . . . . . . . . . . . . . . . 24
8.3.  RIB events and notifications . . . . . . . . . . . . . . . 24

9.  Security Considerations  . . . . . . . . . . . . . . . . . . . 24
10. IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 24
11. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 24
12. References . . . . . . . . . . . . . . . . . . . . . . . . . . 25
12.1. Normative References . . . . . . . . . . . . . . . . . . . 25
12.2. Informative References . . . . . . . . . . . . . . . . . . 25

   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 26



Bahadur, et al.          Expires March 20, 2014                 [Page 3]



Internet-Draft     Routing Information Base Info Model    September 2013

1.  Introduction

   Routing and routing functions in enterprise and carrier networks are
   traditionally performed in network devices.  Traditionally routers
   run routing protocols and the routing protocols (along with static
   config) populates the Routing information base (RIB) of the router.
   The RIB is managed by the RIB manager and it provides a north-bound
   interface to its clients i.e. the routing protocols to insert routes
   into the RIB.  The RIB manager consults the RIB and decides how to
   program the forwarding information base (FIB) of the hardware by
   interfacing with the FIB-manager.  The relationship between these
   entities is shown in Figure 1.

         +-------------+        +-------------+
         |RIB-Client 1 | ...... |RIB-Client N |
         +-------------+        +-------------+
                ^                      ^
                |                      |
                +----------------------+
                           |
                           V
                +---------------------+
                |RIB-Manager          |
                |                     |
                |       +-----+       |
                |       | RIB |       |
                |       +-----+       |
                +---------------------+
                           ^
                           |
          +---------------------------------+
          |                                 |
          V                                 V
   +-------------+                   +-------------+
   |FIB-Manager 1|                   |FIB-Manager M|
   |   +-----+   |    ..........     |   +-----+   |
   |   | FIB |   |                   |   | FIB |   |
   |   +-----+   |                   |   +-----+   |
   +-------------+                   +-------------+

            Figure 1: RIB-Manager, RIB-Clients and FIB-Managers

   Routing protocols are inherently distributed in nature and each
   router makes an independent decision based on the routing data
   received from its peers.  With the advent of newer deployment
   paradigms and the need for specialized applications, there is an
   emerging need to guide the router's routing function
   [I-D.atlas-i2rs-problem-statement].  Traditional network-device



Bahadur, et al.          Expires March 20, 2014                 [Page 4]



Internet-Draft     Routing Information Base Info Model    September 2013

   protocol-based RIB population suffices for most use cases where
   distributed network control works.  However there are use cases in
   which the network admins today configure static routes, policies and
   RIB import/export rules on the routers.  There is also a growing list
   of use cases [I-D.white-i2rs-use-case],
   [I-D.hares-i2rs-use-case-vn-vc] in which a network admin might want
   to program the RIB based on data unrelated to just routing (within
   that network's domain).  It could be based on routing data in
   adjacent domain or it could be based on load on storage and compute
   in the given domain.  Or it could simply be a programmatic way of
   creating on-demand dynamic overlays between compute hosts (without
   requiring the hosts to run traditional routing protocols).  If there
   was a standardized programmatic interface to a RIB, it would fuel
   further networking applications targeted towards specific niches.

   A programmatic interface to the RIB involves 2 types of operations -
   reading what's in the RIB and adding/modifying/deleting contents of
   the RIB.  [I-D.white-i2rs-use-case] lists various use-cases which
   require read and/or write manipulation of the RIB.

   In order to understand what is in a router's RIB, methods like per-
   protocol SNMP MIBs and show output screen scraping are being used.
   These methods are not scalable, since they are client pull mechanisms
   and not proactive push (from the router) mechanisms.  Screen scraping
   is error prone (since the output format can change) and vendor
   dependent.  Building a RIB from per-protocol MIBs is error prone
   since the MIB data represents protocol data and not the exact
   information that went into the RIB.  Thus, just getting read-only RIB
   information from a router is a hard task.

   Adding content to the RIB from an external entity can be done today
   using static configuration support provided by router vendors.
   However the mix of what can be modified in the RIB varies from vendor
   to vendor and the way of configuring it is also vendor dependent.
   This makes it hard for an external entity to program a multi-vendor
   network in a consistent and vendor independent way.

   The purpose of this draft is to specify an information model for the
   RIB.  Using the information model, one can build a detailed data
   model for the RIB.  And that data model could then be used by an
   external entity to program a network device.

   The rest of this document is organized as follows.  Section 2 goes
   into the details of what constitutes and can be programmed in a RIB.
   Guidelines for reading and writing the RIB are provided in Section 3
   and Section 4 respectively.  Section 5 provides a high-level view of
   the events and notifications going from a network device to an
   external entity, to update the external entity on asynchronous



Bahadur, et al.          Expires March 20, 2014                 [Page 5]



Internet-Draft     Routing Information Base Info Model    September 2013

   events.  The RIB grammar is specified in Section 6.  Examples of
   using the RIB grammar are shown in Section 7.  Section 8 covers
   considerations for performing RIB operations at scale.

1.1.  Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  RIB data

   This section describes the details of a RIB.  It makes forward
   references to objects in the RIB grammar (Section 6).  A high-level
   description of the RIB contents is as shown below.

                         routing-instance

                          |             |
                          |             |
                    0..N  |             | 1..N
                          |             |

                     interface(s)     RIB(s)

                                        |
                                        |
                                        | 0..N

                                      route(s)

2.1.  RIB definition

   A RIB is an entity that contains routes.  A RIB is identified by its
   name and a RIB is contained within a routing instance (Section 2.2).
   The name MUST be unique within a routing instance.  All routes in a
   given RIB MUST be of the same type (e.g.  IPv4).  Each RIB MUST
   belong to some routing instance.

   A RIB can be tagged with a MULTI_TOPOLOGY_ID.  If a routing instance
   is divided into multiple logical topologies, then the multi-topology
   field is used to distinguish one topology from the other, so as to
   keep routes from one topology independent of routes from another
   topology.

   If a routing instance contains multiple RIBs of the same type (e.g.
   IPv4), then a MULTI_TOPOLOGY_ID MUST be associated with each such

https://datatracker.ietf.org/doc/html/rfc2119


Bahadur, et al.          Expires March 20, 2014                 [Page 6]



Internet-Draft     Routing Information Base Info Model    September 2013

   RIB.  Multiple RIBs are useful when describing multiple topology IGP
   (Interior Gateway Protocol) networks (see [RFC4915] and [RFC5120] ).
   In a given routing instance, MULTI_TOPOLOGY_ID MUST be unique across
   RIBs of the same type.

   Each RIB can be optionally associated with a ENABLE_IP_RPF_CHECK
   attribute that enables Reverse path forwarding (RPF) checks on all IP
   routes in that RIB.  Reverse path forwarding (RPF) check is used to
   prevent spoofing and limit malicious traffic.  For IP packets, the IP
   source address is looked up and the rpf interface(s) associated with
   the route for that IP source address is found.  If the incoming IP
   packet's interface matches one of the rpf interface(s), then the IP
   packet is forwarded based on its IP destination address; otherwise,
   the IP packet is discarded.

2.2.  Routing instance

   A routing instance, in the context of the RIB information model, is a
   collection of RIBs, interfaces, and routing parameters.  A routing
   instance creates a logical slice of the router and allows different
   logical slices; across a set of routers; to communicate with other
   each.  Layer 3 Virtual Private Networks (VPN), Layer 2 VPNs (L2VPN)
   and Virtual Private Lan Service (VPLS) can be modeled as routing
   instances.  Note that modeling a Layer 2 VPN using a routing instance
   only models the Layer-3 (RIB) aspect and does not model any layer-2
   information (like ARP) that might be associated with the L2VPN.

   The set of interfaces indicates which interfaces are associated with
   this routing instance.  The RIBs specify how incoming traffic is to
   be forwarded.  And the routing parameters control the information in
   the RIBs.  The intersection set of interfaces of 2 routing instances
   SHOULD be the null set.  In other words, an interface MUST NOT be
   present in 2 routing instances.  Thus a routing instance describes
   the routing information and parameters across a set of interfaces.

   A routing instance MUST contain the following mandatory fields.
   o  INSTANCE_NAME: A routing instance is identified by its name,
      INSTANCE_NAME.  This SHOULD be unique across all routing instances
      in a given network device.
   o  INSTANCE_DISTINGUISHER: Each routing instance MUST have a
      distinguisher associated with it.  It enables one to distinguish
      routes across routing instances.  The route distinguisher MUST be
      unique across all routing instances in a given network device.
      How the INSTANCE_DISTINGUISHER is allocated and kept unique is
      outside the scope of this document.  The instance distinguisher
      maps well to BGP route-distinguisher for virtual private networks
      (VPNs).  However, the same concept can be used for other use-cases
      as well.

https://datatracker.ietf.org/doc/html/rfc4915
https://datatracker.ietf.org/doc/html/rfc5120


Bahadur, et al.          Expires March 20, 2014                 [Page 7]



Internet-Draft     Routing Information Base Info Model    September 2013

   o  rib-list: This is the list of RIBs associated with this routing
      instance.  Each routing instance can have multiple RIBs to
      represent routes of different types.  For example, one would put
      IPv4 routes in one RIB and MPLS routes in another RIB.

   A routing instance MAY contain the following optional fields.
   o  interface-list: This represents the list of interfaces associated
      with this routing instance.  The interface list helps constrain
      the boundaries of packet forwarding.  Packets coming on these
      interfaces are directly associated with the given routing
      instance.  The interface list contains a list of identifiers, with
      each identifier uniquely identifying an interface.
   o  ROUTER_ID: The router-id field identifies the network device in
      control plane interactions with other network devices.  This field
      is to be used if one wants to virtualize a physical router into
      multiple virtual routers.  Each virtual router MUST have a unique
      router-id.  ROUTER_ID MUST be unique across all network devices in
      a given domain.
   o  as-data: This is an identifier of the administrative domain to
      which the routing instance belongs.  The as-data fields is used
      when the routes in this instance are to be tagged with certain
      autonomous system (AS) characteristics.  The RIB manager can use
      AS length as one of the parameters for making route selection. as-
      data consists of a AS number and an optional Confederation AS
      number ([RFC5065]).

2.3.  Route

   A route is essentially a match condition and an action following the
   match.  The match condition specifies the kind of route (IPv4, MPLS,
   etc.) and the set of fields to match on.  Figure 2 represents the
   overall contents of a route.

https://datatracker.ietf.org/doc/html/rfc5065


Bahadur, et al.          Expires March 20, 2014                 [Page 8]



Internet-Draft     Routing Information Base Info Model    September 2013

   artwork
                                 route

                                 | | |
                       +---------+ | +----------+
                       |           |            |
                  0..N |           |            | 0..N

         route-attributes        match         nexthop-list

                                   |
                                   |
                   +-------+-------+-------+--------+
                   |       |       |       |        |
                   |       |       |       |        |

                  IPv4    IPv6    MPLS    MAC    Interface

                           Figure 2: Route model

   This document specifies the following match types:
   o  IPv4: Match on destination IP in IPv4 header
   o  IPv6: Match on destination IP in IPv6 header
   o  MPLS: Match on a MPLS tag
   o  MAC: Match on ethernet destination addresses
   o  Interface: Match on incoming interface of packet
   o  IP multicast: Match on (S, G) or (*, G), where S and G are IP
      prefixes

   Each route can have associated with it one or more optional route
   attributes.
   o  ROUTE_PREFERENCE: This is a numerical value that allows for
      comparing routes from different protocols (where static
      configuration is also considered a protocol for the purpose of
      this field).  It is also known as administrative-distance.  The
      lower the value, the higher the preference.  For example there can
      be an OSPF route for 192.0.2.1/32 with a preference of 5.  If a
      controller programs a route for 192.0.2.1/32 with a preference of
      2, then the controller entered route will be preferred by the RIB
      manager.  Preference should be used to dictate behavior.  For more
      examples of preference, see Section 7.1.
   o  ROUTE_METRIC: Route preference is used for comparing routes from
      different protocols.  Route metric is used for comparing routes
      learned by the same protocol.  If a controller wishes to program 2
      or more routes to the same destination, then it can use the metric
      field to disambiguate the 2 routes.  For more examples, see

Section 7.1.



Bahadur, et al.          Expires March 20, 2014                 [Page 9]



Internet-Draft     Routing Information Base Info Model    September 2013

   o  LOCAL_ONLY: This is a boolean value.  If this is present, then it
      means that this route should not be exported into other RIBs or
      other RIBs.
   o  rpf-check-interface: Reverse path forwarding (RPF) check is used
      to prevent spoofing and limit malicious traffic.  For IP packets,
      the IP source address is looked up and the rpf-check-interface
      associated with the route for that IP source address is found.  If
      the incoming IP packet's interface matches one of the rpf-check-
      interfaces, then the IP packet is forwarded based on its IP
      destination address; otherwise, the IP packet is discarded.  For
      MPLS routes, there is no source address to be looked up, so the
      usage is slightly different.  For an MPLS route, a packet with the
      specified MPLS label will only be forwarded if it is received on
      one of the interfaces specified by the rpf-check-interface.  If no
      rpf-check-interface is specified, then matching packets are no
      subject to this check.  This field overrides the
      ENABLE_IP_RPF_CHECK flag on the RIB and interfaces provided in
      this list are used for doing the RPF check.
   o  as-path: A route can have an as-path associated with it to
      indicate which set of autonomous systems has to be traversed to
      reach the final destination.  The as-path attribute can be used by
      the RIB manager in multiple ways.  The RIB manager can choose
      paths with lower as-path length.  Or the RIB manager can choose to
      not install paths going via a particular AS.  How exactly the RIB
      manager uses the as-path is outside the scope of this document.
      For details of how the as-path is formed, see Section 5.1.2 of
      [RFC4271] and Section 3 of [RFC5065].
   o  route-vendor-attributes: Vendors can specify vendor-specific
      attributes using this.  The details of this field is outside the
      scope of this document.

2.4.  Nexthop

   A nexthop represents an object or action resulting from a route
   lookup.  For example, if a route lookup results in sending the packet
   out a given interface, then the nexthop represents that interface.

   Nexthops can be fully resolved nexthops or unresolved nexthop.  A
   resolved nexthop is something that is ready for installation in the
   FIB.  For example, a nexthop that points to an interface.  An
   unresolved nexthop is something that requires the RIB manager to
   figure out the final resolved nexthop.  For example, a nexthop could
   point to an IP address.  The RIB manager has to resolve how to reach
   that IP address - is the IP address reachable by regular IP
   forwarding or by a MPLS tunnel or by both.  If the RIB manager cannot
   resolve the nexthop, then the nexthop stays in unresolved state and
   is NOT a candidate for installation in the FIB.  Future RIB events
   can cause a nexthop to get resolved (like that IP address being

https://datatracker.ietf.org/doc/html/rfc4271#section-5.1.2
https://datatracker.ietf.org/doc/html/rfc4271#section-5.1.2
https://datatracker.ietf.org/doc/html/rfc5065#section-3


Bahadur, et al.          Expires March 20, 2014                [Page 10]



Internet-Draft     Routing Information Base Info Model    September 2013

   advertised by an IGP neighbor).

   The RIB information model allows an external entity to program
   nexthops that may be unresolved initially.  Whenever a unresolved
   nexthop gets resolved, the RIB manager will send a notification of
   the same (see Section 5 ).

   The overall structure and usage of a nexthop is as shown in the
   figure below.

                                 route

                                   |
                                   | 0..N

                              nexthop-list

                                   |
                +------------------+------------------+
          1..N  |                                     |
                |                                     |

         nexthop-list-member                    special-nexthop

                |
                |

           nexthop-chain

                |
          1..N  |

             nexthop

                |
                +------- nexthop-attributes
                |
                |
       +--------+------+------------------+------------------+
       |               |                  |                  |
       |               |                  |                  |

    nexthop-id   egress-interface    logical-tunnel     tunnel-encap

   Nexthops can be identified by an identifier to create a level of
   indirection.  The identifier is set by the RIB manager and returned
   to the external entity on request.  The RIB data-model SHOULD support
   a way to optionally receive a nexthop identifier for a given nexthop.



Bahadur, et al.          Expires March 20, 2014                [Page 11]



Internet-Draft     Routing Information Base Info Model    September 2013

   For example, one can create a nexthop that points to a BGP peer.  The
   returned nexthop identifier can then be used for programming routes
   to point to the same nexthop.  Given that the RIB manager has created
   an indirection for that BGP peer using the nexthop identifier, if the
   transport path to the BGP peer changes, that change in path will be
   seamless to the external entity and all routes that point to that BGP
   peer will automatically start going over the new transport path.
   Nexthop indirection using identifier could be applied to not just
   unicast nexthops, but even to nexthops that contain chains and nested
   nexthops (Section 2.4.1).

2.4.1.  Nexthop types

   This document specifies a very generic, extensible and recursive
   grammar for nexthops.  Nexthops can be
   o  Unicast nexthops - pointing to an interface
   o  Tunnel nexthops - pointing to a tunnel
   o  Replication lists - list of nexthops to which to replicate a
      packet to
   o  Weighted lists - for load-balancing
   o  Protection lists - for primary/backup paths
   o  Nexthop chains - for chaining headers, e.g.  MPLS label over a GRE
      header
   o  Lists of lists - recursive application of the above
   o  Indirect nexthops - pointing to a nexthop identifier
   o  Special nexthops - for performing specific well-defined functions
   It is expected that all network devices will have a limit on how many
   levels of lookup can be performed and not all hardware will be able
   to support all kinds of nexthops.  RIB capability negotiation becomes
   very important for this reason and a RIB data-model MUST specify a
   way for an external entity to learn about the network device's
   capabilities.  Examples of when and how to use various kinds of
   nexthops are shown in Section 7.2.

   Tunnel nexthops allow an external entity to program static tunnel
   headers.  There can be cases where the remote tunnel end-point does
   not support dynamic signaling (e.g. no LDP support on a host) and in
   those cases the external entity might want to program the tunnel
   header on both ends of the tunnel.  The tunnel nexthop is kept
   generic with specifications provided for some commonly used tunnels.
   It is expected that the data-model will model these tunnel types with
   complete accuracy.

   Nexthop chains can be used to specify multiple headers over a packet,
   before a packet is forwarded.  One simple example is that of MPLS
   over GRE, wherein the packet has a inner MPLS header followed by a
   GRE header followed by an IP header.  The outermost IP header is
   decided by the network device whereas the MPLS header and GRE header



Bahadur, et al.          Expires March 20, 2014                [Page 12]



Internet-Draft     Routing Information Base Info Model    September 2013

   are specified by the controller.  Not every network device will be
   able to support all kinds of nexthop chains and an arbitrary number
   of header chained together.  The RIB data-model SHOULD provide a way
   to expose nexthop chaining capability supported by a given network
   device.

2.4.2.  Nexthop list attributes

   For nexthops that are of the form of a list(s), attributes can be
   associated with each member of the list to indicate the role of an
   individual member of the list.  Two kinds of attributes are
   specified:
   o  PROTECTION_PREFERENCE: This provides a primary/backup like
      preference.  The preference is an integer value that should be set
      to 1 or 2.  Nexthop members with a preference of 1 are preferred
      over those with preference of 2.  The network device SHOULD create
      a list of nexthops with preference 1 (primary) and another list of
      nexthops with preference 2 (backup) and SHOULD pre-program the
      forwarding plane with both the lists.  In case if all the primary
      nexthops fail, then traffic MUST be switched over to members of
      the backup nexthop list.  All members in a list MUST either have a
      protection preference specified or all members in a list MUST NOT
      have a protection preference specified.
   o  LOAD_BALANCE_WEIGHT: This is used for load-balancing.  Each list
      member MUST be assigned a weight.  The weight is a percentage
      number from 1 to 99.  The weight determines how much traffic is
      sent over a given list member.  If one of the members nexthops in
      the list is not active, then the weight value of that nexthop
      SHOULD be distributed among the other active members.  How the
      distribution is done is up to the network device and not in the
      scope of the document.  In other words, traffic should always be
      load-balanced even if there is a failure.  After a failure, the
      external entity SHOULD re-program the nexthop list with updated
      weights so as to get a deterministic behavior among the remaining
      list members.  To perform equal load-balancing, one MAY specify a
      weight of "0" for all the member nexthops.  The value "0" is
      reserved for equal load-balancing and if applied, MUST be applied
      to all member nexthops.

   A nexthop list MAY contain elements that have both
   PROTECTION_PREFERENCE and LOAD_BALANCE_WEIGHT set.  When both are
   set, it means under normal operation the network device should load
   balance the traffic over all nexthops with a protection preference of
   1.  And when all nexthops with a protection preference of 1 are down
   (or unavailable), then traffic MUST be load balanced over elements
   with protection preference of 2.



Bahadur, et al.          Expires March 20, 2014                [Page 13]



Internet-Draft     Routing Information Base Info Model    September 2013

2.4.3.  Nexthop content

   At the lowest level, a nexthop can point to a:
   o  identifier: This is an identifier returned by the network device
      representing another nexthop or another nexthop chain.
   o  EGRESS_INTERFACE: This represents a physical, logical or virtual
      interface on the network device.
   o  address: This can be an IP address or MAC address or ISO address.
      *  An optional RIB name can also be specified to indicate the RIB
         in which the address is to be looked up further.  One can use
         the RIB name field to direct the packet from one domain into
         another domain.  For example, a MPLS packet coming in on an
         interface would be looked up in a MPLS RIB and the nexthop for
         that could indicate that we strip the MPLS label and do a
         subsequent IPv4 lookup in an IPv4 RIB.  By default the RIB will
         be the same in which the route lookup was performed.
      *  An optional egress interface can be specified to indicate which
         interface to send the packet out on.  The egress interface is
         useful when the network device contains Ethernet interfaces and
         one needs to perform an ARP lookup for the IP packet.
   o  tunnel encap: This can be an encap representing an IP tunnel or
      MPLS tunnel or others as defined in this document.  An optional
      egress interface can be specified to indicate which interface to
      send the packet out on.  The egress interface is useful when the
      network device contains Ethernet interfaces and one needs to
      perform an ARP lookup for the IP packet.
   o  logical tunnel: This can be a MPLS LSP or a GRE tunnel (or others
      as defined in this document), that is represented by a unique
      identifier (E.g. name).
   o  RIB_NAME: A nexthop pointing to a RIB indicates that the route
      lookup needs to continue in the specified RIB.  This is a way to
      perform chained lookups.

2.4.4.  Nexthop attributes

   Certain information is encoded implicitly in the nexthop and does not
   need to be specified by the controller.  For example, when a IP
   packet is forwarded out, the IP TTL is decremented by default.  Same
   applies for an MPLS packet.  Similarly, when an IP packet is sent
   over an ethernet interface, any ARP processing is handled implicitly
   by the network device and does not need to be programmed by an
   external device.

   A nexthop can have some attributes associated with it.  The purpose
   of the attributes is to either override implicit behavior (like that
   related to TTL processing) or to guide the network device to perform
   something specific.  Vendor specific attributes can also be
   specified.  The details of vendor specific attributes is outside the



Bahadur, et al.          Expires March 20, 2014                [Page 14]



Internet-Draft     Routing Information Base Info Model    September 2013

   scope of this document.

2.4.4.1.  Nexthop flags

   Nexthop flags in a nexthop is an optional attribute that is used to
   denote specific connotation to hardware.  Two common types of
   operations are specified using nexthop flags.
   o  NO_DECREMENT_TTL: This indicates that the IPv4 time-to-live field
      in an IPv4 packet MUST NOT be decremented before the packet is
      forwarded.  This may be applied one when an IPv4 packet is
      encapsulated in a tunnel (E.g.  MPLS) and one wants to hide the
      fact that the packet is going through a tunnel.
   o  NO_PROPAGATE_TTL: This indicates that the IPv4 time-to-live field
      in an IPv4 packet MUST NOT be propagated into an equivalent field,
      when the IPv4 packet is tunneled.  For example, if the IPv4 packet
      is tunneled over MPLS, then the network device should use the
      default time-to-live value for the outer MPLS header.  This field
      can also be used to indicate that when a tunnel terminates, one
      does not propagate the outer header's time-to-live value into the
      inner header.  So, on MPLS tunnel termination, one does not
      propagate the MPLS TTL value into the IPv4 header.
   The TTL nexthop flags can be used to simulate a Pipe model for
   tunnels.  See [RFC3443] for a detailed understanding of Pipe model
   and Uniform model.

2.4.5.  Nexthop vendor attributes

   This field has been defined for vendor specific extensions.  The
   contents of this field are beyond the scope of this document.

2.4.6.  Special nexthops

   This document specifies certain special nexthops.  The purpose of
   each of them is explained below:
   o  DISCARD: This indicates that the network device should drop the
      packet and increment a drop counter.
   o  DISCARD_WITH_ERROR: This indicates that the network device should
      drop the packet, increment a drop counter and send back an
      appropriate error message (like ICMP error).
   o  RECEIVE: This indicates that that the traffic is destined for the
      network device.  For example, protocol packets or OAM packets.
      All locally destined traffic SHOULD be throttled to avoid a denial
      of service attack on the router's control plane.  An optional
      rate-limiter can be specified to indicate how to throttle traffic
      destined for the control plane.  The description of the rate-
      limiter is outside the scope of this document.

https://datatracker.ietf.org/doc/html/rfc3443


Bahadur, et al.          Expires March 20, 2014                [Page 15]



Internet-Draft     Routing Information Base Info Model    September 2013

3.  Reading from the RIB

   A RIB data-model MUST allow an external entity to read entries, for
   RIBs created by that entity.  The network device administrator MAY
   allow reading of other RIBs by an external entity through access
   lists on the network device.  The details of access lists are outside
   the scope of this document.

   The data-model MUST support a full read of the RIB and subsequent
   incremental reads of changes to the RIB.  An external agent SHOULD be
   able to request a full read at any time in the lifecycle of the
   connection.  When sending data to an external entity, the RIB manager
   SHOULD try to send all dependencies of an object prior to sending
   that object.

4.  Writing to the RIB

   A RIB data-model MUST allow an external entity to write entries, for
   RIBs created by that entity.  The network device administrator MAY
   allow writes to other RIBs by an external entity through access lists
   on the network device.  The details of access lists are outside the
   scope of this document.

   When writing an object to a RIB, the external entity SHOULD try to
   write all dependencies of the object prior to sending that object.
   The data-model MUST support requesting identifiers for nexthops and
   collecting the identifiers back in the response.

   Route programming in the RIB MUST result in a return code that
   contains the following attributes:
   o  Installed - Yes/No (Indicates whether the route got installed in
      the FIB)
   o  Active - Yes/No (Indicates whether a route is fully resolved and
      is a candidate for selection)
   o  Reason - E.g.  Not authorized
   The data-model MUST specify which objects are modify-able objects.  A
   modify-able object is one whose contents can be changed without
   having to change objects that depend on it and without affecting any
   data forwarding.  To change a non-modifiable object, one will need to
   create a new object and delete the old one.  For example, routes that
   use a nexthop that is identifier by a nexthop-identifier should be
   unaffected when the contents of that nexthop changes.

5.  Events and Notifications

   Asynchronous notifications are sent by the network device's RIB



Bahadur, et al.          Expires March 20, 2014                [Page 16]



Internet-Draft     Routing Information Base Info Model    September 2013

   manager to an external entity when some event occurs on the network
   device.  A RIB data-model MUST support sending asynchronous
   notifications.  A brief list of suggested notifications is as below:
   o  Route change notification, with return code as specified in

Section 4
   o  Nexthop resolution status (resolved/unresolved) notification

6.  RIB grammar

   This section specifies the RIB information model in Routing Backus-
   Naur Form [RFC5511].

   <routing-instance> ::= <INSTANCE_NAME> <INSTANCE_DISTINGUISHER>
                          [<interface-list>] <rib-list>
                          [<ROUTER_ID>] [<as-data>]

   <as-data> ::= <AS_NUMBER> [<CONFEDERATION_AS>]

   <interface-list> ::= (<INTERFACE_IDENTIFIER> ...)

   <rib-list> ::= (<rib> ...)
   <rib> ::= <RIB_NAME> <rib-family>
                       [<route> ... ] [<MULTI_TOPOLOGY_ID>]
                       [ENABLE_IP_RPF_CHECK]
   <rib-family> ::= <IPV4_RIB_FAMILY> | <IPV6_RIB_FAMILY> |
                    <MPLS_RIB_FAMILY> | <IEEE_MAC_RIB_FAMILY>

   <route> ::= <match> <nexthop-list>
               [<route-attributes>]
               [<route-vendor-attributes>]

   <match> ::= <ipv4-route> | <ipv6-route> | <mpls-route> |
               <mac-route> | <interface-route>

   <ipv4-route> ::= <ipv4-prefix> [<multicast-source-ipv4-address>]
   <ipv4-prefix> ::= <IPV4_ADDRESS> <IPV4_ADDRESS_LENGTH>

   <ipv6-route> ::= <ipv6-prefix> [<multicast-source-ipv6-address>]
   <ipv6-prefix> ::= <IPV6_ADDRESS> <IPV6_PREFIX_LENGTH>

   <mpls-route> ::= <MPLS> <MPLS_LABEL>
   <mac-route> ::= <IEEE_MAC> ( <MAC_ADDRESS> )
   <interface-route> ::= <INTERFACE> <INTERFACE_IDENTIFIER>

   <multicast-source-ipv4-address> ::= <IPV4_ADDRESS>
                                       <IPV4_PREFIX_LENGTH>

https://datatracker.ietf.org/doc/html/rfc5511


Bahadur, et al.          Expires March 20, 2014                [Page 17]



Internet-Draft     Routing Information Base Info Model    September 2013

   <multicast-source-ipv6-address> ::= <IPV6_ADDRESS>
                                       <IPV6_PREFIX_LENGTH>

   <route-attributes> ::= [<ROUTE_PREFERENCE>] [<ROUTE_METRIC>]
                          [<LOCAL_ONLY>]
                          [<address-family-route-attributes>]

   <address-family-route-attributes> ::= <ip-route-attributes> |
                                         <mpls-route-attributes> |
                                         <ethernet-route-attributes>
   <ip-route-attributes> ::= [<as-path>] [<rpf-check-interface>]
   <as-path> ::= (<as-path-segment-type> <as-list>) [<as-path> ...]
   <as-path-segment-type> ::= <AS_SET> | <AS_SEQUENCE> |
                              <AS_CONFED_SEQUENCE> | <AS_CONFED_SET>
   <as-list> ::= (<AS_NUMBER> ...) [<as-path>]

   <rpf-check-interface> ::= <interface-list>

   <mpls-route-attributes> ::= [<rpf-check-interface>]
   <ethernet-route-attributes> ::= <>
   <route-vendor-attributes> ::= <>

   <nexthop-list> ::= <special-nexthop> |
                      ((<nexthop-list-member>) |
                       ([<nexthop-list-member> ... ] <nexthop-list> ))

   <nexthop-list-member> ::= (<nexthop-chain> |
                              <nexthop-chain-identifier> )
                             [<nexthop-list-member-attributes>]
   <nexthop-list-member-attributes> ::= [<PROTECTION_PREFERENCE>]
                                        [<LOAD_BALANCE_WEIGHT>]

   <nexthop-chain> ::= (<nexthop> ...)
   <nexthop-chain-identifier> ::= <NEXTHOP_NAME> | <NEXTHOP_ID>
   <nexthop> ::= (<nexthop-identifier> | <EGRESS_INTERFACE> |
                  (<nexthop-address>
                     ([<RIB_NAME>] | [<EGRESS_INTERFACE>])) |
                  (<tunnel-encap> [<EGRESS_INTERFACE>]) |
                  <logical-tunnel> |
                  <RIB_NAME>)
                  [<nexthop-attributes>]
                  [<nexthop-vendor-attributes>]

   <nexthop-identifier> ::= <NEXTHOP_NAME> | <NEXTHOP_ID>
   <nexthop-address> ::= (<IPv4> <ipv4-address>) |
                         (<IPV6> <ipv6-address>) |
                         (<IEEE_MAC> <IEEE_MAC_ADDRESS>) |



Bahadur, et al.          Expires March 20, 2014                [Page 18]



Internet-Draft     Routing Information Base Info Model    September 2013

                         (<ISO> <ISO_ADDRESS>)
   <special-nexthop> ::= <DISCARD> | <DISCARD_WITH_ERROR> |
                         (<RECEIVE> [<COS_VALUE>] [<rate-limiter>])
   <rate-limiter> ::= <>

   <logical-tunnel> ::= <tunnel-type> <TUNNEL_NAME>
   <tunnel-type> ::= <IP> | <MPLS> | <GRE> | <VxLAN> | <NVGRE>

   <tunnel-encap> ::= (<IPV4> <ipv4-header>) |
                      (<IPV6> <ipv6-header>) |
                      (<MPLS> <mpls-header>) |
                      (<GRE> <gre-header>) |
                      (<VXLAN> <vxlan-header>) |
                      (<NVGRE> <nvgre-header>)

   <ipv4-header> ::= <SOURCE_IPv4_ADDRESS> <DESTINATION_IPv4_ADDRESS>
                     <PROTOCOL> [<TTL>] [<DSCP>]

   <ipv6-header> ::= <SOURCE_IPV6_ADDRESS> <DESTINATION_IPV6_ADDRESS>
                     <NEXT_HEADER> [<TRAFFIC_CLASS>]
                     [<FLOW_LABEL>] [<HOP_LIMIT>]

   <mpls-header> ::= (<mpls-label-operation> ...)
   <mpls-label-operation> ::= (<MPLS_PUSH> <MPLS_LABEL> [<S_BIT>]
                              [<TOS_VALUE>] [<TTL_VALUE>]) |
                              (<MPLS_POP> [<TTL_ACTION>])

   <gre-header> ::= <GRE_IP_DESTINATION> <GRE_PROTOCOL_TYPE> [<GRE_KEY>]
   <vxlan-header> ::= (<ipv4-header> | <ipv6-header>)
                      [<VXLAN_IDENTIFIER>]
   <nvgre-header> ::= (<ipv4-header> | <ipv6-header>)
                      <VIRTUAL_SUBNET_ID>
                      [<FLOW_ID>]

   <nexthop-attributes> ::= [<NEXTHOP_ADDRESS_FAMILY>]
                            [<nexthop-flags>]
   <NEXTHOP_ADDRESS_FAMILY> ::= <IPV4> | <IPV6> | <ISO> | <IEEE MAC>
   <nexthop-flags> ::= [<NO_DECREMENT_TTL>] [<NO_PROPAGATE_TTL>]
   <nexthop-vendor-attributes> ::= <>

7.  Using the RIB grammar

   The RIB grammar is very generic and covers a variety of features.
   This section provides examples on using objects in the RIB grammar
   and examples to program certain use cases.



Bahadur, et al.          Expires March 20, 2014                [Page 19]



Internet-Draft     Routing Information Base Info Model    September 2013

7.1.  Using route preference and metric

   Using route preference one can pre-install protection paths in the
   network.  For example, if OSPF has a route preference of 10, then one
   can install a route with route preference of 20 to the same
   destination.  The OSPF route will get precedence and will get
   installed in the FIB.  When the OSPF route goes away (for any
   reason), the protection path will get installed in the FIB.  If the
   hardware supports it, then the RIB manager can choose to pre-install
   both routes, with the OSPF nexthop getting preference.

   Route preference can also be used to prevent denial of service
   attacks by installing routes with the best preference, which either
   drops the offending traffic or routes it to some monitoring/analysis
   station.  Since the routes are installed with the best preference,
   they will supersede any route installed by any other protocol.

   Route metric is used to disambiguate between 2 or more routes to the
   same destination with the same preference and in the same RIB.  One
   usage of this is to install 2 routes, each with a different nexthop.
   The preferred nexthop is given a better metric than the other one.
   This results in traffic being forwarded to the preferred nexthop.  If
   the preferred nexthop fails, then the RIB manager will automatically
   install a route to the other nexthop.

7.2.  Using different nexthops types

   The RIB grammar allows one to create a variety of nexthops.  This
   section describes uses for certain types of nexthops.

7.2.1.  Tunnel nexthops

   A tunnel nexthop points to a tunnel of some kind.  Traffic that goes
   over the tunnel gets encapsulated with the tunnel encap.  Tunnel
   nexthops are useful for abstracting out details of the network, by
   having the traffic seamlessly route between network edges.

7.2.2.  Replication lists

   One can create a replication list for replication traffic to multiple
   destinations.  The destinations, in turn, could be complex nexthops
   in themselves - at a level supported by the network device.  Point to
   multipoint and broadcast are examples that involve replication.

   A replication list (at the simplest level) can be represented as:



Bahadur, et al.          Expires March 20, 2014                [Page 20]



Internet-Draft     Routing Information Base Info Model    September 2013

   <nexthop-list> ::= <nexthop> [ <nexthop> ... ]

   The above can be derived from the grammar as follows:

   <nexthop-list> ::= <nexthop-list-member> [<nexthop-list-member> ...]
   <nexthop-list> ::= <nexthop-chain> [<nexthop-chain> ...]
   <nexthop-list> ::= <nexthop> [ <nexthop> ... ]

7.2.3.  Weighted lists

   A weighted list is used to load-balance traffic among a set of
   nexthops.  From a modeling perspective, a weighted list is very
   similar to a replication list, with the difference that each member
   nexthop MUST have a LOAD_BALANCE_WEIGHT associated with it.

   A weighted list (at the simplest level) can be represented as:

   <nexthop-list> ::= (<nexthop> <LOAD_BALANCE_WEIGHT>)
                      [(<nexthop> <LOAD_BALANCE_WEIGHT>)... ]

   The above can be derived from the grammar as follows:

   <nexthop-list> ::= <nexthop-list-member> [<nexthop-list-member> ...]
   <nexthop-list> ::= (<nexthop-chain> <nexthop-list-member-attributes>)
                      [(<nexthop-chain>
                        <nexthop-list-member-attributes>) ...]
   <nexthop-list> ::= (<nexthop-chain> <LOAD_BALANCE_WEIGHT>)
                      [(<nexthop-chain> <LOAD_BALANCE_WEIGHT>) ... ]
   <network-list> ::= (<nexthop> <LOAD_BALANCE_WEIGHT>)
                      [(<nexthop> <LOAD_BALANCE_WEIGHT>)... ]

7.2.4.  Protection lists

   Protection lists are similar to weighted lists.  A protection list
   specifies a set of primary nexthops and a set of backup nexthops.
   The <PROTECTION_PREFERENCE> attribute indicates which nexthop is
   primary and which is backup.

   A protection list can be represented as:

   <nexthop-list> ::= (<nexthop> <PROTECTION_PREFERENCE>)
                      [(<nexthop> <PROTECTION_PREFERENCE>)... ]

   A protection list can also be a weighted list.  In other words,
   traffic can be load-balanced among the primary nexthops of a



Bahadur, et al.          Expires March 20, 2014                [Page 21]



Internet-Draft     Routing Information Base Info Model    September 2013

   protection list.  In such a case, the list will look like:

   <nexthop-list> ::= (<nexthop> <PROTECTION_PREFERENCE>
                                 <LOAD_BALANCE_WEIGHT>)
                      [(<nexthop> <PROTECTION_PREFERENCE>
                                  <LOAD_BALANCE_WEIGHT>)... ]

7.2.5.  Nexthop chains

   A nexthop chain is a nexthop that puts one or more headers on an
   outgoing packet.  One example is a Pseudowire - which is MPLS over
   some transport (MPLS or GRE for instance).  Another example is VxLAN
   over IP.  A nexthop chain allows an external entity to break up the
   programming of the nexthop into independent pieces - one per
   encapsulation.

   A simple example of MPLS over GRE can be represented as:

   <nexthop-list> ::= (<MPLS> <mpls-header>) (<GRE> <gre-header>)

   The above can be derived from the grammar as follows:

   <nexthop-list> ::= <nexthop-list-member> [<nexthop-list-member> ...]
   <nexthop-list> ::= <nexthop-chain>
   <nexthop-list> ::= <nexthop> [ <nexthop> ... ]
   <nexthop-list> ::= <tunnel-encap> (<nexthop> [ <nexthop> ...])
   <nexthop-list> ::= <tunnel-encap> (<tunnel-encap>)
   <nexthop-list> ::= (<MPLS> <mpls-header>) (<GRE> <gre-header>)

7.2.6.  Lists of lists

   Lists of lists is a complex construct.  One example of usage of such
   a construct is to replicate traffic to multiple destinations, with
   high availability.  In other words, for each destination you have a
   primary and backup nexthop (replication list) to ensure there is no
   traffic drop in case of a failure.  So the outer list is a protection
   list and the inner lists are replication lists of primary/backup
   nexthops.

7.3.  Performing multicast

   IP multicast involves matching a packet on (S, G) or (*, G), where
   both S (source) and G (group) are IP prefixes.  Following the match,
   the packet is replicated to one or more recipients.  How the
   recipients subscribe to the multicast group is outside the scope of
   this document.



Bahadur, et al.          Expires March 20, 2014                [Page 22]



Internet-Draft     Routing Information Base Info Model    September 2013

   In PIM-based multicast, the packets are IP forwarded on an IP
   multicast tree.  The downstream nodes on each point in the multicast
   tree is one or more IP addresses.  These can be represented as a
   replication list ( Section 7.2.2 ).

   In MPLS-based multicast, the packets are forwarded on a point to
   multipoint (P2MP) label-switched path (LSP).  The nexthop for a P2MP
   LSP can be represented in the nexthop grammar as a <logical-tunnel>
   (P2MP LSP identifier) or a replication list ( Section 7.2.2) of
   <tunnel-encap>, with each tunnel encap representing a single mpls
   downstream nexthop.

7.4.  Solving optimized exit control

   In case of optimized exit control, a controller wants to control the
   edge device (and optionally control the outgoing interface on that
   edge device) that is used by a server to send traffic out.  This can
   be easily achieved by having the controller program the edge router
   (Eg. 192.0.2.10) and the server along the following lines:

   Server:
   <route> ::= <rib-name> <match> (<edge-router>
                                             <edge-router-interface>)
   <route> ::= <rib-name> <198.51.100.1/16>
                     (<MPLS> <mpls-header>)
                     (<GRE> <gre-header>)

   <route> ::- <rib-name> <198.51.100.1/16>
                     (<MPLS_PUSH> <100>)
                     (<GRE> <192.0.2.10> <GRE_PROTOCOL_MPLS>)

   Edge Router:
   <route> ::= <mpls-rib> <mpls-route> <nexthop>
   <route> ::= <mpls-rib> (<MPLS> <100>) <interface-10>

   In the above case, the label 100 identifies the egress interface
   on the edge router.

8.  RIB operations at scale

   This section discusses the scale requirements for a RIB data-model.
   The RIB data-model should be able to handle large scale of
   operations, to enable deployment of RIB applications in large
   networks.



Bahadur, et al.          Expires March 20, 2014                [Page 23]



Internet-Draft     Routing Information Base Info Model    September 2013

8.1.  RIB reads

   Bulking (grouping of multiple objects in a single message) MUST be
   supported when a network device sends RIB data to an external entity.
   Similarly the data model MUST enable a RIB client to request data in
   bulk from a network device.

8.2.  RIB writes

   Bulking (grouping of multiple write operations in a single message)
   MUST be supported when an external entity wants to write to the RIB.
   The response from the network device MUST include a return-code for
   each write operation in the bulk message.

8.3.  RIB events and notifications

   There can be cases where a single network event results in multiple
   events and/or notifications from the network device to an external
   entity.  On the other hand, due to timing of multiple things
   happening at the same time, a network device might have to send
   multiple events and/or notifications to an external entity.  The
   network device originated event/notification message MUST support
   bulking of multiple events and notifications in a single message.

9.  Security Considerations

   All interactions between a RIB manager and an external entity MUST be
   authenticated and authorized.  The RIB manager MUST protect itself
   against a denial of service attack by a rogue external entity, by
   throttling request processing.  A RIB manager MUST enforce limits on
   how much data can be programmed by an external entity and return
   error when such a limit is reached.

   The RIB manager MUST expose a data-model that it implements.  An
   external agent MUST send requests to the RIB manager that comply with
   the supported data-model.  The data-model MUST specify the behavior
   of the RIB manager on handling of unsupported data requests.

10.  IANA Considerations

   This document does not generate any considerations for IANA.

11.  Acknowledgements

   The authors would like to thank the working group co-chairs and



Bahadur, et al.          Expires March 20, 2014                [Page 24]



Internet-Draft     Routing Information Base Info Model    September 2013

   reviewers on their comments and suggestions on this draft.  The
   following people contributed to the design of the RIB model as part
   of the I2RS Interim meeting in April 2013 - Wes George, Chris
   Liljenstolpe, Jeff Tantsura, Sriganesh Kini, Susan Hares, Fabian
   Schneider and Nitin Bahadur.

12.  References

12.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

12.2.  Informative References

   [I-D.atlas-i2rs-problem-statement]
              Atlas, A., Nadeau, T., and D. Ward, "Interface to the
              Routing System Problem Statement",

draft-atlas-i2rs-problem-statement-02 (work in progress),
              August 2013.

   [I-D.hares-i2rs-use-case-vn-vc]
              Hares, S., "Use Cases for Virtual Connections on Demand
              (VCoD) and Virtual Network on Demand using Interface to
              Routing System", draft-hares-i2rs-use-case-vn-vc-00 (work
              in progress), February 2013.

   [I-D.white-i2rs-use-case]
              White, R., Hares, S., and A. Retana, "Protocol Independent
              Use Cases for an Interface to the Routing System",

draft-white-i2rs-use-case-01 (work in progress),
              August 2013.

   [RFC3443]  Agarwal, P. and B. Akyol, "Time To Live (TTL) Processing
              in Multi-Protocol Label Switching (MPLS) Networks",

RFC 3443, January 2003.

   [RFC4271]  Rekhter, Y., Li, T., and S. Hares, "A Border Gateway
              Protocol 4 (BGP-4)", RFC 4271, January 2006.

   [RFC4915]  Psenak, P., Mirtorabi, S., Roy, A., Nguyen, L., and P.
              Pillay-Esnault, "Multi-Topology (MT) Routing in OSPF",

RFC 4915, June 2007.

   [RFC5065]  Traina, P., McPherson, D., and J. Scudder, "Autonomous
              System Confederations for BGP", RFC 5065, August 2007.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-atlas-i2rs-problem-statement-02
https://datatracker.ietf.org/doc/html/draft-hares-i2rs-use-case-vn-vc-00
https://datatracker.ietf.org/doc/html/draft-white-i2rs-use-case-01
https://datatracker.ietf.org/doc/html/rfc3443
https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc4915
https://datatracker.ietf.org/doc/html/rfc5065


Bahadur, et al.          Expires March 20, 2014                [Page 25]



Internet-Draft     Routing Information Base Info Model    September 2013

   [RFC5120]  Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi
              Topology (MT) Routing in Intermediate System to
              Intermediate Systems (IS-ISs)", RFC 5120, February 2008.

   [RFC5511]  Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax
              Used to Form Encoding Rules in Various Routing Protocol
              Specifications", RFC 5511, April 2009.

Authors' Addresses

   Nitin Bahadur (editor)
   Juniper Networks, Inc.
   1194 N. Mathilda Avenue
   Sunnyvale, CA  94089
   US

   Phone: +1 408 745 2000
   Email: nitinb@juniper.net
   URI:   www.juniper.net

   Ron Folkes (editor)
   Juniper Networks, Inc.
   1194 N. Mathilda Avenue
   Sunnyvale, CA  94089
   US

   Phone: +1 408 745 2000
   Email: ronf@juniper.net
   URI:   www.juniper.net

   Sriganesh Kini
   Ericsson

   Email: sriganesh.kini@ericsson.com

   Jan Medved
   Cisco

   Email: jmedved@cisco.com

https://datatracker.ietf.org/doc/html/rfc5120
https://datatracker.ietf.org/doc/html/rfc5511


Bahadur, et al.          Expires March 20, 2014                [Page 26]


