
Network Working Group N. Bahadur, Ed.
Internet-Draft Bracket Computing
Intended status: Informational S. Kini, Ed.
Expires: December 18, 2017
 J. Medved
 Cisco
 June 16, 2017

Routing Information Base Info Model
draft-ietf-i2rs-rib-info-model-11

Abstract

 Routing and routing functions in enterprise and carrier networks are
 typically performed by network devices (routers and switches) using a
 routing information base (RIB). Protocols and configuration push
 data into the RIB and the RIB manager installs state into the
 hardware; for packet forwarding. This draft specifies a information
 model for the RIB to enable defining a standardized data model. Such
 a data model can be used to define an interface to the RIB from an
 entity that may even be external to the network device. This
 interface can be used to support new use-cases being defined by the
 IETF I2RS WG.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 18, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

Bahadur, et al. Expires December 18, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft Routing Information Base Info Model June 2017

 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
1.1. Conventions used in this document 6

2. RIB data . 6
2.1. RIB definition . 6
2.2. Routing instance . 7
2.3. Route . 8
2.4. Nexthop . 9
2.4.1. Nexthop types . 11
2.4.2. Nexthop list attributes 12
2.4.3. Nexthop content 12
2.4.4. Special nexthops 13

3. Reading from the RIB . 14
4. Writing to the RIB . 14
5. Notifications . 14
6. RIB grammar . 15
6.1. Nexthop grammar explained 18

7. Using the RIB grammar . 18
7.1. Using route preference 18
7.2. Using different nexthops types 18
7.2.1. Tunnel nexthops 18
7.2.2. Replication lists 19
7.2.3. Weighted lists . 19
7.2.4. Protection . 20
7.2.5. Nexthop chains . 20
7.2.6. Lists of lists . 21

7.3. Performing multicast 22
8. RIB operations at scale 23
8.1. RIB reads . 23
8.2. RIB writes . 23
8.3. RIB events and notifications 23

9. Security Considerations 23
10. IANA Considerations . 24
11. Acknowledgements . 24
12. References . 24
12.1. Normative References 24
12.2. Informative References 24

http://trustee.ietf.org/license-info

Bahadur, et al. Expires December 18, 2017 [Page 2]

Internet-Draft Routing Information Base Info Model June 2017

 Authors' Addresses . 25

Bahadur, et al. Expires December 18, 2017 [Page 3]

Internet-Draft Routing Information Base Info Model June 2017

1. Introduction

 Routing and routing functions in enterprise and carrier networks are
 traditionally performed in network devices. Traditionally routers
 run routing protocols and the routing protocols (along with static
 config) populate the Routing information base (RIB) of the router.
 The RIB is managed by the RIB manager and the RIB manager provides a
 north-bound interface to its clients i.e. the routing protocols to
 insert routes into the RIB. The RIB manager consults the RIB and
 decides how to program the forwarding information base (FIB) of the
 hardware by interfacing with the FIB manager. The relationship
 between these entities is shown in Figure 1.

 +-------------+ +-------------+
 |RIB client 1 | |RIB client N |
 +-------------+ +-------------+
 ^ ^
 | |
 +----------------------+
 |
 V
 +---------------------+
 |RIB manager |
 | |
 | +-----+ |
 | | RIB | |
 | +-----+ |
 +---------------------+
 ^
 |
 +---------------------------------+
 | |
 V V
 +-------------+ +-------------+
FIB manager 1		FIB manager M				
+-----+	+-----+				
	FIB				FIB	
+-----+		+-----+				
 +-------------+ +-------------+

 Figure 1: RIB manager, RIB clients and FIB managers

 Routing protocols are inherently distributed in nature and each
 router makes an independent decision based on the routing data
 received from its peers. With the advent of newer deployment
 paradigms and the need for specialized applications, there is an
 emerging need to guide the router's routing function [RFC7920].
 Traditional network-device protocol-based RIB population suffices for

https://datatracker.ietf.org/doc/html/rfc7920

Bahadur, et al. Expires December 18, 2017 [Page 4]

Internet-Draft Routing Information Base Info Model June 2017

 most use cases where distributed network control is used. However
 there are use cases which the network operators currently address by
 configuring static routes, policies and RIB import/export rules on
 the routers. There is also a growing list of use cases
 [I-D.white-i2rs-use-case], [I-D.hares-i2rs-use-case-vn-vc] in which a
 network operator might want to program the RIB based on data
 unrelated to just routing (within that network's domain).
 Programming the RIB could be based on other information such as
 routing data in the adjacent domain or the load on storage and
 compute in the given domain. Or it could simply be a programmatic
 way of creating on-demand dynamic overlays (e.g. GRE tunnels)
 between compute hosts (without requiring the hosts to run traditional
 routing protocols). If there was a standardized publicly documented
 programmatic interface to a RIB, it would enable further networking
 applications that address a variety of use-cases [RFC7920].

 A programmatic interface to the RIB involves 2 types of operations -
 reading from the RIB and writing (adding/modifying/deleting) to the
 RIB. [I-D.white-i2rs-use-case] lists various use-cases which require
 read and/or write manipulation of the RIB.

 In order to understand what is in a router's RIB, methods like per-
 protocol SNMP MIBs and show output screen scraping are used. These
 methods are not scalable, since they are client pull mechanisms and
 not proactive push (from the router) mechanisms. Screen scraping is
 error prone (since the output format can change) and is vendor
 dependent. Building a RIB from per-protocol MIBs is error prone
 since the MIB data represent protocol data and not the exact
 information that went into the RIB. Thus, just getting read-only RIB
 information from a router is a hard task.

 Adding content to the RIB from an external entity can be done today
 using static configuration mechanisms provided by router vendors.
 However the mix of what can be modified in the RIB varies from vendor
 to vendor and the method of configuring it is also vendor dependent.
 This makes it hard for an external entity to program a multi-vendor
 network in a consistent and vendor-independent way.

 The purpose of this draft is to specify an information model for the
 RIB. Using the information model, one can build a detailed data
 model for the RIB. That data model could then be used by an external
 entity to program a network device.

 The rest of this document is organized as follows. Section 2 goes
 into the details of what constitutes and can be programmed in a RIB.
 Guidelines for reading and writing the RIB are provided in Section 3
 and Section 4 respectively. Section 5 provides a high-level view of
 the events and notifications going from a network device to an

https://datatracker.ietf.org/doc/html/rfc7920

Bahadur, et al. Expires December 18, 2017 [Page 5]

Internet-Draft Routing Information Base Info Model June 2017

 external entity, to update the external entity on asynchronous
 events. The RIB grammar is specified in Section 6. Examples of
 using the RIB grammar are shown in Section 7. Section 8 covers
 considerations for performing RIB operations at scale.

1.1. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. RIB data

 This section describes the details of a RIB. It makes forward
 references to objects in the RIB grammar (Section 6). A high-level
 description of the RIB contents is as shown below.

 routing-instance
 | |
 | |
 0..N | | 1..N
 | |
 interface(s) RIB(s)
 |
 |
 | 0..N
 |
 route(s)

 Figure 2: RIB model

2.1. RIB definition

 A RIB is an entity that contains routes. A RIB is identified by its
 name and a RIB is contained within a routing instance (Section 2.2).
 The name MUST be unique within a routing instance. All routes in a
 given RIB MUST be of the same rib family (e.g. IPv4). Each RIB MUST
 belong to a routing instance.

 A routing instance can have multiple RIBs. A routing instance can
 even have two or more RIBs of the same rib family (e.g. IPv6). A
 typical case where this can be used is for multi-topology routing
 ([RFC4915], [RFC5120]).

 Each RIB can be optionally associated with a ENABLE_IP_RPF_CHECK
 attribute that enables Reverse path forwarding (RPF) checks on all IP
 routes in that RIB. Reverse path forwarding (RPF) check is used to

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4915
https://datatracker.ietf.org/doc/html/rfc5120

Bahadur, et al. Expires December 18, 2017 [Page 6]

Internet-Draft Routing Information Base Info Model June 2017

 prevent spoofing and limit malicious traffic. For IP packets, the IP
 source address is looked up and the rpf interface(s) associated with
 the route for that IP source address is found. If the incoming IP
 packet's interface matches one of the rpf interface(s), then the IP
 packet is forwarded based on its IP destination address; otherwise,
 the IP packet is discarded.

2.2. Routing instance

 A routing instance, in the context of the RIB information model, is a
 collection of RIBs, interfaces, and routing parameters. A routing
 instance creates a logical slice of the router. It allows different
 logical slices; across a set of routers; to communicate with each
 other. Layer 3 Virtual Private Networks (VPN), Layer 2 VPNs (L2VPN)
 and Virtual Private Lan Service (VPLS) can be modeled as routing
 instances. Note that modeling a Layer 2 VPN using a routing instance
 only models the Layer-3 (RIB) aspect and does not model any layer-2
 information (like ARP) that might be associated with the L2VPN.

 The set of interfaces indicates which interfaces are associated with
 this routing instance. The RIBs specify how incoming traffic is to
 be forwarded. And the routing parameters control the information in
 the RIBs. The intersection set of interfaces of 2 routing instances
 MUST be the null set. In other words, an interface MUST NOT be
 present in 2 routing instances. Thus a routing instance describes
 the routing information and parameters across a set of interfaces.

 A routing instance MUST contain the following mandatory fields.
 o INSTANCE_NAME: A routing instance is identified by its name,
 INSTANCE_NAME. This MUST be unique across all routing instances
 in a given network device.
 o rib-list: This is the list of RIBs associated with this routing
 instance. Each routing instance can have multiple RIBs to
 represent routes of different types. For example, one would put
 IPv4 routes in one RIB and MPLS routes in another RIB.

 A routing instance MAY contain the following optional fields.
 o interface-list: This represents the list of interfaces associated
 with this routing instance. The interface list helps constrain
 the boundaries of packet forwarding. Packets coming on these
 interfaces are directly associated with the given routing
 instance. The interface list contains a list of identifiers, with
 each identifier uniquely identifying an interface.
 o ROUTER_ID: The router-id field identifies the network device in
 control plane interactions with other network devices. This field
 is to be used if one wants to virtualize a physical router into
 multiple virtual routers. Each virtual router MUST have a unique
 router-id. ROUTER_ID MUST be unique across all network devices in

Bahadur, et al. Expires December 18, 2017 [Page 7]

Internet-Draft Routing Information Base Info Model June 2017

 a given domain.
 A routing instance may be created purely for the purposes of packet
 processing and may not have any interfaces associated with it. For
 example, an incoming packet in routing instance A might have a
 nexthop of routing instance B and after packet processing in B, the
 nexthop might be routing instance C. Thus, routing instance B is not
 associated with any interface. And given that this routing instance
 does not do any control plane interaction with other network devices,
 a ROUTER_ID is also not needed.

2.3. Route

 A route is essentially a match condition and an action following the
 match. The match condition specifies the kind of route (IPv4, MPLS,
 etc.) and the set of fields to match on. Figure 3 represents the
 overall contents of a route.

 route
 | | |
 +---------+ | +----------+
 | | |
 0..N | | |

 route-attribute match nexthop
 |
 |
 +-------+-------+-------+--------+
 | | | | |
 | | | | |

 IPv4 IPv6 MPLS MAC Interface

 Figure 3: Route model

 This document specifies the following match types:
 o IPv4: Match on destination IP address in the IPv4 header
 o IPv6: Match on destination IP address in the IPv6 header
 o MPLS: Match on a MPLS label at the top of the MPLS label stack
 o MAC: Match on MAC destination addresses in the ethernet header
 o Interface: Match on incoming interface of the packet
 o IP multicast: Match on (S, G) or (*, G), where S and G are IP
 addresses

 Each route MUST have associated with it the following mandatory route

Bahadur, et al. Expires December 18, 2017 [Page 8]

Internet-Draft Routing Information Base Info Model June 2017

 attributes.
 o ROUTE_PREFERENCE: This is a numerical value that allows for
 comparing routes from different protocols. Static configuration
 is also considered a protocol for the purpose of this field. It
 is also known as administrative-distance. The lower the value,
 the higher the preference. For example there can be an OSPF route
 for 192.0.2.1/32 (or IPv6 2001:DB8::1/32) with a preference of 5.
 If a controller programs a route for 192.0.2.1/32 (or IPv6 2001:
 DB8::1/32) with a preference of 2, then the controller's route
 will be preferred by the RIB manager. Preference should be used
 to dictate behavior. For more examples of preference, see

Section 7.1.

 Each route can have associated with it one or more optional route
 attributes.
 o route-vendor-attributes: Vendors can specify vendor-specific
 attributes using this. The details of this attribute is outside
 the scope of this document.

2.4. Nexthop

 A nexthop represents an object resulting from a route lookup. For
 example, if a route lookup results in sending the packet out a given
 interface, then the nexthop represents that interface.

 Nexthops can be fully resolved nexthops or unresolved nexthop. A
 resolved nexthop has adequate information to send the outgoing packet
 to the destination by forwarding it on an interface to a directly
 connected neighbor. For example, a nexthop to a point-to-point
 interface or a nexthop to an IP address on an Ethernet interface has
 the nexthop resolved. An unresolved nexthop is something that
 requires the RIB manager to determine the final resolved nexthop.
 For example, a nexthop could be an IP address. The RIB manager would
 resolve how to reach that IP address, e.g. is the IP address
 reachable by regular IP forwarding or by a MPLS tunnel or by both.
 If the RIB manager cannot resolve the nexthop, then the nexthop
 remains in an unresolved state and is NOT a candidate for
 installation in the FIB. Future RIB events can cause an unresolved
 nexthop to get resolved (like that IP address being advertised by an
 IGP neighbor). Conversely resolved nexthops can also become
 unresolved (e.g. in case of a tunnel going down) and hence would no
 longer be candidates to be installed in the FIB.

 When at least one of a route's nexthops is resolved, then the route
 can be used to forward packets. Such a route is considered eligible
 to be installed in the FIB and is henceforth referred to as a FIB-
 eligible route. Conversely, when all the nexthops of a route are
 unresolved that route can no longer be used to forward packets. Such

Bahadur, et al. Expires December 18, 2017 [Page 9]

Internet-Draft Routing Information Base Info Model June 2017

 a route is considered ineligible to be installed in the FIB and is
 henceforth referred to as a FIB-ineligible route. The RIB
 information model allows an external entity to program routes whose
 nexthops may be unresolved initially. Whenever an unresolved nexthop
 gets resolved, the RIB manager will send a notification of the same
 (see Section 5).

 The overall structure and usage of a nexthop is as shown in the
 figure below.

 route
 |
 | 0..N
 |
 nexthop <-------------------------------+
 | |
 +-------+----------------------------+-------------+ |
 | | | | | |
 | | | | | |
 base load-balance protection replicate chain |
 | | | | | |
 | |2..N |2..N |2..N |1..N |
 | | | | | |
 | | V | | |
 | +------------->+<------------+-------------+ |
 | | |
 | +-------------------------------------+
 |
 +-------------------+
 |
 |
 |
 |
 +---------------+--------+--------+--------------+
 | | | |
 | | | |
 nexthop-id egress-interface logical-tunnel |
 |
 |
 +---------------------------+
 |
 +--------------+-----------+
 | | |
 | | |
 tunnel-encap tunnel-decap special-nexthop

 Figure 4: Nexthop model

Bahadur, et al. Expires December 18, 2017 [Page 10]

Internet-Draft Routing Information Base Info Model June 2017

 Nexthops can be identified by an identifier to create a level of
 indirection. The identifier is set by the RIB manager and returned
 to the external entity on request. The RIB data-model SHOULD support
 a way to optionally receive a nexthop identifier for a given nexthop.
 For example, one can create a nexthop that points to a BGP peer. The
 returned nexthop identifier can then be used for programming routes
 to point to the same nexthop. Given that the RIB manager has created
 an indirection for that BGP peer using the nexthop identifier, if the
 transport path to the BGP peer changes, that change in path will be
 seamless to the external entity and all routes that point to that BGP
 peer will automatically start going over the new transport path.
 Nexthop indirection using identifiers could be applied to not just
 unicast nexthops, but even to nexthops that contain chains and nested
 nexthops (Section 2.4.1).

2.4.1. Nexthop types

 This document specifies a very generic, extensible and recursive
 grammar for nexthops. Nexthops can be
 o Interface nexthops - pointing to an interface
 o Tunnel nexthops - pointing to a tunnel
 o Replication lists - list of nexthops to which to replicate a
 packet
 o Weighted lists - for load-balancing
 o Preference lists - for protection using primary and backup
 o Nexthop chains - for chaining multiple operations or attaching
 multiple headers
 o Lists of lists - recursive application of the above
 o Indirect nexthops - pointing to a nexthop identifier
 o Special nexthops - for performing specific well-defined functions
 (e.g. drop)
 It is expected that all network devices will have a limit on how many
 levels of lookup can be performed and not all hardware will be able
 to support all kinds of nexthops. RIB capability negotiation becomes
 very important for this reason and a RIB data-model MUST specify a
 way for an external entity to learn about the network device's
 capabilities. Examples of when and how to use various kinds of
 nexthops are shown in Section 7.2.

 Tunnel nexthops allow an external entity to program static tunnel
 headers. There can be cases where the remote tunnel end-point does
 not support dynamic signaling (e.g. no LDP support on a host) and in
 those cases the external entity might want to program the tunnel
 header on both ends of the tunnel. The tunnel nexthop is kept
 generic with specifications provided for some commonly used tunnels.
 It is expected that the data-model will model these tunnel types with
 complete accuracy.

Bahadur, et al. Expires December 18, 2017 [Page 11]

Internet-Draft Routing Information Base Info Model June 2017

 Nexthop chains Section 7.2.5, is a way to perform multiple operations
 on a packet by logically combining them. For example, one can chain
 together "decapsulate MPLS header" and "send it out a specific
 EGRESS_INTERFACE". Chains can be used to specify multiple headers
 over a packet, before a packet is forwarded. One simple example is
 that of MPLS over GRE, wherein the packet has an inner MPLS header
 followed by a GRE header followed by an IP header. The outermost IP
 header is decided by the network device whereas the MPLS header and
 GRE header are specified by the controller. Not every network device
 will be able to support all kinds of nexthop chains and an arbitrary
 number of header chained together. The RIB data-model SHOULD provide
 a way to expose nexthop chaining capability supported by a given
 network device.

2.4.2. Nexthop list attributes

 For nexthops that are of the form of a list(s), attributes can be
 associated with each member of the list to indicate the role of an
 individual member of the list. Two attributes are specified:
 o NEXTHOP_PREFERENCE: This is used for protection schemes. It is an
 integer value between 1 and 99. A lower value indicates higher
 preference. To download a primary/standby pair to the FIB, the
 nexthops that are resolved and have two highest preferences are
 selected. Each <NEXTHOP_PREFERENCE> should have a unique value
 within a <nexthop-protection>
 *
 (Section 6).
 o NEXTHOP_LB_WEIGHT: This is used for load-balancing. Each list
 member MUST be assigned a weight between 1 and 99. The weight
 determines the proportion of traffic to be sent over a nexthop
 used for forwarding as a ratio of the weight of this nexthop
 divided by the weights of all the nexthops of this route that are
 used for forwarding. To perform equal load-balancing, one MAY
 specify a weight of "0" for all the member nexthops. The value
 "0" is reserved for equal load-balancing and if applied, MUST be
 applied to all member nexthops.

2.4.3. Nexthop content

 At the lowest level, a nexthop can be one of:
 o identifier: This is an identifier returned by the network device
 representing a nexthop. This can be used as a way of re-using a
 nexthop when programming complex nexthops.
 o EGRESS_INTERFACE: This represents a physical, logical or virtual
 interface on the network device. Address resolution must not be
 required on this interface. This interface may belong to any
 routing instance.

Bahadur, et al. Expires December 18, 2017 [Page 12]

Internet-Draft Routing Information Base Info Model June 2017

 o IP address: A route lookup on this IP address is done to determine
 the egress interface. Address resolution may be required
 depending on the interface.
 * An optional RIB name can also be specified to indicate the RIB
 in which the IP address is to be looked up. One can use the
 RIB name field to direct the packet from one domain into
 another domain. By default the RIB will be the same as the one
 that route belongs to.
 o EGRESS_INTERFACE and IP address: This can be used in cases e.g.
 where the IP address is a link-local address.
 o EGRESS_INTERFACE and MAC address: The egress interface must be an
 ethernet interface. Address resolution is not required for this
 nexthop.
 o tunnel encap: This can be an encap representing an IP tunnel or
 MPLS tunnel or others as defined in this document. An optional
 egress interface can be chained to the tunnel encap to indicate
 which interface to send the packet out on. The egress interface
 is useful when the network device contains Ethernet interfaces and
 one needs to perform address resolution for the IP packet.
 o tunnel decap: This is to specify decapsulating a tunnel header.
 After decap, further lookup on the packet can be done via chaining
 it with another nexthop. The packet can also be sent out via a
 EGRESS_INTERFACE directly.
 o logical tunnel: This can be a MPLS LSP or a GRE tunnel (or others
 as defined in this document), that is represented by a unique
 identifier (E.g. name).
 o RIB_NAME: A nexthop pointing to a RIB indicates that the route
 lookup needs to continue in the specified RIB. This is a way to
 perform chained lookups.

2.4.4. Special nexthops

 This document specifies certain special nexthops. The purpose of
 each of them is explained below:
 o DISCARD: This indicates that the network device should drop the
 packet and increment a drop counter.
 o DISCARD_WITH_ERROR: This indicates that the network device should
 drop the packet, increment a drop counter and send back an
 appropriate error message (like ICMP error).
 o RECEIVE: This indicates that that the traffic is destined for the
 network device. For example, protocol packets or OAM packets.
 All locally destined traffic SHOULD be throttled to avoid a denial
 of service attack on the router's control plane. An optional
 rate-limiter can be specified to indicate how to throttle traffic
 destined for the control plane. The description of the rate-
 limiter is outside the scope of this document.

Bahadur, et al. Expires December 18, 2017 [Page 13]

Internet-Draft Routing Information Base Info Model June 2017

3. Reading from the RIB

 A RIB data-model MUST allow an external entity to read entries, for
 RIBs created by that entity. The network device administrator MAY
 allow reading of other RIBs by an external entity through access
 lists on the network device. The details of access lists are outside
 the scope of this document.

 The data-model MUST support a full read of the RIB and subsequent
 incremental reads of changes to the RIB. An external agent SHOULD be
 able to request a full read at any time in the lifecycle of the
 connection. When sending data to an external entity, the RIB manager
 SHOULD try to send all dependencies of an object prior to sending
 that object.

4. Writing to the RIB

 A RIB data-model MUST allow an external entity to write entries, for
 RIBs created by that entity. The network device administrator MAY
 allow writes to other RIBs by an external entity through access lists
 on the network device. The details of access lists are outside the
 scope of this document.

 When writing an object to a RIB, the external entity SHOULD try to
 write all dependencies of the object prior to sending that object.
 The data-model SHOULD support requesting identifiers for nexthops and
 collecting the identifiers back in the response.

 Route programming in the RIB MUST result in a return code that
 contains the following attributes:
 o Installed - Yes/No (Indicates whether the route got installed in
 the FIB)
 o Active - Yes/No (Indicates whether a route is fully resolved and
 is a candidate for selection)
 o Reason - E.g. Not authorized
 The data-model MUST specify which objects are modify-able objects. A
 modify-able object is one whose contents can be changed without
 having to change objects that depend on it and without affecting any
 data forwarding. To change a non-modifiable object, one will need to
 create a new object and delete the old one. For example, routes that
 use a nexthop that is identified by a nexthop identifier should be
 unaffected when the contents of that nexthop changes.

5. Notifications

 Asynchronous notifications are sent by the network device's RIB

Bahadur, et al. Expires December 18, 2017 [Page 14]

Internet-Draft Routing Information Base Info Model June 2017

 manager to an external entity when some event occurs on the network
 device. A RIB data-model MUST support sending asynchronous
 notifications. A brief list of suggested notifications is as below:
 o Route change notification, with return code as specified in

Section 4
 o Nexthop resolution status (resolved/unresolved) notification

6. RIB grammar

 This section specifies the RIB information model in Routing Backus-
 Naur Form [RFC5511]. This grammar is intended to help the reader
 better understand the english text description in order to derive a
 data model. However it may not provide all the detail provided by
 the english text. When there is a lack of clarity in the grammar the
 english text will take precedence.

 <routing-instance> ::= <INSTANCE_NAME>
 [<interface-list>] <rib-list>
 [<ROUTER_ID>]

 <interface-list> ::= (<INTERFACE_IDENTIFIER> ...)

 <rib-list> ::= (<rib> ...)
 <rib> ::= <RIB_NAME> <rib-family>
 [<route> ...]
 [ENABLE_IP_RPF_CHECK]
 <rib-family> ::= <IPV4_RIB_FAMILY> | <IPV6_RIB_FAMILY> |
 <MPLS_RIB_FAMILY> | <IEEE_MAC_RIB_FAMILY>

 <route> ::= <match> <nexthop>
 [<route-attributes>]
 [<route-vendor-attributes>]

 <match> ::= <IPV4> <ipv4-route> | <IPV6> <ipv6-route> |
 <MPLS> <MPLS_LABEL> | <IEEE_MAC> <MAC_ADDRESS> |
 <INTERFACE> <INTERFACE_IDENTIFIER>
 <route-type> ::= <IPV4> | <IPV6> | <MPLS> | <IEEE_MAC> | <INTERFACE>

 <ipv4-route> ::= <ip-route-type>
 (<destination-ipv4-address> | <source-ipv4-address> |
 (<destination-ipv4-address> <source-ipv4-address>))
 <destination-ipv4-address> ::= <ipv4-prefix>

https://datatracker.ietf.org/doc/html/rfc5511

Bahadur, et al. Expires December 18, 2017 [Page 15]

Internet-Draft Routing Information Base Info Model June 2017

 <source-ipv4-address> ::= <ipv4-prefix>
 <ipv4-prefix> ::= <IPV4_ADDRESS> <IPV4_PREFIX_LENGTH>

 <ipv6-route> ::= <ip-route-type>
 (<destination-ipv6-address> | <source-ipv6-address> |
 (<destination-ipv6-address> <source-ipv6-address>))
 <destination-ipv6-address> ::= <ipv6-prefix>
 <source-ipv6-address> ::= <ipv6-prefix>
 <ipv6-prefix> ::= <IPV6_ADDRESS> <IPV6_PREFIX_LENGTH>
 <ip-route-type> ::= <SRC> | <DEST> | <DEST_SRC>

 <route-attributes> ::= <ROUTE_PREFERENCE> [<LOCAL_ONLY>]
 [<address-family-route-attributes>]

 <address-family-route-attributes> ::= <ip-route-attributes> |
 <mpls-route-attributes> |
 <ethernet-route-attributes>
 <ip-route-attributes> ::= <>
 <mpls-route-attributes> ::= <>
 <ethernet-route-attributes> ::= <>
 <route-vendor-attributes> ::= <>

 <nexthop> ::= <nexthop-base> |
 (<NEXTHOP_LOAD_BALANCE> <nexthop-lb>) |
 (<NEXTHOP_PROTECTION> <nexthop-protection>) |
 (<NEXTHOP_REPLICATE> <nexthop-replicate>) |
 <nexthop-chain>

 <nexthop-base> ::= <NEXTHOP_ID> |
 <nexthop-special> |
 <EGRESS_INTERFACE> |
 <ipv4-address> | <ipv6-address> |
 (<EGRESS_INTERFACE>
 (<ipv4-address> | <ipv6-address>)) |
 (<EGRESS_INTERFACE> <IEEE_MAC_ADDRESS>) |
 <tunnel-encap> | <tunnel-decap> |
 <logical-tunnel> |
 <RIB_NAME>)

 <EGRESS_INTERFACE> ::= <INTERFACE_IDENTIFIER>

 <nexthop-special> ::= <DISCARD> | <DISCARD_WITH_ERROR> |
 (<RECEIVE> [<COS_VALUE>])

Bahadur, et al. Expires December 18, 2017 [Page 16]

Internet-Draft Routing Information Base Info Model June 2017

 <nexthop-lb> ::= <NEXTHOP_LB_WEIGHT> <nexthop>
 (<NEXTHOP_LB_WEIGHT> <nexthop) ...

 <nexthop-protection> = <NEXTHOP_PREFERENCE> <nexthop>
 (<NEXTHOP_PREFERENCE> <nexthop>)...

 <nexthop-replicate> ::= <nexthop> <nexthop> ...

 <nexthop-chain> ::= <nexthop> ...

 <logical-tunnel> ::= <tunnel-type> <TUNNEL_NAME>
 <tunnel-type> ::= <IPV4> | <IPV6> | <MPLS> | <GRE> | <VxLAN> | <NVGRE>

 <tunnel-encap> ::= (<IPV4> <ipv4-header>) |
 (<IPV6> <ipv6-header>) |
 (<MPLS> <mpls-header>) |
 (<GRE> <gre-header>) |
 (<VXLAN> <vxlan-header>) |
 (<NVGRE> <nvgre-header>)

 <ipv4-header> ::= <SOURCE_IPv4_ADDRESS> <DESTINATION_IPv4_ADDRESS>
 <PROTOCOL> [<TTL>] [<DSCP>]

 <ipv6-header> ::= <SOURCE_IPV6_ADDRESS> <DESTINATION_IPV6_ADDRESS>
 <NEXT_HEADER> [<TRAFFIC_CLASS>]
 [<FLOW_LABEL>] [<HOP_LIMIT>]

 <mpls-header> ::= (<mpls-label-operation> ...)
 <mpls-label-operation> ::= (<MPLS_PUSH> <MPLS_LABEL> [<S_BIT>]
 [<TOS_VALUE>] [<TTL_VALUE>]) |
 (<MPLS_SWAP> <IN_LABEL> <OUT_LABEL>
 [<TTL_ACTION>])

 <gre-header> ::= <GRE_IP_DESTINATION> <GRE_PROTOCOL_TYPE> [<GRE_KEY>]
 <vxlan-header> ::= (<ipv4-header> | <ipv6-header>)
 [<VXLAN_IDENTIFIER>]
 <nvgre-header> ::= (<ipv4-header> | <ipv6-header>)
 <VIRTUAL_SUBNET_ID>
 [<FLOW_ID>]

 <tunnel-decap> ::= ((<IPV4> <IPV4_DECAP> [<TTL_ACTION>]) |
 (<IPV6> <IPV6_DECAP> [<HOP_LIMIT_ACTION>]) |
 (<MPLS> <MPLS_POP> [<TTL_ACTION>]))

Bahadur, et al. Expires December 18, 2017 [Page 17]

Internet-Draft Routing Information Base Info Model June 2017

 Figure 5: RIB rBNF grammar

6.1. Nexthop grammar explained

 A nexthop is used to specify the next network element to forward the
 traffic to. It is also used to specify how the traffic should be
 load-balanced, protected using preference or multicasted using
 replication. This is explicitly specified in the grammar. The
 nexthop has recursion built-in to address complex use-cases like the
 one defined in Section 7.2.6.

7. Using the RIB grammar

 The RIB grammar is very generic and covers a variety of features.
 This section provides examples on using objects in the RIB grammar
 and examples to program certain use cases.

7.1. Using route preference

 Using route preference a client can pre-install alternate paths in
 the network. For example, if OSPF has a route preference of 10, then
 another client can install a route with route preference of 20 to the
 same destination. The OSPF route will get precedence and will get
 installed in the FIB. When the OSPF route is withdrawn, the
 alternate path will get installed in the FIB.

 Route preference can also be used to prevent denial of service
 attacks by installing routes with the best preference, which either
 drops the offending traffic or routes it to some monitoring/analysis
 station. Since the routes are installed with the best preference,
 they will supersede any route installed by any other protocol.

7.2. Using different nexthops types

 The RIB grammar allows one to create a variety of nexthops. This
 section describes uses for certain types of nexthops.

7.2.1. Tunnel nexthops

 A tunnel nexthop points to a tunnel of some kind. Traffic that goes
 over the tunnel gets encapsulated with the tunnel encap. Tunnel
 nexthops are useful for abstracting out details of the network, by
 having the traffic seamlessly route between network edges. At the
 end of a tunnel, the tunnel will get decapsulated. Thus the grammar
 supports two kinds of operations, one for encap and another for
 decap.

Bahadur, et al. Expires December 18, 2017 [Page 18]

Internet-Draft Routing Information Base Info Model June 2017

7.2.2. Replication lists

 One can create a replication list for replicating traffic to multiple
 destinations. The destinations, in turn, could be complex nexthops
 in themselves - at a level supported by the network device. Point to
 multipoint and broadcast are examples that involve replication.

 A replication list (at the simplest level) can be represented as:

 <nexthop> ::= <NEXTHOP_REPLICATE> <nexthop> [<nexthop> ...]

 The above can be derived from the grammar as follows:

 <nexthop> ::= <nexthop-replicate>
 <nexthop> ::= <NEXTHOP_REPLICATE> <nexthop> <nexthop> ...

7.2.3. Weighted lists

 A weighted list is used to load-balance traffic among a set of
 nexthops. From a modeling perspective, a weighted list is very
 similar to a replication list, with the difference that each member
 nexthop MUST have a NEXTHOP_LB_WEIGHT associated with it.

 A weighted list (at the simplest level) can be represented as:

 <nexthop> ::= <NEXTHOP_LOAD_BALANCE> (<nexthop> <NEXTHOP_LB_WEIGHT>)
 [(<nexthop> <NEXTHOP_LB_WEIGHT>)...]

 The above can be derived from the grammar as follows:

 <nexthop> ::= <nexthop-lb>
 <nexthop> ::= <NEXTHOP_LOAD_BALANCE>
 <NEXTHOP_LB_WEIGHT> <nexthop>
 (<NEXTHOP_LB_WEIGHT> <nexthop>) ...
 <nexthop> ::= <NEXTHOP_LOAD_BALANCE> (<NEXTHOP_LB_WEIGHT> <nexthop>)
 (<NEXTHOP_LB_WEIGHT> <nexthop>) ...

Bahadur, et al. Expires December 18, 2017 [Page 19]

Internet-Draft Routing Information Base Info Model June 2017

7.2.4. Protection

 A primary/backup protection can be represented as:

<nexthop> ::= <NEXTHOP_PROTECTION> <1> <interface-primary>
 <2> <interface-backup>)

The above can be derived from the grammar as follows:

<nexthop> ::= <nexthop-protection>
<nexthop> ::= <NEXTHOP_PROTECTION> (<NEXTHOP_PREFERENCE> <nexthop>
 (<NEXTHOP_PREFERENCE> <nexthop>)...)
<nexthop> ::= <NEXTHOP_PROTECTION> (<NEXTHOP_PREFERENCE> <nexthop>
 (<NEXTHOP_PREFERENCE> <nexthop>))
<nexthop> ::= <NEXTHOP_PROTECTION> ((<NEXTHOP_PREFERENCE> <nexthop-base>
 (<NEXTHOP_PREFERENCE> <nexthop-base>))
<nexthop> ::= <NEXTHOP_PROTECTION> (<1> <interface-primary>
 (<2> <interface-backup>))

 Traffic can be load-balanced among multiple primary nexthops and a
 single backup. In such a case, the nexthop will look like:

 <nexthop> ::= <NEXTHOP_PROTECTION> (<1>
 (<NEXTHOP_LOAD_BALANCE>
 (<NEXTHOP_LB_WEIGHT> <nexthop-base>
 (<NEXTHOP_LB_WEIGHT> <nexthop-base>) ...))
 <2> <nexthop-base>)

 A backup can also have another backup. In such a case, the list will
 look like:

 <nexthop> ::= <NEXTHOP_PROTECTION> (<1> <nexthop>
 <2> <NEXTHOP_PROTECTION>(<1> <nexthop> <2> <nexthop>))

7.2.5. Nexthop chains

 A nexthop chain is a way to perform multiple operations on a packet
 by logically combining them. For example, when a VPN packet comes on
 the WAN interface and has to be forwarded to the correct VPN
 interface, one needs to POP the VPN label before sending the packet

Bahadur, et al. Expires December 18, 2017 [Page 20]

Internet-Draft Routing Information Base Info Model June 2017

 out. Using a nexthop chain, one can chain together "pop MPLS header"
 and "send it out a specific EGRESS_INTERFACE".

 The above example can be derived from the grammar as follows:

 <nexthop-chain> ::= <nexthop> <nexthop>
 <nexthop-chain> ::= <nexthop-base> <nexthop-base>
 <nexthop-chain> ::= <tunnel-decap> <EGRESS_INTERFACE>
 <nexthop-chain> ::= (<MPLS> <MPLS_POP>) <interface-outgoing>

 Elements in a nexthop-chain are evaluated left to right.

 A nexthop chain can also be used to put one or more headers on an
 outgoing packet. One example is a Pseudowire - which is MPLS over
 some transport (MPLS or GRE for instance). Another example is VxLAN
 over IP. A nexthop chain thus allows an external entity to break up
 the programming of the nexthop into independent pieces - one per
 encapsulation.

 A simple example of MPLS over GRE can be represented as:

 <nexthop-chain> ::= (<MPLS> <mpls-header>) (<GRE> <gre-header>)
 <interface-outgoing>

 The above can be derived from the grammar as follows:

 <nexthop-chain> ::= <nexthop> <nexthop> <nexthop>
 <nexthop-chain> ::= <nexthop-base> <nexthop-base> <nexthop-base>
 <nexthop-chain> ::= <tunnel-encap> <tunnel-encap> <EGRESS_INTERFACE>
 <nexthop-chain> ::= (<MPLS> <mpls-header>) (<GRE> <gre-header>)
 <interface-outgoing>

7.2.6. Lists of lists

 Lists of lists is a complex construct. One example of usage of such
 a construct is to replicate traffic to multiple destinations, with
 load balancing. In other words, for each branch of the replication
 tree, there are multiple interfaces on which traffic needs to be
 load-balanced on. So the outer list is a replication list for
 multicast and the inner lists are weighted lists for load balancing.
 Lets take an example of a network element has to replicate traffic to
 two other network elements. Traffic to the first network element
 should be load balanced equally over two interfaces outgoing-1-1 and

Bahadur, et al. Expires December 18, 2017 [Page 21]

Internet-Draft Routing Information Base Info Model June 2017

 outgoing-1-2. Traffic to the second network element should be load
 balanced over three interfaces outgoing-2-1, outgoing-2-2 and
 outgoing-2-3 in the ratio 20:20:60.

This can be derived from the grammar as follows:

<nexthop> ::= <nexthop-replicate>
<nexthop> ::= <NEXTHOP_REPLICATE> (<nexthop> <nexthop>...)
<nexthop> ::= <NEXTHOP_REPLICATE> (<nexthop> <nexthop>)
<nexthop> ::= <NEXTHOP_REPLICATE> ((<NEXTHOP_LOAD_BALANCE> <nexthop-lb>)
 (<NEXTHOP_LOAD_BALANCE> <nexthop-lb>))
<nexthop> ::= <NEXTHOP_REPLICATE> ((<NEXTHOP_LOAD_BALANCE>
 (<NEXTHOP_LB_WEIGHT> <nexthop>
 (<NEXTHOP_LB_WEIGHT> <nexthop>) ...))
 ((<NEXTHOP_LOAD_BALANCE>
 (<NEXTHOP_LB_WEIGHT> <nexthop>
 (<NEXTHOP_LB_WEIGHT> <nexthop>) ...))
<nexthop> ::= <NEXTHOP_REPLICATE> ((<NEXTHOP_LOAD_BALANCE>
 (<NEXTHOP_LB_WEIGHT> <nexthop>
 (<NEXTHOP_LB_WEIGHT> <nexthop>)))
 ((<NEXTHOP_LOAD_BALANCE>
 (<NEXTHOP_LB_WEIGHT> <nexthop>
 (<NEXTHOP_LB_WEIGHT> <nexthop>)
 (<NEXTHOP_LB_WEIGHT> <nexthop>)))
<nexthop> ::= <NEXTHOP_REPLICATE> ((<NEXTHOP_LOAD_BALANCE>
 (<NEXTHOP_LB_WEIGHT> <nexthop>)
 (<NEXTHOP_LB_WEIGHT> <nexthop>)))
 ((<NEXTHOP_LOAD_BALANCE>
 (<NEXTHOP_LB_WEIGHT> <nexthop>)
 (<NEXTHOP_LB_WEIGHT> <nexthop>)
 (<NEXTHOP_LB_WEIGHT> <nexthop>)))
<nexthop> ::= <NEXTHOP_REPLICATE>
 ((<NEXTHOP_LOAD_BALANCE>
 (50 <outgoing-1-1>)
 (50 <outgoing-1-2>)))
 ((<NEXTHOP_LOAD_BALANCE>
 (20 <outgoing-2-1>)
 (20 <outgoing-2-2>)
 (60 <outgoing-2-3>)))

7.3. Performing multicast

 IP multicast involves matching a packet on (S, G) or (*, G), where
 both S (source) and G (group) are IP prefixes. Following the match,
 the packet is replicated to one or more recipients. How the
 recipients subscribe to the multicast group is outside the scope of
 this document.

Bahadur, et al. Expires December 18, 2017 [Page 22]

Internet-Draft Routing Information Base Info Model June 2017

 In PIM-based multicast, the packets are IP forwarded on an IP
 multicast tree. The downstream nodes on each point in the multicast
 tree is one or more IP addresses. These can be represented as a
 replication list (Section 7.2.2).

 In MPLS-based multicast, the packets are forwarded on a point to
 multipoint (P2MP) label-switched path (LSP). The nexthop for a P2MP
 LSP can be represented in the nexthop grammar as a <logical-tunnel>
 (P2MP LSP identifier) or a replication list (Section 7.2.2) of
 <tunnel-encap>, with each tunnel encap representing a single mpls
 downstream nexthop.

8. RIB operations at scale

 This section discusses the scale requirements for a RIB data-model.
 The RIB data-model should be able to handle large scale of
 operations, to enable deployment of RIB applications in large
 networks.

8.1. RIB reads

 Bulking (grouping of multiple objects in a single message) MUST be
 supported when a network device sends RIB data to an external entity.
 Similarly the data model MUST enable a RIB client to request data in
 bulk from a network device.

8.2. RIB writes

 Bulking (grouping of multiple write operations in a single message)
 MUST be supported when an external entity wants to write to the RIB.
 The response from the network device MUST include a return-code for
 each write operation in the bulk message.

8.3. RIB events and notifications

 There can be cases where a single network event results in multiple
 events and/or notifications from the network device to an external
 entity. On the other hand, due to timing of multiple things
 happening at the same time, a network device might have to send
 multiple events and/or notifications to an external entity. The
 network device originated event/notification message MUST support
 bulking of multiple events and notifications in a single message.

9. Security Considerations

 All interactions between a RIB manager and an external entity MUST be

Bahadur, et al. Expires December 18, 2017 [Page 23]

Internet-Draft Routing Information Base Info Model June 2017

 authenticated and authorized. The RIB manager MUST protect itself
 against a denial of service attack by a rogue external entity, by
 throttling request processing. A RIB manager MUST enforce limits on
 how much data can be programmed by an external entity and return
 error when such a limit is reached.

 The RIB manager MUST expose a data-model that it implements. An
 external agent MUST send requests to the RIB manager that comply with
 the supported data-model. The data-model MUST specify the behavior
 of the RIB manager on handling of unsupported data requests.

10. IANA Considerations

 This document does not generate any considerations for IANA.

11. Acknowledgements

 The authors would like to thank Ron Folkes, Jeffrey Zhang, the
 working group co-chairs and reviewers on their comments and
 suggestions on this draft. The following people contributed to the
 design of the RIB model as part of the I2RS Interim meeting in April
 2013 - Wes George, Chris Liljenstolpe, Jeff Tantsura, Susan Hares and
 Fabian Schneider.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

12.2. Informative References

 [I-D.hares-i2rs-use-case-vn-vc]
 Hares, S. and M. Chen, "Use Cases for Virtual Connections
 on Demand (VCoD) and Virtual Network on Demand (VNoD)
 using Interface to Routing System",

draft-hares-i2rs-use-case-vn-vc-03 (work in progress),
 July 2014.

 [I-D.white-i2rs-use-case]
 White, R., Hares, S., and A. Retana, "Protocol Independent
 Use Cases for an Interface to the Routing System",

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-hares-i2rs-use-case-vn-vc-03

Bahadur, et al. Expires December 18, 2017 [Page 24]

Internet-Draft Routing Information Base Info Model June 2017

draft-white-i2rs-use-case-06 (work in progress),
 July 2014.

 [RFC4915] Psenak, P., Mirtorabi, S., Roy, A., Nguyen, L., and P.
 Pillay-Esnault, "Multi-Topology (MT) Routing in OSPF",

RFC 4915, DOI 10.17487/RFC4915, June 2007,
 <http://www.rfc-editor.org/info/rfc4915>.

 [RFC5120] Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi
 Topology (MT) Routing in Intermediate System to
 Intermediate Systems (IS-ISs)", RFC 5120, DOI 10.17487/

RFC5120, February 2008,
 <http://www.rfc-editor.org/info/rfc5120>.

 [RFC5511] Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax
 Used to Form Encoding Rules in Various Routing Protocol
 Specifications", RFC 5511, DOI 10.17487/RFC5511,
 April 2009, <http://www.rfc-editor.org/info/rfc5511>.

 [RFC7920] Atlas, A., Ed., Nadeau, T., Ed., and D. Ward, "Problem
 Statement for the Interface to the Routing System",

RFC 7920, DOI 10.17487/RFC7920, June 2016,
 <http://www.rfc-editor.org/info/rfc7920>.

Authors' Addresses

 Nitin Bahadur (editor)
 Bracket Computing
 150 West Evelyn Ave, Suite 200
 Mountain View, CA 94041
 US

 Email: nitin_bahadur@yahoo.com

 Sriganesh Kini (editor)

 Email: sriganeshkini@gmail.com

 Jan Medved
 Cisco

 Email: jmedved@cisco.com

https://datatracker.ietf.org/doc/html/draft-white-i2rs-use-case-06
https://datatracker.ietf.org/doc/html/rfc4915
http://www.rfc-editor.org/info/rfc4915
https://datatracker.ietf.org/doc/html/rfc5120
https://datatracker.ietf.org/doc/html/rfc5120
http://www.rfc-editor.org/info/rfc5120
https://datatracker.ietf.org/doc/html/rfc5511
http://www.rfc-editor.org/info/rfc5511
https://datatracker.ietf.org/doc/html/rfc7920
http://www.rfc-editor.org/info/rfc7920

Bahadur, et al. Expires December 18, 2017 [Page 25]

