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Abstract

   This document describes a protocol for Network Address Translator
   (NAT) traversal for UDP-based multimedia.  This protocol is called
   Interactive Connectivity Establishment (ICE).  ICE makes use of the
   Session Traversal Utilities for NAT (STUN) protocol and its
   extension, Traversal Using Relay NAT (TURN).

   This document obsoletes RFC 5245.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 2, 2018.

Copyright Notice
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   document authors.  All rights reserved.
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   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.
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1.  Introduction

   Protocols establishing multimedia sessions between peers typically
   involve exchanging IP addresses and ports for the media sources and
   sinks.  However this poses challenges when operated through Network
   Address Translators (NATs) [RFC3235].  These protocols also seek to
   create a media flow directly between participants, so that there is
   no application layer intermediary between them.  This is done to
   reduce media latency, decrease packet loss, and reduce the
   operational costs of deploying the application.  However, this is
   difficult to accomplish through NATs.  A full treatment of the
   reasons for this is beyond the scope of this specification.

   Numerous solutions have been defined for allowing these protocols to
   operate through NATs.  These include Application Layer Gateways
   (ALGs), the Middlebox Control Protocol [RFC3303], the original Simple
   Traversal of UDP Through NAT (STUN) [RFC3489] specification, and
   Realm Specific IP [RFC3102] [RFC3103] along with session description
   extensions needed to make them work, such as the Session Description
   Protocol (SDP) [RFC4566] attribute for the Real Time Control Protocol
   (RTCP) [RFC3605].  Unfortunately, these techniques all have pros and
   cons which, make each one optimal in some network topologies, but a
   poor choice in others.  The result is that administrators and
   implementors are making assumptions about the topologies of the
   networks in which their solutions will be deployed.  This introduces
   complexity and brittleness into the system.  What is needed is a
   single solution that is flexible enough to work well in all
   situations.

   This specification defines Interactive Connectivity Establishment
   (ICE) as a technique for NAT traversal for UDP-based media streams

https://datatracker.ietf.org/doc/html/rfc3235
https://datatracker.ietf.org/doc/html/rfc3303
https://datatracker.ietf.org/doc/html/rfc3489
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   (though ICE has been extended to handle other transport protocols,
   such as TCP [RFC6544]).  ICE works by exchanging a multiplicity of IP
   addresses and ports which are then tested for connectivity by peer-
   to-peer connectivity checks.  The IP addresses and ports are
   exchanged via mechanisms (for example, including in a offer/answer
   exchange) and the connectivity checks are performed using Session
   Traversal Utilities for NAT (STUN) specification [RFC5389].  ICE also
   makes use of Traversal Using Relays around NAT (TURN) [RFC5766], an
   extension to STUN.  Because ICE exchanges a multiplicity of IP
   addresses and ports for each media stream, it also allows for address
   selection for multihomed and dual-stack hosts, and for this reason it
   deprecates [RFC4091] and [RFC4092].

2.  Overview of ICE

   In a typical ICE deployment, we have two endpoints (known as ICE
   AGENTS) that want to communicate.  They are able to communicate
   indirectly via some signaling protocol (such as SIP), by which they
   can exchange ICE candidates.  Note that ICE is not intended for NAT
   traversal for the signaling protocol, which is assumed to be provided
   via another mechanism.  At the beginning of the ICE process, the
   agents are ignorant of their own topologies.  In particular, they
   might or might not be behind a NAT (or multiple tiers of NATs).  ICE
   allows the agents to discover enough information about their
   topologies to potentially find one or more paths by which they can
   communicate.

   Figure 1 shows a typical environment for ICE deployment.  The two
   endpoints are labelled L and R (for left and right, which helps
   visualize call flows).  Both L and R are behind their own respective
   NATs though they may not be aware of it.  The type of NAT and its
   properties are also unknown.  Agents L and R are capable of engaging
   in an candidate exchange process, whose purpose is to set up a media
   session between L and R.  Typically, this exchange will occur through
   a signaling (e.g., SIP) server.

   In addition to the agents, a signaling server and NATs, ICE is
   typically used in concert with STUN or TURN servers in the network.
   Each agent can have its own STUN or TURN server, or they can be the
   same.

https://datatracker.ietf.org/doc/html/rfc6544
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5766
https://datatracker.ietf.org/doc/html/rfc4091
https://datatracker.ietf.org/doc/html/rfc4092
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                     +---------+
   +--------+        |Signaling|         +--------+
   | STUN   |        |Server   |         | STUN   |
   | Server |        +---------+         | Server |
   +--------+       /           \        +--------+
                   /             \
                  /               \
                 / <- Signaling -> \
                /                   \
         +--------+               +--------+
         |  NAT   |               |  NAT   |
         +--------+               +--------+
           /                             \
          /                               \
      +-------+                       +-------+
      | Agent |                       | Agent |
      |   L   |                       |   R   |
      +-------+                       +-------+

                     Figure 1: ICE Deployment Scenario

   The basic idea behind ICE is as follows: each agent has a variety of
   candidate TRANSPORT ADDRESSES (combination of IP address and port for
   a particular transport protocol, which is always UDP in this
   specification) it could use to communicate with the other agent.
   These might include:

   o  A transport address on a directly attached network interface

   o  A translated transport address on the public side of a NAT (a
      "server reflexive" address)

   o  A transport address allocated from a TURN server (a "relayed
      address")

   Potentially, any of L's candidate transport addresses can be used to
   communicate with any of R's candidate transport addresses.  In
   practice, however, many combinations will not work.  For instance, if
   L and R are both behind NATs, their directly attached interface
   addresses are unlikely to be able to communicate directly (this is
   why ICE is needed, after all!).  The purpose of ICE is to discover
   which pairs of addresses will work.  The way that ICE does this is to
   systematically try all possible pairs (in a carefully sorted order)
   until it finds one or more that work.
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2.1.  Gathering Candidate Addresses

   In order to execute ICE, an agent has to identify all of its address
   candidates.  A CANDIDATE is a transport address -- a combination of
   IP address and port for a particular transport protocol (with only
   UDP specified here).  This document defines three types of
   candidates, some derived from physical or logical network interfaces,
   others discoverable via STUN and TURN.  Naturally, one viable
   candidate is a transport address obtained directly from a local
   interface.  Such a candidate is called a HOST CANDIDATE.  The local
   interface could be Ethernet or WiFi, or it could be one that is
   obtained through a tunnel mechanism, such as a Virtual Private
   Network (VPN) or Mobile IP (MIP).  In all cases, such a network
   interface appears to the agent as a local interface from which ports
   (and thus candidates) can be allocated.

   If an agent is multihomed, it obtains a candidate from each IP
   address.  Depending on the location of the PEER (the other agent in
   the session) on the IP network relative to the agent, the agent may
   be reachable by the peer through one or more of those IP addresses.
   Consider, for example, an agent that has a local IP address on a
   private net 10 network (I1), and a second connected to the public
   Internet (I2).  A candidate from I1 will be directly reachable when
   communicating with a peer on the same private net 10 network, while a
   candidate from I2 will be directly reachable when communicating with
   a peer on the public Internet.  Rather than trying to guess which IP
   address will work, the initiating agent sends both the candidates to
   its peer.

   Next, the agent uses STUN or TURN to obtain additional candidates.
   These come in two flavors: translated addresses on the public side of
   a NAT (SERVER REFLEXIVE CANDIDATES) and addresses on TURN servers
   (RELAYED CANDIDATES).  When TURN servers are utilized, both types of
   candidates are obtained from the TURN server.  If only STUN servers
   are utilized, only server reflexive candidates are obtained from
   them.  The relationship of these candidates to the host candidate is
   shown in Figure 2.  In this figure, both types of candidates are
   discovered using TURN.  In the figure, the notation X:x means IP
   address X and UDP port x.
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                 To Internet

                     |
                     |
                     |  /------------  Relayed
                 Y:y | /               Address
                 +--------+
                 |        |
                 |  TURN  |
                 | Server |
                 |        |
                 +--------+
                     |
                     |
                     | /------------  Server
              X1':x1'|/               Reflexive
               +------------+         Address
               |    NAT     |
               +------------+
                     |
                     | /------------  Local
                 X:x |/               Address
                 +--------+
                 |        |
                 | Agent  |
                 |        |
                 +--------+

                     Figure 2: Candidate Relationships

   When the agent sends the TURN Allocate request from IP address and
   port X:x, the NAT (assuming there is one) will create a binding
   X1':x1', mapping this server reflexive candidate to the host
   candidate X:x.  Outgoing packets sent from the host candidate will be
   translated by the NAT to the server reflexive candidate.  Incoming
   packets sent to the server reflexive candidate will be translated by
   the NAT to the host candidate and forwarded to the agent.  The host
   candidate associated with a given server reflexive candidate is the
   BASE.

      Note: "Base" refers to the address an agent sends from for a
      particular candidate.  Thus, as a degenerate case, host candidates
      also have a base, but it's the same as the host candidate.

   When there are multiple NATs between the agent and the TURN server,
   the TURN request will create a binding on each NAT, but only the
   outermost server reflexive candidate (the one nearest the TURN
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   server) will be discovered by the agent.  If the agent is not behind
   a NAT, then the base candidate will be the same as the server
   reflexive candidate and the server reflexive candidate is redundant
   and will be eliminated.

   The Allocate request then arrives at the TURN server.  The TURN
   server allocates a port y from its local IP address Y, and generates
   an Allocate response, informing the agent of this relayed candidate.
   The TURN server also informs the agent of the server reflexive
   candidate, X1':x1' by copying the source transport address of the
   Allocate request into the Allocate response.  The TURN server acts as
   a packet relay, forwarding traffic between L and R.  In order to send
   traffic to L, R sends traffic to the TURN server at Y:y, and the TURN
   server forwards that to X1':x1', which passes through the NAT where
   it is mapped to X:x and delivered to L.

   When only STUN servers are utilized, the agent sends a STUN Binding
   request [RFC5389] to its STUN server.  The STUN server will inform
   the agent of the server reflexive candidate X1':x1' by copying the
   source transport address of the Binding request into the Binding
   response.

2.2.  Connectivity Checks

   Once L has gathered all of its candidates, it orders them in highest
   to lowest-priority and sends them to R over the signaling channel.
   When R receives the candidates from L, it performs the same gathering
   process and responds with its own list of candidates.  At the end of
   this process, each agent has a complete list of both its candidates
   and its peer's candidates.  It pairs them up, resulting in CANDIDATE
   PAIRS.  To see which pairs work, each agent schedules a series of
   CHECKS.  Each check is a STUN request/response transaction that the
   client will perform on a particular candidate pair by sending a STUN
   request from the local candidate to the remote candidate.

   The basic principle of the connectivity checks is simple:

   1.  Sort the candidate pairs in priority order.

   2.  Send checks on each candidate pair in priority order.

   3.  Acknowledge checks received from the other agent.

   With both agents performing a check on a candidate pair, the result
   is a 4-way handshake:

https://datatracker.ietf.org/doc/html/rfc5389
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   L                        R
   -                        -
   STUN request ->             \  L's
             <- STUN response  /  check

              <- STUN request  \  R's
   STUN response ->            /  check

                    Figure 3: Basic Connectivity Check

   It is important to note that the STUN requests are sent to and from
   the exact same IP addresses and ports that will be used for media
   (e.g., RTP, RTCP, or other protocols).  Consequently, agents
   demultiplex STUN and media using the contents of the packets, rather
   than the port on which they are received.

   Because a STUN Binding request is used for the connectivity check,
   the STUN Binding response will contain the agent's translated
   transport address on the public side of any NATs between the agent
   and its peer.  If this transport address is different from that of
   other candidates the agent already learned, it represents a new
   candidate, called a PEER REFLEXIVE CANDIDATE, which then gets tested
   by ICE just the same as any other candidate.

   As an optimization, as soon as R gets L's check message, R schedules
   a connectivity check message to be sent to L on the same candidate
   pair.  This accelerates the process of finding a valid candidate, and
   is called a TRIGGERED CHECK.

   At the end of this handshake, both L and R know that they can send
   (and receive) messages end-to-end in both directions.

2.3.  Sorting Candidates

   Because the algorithm above searches all candidate pairs, if a
   working pair exists it will eventually find it no matter what order
   the candidates are tried in.  In order to produce faster (and better)
   results, the candidates are sorted in a specified order.  The
   resulting list of sorted candidate pairs is called the CHECK LIST.
   The algorithm is described in Section 4.1.2 but follows two general
   principles:

   o  Each agent gives its candidates a numeric priority, which is sent
      along with the candidate to the peer.

   o  The local and remote priorities are combined so that each agent
      has the same ordering for the candidate pairs.
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   The second property is important for getting ICE to work when there
   are NATs in front of L and R.  Frequently, NATs will not allow
   packets in from a host until the agent behind the NAT has sent a
   packet towards that host.  Consequently, ICE checks in each direction
   will not succeed until both sides have sent a check through their
   respective NATs.

   The agent works through this check list by sending a STUN request for
   the next candidate pair on the list periodically.  These are called
   ORDINARY CHECKS.

   In general, the priority algorithm is designed so that candidates of
   similar type get similar priorities and so that more direct routes
   (that is, through fewer media relays and through fewer NATs) are
   preferred over indirect ones (ones with more media relays and more
   NATs).  Within those guidelines, however, agents have a fair amount
   of discretion about how to tune their algorithms.

2.4.  Frozen Candidates

   The previous description only addresses the case where the agents
   wish to establish a media session with one COMPONENT (a piece of a
   media stream requiring a single transport address; a media stream may
   require multiple components, each of which has to work for the media
   stream as a whole to be work).  Sometimes (e.g., with RTP and RTCP in
   separate components), the agents actually need to establish
   connectivity for more than one flow.

   The network properties are likely to be very similar for each
   component (especially because RTP and RTCP are sent and received from
   the same IP address).  It is usually possible to leverage information
   from one media component in order to determine the best candidates
   for another.  ICE does this with a mechanism called "frozen
   candidates".

   Each candidate is associated with a property called its FOUNDATION.
   Two candidates have the same foundation when they are "similar" -- of
   the same type and obtained from the same host candidate and STUN/TURN
   server using the same protocol.  Otherwise, their foundation is
   different.  A candidate pair has a foundation too, which is just the
   concatenation of the foundations of its two candidates.  Initially,
   only candidate pairs with unique foundations are tested and other
   candidate pairs are marked "frozen".  When connectivity checks
   succeed for a candidate pair, other candidate pairs with the same
   foundation are unfrozen.  This avoids repeated checking of components
   that are superficially more attractive but in fact are likely to
   fail.
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   While we've described "frozen" here as a separate mechanism for
   expository purposes, in fact it is an integral part of ICE and the
   ICE prioritization algorithm automatically ensures that the right
   candidates are unfrozen and checked in the right order.  However, if
   the ICE usage does not utilize multiple components or media streams,
   it does not need to implement this algorithm.

2.5.  Security for Checks

   Because ICE is used to discover which addresses can be used to send
   media between two agents, it is important to ensure that the process
   cannot be hijacked to send media to the wrong location.  Each STUN
   connectivity check is covered by a message authentication code (MAC)
   computed using a key exchanged in the signaling channel.  This MAC
   provides message integrity and data origin authentication, thus
   stopping an attacker from forging or modifying connectivity check
   messages.  Furthermore, if for example a SIP [RFC3261] caller is
   using ICE, and their call forks, the ICE exchanges happen
   independently with each forked recipient.  In such a case, the keys
   exchanged in the signaling help associate each ICE exchange with each
   forked recipient.

2.6.  Concluding ICE

   ICE checks are performed in a specific sequence, so that high-
   priority candidate pairs are checked first, followed by lower-
   priority ones.  One way to conclude ICE is to declare victory as soon
   as a check for each component of each media stream completes
   successfully.  Indeed, this is a reasonable algorithm, and details
   for it are provided below.  However, it is possible that a packet
   loss will cause a higher-priority check to take longer to complete.
   In that case, allowing ICE to run a little longer might produce
   better results.  More fundamentally, however, the prioritization
   defined by this specification may not yield "optimal" results.  As an
   example, if the aim is to select low-latency media paths, usage of a
   relay is a hint that latencies may be higher, but it is nothing more
   than a hint.  An actual round-trip time (RTT) measurement could be
   made, and it might demonstrate that a pair with lower priority is
   actually better than one with higher priority.

   Consequently, ICE assigns one of the agents in the role of the
   CONTROLLING AGENT, and the other of the CONTROLLED AGENT.  The
   controlling agent nominates a candidate pair from the valid candidate
   pairs to be used for media.

   When nominating, the controlling agent lets the checks continue until
   at least one valid candidate pair for each media stream is found and
   then chooses a candidate pair from the valid candidate pairs and

https://datatracker.ietf.org/doc/html/rfc3261
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   sends a STUN request on the selected pair with a flag set to indicate
   to the controlled peer that it has nominated the selected pair.  This
   is shown in Figure 4.

   L                        R
   -                        -
   STUN request ->             \  L's
             <- STUN response  /  check

              <- STUN request  \  R's
   STUN response ->            /  check

   STUN request + flag ->      \  L's
             <- STUN response  /  check

                           Figure 4: Nomination

   Once the STUN transaction with the flag completes, both sides cancel
   any future checks for that media stream and will send and receive
   media using this pair.

   Once ICE is concluded, it can be restarted at any time for one or all
   of the media streams by either agent.  This is done by sending an
   updated candidate information indicating a restart.

2.7.  Lite Implementations

   In order for ICE to work, both agents need to support it.  However,
   certain agents will always be connected to the public Internet and
   have a public IP address at which it can receive packets from any
   correspondent.  To make it easier for these devices to support ICE,
   ICE defines a special type of implementation called LITE (in contrast
   to the normal FULL implementation).  Lite agents only use host
   candidates and do not generate connectivity checks or run the state
   machines, though they need to be able to respond to connectivity
   checks.  When a lite implementation connects with a full
   implementation, the full agent takes the role of the controlling
   agent, and the lite agent takes on the controlled role.  When two
   lite implementations connect, no checks are sent.

   For guidance on when a lite implementation is appropriate, see the
   discussion in Appendix A.

   It is important to note that the lite implementation was added to
   this specification to provide a stepping stone to full
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   implementation.  Even for devices that are always connected to the
   public Internet, a full implementation is preferable if achievable.

2.8.  Usages of ICE

   This document specifies generic use of ICE with protocols that
   provide means to exchange candidate information between the ICE
   peers.  The specific details of (i.e how to encode candidate
   information and the actual candidate exchange process) for different
   protocols using ICE are described in separate usage documents.  One
   possible way the agents can exchange the candidate information is to
   use [RFC3264] based Offer/Answer semantics as part of the SIP
   [RFC3261] protocol [I-D.ietf-mmusic-ice-sip-sdp].

3.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

   Readers should be familiar with the terminology defined in the STUN
   [RFC5389], and NAT Behavioral requirements for UDP [RFC4787].

   This specification makes use of the following additional terminology:

   ICE Session:  An ICE session consists of all ICE-related actions
      starting with the candidate gathering, followed by the
      interactions (candidate exchange, connectivity checks, nominations
      and keep-alives) between the ICE agents until all the candidates
      are released or ICE-restart is triggered.

   ICE Agent:  An ICE agent is the protocol implementation involved in
      the ICE candidate exchange.  There are two agents involved in a
      typical candidate exchange.

   Initiating Peer, Initiating Agent, Initiator:  An initiating agent is
      an ICE agent that initiates the ICE candidate exchange process.

   Responding Peer, Responding Agent, Responder:  A receiving agent is
      an ICE agent that receives and responds to the candidate exchange
      process initiated by the initiating agent.

   ICE Candidate Exchange, Candidate Exchange:  The process where the
      ICE agents exchange information (e.g., candidates and passwords)
      that is needed to perform ICE.  [RFC3264] Offer/Answer with SDP
      encoding is one example of a protocol that can be used for
      exchanging the candidate information.

https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc3264
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   Peer:  From the perspective of one of the agents in a session, its
      peer is the other agent.  Specifically, from the perspective of
      the initiating agent, the peer is the responding agent.  From the
      perspective of the responding agent, the peer is the initiating
      agent.

   Transport Address:  The combination of an IP address and transport
      protocol (such as UDP or TCP) port.

   Media, Media Stream, Media Session:  When ICE is used to setup
      multimedia sessions, the media is usually transported over RTP,
      and a media stream composes of a stream of RTP packets.  When ICE
      is used with other than multimedia sessions, the terms "media",
      "media stream", and "media session" are still used in this
      specification to refer to the IP data packets that are exchanged
      between the peers on the path created and tested with ICE.

   Candidate, Candidate Information:  A transport address that is a
      potential point of contact for receipt of media.  Candidates also
      have properties -- their type (server reflexive, relayed, or
      host), priority, foundation, and base.

   Component:  A component is a piece of a media stream requiring a
      single transport address; a media stream may require multiple
      components, each of which has to work for the media stream as a
      whole to work.  For media streams based on RTP, unless RTP and
      RTCP are multiplexed in the same port, there are two components
      per media stream -- one for RTP, and one for RTCP.

   Host Candidate:  A candidate obtained by binding to a specific port
      from an IP address on the host.  This includes IP addresses on
      physical interfaces and logical ones, such as ones obtained
      through Virtual Private Networks (VPNs).

   Server Reflexive Candidate:  A candidate whose IP address and port
      are a binding allocated by a NAT for an agent when it sent a
      packet through the NAT to a server, such as a STUN server.

   Peer Reflexive Candidate:  A candidate whose IP address and port are
      a binding allocated by a NAT for an agent when it sent a packet
      through the NAT to its peer.

   Relayed Candidate:  A candidate obtained from a relay server, such as
      a TURN server.

   Base:  The transport address that an agent sends from for a
      particular candidate.  For host, server reflexive and peer
      reflexive candidates the base is the same as the host candidate.
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      For relayed candidates the base is the same as the relayed
      candidate (i.e., the transport address used by the TURN server to
      send from).

   Foundation:  An arbitrary string used in the freezing algorithm to
      group similar candidates.  Is the same for two candidates that
      have the same type, base IP address, protocol (UDP, TCP, etc.),
      and STUN or TURN server.  If any of these are different, then the
      foundation will be different.

   Local Candidate:  A candidate that an agent has obtained and may send
      to its peer.

   Remote Candidate:  A candidate that an agent received from its peer.

   Default Destination/Candidate:  The default destination for a
      component of a media stream is the transport address that would be
      used by an agent that is not ICE-aware.  A default candidate for a
      component is one whose transport address matches the default
      destination for that component.

   Candidate Pair:  A pair of a local candidate and a remote candidate.

   Check, Connectivity Check, STUN Check:  A STUN Binding request for
      the purposes of verifying connectivity.  A check is sent from the
      base of the local candidate to the remote candidate of a candidate
      pair.

   Check List:  An ordered set of candidate pairs that an agent will use
      to generate checks.

   Ordinary Check:  A connectivity check generated by an agent as a
      consequence of a timer that fires periodically, instructing it to
      send a check.

   Triggered Check:  A connectivity check generated as a consequence of
      the receipt of a connectivity check from the peer.

   Valid List:  An ordered set of candidate pairs for a media stream
      that have been validated by a successful STUN transaction.

   Check List Set:  The ordered list of all check lists.  The order is
      determined by each ICE usage.

   Full Implementation:  An ICE implementation that performs the
      complete set of functionality defined by this specification.
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   Lite Implementation:  An ICE implementation that omits certain
      functions, implementing only as much as is necessary for a peer
      implementation that is full to gain the benefits of ICE.  Lite
      implementations do not maintain any of the state machines and do
      not generate connectivity checks.

   Controlling Agent:  The ICE agent that nominates a candidate pair.
      In any session, one agent is always controlling.  The other is the
      controlled agent.

   Controlled Agent:  The ICE agent that waits for the controlling agent
      to nominate a candidate pair and selects the candidate nominated
      by the controlling side.

   Nomination, Regular Nomination:  The process of the controlling agent
      indicating to the controlled agent which candidate pair the
      controlled agent should use to send media.

   Nominated:  If a valid candidate pair has its nominated flag set, it
      means that it may be selected by ICE for sending and receiving
      media.

   Selected Pair, Selected Candidate Pair:  The candidate pair selected
      by an ICE agent for sending media.  Each of its candidates is
      called the selected candidate.  Before a pair has been selected,
      any valid candidate pair can be used for sending and receiving
      media.

   Using Protocol, ICE Usage:  The protocol that uses ICE for NAT
      traversal.  A usage specification defines the protocol-specific
      details on how the procedures defined here are applied to that
      protocol.

4.  ICE Candidate Gathering and Exchange

   As part of ICE processing, both the initiating and responding agents
   exchange encoded candidate information as defined by the Usage
   Protocol (ICE Usage).  Specifics of the encoding mechanism and the
   semantics of candidate information exchange is out of scope of this
   specification.

   However at a higher level, the diagram below shows how the ICE agents
   (initiator and responder) exchange their respective candidate(s)
   information.
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             Initiating                      Responding
               Agent                           Agent
               (I)                             (R)
   Gather,      |                               |
   prioritize,  |                               |
   eliminate    |                               |
   redundant    |                               |
   candidates,  |                               |
   Encode       |                               |
   candidates   |                               |
                |   I's Candidate Information   |
                |------------------------------>|
                |                               | Gather,
                |                               | prioritize,
                |                               | eliminate
                |                               | redundant
                |                               | candidates,
                |                               | Encode
                |                               | candidates
                |   R's Candidate Information   |
                |<------------------------------|
                |                               |

            Figure 5: Candidate Gathering and Exchange Sequence

   As shown, the agents involved in the candidate exchange perform (1)
   candidate gathering, (2) candidate prioritization, (3) redundant
   candidate elimination, (4) (possibly) default candidate selection,
   and (5) sending of the candidates to the peer.  All but the last of
   these five steps differ for full and lite implementations.

4.1.  f Implementation

4.1.1.  Gathering Candidates

   An agent gathers candidates when it believes that communication is
   imminent.  An initiating agent can do this based on a user interface
   cue, or based on an explicit request to initiate a session.  Every
   candidate is a transport address.  It also has a type and a base.
   Four types are defined and gathered by this specification -- host
   candidates, server reflexive candidates, peer reflexive candidates,
   and relayed candidates.  The server reflexive candidates are gathered
   using STUN or TURN, and relayed candidates are obtained through TURN.
   Peer reflexive candidates are obtained in later phases of ICE, as a
   consequence of connectivity checks.

   The process for gathering candidates at the responding agent is
   identical to the process for the initiating agent.  It is RECOMMENDED
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   that the responding agent begins this process immediately on receipt
   of the candidate information, prior to alerting the user.  Such
   gathering MAY begin when an agent starts.

4.1.1.1.  Host Candidates

   Host candidates are obtained by binding to ports on an IP address
   attached to an interface (physical or virtual, including VPN
   interfaces) on the host.

   For each component of each media stream the agent wishes to use, the
   agent SHOULD obtain a candidate on each IP address that the host has,
   with the exceptions listed below.  The agent obtains each candidate
   by binding to a UDP port on the specific IP address.  A host
   candidate (and indeed every candidate) is always associated with a
   specific component for which it is a candidate.

   Each component has an ID assigned to it, called the component ID.
   For RTP-based media streams, unless both RTP and RTCP are multiplexed
   in the same UDP port (RTP/RTCP multiplexing), the RTP itself has a
   component ID of 1, and RTCP a component ID of 2.  In case of RTP/RTCP
   multiplexing, a component ID of 1 is used for both RTP and RTCP.

   When candidates are obtained, unless the agent knows for sure that
   RTP/RTCP multiplexing will be used (i.e. the agent knows that the
   other agent also supports, and is willing to use, RTP/RTCP
   multiplexing), or unless the agent only supports RTP/RTCP
   multiplexing, the agent MUST obtain a separate candidate for RTCP.
   If an agent has obtained a candidate for RTCP, and ends up using RTP/
   RTCP multiplexing, the agent does not need to perform connectivity
   checks on the RTCP candidate.  Absence of a component ID 2 as such
   does not imply use of RTCP/RTP multiplexing, as it could also mean
   that RTCP is not used.

   If an agent is using separate candidates for RTP and RTCP, it will
   end up with 2*K host candidates if an agent has K IP addresses.

   Note that the responding agent, when obtaining its candidates, will
   typically know if the other agent supports RTP/RTCP multiplexing, in
   which case it will not need to obtain a separate candidate for RTCP.
   However, absence of a component ID 2 as such does not imply use of
   RTCP/RTP multiplexing, as it could also mean that RTCP is not used.

   For other than RTP-based streams, use of multiple components is
   discouraged since using them increases the complexity of ICE
   processing.  If multiple components are needed, the component IDs
   SHOULD start with 1 and increase by 1 for each component.
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   The base for each host candidate is set to the candidate itself.

   The host candidates are gathered from all IP addresses with the
   following exceptions:

   o  Addresses from a loopback interface MUST NOT be included in the
      candidate addresses.

   o  Deprecated IPv4-compatible IPv6 addresses [RFC4291] and IPv6 site-
      local unicast addresses [RFC3879] MUST NOT be included in the
      address candidates.

   o  IPv4-mapped IPv6 addresses SHOULD NOT be included in the address
      candidates unless the application using ICE does not support IPv4
      (i.e., is an IPv6-only application [RFC4038]).

   o  If one or more host candidates corresponding to an IPv6 address
      generated using a mechanism that prevents location tracking
      [RFC7721] are gathered, host candidates corresponding to IPv6
      addresses that do allow location tracking, that are configured on
      the same interface, and are part of the same network prefix MUST
      NOT be gathered; and host candidates corresponding to IPv6 link-
      local addresses MUST NOT be gathered.

4.1.1.2.  Server Reflexive and Relayed Candidates

   An agent SHOULD gather server reflexive and relayed candidates.
   These requirements are at SHOULD strength to allow for provider
   variation.  Use of STUN and TURN servers may be unnecessary in
   certain networks and use of TURN servers may be expensive, so some
   deployments may elect not to use them.  If an agent does not gather
   server reflexive or relayed candidates, it is RECOMMENDED that the
   functionality be implemented and just disabled through configuration,
   so that it can be re-enabled through configuration if conditions
   change in the future.

   The agent pairs each host candidate with the STUN or TURN servers
   with which it is configured or has discovered by some means.  It is
   RECOMMENDED that a domain name be configured, and the DNS procedures
   in [RFC5389] (using SRV records with the "stun" service) be used to
   discover the STUN server, and the DNS procedures in [RFC5766] (using
   SRV records with the "turn" service) be used to discover the TURN
   server.

   When multiple STUN or TURN servers are available (or when they are
   learned through DNS records and multiple results are returned), the
   agent MAY gather candidates for all of them and SHOULD gather
   candidates for at least one of them (one STUN server and one TURN

https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc3879
https://datatracker.ietf.org/doc/html/rfc4038
https://datatracker.ietf.org/doc/html/rfc7721
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5766
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   server).  It does so by pairing host candidates with STUN or TURN
   servers and, for each pair, the agent sends a Binding or Allocate
   request to the server from the host candidate.  Binding requests to a
   STUN server are not authenticated, and any ALTERNATE-SERVER attribute
   in a response is ignored.  Agents MUST support the backwards
   compatibility mode for the Binding request defined in [RFC5389].
   Allocate requests SHOULD be authenticated using a

   Every Ta milliseconds thereafter, the agent can generate another new
   STUN or TURN transaction.  This transaction can either be a retry of
   a previous transaction that failed with a recoverable error (such as
   authentication failure), or a transaction for a new host candidate
   and STUN or TURN server pair.  The agent SHOULD NOT generate
   transactions more frequently than one every Ta milliseconds.  See

Section 14 for guidance on how to set Ta and the STUN retransmit
   timer, RTO.

   The agent will receive a Binding or Allocate response.  A successful
   Allocate response will provide the agent with a server reflexive
   candidate (obtained from the mapped address) and a relayed candidate
   in the XOR-RELAYED-ADDRESS attribute.  If the Allocate request is
   rejected because the server lacks resources to fulfill it, the agent
   SHOULD instead send a Binding request to obtain a server reflexive
   candidate.  A Binding response will provide the agent with only a
   server reflexive candidate (also obtained from the mapped address).
   The base of the server reflexive candidate is the host candidate from
   which the Allocate or Binding request was sent.  The base of a
   relayed candidate is that candidate itself.  If a relayed candidate
   is identical to a host candidate (which can happen in rare cases),
   the relayed candidate MUST be discarded.

   If an IPv6-only agent is in a network that utilizes NAT64 [RFC6146]
   and DNS64 [RFC6147] technologies, it may also gather IPv4 server
   reflexive and/or relayed candidates from IPv4-only STUN or TURN
   servers.  IPv6-only agents SHOULD also utilize IPv6 prefix discovery
   [RFC7050] to discover the IPv6 prefix used by NAT64 (if any) and
   generate server reflexive candidates for each IPv6-only interface
   accordingly.  The NAT64 server reflexive candidates are prioritized
   like IPv4 server reflexive candidates.

4.1.1.3.  Computing Foundations

   The agent assigns each candidate a foundation.  Two candidates MUST
   have the same foundation when all of the following are true:

   o  They have the same type (host, relayed, server reflexive, or peer
      reflexive).

https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc6146
https://datatracker.ietf.org/doc/html/rfc6147
https://datatracker.ietf.org/doc/html/rfc7050
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   o  Their bases have the same IP address (the ports can be different).

   o  For reflexive and relayed candidates, the STUN or TURN servers
      used to obtain them have the same IP address.

   o  They were obtained using the same transport protocol (TCP, UDP).

   Similarly, two candidates MUST have different foundations if their
   types are different, their bases have different IP addresses, the
   STUN or TURN servers used to obtain them have different IP addresses,
   or their transport protocols are different.

4.1.1.4.  Keeping Candidates Alive

   Once server reflexive and relayed candidates are allocated, they MUST
   be kept alive until ICE processing has completed, as described in

Section 7.3.  For server reflexive candidates learned through a
   Binding request, the bindings MUST be kept alive by additional
   Binding requests to the server.  Refreshes for allocations are done
   using the Refresh transaction, as described in [RFC5766].  The
   Refresh requests will also refresh the server reflexive candidate.

4.1.2.  Prioritizing Candidates

   The prioritization process results in the assignment of a priority to
   each candidate.  Each candidate for a media stream MUST have a unique
   priority that MUST be a positive integer between 1 and (2**31 - 1).
   This priority will be used by ICE to determine the order of the
   connectivity checks and the relative preference for candidates.

   An agent SHOULD compute this priority using the formula in
Section 4.1.2.1 and choose its parameters using the guidelines in
Section 4.1.2.2.  If an agent elects to use a different formula, ICE

   may take longer to converge since both agents will not be coordinated
   in their checks.

   The process for prioritizing candidates is common across the
   initiating and the responding agent.

4.1.2.1.  Recommended Formula

   The recommended formula combines a preference for the candidate type
   (server reflexive, peer reflexive, relayed, and host), a preference
   for IP address for which the candidate was obtained, and component ID
   using the following formula:

https://datatracker.ietf.org/doc/html/rfc5766
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   priority = (2^24)*(type preference) +
              (2^8)*(local preference) +
              (2^0)*(256 - component ID)

   The type preference MUST be an integer from 0 (lowest preference) to
   126 (highest preference) inclusive and MUST be identical for all
   candidates of the same type and MUST be different for candidates of
   different types.  The type preference for peer reflexive candidates
   MUST be higher than that of server reflexive candidates.  Setting the
   value to 0 means that candidates of this type will only be used as a
   last resort.  Note that candidates gathered based on the procedures
   of Section 4.1.1 will never be peer reflexive candidates; candidates
   of these type are learned from the connectivity checks performed by
   ICE.

   The local preference MUST be an integer from 0 (lowest preference) to
   65535 (highest preference) inclusive.  When there is only a single IP
   address, this value SHOULD be set to 65535.  If there are multiple
   candidates for a particular component for a particular media stream
   that have the same type, the local preference MUST be unique for each
   one.  If an agent is dual-stack, the local preference should be set
   according to the current best practice described in
   [I-D.ietf-ice-dualstack-fairness].

   The component ID MUST be an integer between 1 and 256 inclusive.

4.1.2.2.  Guidelines for Choosing Type and Local Preferences

   The RECOMMENDED values for type preferences are 126 for host
   candidates, 110 for peer reflexive candidates, 100 for server
   reflexive candidates, and 0 for relayed candidates.

   If an agent is multihomed and has multiple IP addresses, the
   recommendations in [I-D.ietf-ice-dualstack-fairness] SHOULD be
   followed.  If multiple TURN servers are used, local priorities for
   the candidates obtained from the TURN servers are chosen in a similar
   fashion as for multihomed local candidates: the local preference
   value is used to indicate a preference among different servers but
   the preference MUST be unique for each one.

   When choosing type preferences, agents may take into account factors
   such as latency, packet loss, cost, network topology, security,
   privacy, and others.
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4.1.3.  Eliminating Redundant Candidates

   Next, agents (initiating and responding) eliminate redundant
   candidates.  Two candidates can have the same transport address yet
   have different bases, and these would not be considered redundant.
   Frequently, a server reflexive candidate and a host candidate will be
   redundant when the agent is not behind a NAT.  A candidate is
   redundant if and only if its transport address and base equal those
   of another candidate.  The agent SHOULD eliminate the redundant
   candidate with the lower priority.

4.2.  Lite Implementation Procedures

   Lite implementations only utilize host candidates.  A lite
   implementation MUST, for each component of each media stream,
   allocate zero or one IPv4 candidates.  It MAY allocate zero or more
   IPv6 candidates, but no more than one per each IPv6 address utilized
   by the host.  Since there can be no more than one IPv4 candidate per
   component of each media stream, if an agent has multiple IPv4
   addresses, it MUST choose one for allocating the candidate.  If a
   host is dual-stack, it is RECOMMENDED that it allocate one IPv4
   candidate and one global IPv6 address.  With the lite implementation,
   ICE cannot be used to dynamically choose amongst candidates.
   Therefore, including more than one candidate from a particular scope
   is NOT RECOMMENDED, since only a connectivity check can truly
   determine whether to use one address or the other.

   Each component has an ID assigned to it, called the component ID.
   For RTP-based media streams, unless RTCP is multiplexed in the same
   port with RTP, the RTP itself has a component ID of 1, and RTCP a
   component ID of 2.  If an agent is using RTCP without multiplexing,
   it MUST obtain candidates for it.  However, absence of a component ID
   2 as such does not imply use of RTCP/RTP multiplexing, as it could
   also mean that RTCP is not used.

   Each candidate is assigned a foundation.  The foundation MUST be
   different for two candidates allocated from different IP addresses,
   and MUST be the same otherwise.  A simple integer that increments for
   each IP address will suffice.  In addition, each candidate MUST be
   assigned a unique priority amongst all candidates for the same media
   stream.  This priority SHOULD be equal to:

   priority = (2^24)*(126) +
              (2^8)*(IP precedence) +
              (2^0)*(256 - component ID)
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   If a host is v4-only, it SHOULD set the IP precedence to 65535.  If a
   host is v6 or dual-stack, the IP precedence SHOULD be the precedence
   value for IP addresses described in RFC 6724 [RFC6724].

   Next, an agent chooses a default candidate for each component of each
   media stream.  If a host is IPv4-only, there would only be one
   candidate for each component of each media stream, and therefore that
   candidate is the default.  If a host is IPv6 or dual-stack, the
   selection of default is a matter of local policy.  This default
   SHOULD be chosen such that it is the candidate most likely to be used
   with a peer.  For IPv6-only hosts, this would typically be a globally
   scoped IPv6 address.  For dual-stack hosts, the IPv4 address is
   RECOMMENDED.

   The procedures in this section is common across the initiating and
   responding agents.

4.3.  Encoding the Candidate Information

   Agents (initiating and responding) need the following information
   about candidates to be exchanged.  How this information is encoded or
   exchanged is out of scope of this specification.  The using protocol
   should provide a means for exchanging new, additional information in
   the future, including per-candidate information.

   Candidates:   One or more candidates.  For each candidate:

      Address:  The IP address and transport protocol port of the
         candidate.

      Transport:  The transport protocol of the candidate.  This MAY be
         omitted if the using protocol will only ever run over a single
         transport protocol.  If it runs over more than one, or if
         others are anticipated to be used in the future, this should be
         present.

      Foundation:  A sequence of up to 32 characters.

      Component ID:  The component ID of the candidate.  This MAY be
         omitted if the using protocol does not use the concept of
         components.

      Priority:  The 32-bit priority of the candidate.

      Type:  The type of the candidate.

https://datatracker.ietf.org/doc/html/rfc6724
https://datatracker.ietf.org/doc/html/rfc6724
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      Related Address and Port:  The related IP address and port of the
         candidate.  These MAY be omitted or set to invalid values if
         the agent does not want to reveal them, e.g., for privacy
         reasons.

      Extensibility Parameters:  The using protocol should define some
         means for adding new per-candidate ICE parameters in the
         future.

   Lite or Full:   Whether the agent is a lite agent or full agent.

   Connectivity check pacing value:  The pacing value for connectivity
      checks that the agent wishes to use.  If the agent wishes to use a
      value other than default, it MUST include this in the exchange.

   Username Fragment and Password:  Values used to perform connectivity
      checks.  The username fragment MUST contain at least 24 bits of
      randomness, and the password MUST contain at least 128 bits of
      randomness.

   Extensions:  New media-stream or session-level attributes (ice-
      options).

   If the using protocol is using the ICE mismatch feature, a way is
   needed to convey this parameter in answers.  It is a boolean flag.

   The exchange of parameters is symmetric; both agents need to send the
   same set of attributes as defined above.

   The using protocol may (or may not) need to deal with backwards
   compatibility with older implementations that do not support ICE.  If
   the fallback mechanism is being used, then presumably the using
   protocol provides a way of conveying the default candidate (its IP
   address and port) in addition to the ICE parameters.

   Once an agent has sent its candidate information, it MUST be prepared
   to receive both STUN and media packets on each candidate.  As
   discussed in Section 11.1, media packets can be sent to a candidate
   prior to its appearance as the default destination for media.

4.4.  Verifying ICE Support

   Certain middleboxes, such as ALGs, may alter the ICE candidate
   information that breaks ICE.  If the using protocol is vulnerable to
   this kind of changes, called ICE mismatch, the responding agent needs
   to detect this and signal this back to the initiating agent.  The
   details on whether this is needed and how it is done is defined by
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   the usage specifications.  One exception to the above is that an
   initiating agent would never indicate ICE mismatch.

5.  ICE Candidate Processing

   Once an agent has gathered its candidates and exchanged candidates
   with its peer (Section 4), it will determine its own role.  In
   addition, full implementations will form check lists, and begin
   performing connectivity checks with the peer.

5.1.  Procedures for Full Implementation

5.1.1.  Determining Role

   For each session, each agent (Initiating and Responding) takes on a
   role.  There are two roles -- controlling and controlled.  The
   controlling agent is responsible for the choice of the final
   candidate pairs used for communications.  For a full agent, this
   means nominating the candidate pairs that can be used by ICE for each
   media stream, and for updating the peer with the ICE's selection,
   when needed.  The controlled agent is told which candidate pairs to
   use for each media stream, and does not require updating the peer to
   signal this information.  The sections below describe in detail the
   actual procedures followed by controlling and controlled nodes.

   The rules for determining the role and the impact on behavior are as
   follows:

   Both agents are full:  The Initiating Agent which started the ICE
      processing MUST take the controlling role, and the other MUST take
      the controlled role.  Both agents will form check lists, run the
      ICE state machines, and generate connectivity checks.  The
      controlling agent will execute the logic in Section 7.1 to
      nominate pairs that will be selected by ICE, and then both agents
      end ICE as described in Section 7.1.2.

   One agent full, one lite:  The full agent MUST take the controlling
      role, and the lite agent MUST take the controlled role.  The full
      agent will form check lists, run the ICE state machines, and
      generate connectivity checks.  That agent will execute the logic
      in Section 7.1 to nominate pairs that will be selected by ICE, and
      use the logic in Section 7.1.2 to end ICE.  The lite
      implementation will just listen for connectivity checks, receive
      them and respond to them, and then conclude ICE as described in

Section 7.2.  For the lite implementation, the state of ICE
      processing for each media stream is considered to be Running, and
      the state of ICE overall is Running.
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   Both lite:  The Initiating Agent which started the ICE processing
      MUST take the controlling role, and the other MUST take the
      controlled role.  In this case, no connectivity checks are ever
      sent.  Rather, once the candidates are exchanged, each agent
      performs the processing described in Section 7 without
      connectivity checks.  It is possible that both agents will believe
      they are controlled or controlling.  In the latter case, the
      conflict is resolved through glare detection capabilities in the
      signaling protocol enabling the candidate exchange.  The state of
      ICE processing for each media stream is considered to be Running,
      and the state of ICE overall is Running.

   Once the roles are determined for a session, they persist througout
   the lifetime of the session.  The roles can be re-determined as part
   of an ICE restart (Section 8), but an ICE agent MUST NOT re-determine
   the role as part of an ICE restart unless one or more of the
   following criteria is fulfilled:

   Full becomes lite:  If the controlling agent is full, and switches to
      lite, the roles MUST be re-determined if the peer agent is also
      full.

   Role conflict:  If the ICE restart causes a role conflict, the roles
      might be re-determined due to the role conflict procedures in

Section 6.3.1.1.

   NOTE: There are certain 3PCC scenarios where an ICE restart might
   cause a role conflict.

   NOTE: The ICE agents needs to inform each other whether they are full
   or lite before the roles are determined.  The mechanism for that is
   signalling protocol specific, and outside the scope of the document.

   An ICE agent MUST be prepared that the peer might re-determine the
   roles as part of any ICE restart, even if the criteria for doing so
   are not fulfilled.  This can happen if the peer is compliant with an
   older version of this specification.

5.1.2.  Forming the Check Lists

   There is one check list for each media stream.  To form a check list,
   an agent (initiating and responding) forms candidate pairs, computes
   pair priorities, orders pairs by priority, prunes pairs, removes
   lower-priority pairs, and sets check list states.  If candidates are
   added to a check list (e.g, due to detection of peer reflexive
   candidates), the agent will re-perform these steps for the updated
   check list.
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5.1.2.1.  Check List State

   Each CHECK LIST has a state, which captures the state of ICE checks
   for the media stream associated with the CHECK LIST.  The states are:

   Running:  The check list is neither Completed yet nor Failed yet.
      Check lists are initially set to the Running state.

   Completed:  The check list has a selected candidate pair for each
      component of the media stream.

   Failed:  The check list does not have a valid candidate pair for each
      component of the media stream and all of the candidate pairs in
      the check list are in either the Failed or Succeeded state.  In
      other words, at least one component of the check list has
      candidate pairs that are all in the Failed state, which means the
      component has failed, which means the check list has failed.

   Additionally, a check list with at least one pair in the Waiting
   state is called "active", while a check list with all pairs in the
   frozen state is called "Frozen".

5.1.2.2.  Forming Candidate Pairs

   The agent pairs each local candidate with each remote candidate for
   the same component of the same media stream with the same IP address
   family.  It is possible that some of the local candidates won't get
   paired with remote candidates, and some of the remote candidates
   won't get paired with local candidates.  This can happen if one agent
   doesn't include candidates for the all of the components for a media
   stream.  If this happens, the number of components for that media
   stream is effectively educed, and considered to be equal to the
   minimum across both agents of the maximum component ID provided by
   each agent across all components for the media stream.

   In the case of RTP, this would happen when one agent provides
   candidates for RTCP, and the other does not.  As another example, the
   initiating agent can multiplex RTP and RTCP on the same port
   [RFC5761].  However, since the initiating agent doesn't know if the
   peer agent can perform such multiplexing, it includes candidates for
   RTP and RTCP on separate ports.  If the peer agent can perform such
   multiplexing, it would include just a single component for each
   candidate -- for the combined RTP/RTCP mux.  ICE would end up acting
   as if there was just a single component for this candidate.

   With IPv6 it is common for a host to have multiple host candidates
   for each interface.  To keep the amount of resulting candidate pairs
   reasonable and to avoid candidate pairs that are highly unlikely to

https://datatracker.ietf.org/doc/html/rfc5761
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   work, IPv6 link-local addresses [RFC4291] MUST NOT be paired with
   other than link-local addresses.

   The candidate pairs whose local and remote candidates are both the
   default candidates for a particular component is called the default
   candidate pair for that component.  This is the pair that would be
   used to transmit media if both agents had not been ICE aware.

   Figure 6 shows the properties of and relationships between transport
   addresses, candidates, candidate pairs, and check lists.
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       +--------------------------------------------+
       |                                            |
       | +---------------------+                    |
       | |+----+ +----+ +----+ |   +Type            |
       | || IP | |Port| |Tran| |   +Priority        |
       | ||Addr| |    | |    | |   +Foundation      |
       | |+----+ +----+ +----+ |   +Component ID    |
       | |      Transport      |   +Related Address |
       | |        Addr         |                    |
       | +---------------------+   +Base            |
       |             Candidate                      |
       +--------------------------------------------+
       *                                         *
       *    *************************************
       *    *
     +-------------------------------+
    .|                               |
     | Local     Remote              |
     | +----+    +----+   +default?  |
     | |Cand|    |Cand|   +valid?    |
     | +----+    +----+   +nominated?|
     |                    +State     |
     |                               |
     |                               |
     |          Candidate Pair       |
     +-------------------------------+
     *                              *
     *                  ************
     *                  *
     +------------------+
     |  Candidate Pair  |
     +------------------+
     +------------------+
     |  Candidate Pair  |
     +------------------+
     +------------------+
     |  Candidate Pair  |
     +------------------+

            Check
            List

               Figure 6: Conceptual Diagram of a Check List
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5.1.2.3.  Computing Pair Priority and Ordering Pairs

   The agent computes a priority for each candidate pair.  Let G be the
   priority for the candidate provided by the controlling agent.  Let D
   be the priority for the candidate provided by the controlled agent.
   The priority for a pair is computed as follows, where G>D?1:0 is an
   expression whose value is 1 if G is greater than D, and 0 otherwise.

      pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)

   The agent sorts each check list in decreasing order of candidate pair
   priority.  If two pairs have identical priority, the ordering amongst
   them is arbitrary.

5.1.2.4.  Pruning the Pairs

   This sorted list of candidate pairs is used to determine a sequence
   of connectivity checks that will be performed.  Each check involves
   sending a request from a local candidate to a remote candidate.
   Since an agent cannot send requests directly from a reflexive
   candidate (server reflexive or peer reflexive), but only from its
   base, the agent next goes through the sorted list of candidate pairs.
   For each pair where the local candidate is reflexive, the candidate
   MUST be replaced by its base.

   The agent prunes each check list.  This is done by removing a
   candidate pair if it is redundant with a higher priority candidate
   pair in the same check list.  Two candidate pairs are redundant if
   their local candidates have the same base and their remote candidates
   are identical.  The result is a sequence of ordered candidate pairs,
   called the check list for that media stream.

5.1.2.5.  Removing lower-priority Pairs

   In order to limit the attacks described in Section 16.4.1, an agent
   MUST limit the total number of connectivity checks the agent performs
   across all check lists to a specific value, and this value MUST be
   configurable.  A default of 100 is RECOMMENDED.  This limit is
   enforced by discarding the lower-priority candidate pairs until there
   are less than 100.  It is RECOMMENDED that a lower value be utilized
   when possible, set to the maximum number of plausible checks that
   might be seen in an actual deployment configuration.  The requirement
   for configuration is meant to provide a tool for fixing this value in
   the field if, once deployed, it is found to be problematic.
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5.1.2.6.  Computing Candidate Pair States

   Each candidate pair in the check list has a foundation (the
   combination of the foundations of the local and remote candidates in
   the pair) and one of the following states:

   Waiting:  A check has not been sent for this pair, but the pair is
      not Frozen.

   In-Progress:  A check has been sent for this pair, but the
      transaction is in progress.

   Succeeded:  A check has been sent for this pair, and produced a
      successful result.

   Failed:  A check has been sent for this pair, and failed (a response
      to the check was never received, or a failure response was
      received).

   Frozen:  A check for this pair has not been sent, and it can not be
      sent until the pair is unfrozen and moved into the Waiting state.

   Pairs move between states as shown in Figure 7.
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      +-----------+
      |           |
      |           |
      |  Frozen   |
      |           |
      |           |
      +-----------+
            |
            |unfreeze
            |
            V
      +-----------+         +-----------+
      |           |         |           |
      |           | perform |           |
      |  Waiting  |-------->|In-Progress|
      |           |         |           |
      |           |         |           |
      +-----------+         +-----------+
                                  / |
                                //  |
                              //    |
                            //      |
                           /        |
                         //         |
               failure //           |success
                     //             |
                    /               |
                  //                |
                //                  |
              //                    |
             V                      V
      +-----------+         +-----------+
      |           |         |           |
      |           |         |           |
      |   Failed  |         | Succeeded |
      |           |         |           |
      |           |         |           |
      +-----------+         +-----------+

                         Figure 7: Pair State FSM

   1.  The initial states for each pair in a CHECK LIST are computed by
       performing the following sequence of steps:

   2.  The check lists are placed in an ordered list (the order is
       determined by each ICE usage), called the check list set.
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   3.  The agent initially places all candidate pairs in the Frozen
       state.

   4.  The agent sets all of the check lists in the check list set to
       the Running state.

   5.  For each foundation, the agent sets the state of exactly one
       candidate pair to the Waiting state (unfreezing it).  The
       candidate pair to unfreeze is choosen by finding the first
       candidate pair (ordered by lowest component ID and then highest
       priority if component IDs are equal) in the first check list
       (ordered by the check list set) that has that foundation.

   NOTE: The procedures above are different from RFC5245, where only
   candidate pairs in the first check list of were initially placed in
   the Waiting state.  Now it applies to candidate pairs in the the
   first check list which have that foundation, even if the first check
   list to have that foundation is not the first check list in the check
   list set.

   The table in Figure 8 illustrates an example.

 Table legend:

 Each row (m1, m2,...) represents a check list associated with a media
 stream. m1 represents the first check list in the check list set.

 Each column (f1, f2,...) represents a foundation. Every candidate pair
 within a given column share the same foundation.

 f-cp represents a candidate pair in the Frozen state.

 w-cp represents a candidate pair in the Waiting state.

 1. The agent sets all of the pairs in the check list set to the Frozen
 state.

       f1    f2    f3    f4    f5
     -----------------------------
 m1 | f-cp  f-cp  f-cp
    |
 m2 | f-cp  f-cp  f-cp  f-cp
    |
 m3 | f-cp                    f-cp

https://datatracker.ietf.org/doc/html/rfc5245
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 2. For each foundation, the candidate pair with the lowest component ID
 is placed in the Waiting state, unless a candidate pair associated with
 the same foundation has already been put in the Waiting state in one of
 the other examined check lists in the check list set.

       f1    f2    f3    f4    f5
     -----------------------------
 m1 | w-cp  w-cp  w-cp
    |
 m2 | f-cp  f-cp  f-cp  w-cp
    |
 m3 | f-cp                    w-cp

 In the first check list (m1) the candidate pair for each foundation is
 placed in the Waiting state, as no pairs for the same foundations have
 yet been placed in the Waiting state.

 In the second check list (m2) the candidate pair for foundation f4 is
 placed in the Waiting state. The candidate pair for foundations f1, f2
 and f3 are kept in the Frozen state, as candidate pairs for those
 foundations have already been placed in the Waiting state (within check
 list m1).

 In the third check list (m3) the candidate pair for foundation f5 is
 placed in the Waiting state. The candidate pair for foundation f1 is
 kept in the Frozen state, as a candidate pair for that foundation have
 already been placed in the Waiting state (within check list m1).

 Once each check list have been processed, one candidate pair for each
 foundation in the check list set has been placed in the Waiting state.

                       Figure 8: Initial Pair State

5.1.3.  ICE State

   The ICE agent has a state determined by the state of the check lists.
   The state is Completed if all check lists are Completed, Failed if
   all check lists are Failed, and Running otherwise.

5.1.4.  Scheduling Checks

5.1.4.1.  Triggered Check Queue

   Once the agent has computed the check lists and created the check
   list set, as described in Section 5.1.2, the agent will begin
   performing connectivity checks (ordinary and triggered).  For
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   triggered connectivity checks, the agent maintains a FIFO queue for
   each check list, called the TRIGGERED CHECK QUEUE, which contains
   candidate pairs for which checks are to be sent at the next available
   opportunity.

5.1.4.2.  Performing Connectivity Checks

   The generation of ordinary and triggered connectivity checks is
   governed by timer Ta.  As soon as the initial states for the
   candidate pairs in the check list set have been set, a check is
   performed for a candidate pair within the first check list in the
   Running state, following the procedures in Section 6.  After that,
   whenever Ta fires the next check list in the Running state in the
   check list set is selected, and a check is performed for a candidate
   within that check list.  After the last check list in the Running
   state in the check list set has been processed, the first check list
   is selected again.  Etc.

   Whenever Ta fires, the agent will perform a check for a candidate
   pair within the selected check list by performing the following
   steps:

   1.  If the triggered check queue associated with the check list
       contains one or more candidate pairs, the agent removes the top
       pair from the queue, performs a connectivity check on that pair,
       puts the candidate pair state to In-Progress, and aborts the
       subsequent steps.

   2.  If there is no candidate pair in the Waiting state, and if there
       are one or more pairs in the Frozen state, for each pair in the
       Frozen state the agent checks the foundation associated with the
       pair.  For a given foundation, if there is no pair (in any check
       list in the check list set) in the Waiting or In-Progress state,
       the agent puts the candidate pair state to Waiting and continues
       with the next step.

   3.  If there are one or more candidate pairs in the Waiting state,
       the agent selects the highest-priority candidate pair (if there
       are multiple pairs with the same priority, the pair with the
       lowest component ID is selected) in the Waiting state, performs a
       connectivity check on that pair, puts the candidate pair par
       state to In-Progress, and abort the subsequent steps.

   4.  If this step is reached, no check could be performed for the
       selected check list.  So, without waiting for timer Ta to expire
       again, select the next check list in the Running state and return
       to step #1.  If this happens for every single check list in the
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       Running state, meaning there are no remaining candidate pairs to
       perform connectivity checks for, abort these steps.

   Once the agent has selected a candidate pair, for which a
   connectivity check is to be performed, the agent performs the check
   by sending a STUN request from the base associated with the local
   candidate of the pair to the remote candidate of the pair, as
   described in Section 6.2.4.

   Based on local policy, an agent MAY choose to terminate performing
   the connectivity checks for one or more checks lists in the check
   list set at any time.  However, only the controlling agent is allowed
   to conclude ICE (Section 7).

   To compute the message integrity for the check, the agent uses the
   remote username fragment and password learned from the candidate
   information obtained from its peer.  The local username fragment is
   known directly by the agent for its own candidate.

   The Initiator performs the ordinary checks on receiving the candidate
   information from the Peer (responder) and having formed the check
   lists.  On the other hand the responding agent either performs the
   triggered or ordinary checks as described above.

5.2.  Lite Implementation Procedures

   Lite implementations skips most of the steps in Section 5 except for
   verifying the peer's ICE support and determining its role in the ICE
   processing.

   On determining the role for a lite implementation being the
   controlling agent means selecting a candidate pair based on the ones
   in the candidate exchange (for IPv4, there is only ever one pair),
   and then updating the peer with the new candidate information
   reflecting that selection, when needed (it is never needed for an
   IPv4-only host).  The controlled agent is told which candidate pairs
   to use for each media stream, and no further candidate updates are
   needed to signal this information.

6.  Performing Connectivity Checks

   This section describes how connectivity checks are performed.

   An ICE agent MUST be compliant to to [RFC5389].  A full
   implementation acts both as a STUN client and a STUN server, while a
   lite implementation only acts as a STUN server (as it does not
   generate connectivity checks).

https://datatracker.ietf.org/doc/html/rfc5389
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6.1.  STUN Extensions

   ICE extends STUN by defining new attributes: PRIORITY, USE-CANDIDATE,
   ICE-CONTROLLED, and ICE-CONTROLLING.  The new attributes are formally
   defined in Section 17.1.  This section describes the usage of the new
   attributes.

   The new attributes are only applicable to ICE connectivity checks.

6.1.1.  PRIORITY

   The priority attribute MUST be included in a Binding request and be
   set to the value computed by the algorithm in Section 4.1.2 for the
   local candidate, but with the candidate type preference of peer
   reflexive candidates.

6.1.2.  USE-CANDIDATE

   The controlling ICE agent MUST include the USE-CANDIDATE attribute in
   order to nominate a candidate pair Section 7.1.1.  The controlled ICE
   agent MUST NOT include the USE-CANDIDATE attribute in a Binding
   request.

6.1.3.  ICE-CONTROLLED and ICE-CONTROLLING

   The controlling ICE agent MUST include the ICE-CONTROLLED attribute
   in a Binding request.  The controlled ICE agent MUST include the ICE-
   CONTROLLING attribute in a Binding request.

   The content of either attribute are used as tie-breaker values when
   an ICE role conflict occurs Section 6.3.1.1.

6.2.  STUN Client Procedures

6.2.1.  Creating Permissions for Relayed Candidates

   If the connectivity check is being sent using a relayed local
   candidate, the client MUST create a permission first if it has not
   already created one previously.  It would have created one previously
   if it had told the TURN server to create a permission for the given
   relayed candidate towards the IP address of the remote candidate.  To
   create the permission, the agent follows the procedures defined in
   [RFC5766].  The permission MUST be created towards the IP address of
   the remote candidate.  It is RECOMMENDED that the agent defer
   creation of a TURN channel until ICE completes, in which case
   permissions for connectivity checks are normally created using a
   CreatePermission request.  Once established, the agent MUST keep the
   permission active until ICE concludes.

https://datatracker.ietf.org/doc/html/rfc5766
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6.2.2.  Forming Credentials

   A connectivity check Binding request MUST utilize the STUN short-term
   credential mechanism.

   The username for the credential is formed by concatenating the
   username fragment provided by the peer with the username fragment of
   the agent sending the request, separated by a colon (":").

   The password is equal to the password provided by the peer.

   For example, consider the case where ICE agent L is the Initiating
   agent and ICE agent R is the Responding agent.  Agent L included a
   username fragment of LFRAG for its candidates and a password of
   LPASS.  Agent R provided a username fragment of RFRAG and a password
   of RPASS.  A connectivity check from L to R utilizes the username
   RFRAG:LFRAG and a password of RPASS.  A connectivity check from R to
   L utilizes the username LFRAG:RFRAG and a password of LPASS.  The
   responses utilize the same usernames and passwords as the requests
   (note that the USERNAME attribute is not present in the response).

6.2.3.  DiffServ Treatment

   If an ICE agent is using Diffserv Codepoint markings [RFC2475] in its
   media packets, the agent SHOULD apply those same markings to its
   connectivity checks.

6.2.4.  Sending the Request

   A connectivity check is generated by sending a Binding request from
   the base associated with a local candidate to a remote candidate.
   [RFC5389] describes how Binding requests are constructed and
   generated.

   Support for backwards compatibility with RFC 3489 MUST NOT be assumed
   when performing connectivity checks.  The FINGERPRINT mechanism MUST
   be used for connectivity checks.

6.2.5.  Processing the Response

   This section defines additional procedures for processing Binding
   responses specific to ICE connectivity checks.

   When a Binding response is received, it is correlated to the
   corresponding Binding request using the transaction ID [RFC5389],
   which then associates the response with the candidate pair for which
   the Binding request was sent.  After that, the response is processed

https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc5389
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   according to the procedures for a role conflict, a failure, or a
   success, according to the procedures below.

6.2.5.1.  Role Conflict

   If the Binding request generates a 487 (Role Conflict) error
   response, and if the ICE agent included an ICE-CONTROLLED attribute
   in the request, the agent MUST switch to the controlling role.  If
   the ICE agent included an ICE-CONTROLLING attribute in the request,
   the agent MUST switch to the controlled role.

   Once the ICE agent has switched its role, the agent MUST add the
   candidate pair whose check generated the 487 error response to the
   triggered check queue associated with the check list to which the
   pair belongs, and set the candidate pair state to Waiting.  When the
   triggered connectivity check is later performed, the ICE-CONTROLLING/
   ICE-CONTROLLED attribute of the Binding request will indicate the
   agent's new role.  The ICE agent MAY change the tie-breaker value.

   NOTE: A role switch requires an ICE agent to recompute pair
   priorities (Section 5.1.2.3), since the priority values depend on the
   role.

   NOTE: A role switch will also impact whether the ICE agent is
   responsible for nominating candidate pairs, and whether the agent is
   responsible for initiating the exchange of the updated candidate
   information with the peer once ICE is concluded.

6.2.5.2.  Failure

   This section describes cases when the candidate pair state is set to
   Failed.

   NOTE: When the ICE agent sets the candidate pair state to Failed as a
   result a connectivity check error, the agent does not change the
   states of other candidate pairs with the same foundation.

6.2.5.2.1.  Non-Symmetric Transport Addresses

   The ICE agent MUST check that the source and destination transport
   addresses in the Binding request and response are symmetric.  I.e.,
   the source IP address and port of the response MUST be equal the
   destination IP address and port to which the Binding request was
   sent, and that the destination IP address and port of the response
   MUST be equal to the source IP address and port from which the
   Binding request was sent.  If the addresses are not symmetric, the
   ICE agent MUST set the candidate pair state to Failed.



Keranen, et al.           Expires April 2, 2018                [Page 42]



Internet-Draft                     ICE                    September 2017

6.2.5.2.2.  ICMP Error

   An ICE agent MAY support processing of ICMP errors for connectivity
   checks.  If the agent supports processing of ICMP errors, and if a
   Binging request generates an ICMP error, the agent SHOULD set the
   state of the candidate pair to Failed.

6.2.5.2.3.  Unrecoverable STUN Response

   If the Binding request generates a STUN error response that is
   unrecoverable [RFC5389] or times out, the ICE agent SHOULD set the
   candidate pair state to Failed.

6.2.5.3.  Success

   A connectivity check is considered a success if each of the following
   criteria is true:

   o  The Binding request generated a success response; and

   o  The source and destination transport addresses in the Binding
      request and response are symmetric.

6.2.5.3.1.  Discovering Peer Reflexive Candidates

   The ICE agent MUST check the mapped address from the STUN response.
   If the transport address does not match any of the local candidates
   that the agent knows about, the mapped address represents a new
   candidate: a peer reflexive candidate.  Like other candidates, a peer
   reflexive candidate has a type, base, priority, and foundation.  They
   are computed as follows:

   o  The type is peer reflexive.

   o  The base is local candidate of the candidate pair from which the
      Binding request was sent.

   o  The priority is the value of the PRIORITY attribute in the Binding
      request.

   o  The foundation is described in Section 4.1.1.3.

   The peer reflexive candidate is then added to the list of local
   candidates for the media stream.  The username fragment and password
   are the same as for all other local candidates for that media stream.

   The ICE agent does not need to pair the peer reflexive candidate with
   remote candidates, as a valid candidate pair will be created due to

https://datatracker.ietf.org/doc/html/rfc5389
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   the procedures in Section 6.2.5.3.2.  If an agent wishes to pair the
   peer reflexive candidate with remote candidates other than the one in
   the valid pair that will be generated, the agent MAY provide updated
   candidate information to the peer that includes the peer reflexive
   candidate.  This will cause the peer reflexive candidate to be paired
   with all other remote candidates.

6.2.5.3.2.  Constructing a Valid Pair

   The agent constructs a candidate pair whose local candidate equals
   the mapped address of the response, and whose remote candidate equals
   the destination address to which the request was sent.  This is
   called a valid pair.

   The valid pair may equal the pair that generated the connectivity
   check, or it may equal a different pair in a check list (sometimes in
   a different check list than the one to which the pair that generated
   the connectivity checks), or it may be a pair not currently in any
   check list.

   The ICE agent maintains a separate list, called the VALID LIST, for
   each check list in the check list set.  The valid list will contain
   valid pairs.  Initially each valid list is empty.

   Each valid pair within the valid list has a flag, called the
   Nominated Flag.  When a valid pair is added to a valid list, the flag
   value is set to 'false'.

   The valid pair will be added to a valid list as follows:

   1.  If the valid pair equals the pair that generated the check, the
       pair is added to the valid list associated with the check list to
       which the pair belongs; or

   2.  If the valid pair equals another pair in a check list, that pair
       is added to the valid list associated with the check list of that
       pair.  The pair that generated the check is not added to a valid
       list; or

   3.  If the valid pair is not in any check list, the agent computes
       the priority for the pair based on the priority of each
       candidate, using the algorithm in Section 5.1.2.  The priority of
       the local candidate depends on its type.  Unless the type is peer
       reflexive, the priority is equal to the priority signaled for
       that candidate in the candidate exchange.  If the type is peer
       reflexive, it is equal to the PRIORITY attribute the agent placed
       in the Binding request that just completed.  The priority of the
       remote candidate is taken from the candidate information of the
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       peer.  If the candidate does not appear there, then the check
       must have been a triggered check to a new remote candidate.  In
       that case, the priority is taken as the value of the PRIORITY
       attribute in the Binding request that triggered the check that
       just completed.  The pair is then added to the valid list.

   NOTE: It will be very common that the valid pair will not be in any
   check list.  Recall that the check list has pairs whose local
   candidates are never reflexive; those pairs had their local
   candidates converted to the base of the reflexive candidates, and
   then pruned if they were redundant.  When the response to the Binding
   request arrives, the mapped address will be reflexive if there is a
   NAT between the two.  In that case, the valid pair will have a local
   candidate that doesn't match any of the pairs in the check list.

6.2.5.3.3.  Updating Candidate Pair States

   The agent sets the states of both the candidate pair that generated
   the check and the constructed valid pair (which may be different) to
   Succeeded.

   The agent MUST set the states for all other Frozen candidate pairs in
   all check lists with the same foundation to Waiting.

   NOTE: Within a given check list, candidate pairs with the same
   foundations will typically have different component ID values.

6.2.5.3.4.  Updating the Nominated Flag

   If the request had included a USE-CANDIDATE attribute in the Binding
   request, the controlling agent sets the Nominated Flag of the valid
   pair to true.  This concludes the ICE processing for this media
   stream; see Section 7.

   If the response was the result of a triggered check that was sent in
   response to a request that itself had the USE-CANDIDATE attribute,
   the controlled agent may now set the Nominated Flag for the pair
   learned from the original request.  This case is described in

Section 6.3.1.5.

   An ICE agent MUST NOT select a candidate pair until it has sent a
   Binding request and received the corresponding Binding response
   associated with the candidate pair.
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6.2.5.4.  Check List State Updates

   Regardless of whether a connectivity check was successful or failed,
   the completion of the check may require updating of check list
   states.  For each check list in the check list set, if all of the
   candidate pairs are in either Failed or Succeeded state, and if there
   is not a valid pair in the valid list for each component of the media
   stream associated with the check list, the state of the check list is
   set to Failed.  If there is a valid pair for each component in the
   valid list, the state of the check list is set to Succeeded.

6.3.  STUN Server Procedures

   An agent (lite or full) MUST be prepared to receive Binding requests
   on the base of each candidate it included in its most recent
   candidate exchange.

   The agent MUST use the short-term credential mechanism (i.e., the
   MESSAGE-INTEGRITY attribute) to authenticate the request and perform
   a message integrity check.  Likewise, the short-term credential
   mechanism MUST be used for the response.  The agent MUST consider the
   username to be valid if it consists of two values separated by a
   colon, where the first value is equal to the username fragment
   generated by the agent in an candidate exchange for a session in-
   progress.  It is possible (and in fact very likely) that the
   initiating agent will receive a Binding request prior to receiving
   the candidates from its peer.  If this happens, the agent MUST
   immediately generate a response (including computation of the mapped
   address as described in Section 6.3.1.2).  The agent has sufficient
   information at this point to generate the response; the password from
   the peer is not required.  Once the answer is received, it MUST
   proceed with the remaining steps required, namely, Section 6.3.1.3,

Section 6.3.1.4, and Section 6.3.1.5 for full implementations.  In
   cases where multiple STUN requests are received before the answer,
   this may cause several pairs to be queued up in the triggered check
   queue.

   An agent MUST NOT utilize the ALTERNATE-SERVER mechanism, and MUST
   NOT support the backwards-compatibility mechanisms to RFC 3489.  It
   MUST utilize the FINGERPRINT mechanism.

   If the agent is using Diffserv Codepoint markings [RFC2475] in its
   media packets, it SHOULD apply the same markings to Binding
   responses.  The same would apply to any layer 2 markings the endpoint
   might be applying to media packets.

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc2475
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6.3.1.  Additional Procedures for Full Implementations

   This subsection defines the additional server procedures applicable
   to full implementations, when the full implementation accepts the
   Binding request.

6.3.1.1.  Detecting and Repairing Role Conflicts

   In certain usages of ICE (such as third party call control), both
   agents may end up choosing the same role, resulting in a role
   conflict.  The section describes a mechanism for detecting and
   repairing role conflicts.  The usage document MUST specify whether
   this mechanism is needed.

   An agent MUST examine the Binding request for either the ICE-
   CONTROLLING or ICE-CONTROLLED attribute.  It MUST follow these
   procedures:

   o  If neither ICE-CONTROLLING nor ICE-CONTROLLED is present in the
      request, the peer agent may have implemented a previous version of
      this specification.  There may be a conflict, but it cannot be
      detected.

   o  If the agent is in the controlling role, and the ICE-CONTROLLING
      attribute is present in the request:

      *  If the agent's tie-breaker value is larger than or equal to the
         contents of the ICE-CONTROLLING attribute, the agent generates
         a Binding error response and includes an ERROR-CODE attribute
         with a value of 487 (Role Conflict) but retains its role.

      *  If the agent's tie-breaker value is less than the contents of
         the ICE-CONTROLLING attribute, the agent switches to the
         controlled role.

   o  If the agent is in the controlled role, and the ICE-CONTROLLED
      attribute is present in the request:

      *  If the agent's tie-breaker value is larger than or equal to the
         contents of the ICE-CONTROLLED attribute, the agent switches to
         the controlling role.

      *  If the agent's tie-breaker value is less than the contents of
         the ICE-CONTROLLED attribute, the agent generates a Binding
         error response and includes an ERROR-CODE attribute with a
         value of 487 (Role Conflict) but retains its role.
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   o  If the agent is in the controlled role and the ICE-CONTROLLING
      attribute was present in the request, or the agent was in the
      controlling role and the ICE-CONTROLLED attribute was present in
      the request, there is no conflict.

   A change in roles will require an agent to recompute pair priorities
   (Section 5.1.2.3), since those priorities are a function of role.
   The change in role will also impact whether the agent is responsible
   for selecting nominated pairs and initiating exchange with updated
   candidate information upon conclusion of ICE.

   The remaining sections in Section 6.3.1 are followed if the agent
   generated a successful response to the Binding request, even if the
   agent changed roles.

6.3.1.2.  Computing Mapped Address

   For requests received on a relayed candidate, the source transport
   address used for STUN processing (namely, generation of the XOR-
   MAPPED-ADDRESS attribute) is the transport address as seen by the
   TURN server.  That source transport address will be present in the
   XOR-PEER-ADDRESS attribute of a Data Indication message, if the
   Binding request was delivered through a Data Indication.  If the
   Binding request was delivered through a ChannelData message, the
   source transport address is the one that was bound to the channel.

6.3.1.3.  Learning Peer Reflexive Candidates

   If the source transport address of the request does not match any
   existing remote candidates, it represents a new peer reflexive remote
   candidate.  This candidate is constructed as follows:

   o  The type is peer reflexive.

   o  The priority is the value of the PRIORITY attribute in the Binding
      request.

   o  The foundation is an arbitrary value, different from the
      foundations of all other remote candidates.  If any subsequent
      candidate exchanges contain this peer reflexive candidate, it will
      signal the actual foundation for the candidate.

   o  The component ID is the component ID of the local candidate to
      which the request was sent.

   This candidate is added to the list of remote candidates.  However,
   the agent does not pair this candidate with any local candidates.
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6.3.1.4.  Triggered Checks

   Next, the agent constructs a pair whose local candidate is equal to
   the transport address on which the STUN request was received, and a
   remote candidate equal to the source transport address where the
   request came from (which may be the peer reflexive remote candidate
   that was just learned).  The local candidate will either be a host
   candidate (for cases where the request was not received through a
   relay) or a relayed candidate (for cases where it is received through
   a relay).  The local candidate can never be a server reflexive
   candidate.  Since both candidates are known to the agent, it can
   obtain their priorities and compute the candidate pair priority.
   This pair is then looked up in the check list.  There can be one of
   several outcomes:

   o  If the pair is already on the check list:

      *  If the state of that pair is Waiting or Frozen, a check for
         that pair is enqueued into the triggered check queue if not
         already present.

      *  If the state of that pair is In-Progress, the agent cancels the
         in-progress transaction.  Cancellation means that the agent
         will not retransmit the request, will not treat the lack of
         response to be a failure, but will wait the duration of the
         transaction timeout for a response.  In addition, the agent
         MUST create a new connectivity check for that pair
         (representing a new STUN Binding request transaction) by
         enqueueing the pair in the triggered check queue.  The state of
         the pair is then changed to Waiting.

      *  If the state of the pair is Failed, it is changed to Waiting
         and the agent MUST create a new connectivity check for that
         pair (representing a new STUN Binding request transaction), by
         enqueueing the pair in the triggered check queue.

      *  If the state of that pair is Succeeded, nothing further is
         done.

   These steps are done to facilitate rapid completion of ICE when both
   agents are behind NAT.

   o  If the pair is not already on the check list:

      *  The pair is inserted into the check list based on its priority.

      *  Its state is set to Waiting.
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      *  The pair is enqueued into the triggered check queue.

   When a triggered check is to be sent, it is constructed and processed
   as described in Section 6.2.4.  These procedures require the agent to
   know the transport address, username fragment, and password for the
   peer.  The username fragment for the remote candidate is equal to the
   part after the colon of the USERNAME in the Binding request that was
   just received.  Using that username fragment, the agent can check the
   candidates received from its peer (there may be more than one in
   cases of forking), and find this username fragment.  The
   corresponding password is then selected.

6.3.1.5.  Updating the Nominated Flag

   If the Binding request received by the agent had the USE-CANDIDATE
   attribute set, and the agent is in the controlled role, the agent
   looks at the state of the pair computed in Section 6.3.1.4:

   o  If the state of this pair is Succeeded, it means that the check
      generated by this pair produced a successful response.  This would
      have caused the agent to construct a valid pair when that success
      response was received (see Section 6.2.5.3.2).  The agent now sets
      the nominated flag value of the valid pair to true.  This may end
      ICE processing for this media stream; see Section 7.

   o  If the state of this pair is In-Progress, and if its check
      produces a successful result, the resulting valid pair has its
      nominated flag set when the response arrives.  This may end ICE
      processing for this media stream when it arrives; see Section 7.

6.3.2.  Additional Procedures for Lite Implementations

   If the check that was just received contained a USE-CANDIDATE
   attribute, the agent constructs a candidate pair whose local
   candidate is equal to the transport address on which the request was
   received, and whose remote candidate is equal to the source transport
   address of the request that was received.  This candidate pair is
   assigned an arbitrary priority, and placed into a list of valid
   candidates called the valid list.  The agent sets the nominated flag
   for that pair to true.  ICE processing is considered complete for a
   media stream if the valid list contains a candidate pair for each
   component.

7.  Concluding ICE Processing

   This section describes how an agent completes ICE.
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7.1.  Procedures for Full Implementations

   Concluding ICE involves nominating pairs by the controlling agent and
   updating of state machinery.

7.1.1.  Nominating Pairs

   Prior to nominating, the agent let connectivity quecks continue until
   some stopping criterion is met.  After that, based on an evaluation
   criterion, the agent selects a pair among the valid pairs in the
   valid list for nomination.

   Once the controlling agent has selected a valid pair for nomination,
   it repeats the connectivity check that produced this valid pair (by
   enqueueing the pair that generated the check into the triggered check
   queue), this time with the USE-CANDIDATE attribute.  The connectivity
   check should succeed (since the previous did), causing the nominated
   flag value of that and only that pair to be set to true.  However, if
   the connectivity check fails Section 6.2.5.2, the controlling agent
   MUST remove the candidate pair from the VALID LIST, set the candidate
   pair state to Failed and set the CHECK LIST state to Failed.

   Eventually, if the nominations succeed, there will be only a single
   nominated pair in the VALID LIST for each component.  Once the state
   of the CHECK LIST is set to Completed, that exact pair is selected by
   ICE for sending and receiving media for that component.

   The criterion details for stopping the connectivity checks and for
   selecting a pair for nomiation, are outside the scope of this
   specification.  They are a matter of local optimization.  The only
   requirement is that the agent MUST eventually pick one and only one
   candidate pair and generate a check for that pair with the USE-
   CANDIDATE attribute present.

   If the controlled agent accepts the nomination request from the
   controlling agent, the controlled agent MUST select the nominated
   candidate pair, if the controlled agent is receiving Binding
   responses associated with that candidate pair.  Before the agent has
   received Binding responses associated with the candidate pair, the
   agent can send media on any candidate for which it has received
   Binding responses.

   If the controlled agent does not accept the nomination request from
   the controlling agent, the controlled agent MUST reject the
   nomination request with an appropriate error code response (e.g.,
   400) [RFC5389], and MUST set the CHECK LIST state to Failed.

https://datatracker.ietf.org/doc/html/rfc5389
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   If more than one candidate pair is nominated by the controlling
   agent, and if the controlled agent accepts multiple nominations
   requests, the controlled agent MUST select the candidate pair with
   the highest priority.

   NOTE: A controlling agent that does not support this specification
   (i.e. it is implemented according to RFC 5245) might nominate more
   than one candidate pair.  This was referred to as aggressive
   nomination in RFC 5245.  The usage of the 'ice2' ice option by
   endpoints supporting this specifcation should prevent such
   controlling agents from using aggressive nomination.

7.1.2.  Updating States

   For both controlling and controlled agents, the state of ICE
   processing depends on the presence of nominated candidate pairs in
   the valid list and on the state of the check list.  Note that, at any
   time, more than one of the following cases can apply:

   o  If there are no nominated pairs in the valid list for a media
      stream and the state of the check list is Running, ICE processing
      continues.

   o  If there is at least one nominated pair in the valid list for a
      media stream and the state of the check list is Running:

      *  The agent MUST remove all Waiting and Frozen pairs in the CHECK
         LIST and triggered check queue for the same component as the
         nominated pairs for that media stream.

      *  If an In-Progress pair in the check list is for the same
         component as a nominated pair, the agent SHOULD cease
         retransmissions for its check if its pair priority is lower
         than the lowest-priority nominated pair for that component.

   o  Once there is at least one nominated pair in the valid list for
      every component of at least one media stream and the state of the
      check list is Running:

      *  The agent MUST change the state of processing for its check
         list for that media stream to Completed.

      *  The agent MUST continue to respond to any checks it may still
         receive for that media stream, and MUST perform triggered
         checks if required by the processing of Section 6.3.

      *  The agent MUST continue retransmitting any In-Progress checks
         for that check list.

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5245
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      *  The agent MAY begin transmitting media for this media stream as
         described in Section 11.1.

   o  Once the state of each check list is Completed:

      *  The agent sets the state of ICE processing overall to
         Completed.

   o  If the state of the check list is Failed, ICE has not been able to
      complete for this media stream.  The correct behavior depends on
      the state of the check lists for other media streams:

      *  If all check lists are Failed, ICE processing overall is
         considered to be in the Failed state, and the agent SHOULD
         consider the session a failure, SHOULD NOT restart ICE, and the
         controlling agent SHOULD terminate the entire session.

      *  If at least one of the check lists for other media streams is
         Completed, the controlling agent SHOULD remove the failed media
         stream from the session while sending updated candidate list to
         its peer.

      *  If none of the check lists for other media streams are
         Completed, but at least one is Running, the agent SHOULD let
         ICE continue.

7.2.  Procedures for Lite Implementations

   When ICE concludes, a lite agent can free host candidates that were
   not used by ICE, as described in Section 7.3.

   If the peer is a full agent, the lite agent selects a candidate pair
   when the full agent nominates it.  When the lite agent has selected a
   candidate pair for all components of all media streams, the ICE
   session is Completed.

   If the peer is a lite agent, the agent pairs local candidates with
   remote candidates that are for the same media stream and have the
   same component, transport protocol, and IP address family.  For each
   component of each media stream, if there is only one candidate pair,
   that pair is added to the valid list.  If there is more than one
   pair, it is RECOMMENDED that an agent follow the procedures of RFC

6724 [RFC6724] to select a pair and add it to the valid list.

   If all of the components for all media streams had one pair, the
   state of ICE processing is Completed.  Otherwise, the controlling
   agent MUST send an updated candidate list to reconcile different
   agents selecting different candidate pairs.  ICE processing is

https://datatracker.ietf.org/doc/html/rfc6724
https://datatracker.ietf.org/doc/html/rfc6724
https://datatracker.ietf.org/doc/html/rfc6724
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   complete after and only after the updated canddiate exchange is
   complete.

7.3.  Freeing Candidates

7.3.1.  Full Implementation Procedures

   The procedures in Section 7 require that an agent continue to listen
   for STUN requests and continue to generate triggered checks for a
   media stream, even once processing for that stream completes.  The
   rules in this section describe when it is safe for an agent to cease
   sending or receiving checks on a candidate that was not selected by
   ICE, and then free the candidate.

   Once a checklist has reached the Completed state, the agent SHOULD
   wait an additional three seconds, and then it can cease responding to
   checks or generating triggered checks on all local candidates other
   than the ones in the selected candidate pairs (one for each
   component).  Once all ICE sessions have ceased using a given local
   candidate (a candidate may be used by multiple ICE sessions, e.g. in
   forking scenarios), the agent can free that candidate.  The three-
   second delay handles cases when aggressive nomination is used, and
   the selected pairs can quickly change after ICE has completed.

   Freeing of server reflexive candidates is never explicit; it happens
   by lack of a keepalive.

7.3.2.  Lite Implementation Procedures

   A lite implementation can free candidates not selected by ICE as soon
   as ICE processing has reached the Completed state for all ICE
   sessions using those candidates.

8.  ICE Restarts

   An agent MAY restart ICE for existing media streams.  An ICE restart
   causes all previous state of the media streams, excluding the roles
   of the agents to be flushed.  The only difference between an ICE
   restart and a brand new media session is that during the restart,
   media can continue to be sent using existing media sessions, and that
   a new media session always requires the roles to be determined.

   The following actions can be accomplished only using an ICE restart
   (the agent MUST use ICE restarts to do so):

   o  Change the destinations of media streams.

   o  Change from a lite implementation to a full implementation.
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   o  Change from a full implementation to a lite implementation.

   To restart ICE, an agent MUST change both the password and the
   username fragment for the media stream(s) being restarted.  The new
   candidate set MAY include some, none, or all of the previous
   candidates.

   As described in Section 5.1.1, ICE agents MUST NOT re-determine the
   roles as part as an ICE restart, unless certain criteria that require
   the roles to be re-determined are fulfilled.

9.  ICE Option

   This section defines a new ICE option, 'ice2'.  The ICE option
   indicates that the ICE agent that includes it in a candidate exchange
   is compliant to this specification.  For example, the ICE agent will
   not use the aggressive nomination procedure defined in [RFC5245].

   An ICE agent compliant to this specification MUST inform the peer
   about the compliance using the 'ice2' option.

   NOTE: The encoding of the 'ice2' ICE option, and the message(s) used
   to carry it to the peer, are protocol specific.  The encoding for the
   Session Description Protocol (SDP) [RFC4566] is defined in
   [I-D.ietf-mmusic-ice-sip-sdp].

10.  Keepalives

   All endpoints MUST send keepalives for each media session.  These
   keepalives serve the purpose of keeping NAT bindings alive for the
   media session.  The keepalives SHOULD be sent using a format that is
   supported by its peer.  ICE endpoints allow for STUN-based keepalives
   for UDP streams, and as such, STUN keepalives MUST be used when an
   agent is a full ICE implementation and is communicating with a peer
   that supports ICE (lite or full).

   For each candidate pair that an agent is using to send media, if no
   packet has been sent on that pair in the last Tr seconds, an agent
   MUST send a keepalive on that pair.  Agents SHOULD use a Tr value of
   15 seconds.  Agents MUST NOT use a Tr value smaller than 15 seconds.
   An agent MUST begin sending keepalives once a candidate pair is
   selected or a candidate pair is used to send media, whichever happens
   first.  An agent MUST stop sending keepalives once the session
   terminates or the media stream is removed.  An agent MAY use another
   value for Tr, e.g. based on configuration or network/NAT
   characteristics.  For example, if an agent has a dynamic way to
   discover the binding lifetimes of the intervening NATs, it can use
   that value to determine Tr.  Administrators deploying ICE in more

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc4566
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   controlled networking environments SHOULD set Tr to the longest
   duration possible in their environment.

   When STUN is being used for keepalives, a STUN Binding Indication is
   used [RFC5389].  The Indication MUST NOT utilize any authentication
   mechanism.  It SHOULD contain the FINGERPRINT attribute to aid in
   demultiplexing, but SHOULD NOT contain any other attributes.  It is
   used solely to keep the NAT bindings alive.  The Binding Indication
   is sent using the same local and remote candidates that are being
   used for media.  Though Binding Indications are used for keepalives,
   an agent MUST be prepared to receive a connectivity check as well.
   If a connectivity check is received, a response is generated as
   discussed in [RFC5389], but there is no impact on ICE processing
   otherwise.

   An agent MUST begin the keepalive processing once ICE has selected
   candidates for usage with media, or media begins to flow, whichever
   happens first.  Keepalives end once the session terminates or the
   media stream is removed.

11.  Media Handling

11.1.  Sending Media

   An agent MAY send media on any valid candidate pair before a
   candidate pair is selected.

   An agent MUST send media on the selected candidate pair after it is
   selected.

   An agent sends media from the base of the local candidate to the
   remote candidate.  In the case of a local relayed candidate, media is
   forwarded through the base (located in the TURN server), using the
   procedures defined in [RFC5766].

   If the local candidate is a relayed candidate, it is RECOMMENDED that
   an agent creates a channel on the TURN server towards the remote
   candidate.  This is done using the procedures for channel creation as
   defined in Section 11 of [RFC5766].

   The selected pair for a component of a media stream is:

   o  empty if the state of the CHECK LIST for that media stream is
      Running, and there is no previous selected pair for that component
      due to an ICE restart

   o  equal to the previous selected pair for a component of a media
      stream if the state of the CHECK LIST for that media stream is

https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5766
https://datatracker.ietf.org/doc/html/rfc5766#section-11
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      Running, and there was a previous selected pair for that component
      due to an ICE restart

   Unless an agent is able to produce a selected pair for all components
   associated with a media stream, the agent MUST NOT continue sending
   media for any component associated with that media stream.

11.2.  Procedures for Lite Implementations

   A lite implementation MUST NOT send media until it has a valid list
   that contains a candidate pair for each component of that media
   stream.  Once that happens, the agent MAY begin sending media
   packets.  To do that, it sends media to the remote candidate in the
   pair (setting the destination address and port of the packet equal to
   that remote candidate), and will send it from the base associated
   with the candidate pair used for sending media.  In case of a relayed
   candidate, media is sent from the agent and forwarded through the
   base (located in the TURN server), using the procedures defined in
   [RFC5766].

11.3.  Procedures for All Implementations

   ICE has interactions with jitter buffer adaptation mechanisms.  An
   RTP stream can begin using one candidate, and switch to another one,
   though this happens rarely with ICE.  The newer candidate may result
   in RTP packets taking a different path through the network -- one
   with different delay characteristics.  As discussed below, agents are
   encouraged to re-adjust jitter buffers when there are changes in
   source or destination address of media packets.  Furthermore, many
   audio codecs use the marker bit to signal the beginning of a
   talkspurt, for the purposes of jitter buffer adaptation.  For such
   codecs, it is RECOMMENDED that the sender set the marker bit
   [RFC3550] when an agent switches transmission of media from one
   candidate pair to another.

12.  Receiving Media

   Even though ICE agents are only allowed to send media using valid
   candidate pairs (and, once a candidate pair has been selected, only
   on the selected pair) ICE implementations SHOULD by default be
   prepared to receive media on any of the candidates provided in the
   most recent candidate exchange with the peer.  Specific ICE usages
   MAY define rules that differs from this, e.g., by defining that media
   must not be sent until selected pairs have been procduced for each
   component associated with that media.

https://datatracker.ietf.org/doc/html/rfc5766
https://datatracker.ietf.org/doc/html/rfc3550
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   It is RECOMMENDED that, when an agent receives an RTP packet with a
   new source or destination IP address for a particular media stream,
   that the agent re-adjust its jitter buffers.

RFC 3550 [RFC3550] describes an algorithm in Section 8.2 for
   detecting synchronization source (SSRC) collisions and loops.  These
   algorithms are based, in part, on seeing different source transport
   addresses with the same SSRC.  However, when ICE is used, such
   changes will sometimes occur as the media streams switch between
   candidates.  An agent will be able to determine that a media stream
   is from the same peer as a consequence of the STUN exchange that
   proceeds media transmission.  Thus, if there is a change in source
   transport address, but the media packets come from the same peer
   agent, this SHOULD NOT be treated as an SSRC collision.

13.  Extensibility Considerations

   This specification makes very specific choices about how both agents
   in a session coordinate to arrive at the set of candidate pairs that
   are selected for media.  It is anticipated that future specifications
   will want to alter these algorithms, whether they are simple changes
   like timer tweaks or larger changes like a revamp of the priority
   algorithm.  When such a change is made, providing interoperability
   between the two agents in a session is critical.

   First, ICE provides the ice-options attribute.  Each extension or
   change to ICE is associated with a token.  When an agent supporting
   such an extension or change triggers candidate exchange, it MUST
   include the token for that extension in this attribute.  This allows
   each side to know what the other side is doing.  This attribute MUST
   NOT be present if the agent doesn't support any ICE extensions or
   changes.

   One of the complications in achieving interoperability is that ICE
   relies on a distributed algorithm running on both agents to converge
   on an agreed set of candidate pairs.  If the two agents run different
   algorithms, it can be difficult to guarantee convergence on the same
   candidate pairs.  The regular nomination procedure described in

Section 7 eliminates some of the tight coordination by delegating the
   selection algorithm completely to the controlling agent.
   Consequently, when a controlling agent is communicating with a peer
   that supports options it doesn't know about, the agent MUST run a
   regular nomination algorithm.  When regular nomination is used, ICE
   will converge perfectly even when both agents use different pair
   prioritization algorithms.  One of the keys to such convergence is
   triggered checks, which ensure that the nominated pair is validated
   by both agents.  Consequently, any future ICE enhancements MUST
   preserve triggered checks.

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3550
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   ICE is also extensible to other media streams beyond RTP, and for
   transport protocols beyond UDP.  Extensions to ICE for non-RTP media
   streams need to specify how many components they utilize, and assign
   component IDs to them, starting at 1 for the most important component
   ID.  Specifications for new transport protocols must define how, if
   at all, various steps in the ICE processing differ from UDP.

14.  Setting Ta and RTO

14.1.  General

   During the ICE gathering phase (Section 4.1.1) and while ICE is
   performing connectivity checks (Section 6), an agent triggers STUN
   and TURN transactions.  These transactions are paced at a rate
   indicated by Ta, and the retransmission interval for each transaction
   is calculated based on the the retransmission timer for the STUN
   transactions (RTO) [RFC5389].

   This section describes how the Ta and RTO values are computed during
   the ICE gathering phase and while ICE is performing connectivity
   checks.

   NOTE: Previously, in RFC 5245, different formulas were defined for
   computing Ta and RTO, depending on whether ICE was used for a real-
   time media stream (e.g.  RTP) or not.

   The formulas below result in a behavior whereby an agent will send
   its first packet for every single connectivity check before
   performing a retransmit.  This can be seen in the formulas for the
   RTO (which represents the retransmit interval).  Those formulas scale
   with N, the number of checks to be performed.  As a result of this,
   ICE maintains a nicely constant rate, but becomes more sensitive to
   packet loss.  The loss of the first single packet for any
   connectivity check is likely to cause that pair to take a long time
   to be validated, and instead, a lower-priority check (but one for
   which there was no packet loss) is much more likely to complete
   first.  This results in ICE performing sub-optimally, choosing lower-
   priority pairs over higher-priority pairs.  Implementors should be
   aware of this consequence, but still should utilize the timer values
   described here.

14.2.  Ta

   ICE agents SHOULD use the default Ta value, 50 ms, but MAY use
   another value based on the characteristics of the associated media.

   If an ICE agent wants to use another Ta value than the default value,
   the agent MUST indicate the proposed value to its peer during the ICE

https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5245
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   exchange.  Both agents MUST use the higher value of the proposed
   values.  If an agent does not propose a value, the default value is
   used for that agent when comparing which value is higher.

   Regardless of the Ta value chosen for each ICE agent, the combination
   of all transactions from all ICE agents (if a given implementation
   runs several concurrent ICE agents) MUST NOT be sent more often than
   once every 5ms (as though there were one global Ta value for pacing
   all ICE agents).

   This mechanism of a global minimum pacing interval of 5ms is not
   generally applicable to transport protocols, but is applicable to ICE
   based on the following reasoning.

   o  Start with the following rules which would be generally applicable
      to transport protocols:

      1.  Let MaxBytes be the maximum number of bytes allowed to be
          outstanding in the network at start-up, which SHOULD be 14600
          bytes per RFC 6928.

      2.  Let HTO be the transaction timeout, which SHOULD be 2*RTT if
          RTT is known and 500ms otherwise.  This is based on the RTO
          for STUN messages from RFC 5389 and the the TCP initial RTO,
          which is 1 sec in RFC 6298.

      3.  Let MinPacing be the minimum pacing interval between
          transactions, which SHOULD be 5ms.

   o  Observe that ICE agents typically do not know the RTT for ICE
      transactions (connectivity checks in particular), meaning that HTO
      will almost always be 500ms.

   o  Observe that a MinPacing of 5ms and HTO of 500ms gives at most 100
      packets/HTO, which for a typical ICE check of less than 120 bytes
      means a maximum of 12000 outstanding bytes in the network, which
      is less than the maximum expressed by rule 1.

   o  Thus, for ICE, the rule set reduces down to just the MinPacing
      rule, which is equivalant to having a global Ta value.

   NOTE: Appendix C shows examples of required bandwidth, using
   different Ta values.

https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc6298
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14.3.  RTO

   During the ICE gathering phase, ICE agents SHOULD calculate the RTO
   value using the following formula:

     RTO = MAX (500ms, Ta * (Num-Of-Pairs))

     Num-Of-Pairs: the number of pairs of candidates
     with STUN or TURN servers.

   For connectivity checks, ICE agents SHOULD calculate the RTO value
   using the following formula:

     RTO = MAX (500ms, Ta*N * (Num-Waiting + Num-In-Progress))

     Num-Waiting: the number of checks in the check list in the
     Waiting state.

     Num-In-Progress: the number of checks in the In-Progress state.

     Note that the RTO will be different for each transaction as the
     number of checks in the Waiting and In-Progress states change.

   ICE agents MAY calculate the RTO value using other mechanisms than
   those described above.  ICE agents MUST NOT use a RTO value smaller
   than 500 ms.

15.  Example

   The example is based on the simplified topology of Figure 9.
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                            +-------+
                            |STUN   |
                            |Server |
                            +-------+
                                |
                     +---------------------+
                     |                     |
                     |      Internet       |
                     |                     |
                     +---------------------+
                       |                |
                       |                |
                +---------+             |
                |   NAT   |             |
                +---------+             |
                     |                  |
                     |                  |
                  +-----+            +-----+
                  |  L  |            |  R  |
                  +-----+            +-----+

                        Figure 9: Example Topology

   Two agents, L and R, are using ICE.  Both are full ICE
   implementations.  Both agents have a single IPv4 address.  For agent
   L, it is 10.0.1.1 in private address space [RFC1918], and for agent
   R, 192.0.2.1 on the public Internet.  Both are configured with the
   same STUN server (shown in this example for simplicity, although in
   practice the agents do not need to use the same STUN server), which
   is listening for STUN Binding requests at an IP address of 192.0.2.2
   and port 3478.  TURN servers are not used in this example.  Agent L
   is behind a NAT, and agent R is on the public Internet.  The NAT has
   an endpoint independent mapping property and an address dependent
   filtering property.  The public side of the NAT has an IP address of
   192.0.2.3.

   To facilitate understanding, transport addresses are listed using
   variables that have mnemonic names.  The format of the name is
   entity-type-seqno, where entity refers to the entity whose IP address
   the transport address is on, and is one of "L", "R", "STUN", or
   "NAT".  The type is either "PUB" for transport addresses that are
   public, and "PRIV" for transport addresses that are private.
   Finally, seq-no is a sequence number that is different for each
   transport address of the same type on a particular entity.  Each
   variable has an IP address and port, denoted by varname.IP and
   varname.PORT, respectively, where varname is the name of the
   variable.

https://datatracker.ietf.org/doc/html/rfc1918
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   The STUN server has advertised transport address STUN-PUB-1 (which is
   192.0.2.2:3478).

   In the call flow itself, STUN messages are annotated with several
   attributes.  The "S=" attribute indicates the source transport
   address of the message.  The "D=" attribute indicates the destination
   transport address of the message.  The "MA=" attribute is used in
   STUN Binding response messages and refers to the mapped address.
   "USE-CAND" implies the presence of the USE-CANDIDATE attribute.

   The call flow examples omit STUN authentication operations, and focus
   on a single media stream between two full implementations.

             L             NAT           STUN             R
             |STUN alloc.   |              |              |
             |(1) STUN Req  |              |              |
             |S=$L-PRIV-1   |              |              |
             |D=$STUN-PUB-1 |              |              |
             |------------->|              |              |
             |              |(2) STUN Req  |              |
             |              |S=$NAT-PUB-1  |              |
             |              |D=$STUN-PUB-1 |              |
             |              |------------->|              |
             |              |(3) STUN Res  |              |
             |              |S=$STUN-PUB-1 |              |
             |              |D=$NAT-PUB-1  |              |
             |              |MA=$NAT-PUB-1 |              |
             |              |<-------------|              |
             |(4) STUN Res  |              |              |
             |S=$STUN-PUB-1 |              |              |
             |D=$L-PRIV-1   |              |              |
             |MA=$NAT-PUB-1 |              |              |
             |<-------------|              |              |
             |(5) L's Candidate Information|              |
             |------------------------------------------->|
             |              |              |              | STUN
             |              |              |              | alloc.
             |              |              |(6) STUN Req  |
             |              |              |S=$R-PUB-1    |
             |              |              |D=$STUN-PUB-1 |
             |              |              |<-------------|
             |              |              |(7) STUN Res  |
             |              |              |S=$STUN-PUB-1 |
             |              |              |D=$R-PUB-1    |
             |              |              |MA=$R-PUB-1   |
             |              |              |------------->|
             |(8) R's Candidate Information|              |
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             |<-------------------------------------------|
             |              |(9) Bind Req  |              |Begin
             |              |S=$R-PUB-1    |              |Connectivity
             |              |D=L-PRIV-1    |              |Checks
             |              |<----------------------------|
             |              |Dropped       |              |
             |(10) Bind Req |              |              |
             |S=$L-PRIV-1   |              |              |
             |D=$R-PUB-1    |              |              |
             |------------->|              |              |
             |              |(11) Bind Req |              |
             |              |S=$NAT-PUB-1  |              |
             |              |D=$R-PUB-1    |              |
             |              |---------------------------->|
             |              |(12) Bind Res |              |
             |              |S=$R-PUB-1    |              |
             |              |D=$NAT-PUB-1  |              |
             |              |MA=$NAT-PUB-1 |              |
             |              |<----------------------------|
             |(13) Bind Res |              |              |
             |S=$R-PUB-1    |              |              |
             |D=$L-PRIV-1   |              |              |
             |MA=$NAT-PUB-1 |              |              |
             |<-------------|              |              |
             |Media flows   |              |              |
             |              |(14) Bind Req |              |
             |              |S=$R-PUB-1    |              |
             |              |D=$NAT-PUB-1  |              |
             |              |<----------------------------|
             |(15) Bind Req |              |              |
             |S=$R-PUB-1    |              |              |
             |D=$L-PRIV-1   |              |              |
             |<-------------|              |              |
             |(16) Bind Res |              |              |
             |S=$L-PRIV-1   |              |              |
             |D=$R-PUB-1    |              |              |
             |MA=$R-PUB-1   |              |              |
             |------------->|              |              |
             |              |(17) Bind Res |              |
             |              |S=$NAT-PUB-1  |              |
             |              |D=$R-PUB-1    |              |
             |              |MA=$R-PUB-1   |              |
             |              |---------------------------->|
             |              |              |              |Media flows

                          Figure 10: Example Flow
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   First, agent L obtains a host candidate from its local IP address
   (not shown), and from that, sends a STUN Binding request to the STUN
   server to get a server reflexive candidate (messages 1-4).  Recall
   that the NAT has the address and port independent mapping property.
   Here, it creates a binding of NAT-PUB-1 for this UDP request, and
   this becomes the server reflexive candidate.

   Agent L sets a type preference of 126 for the host candidate and 100
   for the server reflexive.  The local preference is 65535.  Based on
   this, the priority of the host candidate is 2130706431 and for the
   server reflexive candidate is 1694498815.  The host candidate is
   assigned a foundation of 1, and the server reflexive, a foundation of
   2.  These are sent to the peer.

   This candidate information is received at agent R.  Agent R will
   obtain a host candidate, and from it, obtain a server reflexive
   candidate (messages 6-7).  Since R is not behind a NAT, this
   candidate is identical to its host candidate, and they share the same
   base.  It therefore discards this redundant candidate and ends up
   with a single host candidate.  With identical type and local
   preferences as L, the priority for this candidate is 2130706431.  It
   chooses a foundation of 1 for its single candidate.  Then R's
   candidates are then sent to L.

   Since neither side indicated that it is lite, the initiating agent
   that began ICE processing (agent L) becomes the controlling agent.

   Agents L and R both pair up the candidates.  They both initially have
   two pairs.  However, agent L will prune the pair containing its
   server reflexive candidate, resulting in just one.  At agent L, this
   pair has a local candidate of $L_PRIV_1 and remote candidate of
   $R_PUB_1, and has a candidate pair priority of 4.57566E+18 (note that
   an implementation would represent this as a 64-bit integer so as not
   to lose precision).  At agent R, there are two pairs.  The highest
   priority has a local candidate of $R_PUB_1 and remote candidate of
   $L_PRIV_1 and has a priority of 4.57566E+18, and the second has a
   local candidate of $R_PUB_1 and remote candidate of $NAT_PUB_1 and
   priority 3.63891E+18.

   Agent R begins its connectivity check (message 9) for the first pair
   (between the two host candidates).  Since R is the controlled agent
   for this session, the check omits the USE-CANDIDATE attribute.  The
   host candidate from agent L is private and behind a NAT, and thus
   this check won't be successful, because the packet cannot be routed
   from R to L.

   When agent L gets the R's candidates, it performs its one and only
   connectivity check (messages 10-13).  Since the check succeeds, agent
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   L creates a new pair, whose local candidate is from the mapped
   address in the Binding response (NAT-PUB-1 from message 13) and whose
   remote candidate is the destination of the request (R-PUB-1 from
   message 10).  This is added to the valid list.  Agent L can now send
   media if it so chooses.

   Soon after receipt of the STUN Binding request from agent L (message
   11), agent R will generate its triggered check.  This check happens
   to match the next one on its check list -- from its host candidate to
   agent L's server reflexive candidate.  This check (messages 14-17)
   will succeed.  Consequently, agent R constructs a new candidate pair
   using the mapped address from the response as the local candidate (R-
   PUB-1) and the destination of the request (NAT-PUB-1) as the remote
   candidate.  This pair is added to the valid list for that media
   stream.  Since the check was generated in the reverse direction of a
   check that contained the USE-CANDIDATE attribute, the candidate pair
   is marked as selected.  Consequently, processing for this stream
   moves into the Completed state, and agent R can also send media.

16.  Security Considerations

   There are several types of attacks possible in an ICE system.  This
   section considers these attacks and their countermeasures.  These
   countermeasures include:

   o  Using ICE in conjunction with secure signaling techniques, such as
      SIPS.

   o  Limiting the total number of connectivity checks to 100, and
      optionally limiting the number of candidates they'll accept in an
      candidate exchange.

16.1.  Attacks on Connectivity Checks

   An attacker might attempt to disrupt the STUN connectivity checks.
   Ultimately, all of these attacks fool an agent into thinking
   something incorrect about the results of the connectivity checks.
   The possible false conclusions an attacker can try and cause are:

   False Invalid:  An attacker can fool a pair of agents into thinking a
      candidate pair is invalid, when it isn't.  This can be used to
      cause an agent to prefer a different candidate (such as one
      injected by the attacker) or to disrupt a call by forcing all
      candidates to fail.

   False Valid:  An attacker can fool a pair of agents into thinking a
      candidate pair is valid, when it isn't.  This can cause an agent
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      to proceed with a session, but then not be able to receive any
      media.

   False Peer Reflexive Candidate:  An attacker can cause an agent to
      discover a new peer reflexive candidate, when it shouldn't have.
      This can be used to redirect media streams to a Denial-of-Service
      (DoS) target or to the attacker, for eavesdropping or other
      purposes.

   False Valid on False Candidate:  An attacker has already convinced an
      agent that there is a candidate with an address that doesn't
      actually route to that agent (for example, by injecting a false
      peer reflexive candidate or false server reflexive candidate).  It
      must then launch an attack that forces the agents to believe that
      this candidate is valid.

      If an attacker can cause a false peer reflexive candidate or false
      valid on a false candidate, it can launch any of the attacks
      described in [RFC5389].

   To force the false invalid result, the attacker has to wait for the
   connectivity check from one of the agents to be sent.  When it is,
   the attacker needs to inject a fake response with an unrecoverable
   error response, such as a 400.  However, since the candidate is, in
   fact, valid, the original request may reach the peer agent, and
   result in a success response.  The attacker needs to force this
   packet or its response to be dropped, through a DoS attack, layer 2
   network disruption, or other technique.  If it doesn't do this, the
   success response will also reach the originator, alerting it to a
   possible attack.  Fortunately, this attack is mitigated completely
   through the STUN short-term credential mechanism.  The attacker needs
   to inject a fake response, and in order for this response to be
   processed, the attacker needs the password.  If the candidate
   exchange signaling is secured, the attacker will not have the
   password and its response will be discarded.

   Forcing the fake valid result works in a similar way.  The agent
   needs to wait for the Binding request from each agent, and inject a
   fake success response.  The attacker won't need to worry about
   disrupting the actual response since, if the candidate is not valid,
   it presumably wouldn't be received anyway.  However, like the fake
   invalid attack, this attack is mitigated by the STUN short-term
   credential mechanism in conjunction with a secure candidate exchange.

   Forcing the false peer reflexive candidate result can be done either
   with fake requests or responses, or with replays.  We consider the
   fake requests and responses case first.  It requires the attacker to
   send a Binding request to one agent with a source IP address and port

https://datatracker.ietf.org/doc/html/rfc5389
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   for the false candidate.  In addition, the attacker must wait for a
   Binding request from the other agent, and generate a fake response
   with a XOR-MAPPED-ADDRESS attribute containing the false candidate.
   Like the other attacks described here, this attack is mitigated by
   the STUN message integrity mechanisms and secure candidate exchanges.

   Forcing the false peer reflexive candidate result with packet replays
   is different.  The attacker waits until one of the agents sends a
   check.  It intercepts this request, and replays it towards the other
   agent with a faked source IP address.  It must also prevent the
   original request from reaching the remote agent, either by launching
   a DoS attack to cause the packet to be dropped, or forcing it to be
   dropped using layer 2 mechanisms.  The replayed packet is received at
   the other agent, and accepted, since the integrity check passes (the
   integrity check cannot and does not cover the source IP address and
   port).  It is then responded to.  This response will contain a XOR-
   MAPPED-ADDRESS with the false candidate, and will be sent to that
   false candidate.  The attacker must then receive it and relay it
   towards the originator.

   The other agent will then initiate a connectivity check towards that
   false candidate.  This validation needs to succeed.  This requires
   the attacker to force a false valid on a false candidate.  Injecting
   of fake requests or responses to achieve this goal is prevented using
   the integrity mechanisms of STUN and the candidate exchange.  Thus,
   this attack can only be launched through replays.  To do that, the
   attacker must intercept the check towards this false candidate, and
   replay it towards the other agent.  Then, it must intercept the
   response and replay that back as well.

   This attack is very hard to launch unless the attacker is identified
   by the fake candidate.  This is because it requires the attacker to
   intercept and replay packets sent by two different hosts.  If both
   agents are on different networks (for example, across the public
   Internet), this attack can be hard to coordinate, since it needs to
   occur against two different endpoints on different parts of the
   network at the same time.

   If the attacker itself is identified by the fake candidate, the
   attack is easier to coordinate.  However, if the media path is
   secured (e.g., using SRTP [RFC3711]), the attacker will not be able
   to play the media packets, but will only be able to discard them,
   effectively disabling the media stream for the call.  However, this
   attack requires the agent to disrupt packets in order to block the
   connectivity check from reaching the target.  In that case, if the
   goal is to disrupt the media stream, it's much easier to just disrupt
   it with the same mechanism, rather than attack ICE.

https://datatracker.ietf.org/doc/html/rfc3711
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16.2.  Attacks on Server Reflexive Address Gathering

   ICE endpoints make use of STUN Binding requests for gathering server
   reflexive candidates from a STUN server.  These requests are not
   authenticated in any way.  As a consequence, there are numerous
   techniques an attacker can employ to provide the client with a false
   server reflexive candidate:

   o  An attacker can compromise the DNS, causing DNS queries to return
      a rogue STUN server address.  That server can provide the client
      with fake server reflexive candidates.  This attack is mitigated
      by DNS security, though DNS-SEC is not required to address it.

   o  An attacker that can observe STUN messages (such as an attacker on
      a shared network segment, like WiFi) can inject a fake response
      that is valid and will be accepted by the client.

   o  An attacker can compromise a STUN server by means of a virus, and
      cause it to send responses with incorrect mapped addresses.

   A false mapped address learned by these attacks will be used as a
   server reflexive candidate in the ICE exchange.  For this candidate
   to actually be used for media, the attacker must also attack the
   connectivity checks, and in particular, force a false valid on a
   false candidate.  This attack is very hard to launch if the false
   address identifies a fourth party (neither the initiator, responder,
   nor attacker), since it requires attacking the checks generated by
   each agent in the session, and is prevented by SRTP if it identifies
   the attacker themself.

   If the attacker elects not to attack the connectivity checks, the
   worst it can do is prevent the server reflexive candidate from being
   used.  However, if the peer agent has at least one candidate that is
   reachable by the agent under attack, the STUN connectivity checks
   themselves will provide a peer reflexive candidate that can be used
   for the exchange of media.  Peer reflexive candidates are generally
   preferred over server reflexive candidates.  As such, an attack
   solely on the STUN address gathering will normally have no impact on
   a session at all.

16.3.  Attacks on Relayed Candidate Gathering

   An attacker might attempt to disrupt the gathering of relayed
   candidates, forcing the client to believe it has a false relayed
   candidate.  Exchanges with the TURN server are authenticated using a
   long-term credential.  Consequently, injection of fake responses or
   requests will not work.  In addition, unlike Binding requests,
   Allocate requests are not susceptible to replay attacks with modified
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   source IP addresses and ports, since the source IP address and port
   are not utilized to provide the client with its relayed candidate.

   However, TURN servers are susceptible to DNS attacks, or to viruses
   aimed at the TURN server, for purposes of turning it into a zombie or
   rogue server.  These attacks can be mitigated by DNS-SEC and through
   good box and software security on TURN servers.

   Even if an attacker has caused the client to believe in a false
   relayed candidate, the connectivity checks cause such a candidate to
   be used only if they succeed.  Thus, an attacker must launch a false
   valid on a false candidate, per above, which is a very difficult
   attack to coordinate.

16.4.  Insider Attacks

   In addition to attacks where the attacker is a third party trying to
   insert fake candidate information or stun messages, there are attacks
   possible with ICE when the attacker is an authenticated and valid
   participant in the ICE exchange.

16.4.1.  STUN Amplification Attack

   The STUN amplification attack is similar to the voice hammer.
   However, instead of voice packets being directed to the target, STUN
   connectivity checks are directed to the target.  The attacker sends
   an a large number of candidates, say, 50.  The responding agent
   receives the candidate information, and starts its checks, which are
   directed at the target, and consequently, never generate a response.
   The answerer will start a new connectivity check every Ta ms (say,
   Ta=20ms).  However, the retransmission timers are set to a large
   number due to the large number of candidates.  As a consequence,
   packets will be sent at an interval of one every Ta milliseconds, and
   then with increasing intervals after that.  Thus, STUN will not send
   packets at a rate faster than media would be sent, and the STUN
   packets persist only briefly, until ICE fails for the session.
   Nonetheless, this is an amplification mechanism.

   It is impossible to eliminate the amplification, but the volume can
   be reduced through a variety of heuristics.  Agents SHOULD limit the
   total number of connectivity checks they perform to 100.
   Additionally, agents MAY limit the number of candidates they'll
   accept.

   Frequently, protocols that wish to avoid these kinds of attacks force
   the initiator to wait for a response prior to sending the next
   message.  However, in the case of ICE, this is not possible.  It is
   not possible to differentiate the following two cases:
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   o  There was no response because the initiator is being used to
      launch a DoS attack against an unsuspecting target that will not
      respond.

   o  There was no response because the IP address and port are not
      reachable by the initiator.

   In the second case, another check should be sent at the next
   opportunity, while in the former case, no further checks should be
   sent.

17.  STUN Extensions

17.1.  New Attributes

   This specification defines four new STUN attributes, PRIORITY, USE-
   CANDIDATE, ICE-CONTROLLED, and ICE-CONTROLLING.

   The PRIORITY attribute indicates the priority that is to be
   associated with a peer reflexive candidate, should one be discovered
   by this check.  It is a 32-bit unsigned integer, and has an attribute
   value of 0x0024.

   The USE-CANDIDATE attribute indicates that the candidate pair
   resulting from this check should be used for transmission of media.
   The attribute has no content (the Length field of the attribute is
   zero); it serves as a flag.  It has an attribute value of 0x0025.

   The ICE-CONTROLLED attribute is present in a Binding request and
   indicates that the client believes it is currently in the controlled
   role.  The content of the attribute is a 64-bit unsigned integer in
   network byte order, which contains a random number.  The number is
   used for solving role conflicts, when it is referred to as the tie-
   breaker value.  An ICE agent MUST use the same number for all Binding
   requests, for all streams, within an ICE session.  The ICE agent MAY
   change the number when an ICE restart occurs.

   The ICE-CONTROLLING attribute is present in a Binding request and
   indicates that the client believes it is currently in the controlling
   role.  The content of the attribute is a 64-bit unsigned integer in
   network byte order, which contains a random number.  The number is
   used for solving role conflicts, when it is referred to as the tie-
   breaker value.  An ICE agent MUST use the same number for all Binding
   requests, for all streams, within an ICE session.  The ICE agent MAY
   change the number when an ICE restart occurs.
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17.2.  New Error Response Codes

   This specification defines a single error response code:

   487 (Role Conflict):  The Binding request contained either the ICE-
      CONTROLLING or ICE-CONTROLLED attribute, indicating an ICE role
      that conflicted with the server.  The server compared the tie-
      breaker values of the client and the server and determined that
      the client needs to switch roles.

18.  Operational Considerations

   This section discusses issues relevant to network operators looking
   to deploy ICE.

18.1.  NAT and Firewall Types

   ICE was designed to work with existing NAT and firewall equipment.
   Consequently, it is not necessary to replace or reconfigure existing
   firewall and NAT equipment in order to facilitate deployment of ICE.
   Indeed, ICE was developed to be deployed in environments where the
   Voice over IP (VoIP) operator has no control over the IP network
   infrastructure, including firewalls and NAT.

   That said, ICE works best in environments where the NAT devices are
   "behave" compliant, meeting the recommendations defined in [RFC4787]
   and [RFC5382].  In networks with behave-compliant NAT, ICE will work
   without the need for a TURN server, thus improving voice quality,
   decreasing call setup times, and reducing the bandwidth demands on
   the network operator.

18.2.  Bandwidth Requirements

   Deployment of ICE can have several interactions with available
   network capacity that operators should take into consideration.

18.2.1.  STUN and TURN Server Capacity Planning

   First and foremost, ICE makes use of TURN and STUN servers, which
   would typically be located in the network operator's data centers.
   The STUN servers require relatively little bandwidth.  For each
   component of each media stream, there will be one or more STUN
   transactions from each client to the STUN server.  In a basic voice-
   only IPv4 VoIP deployment, there will be four transactions per call
   (one for RTP and one for RTCP, for both caller and callee).  Each
   transaction is a single request and a single response, the former
   being 20 bytes long, and the latter, 28.  Consequently, if a system
   has N users, and each makes four calls in a busy hour, this would

https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc5382
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   require N*1.7bps.  For one million users, this is 1.7 Mbps, a very
   small number (relatively speaking).

   TURN traffic is more substantial.  The TURN server will see traffic
   volume equal to the STUN volume (indeed, if TURN servers are
   deployed, there is no need for a separate STUN server), in addition
   to the traffic for the actual media.  The amount of calls requiring
   TURN for media relay is highly dependent on network topologies, and
   can and will vary over time.  In a network with 100% behave-compliant
   NAT, it is exactly zero.  At time of writing, large-scale consumer
   deployments were seeing between 5 and 10 percent of calls requiring
   TURN servers.  Considering a voice-only deployment using G.711 (so 80
   kbps in each direction), with .2 erlangs during the busy hour, this
   is N*3.2 kbps.  For a population of one million users, this is 3.2
   Gbps, assuming a 10% usage of TURN servers.

18.2.2.  Gathering and Connectivity Checks

   The process of gathering of candidates and performing of connectivity
   checks can be bandwidth intensive.  ICE has been designed to pace
   both of these processes.  The gathering phase and the connectivity
   check phase are meant to generate traffic at roughly the same
   bandwidth as the media traffic itself.  This was done to ensure that,
   if a network is designed to support multimedia traffic of a certain
   type (voice, video, or just text), it will have sufficient capacity
   to support the ICE checks for that media.  Of course, the ICE checks
   will cause a marginal increase in the total utilization; however,
   this will typically be an extremely small increase.

   Congestion due to the gathering and check phases has proven to be a
   problem in deployments that did not utilize pacing.  Typically,
   access links became congested as the endpoints flooded the network
   with checks as fast as they can send them.  Consequently, network
   operators should make sure that their ICE implementations support the
   pacing feature.  Though this pacing does increase call setup times,
   it makes ICE network friendly and easier to deploy.

18.2.3.  Keepalives

   STUN keepalives (in the form of STUN Binding Indications) are sent in
   the middle of a media session.  However, they are sent only in the
   absence of actual media traffic.  In deployments that are not
   utilizing Voice Activity Detection (VAD), the keepalives are never
   used and there is no increase in bandwidth usage.  When VAD is being
   used, keepalives will be sent during silence periods.  This involves
   a single packet every 15-20 seconds, far less than the packet every
   20-30 ms that is sent when there is voice.  Therefore, keepalives
   don't have any real impact on capacity planning.
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18.3.  ICE and ICE-lite

   Deployments utilizing a mix of ICE and ICE-lite interoperate
   perfectly.  They have been explicitly designed to do so, without loss
   of function.

   However, ICE-lite can only be deployed in limited use cases.  Those
   cases, and the caveats involved in doing so, are documented in

Appendix A.

18.4.  Troubleshooting and Performance Management

   ICE utilizes end-to-end connectivity checks, and places much of the
   processing in the endpoints.  This introduces a challenge to the
   network operator -- how can they troubleshoot ICE deployments?  How
   can they know how ICE is performing?

   ICE has built-in features to help deal with these problems.
   Signaling servers, typically deployed in the data centers of the
   network operator, will see the contents of the candidate exchanges
   that convey the ICE parameters.  These parameters include the type of
   each candidate (host, server reflexive, or relayed), along with their
   related addresses.  Once ICE processing has completed, an updated
   candidate exchange takes place, signaling the selected address (and
   its type).  This updated signaling is performed exactly for the
   purposes of educating network equipment (such as a diagnostic tool
   attached to a signaling) about the results of ICE processing.

   As a consequence, through the logs generated by a signaling server, a
   network operator can observe what types of candidates are being used
   for each call, and what address were selected by ICE.  This is the
   primary information that helps evaluate how ICE is performing.

18.5.  Endpoint Configuration

   ICE relies on several pieces of data being configured into the
   endpoints.  This configuration data includes timers, credentials for
   TURN servers, and hostnames for STUN and TURN servers.  ICE itself
   does not provide a mechanism for this configuration.  Instead, it is
   assumed that this information is attached to whatever mechanism is
   used to configure all of the other parameters in the endpoint.  For
   SIP phones, standard solutions such as the configuration framework
   [RFC6080] have been defined.

https://datatracker.ietf.org/doc/html/rfc6080
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19.  IANA Considerations

   The original ICE specification registered four new STUN attributes,
   and one new STUN error response.  The STUN attributes and error
   response are reproduced here.  In addition, this specification
   registers a new ICE option.

19.1.  STUN Attributes

   IANA has registered four STUN attributes:

      0x0024 PRIORITY
      0x0025 USE-CANDIDATE
      0x8029 ICE-CONTROLLED
      0x802A ICE-CONTROLLING

19.2.  STUN Error Responses

   IANA has registered following STUN error response code:

    487   Role Conflict: The client asserted an ICE role (controlling or
          controlled) that is in conflict with the role of the server.

19.3.  ICE Options

   IANA is requested to register the following ICE option in the "ICE
   Options" sub-registry of the "Interactive Connectivity Establishment
   (ICE) registry", following the procedures defined in [RFC6336].

https://datatracker.ietf.org/doc/html/rfc6336
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   ICE Option name:

        ice2

     Contact:

        Name:    Christer Holmberg
        E-mail:  christer.holmberg(at)ericsson(dot)com
        Address: Oy LM Ericsson Ab, 02420 Jorvas, FINLAND

     Change control:

        IESG

     Description:

        The ICE option indicates that the ICE agent using the ICE option
        is compliant and implemented according to RFC XXXX.

     Reference:

        RFC XXXX

20.  IAB Considerations

   The IAB has studied the problem of "Unilateral Self-Address Fixing",
   which is the general process by which a agent attempts to determine
   its address in another realm on the other side of a NAT through a
   collaborative protocol reflection mechanism [RFC3424].  ICE is an
   example of a protocol that performs this type of function.
   Interestingly, the process for ICE is not unilateral, but bilateral,
   and the difference has a significant impact on the issues raised by
   IAB.  Indeed, ICE can be considered a B-SAF (Bilateral Self-Address
   Fixing) protocol, rather than an UNSAF protocol.  Regardless, the IAB
   has mandated that any protocols developed for this purpose document a
   specific set of considerations.  This section meets those
   requirements.

20.1.  Problem Definition

   From RFC 3424, any UNSAF proposal must provide:

      Precise definition of a specific, limited-scope problem that is to
      be solved with the UNSAF proposal.  A short-term fix should not be
      generalized to solve other problems; this is why "short-term fixes
      usually aren't".

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424
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   The specific problems being solved by ICE are:

      Provide a means for two peers to determine the set of transport
      addresses that can be used for communication.

      Provide a means for a agent to determine an address that is
      reachable by another peer with which it wishes to communicate.

20.2.  Exit Strategy

   From RFC 3424, any UNSAF proposal must provide:

      Description of an exit strategy/transition plan.  The better
      short-term fixes are the ones that will naturally see less and
      less use as the appropriate technology is deployed.

   ICE itself doesn't easily get phased out.  However, it is useful even
   in a globally connected Internet, to serve as a means for detecting
   whether a router failure has temporarily disrupted connectivity, for
   example.  ICE also helps prevent certain security attacks that have
   nothing to do with NAT.  However, what ICE does is help phase out
   other UNSAF mechanisms.  ICE effectively selects amongst those
   mechanisms, prioritizing ones that are better, and deprioritizing
   ones that are worse.  Local IPv6 addresses can be preferred.  As NATs
   begin to dissipate as IPv6 is introduced, server reflexive and
   relayed candidates (both forms of UNSAF addresses) simply never get
   used, because higher-priority connectivity exists to the native host
   candidates.  Therefore, the servers get used less and less, and can
   eventually be remove when their usage goes to zero.

   Indeed, ICE can assist in the transition from IPv4 to IPv6.  It can
   be used to determine whether to use IPv6 or IPv4 when two dual-stack
   hosts communicate with SIP (IPv6 gets used).  It can also allow a
   network with both 6to4 and native v6 connectivity to determine which
   address to use when communicating with a peer.

20.3.  Brittleness Introduced by ICE

   From RFC 3424, any UNSAF proposal must provide:

      Discussion of specific issues that may render systems more
      "brittle".  For example, approaches that involve using data at
      multiple network layers create more dependencies, increase
      debugging challenges, and make it harder to transition.

   ICE actually removes brittleness from existing UNSAF mechanisms.  In
   particular, classic STUN (as described in RFC 3489 [RFC3489]) has
   several points of brittleness.  One of them is the discovery process

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489
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   that requires an agent to try to classify the type of NAT it is
   behind.  This process is error-prone.  With ICE, that discovery
   process is simply not used.  Rather than unilaterally assessing the
   validity of the address, its validity is dynamically determined by
   measuring connectivity to a peer.  The process of determining
   connectivity is very robust.

   Another point of brittleness in classic STUN and any other unilateral
   mechanism is its absolute reliance on an additional server.  ICE
   makes use of a server for allocating unilateral addresses, but allows
   agents to directly connect if possible.  Therefore, in some cases,
   the failure of a STUN server would still allow for a call to progress
   when ICE is used.

   Another point of brittleness in classic STUN is that it assumes that
   the STUN server is on the public Internet.  Interestingly, with ICE,
   that is not necessary.  There can be a multitude of STUN servers in a
   variety of address realms.  ICE will discover the one that has
   provided a usable address.

   The most troubling point of brittleness in classic STUN is that it
   doesn't work in all network topologies.  In cases where there is a
   shared NAT between each agent and the STUN server, traditional STUN
   may not work.  With ICE, that restriction is removed.

   Classic STUN also introduces some security considerations.
   Fortunately, those security considerations are also mitigated by ICE.

   Consequently, ICE serves to repair the brittleness introduced in
   classic STUN, and does not introduce any additional brittleness into
   the system.

   The penalty of these improvements is that ICE increases session
   establishment times.

20.4.  Requirements for a Long-Term Solution

   From RFC 3424, any UNSAF proposal must provide:

      ... requirements for longer term, sound technical solutions --
      contribute to the process of finding the right longer term
      solution.

   Our conclusions from RFC 3489 remain unchanged.  However, we feel ICE
   actually helps because we believe it can be part of the long-term
   solution.
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20.5.  Issues with Existing NAPT Boxes

   From RFC 3424, any UNSAF proposal must provide:

      Discussion of the impact of the noted practical issues with
      existing, deployed NA[P]Ts and experience reports.

   A number of NAT boxes are now being deployed into the market that try
   to provide "generic" ALG functionality.  These generic ALGs hunt for
   IP addresses, either in text or binary form within a packet, and
   rewrite them if they match a binding.  This interferes with classic
   STUN.  However, the update to STUN [RFC5389] uses an encoding that
   hides these binary addresses from generic ALGs.

   Existing NAPT boxes have non-deterministic and typically short
   expiration times for UDP-based bindings.  This requires
   implementations to send periodic keepalives to maintain those
   bindings.  ICE uses a default of 15 s, which is a very conservative
   estimate.  Eventually, over time, as NAT boxes become compliant to
   behave [RFC4787], this minimum keepalive will become deterministic
   and well-known, and the ICE timers can be adjusted.  Having a way to
   discover and control the minimum keepalive interval would be far
   better still.

21.  Changes from RFC 5245

   Following is the list of changes from RFC 5245

   o  The specification was generalized to be more usable with any
      protocol and the parts that are specific to SIP and SDP were moved
      to a SIP/SDP usage document [I-D.ietf-mmusic-ice-sip-sdp].

   o  Default candidates, multiple components, ICE mismatch detection,
      subsequent offer/answer, and role conflict resolution were made
      optional since they are not needed with every protocol using ICE.

   o  With IPv6, the precedence rules of RFC 6724 are used instead of
      the obsoleted RFC 3483 and using address preferences provided by
      the host operating system is recommended.

   o  Candidate gathering rules regarding loopback addresses and IPv6
      addresses were clarified.
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Appendix A.  Lite and Full Implementations

   ICE allows for two types of implementations.  A full implementation
   supports the controlling and controlled roles in a session, and can
   also perform address gathering.  In contrast, a lite implementation
   is a minimalist implementation that does little but respond to STUN
   checks.

   Because ICE requires both endpoints to support it in order to bring
   benefits to either endpoint, incremental deployment of ICE in a
   network is more complicated.  Many sessions involve an endpoint that
   is, by itself, not behind a NAT and not one that would worry about
   NAT traversal.  A very common case is to have one endpoint that
   requires NAT traversal (such as a VoIP hard phone or soft phone) make
   a call to one of these devices.  Even if the phone supports a full
   ICE implementation, ICE won't be used at all if the other device
   doesn't support it.  The lite implementation allows for a low-cost
   entry point for these devices.  Once they support the lite
   implementation, full implementations can connect to them and get the
   full benefits of ICE.

   Consequently, a lite implementation is only appropriate for devices
   that will *always* be connected to the public Internet and have a
   public IP address at which it can receive packets from any
   correspondent.  ICE will not function when a lite implementation is
   placed behind a NAT.

   ICE allows a lite implementation to have a single IPv4 host candidate
   and several IPv6 addresses.  In that case, candidate pairs are
   selected by the controlling agent using a static algorithm, such as
   the one in RFC 6724, which is recommended by this specification.
   However, static mechanisms for address selection are always prone to
   error, since they cannot ever reflect the actual topology and can
   never provide actual guarantees on connectivity.  They are always
   heuristics.  Consequently, if an agent is implementing ICE just to
   select between its IPv4 and IPv6 addresses, and none of its IP
   addresses are behind NAT, usage of full ICE is still RECOMMENDED in
   order to provide the most robust form of address selection possible.
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   It is important to note that the lite implementation was added to
   this specification to provide a stepping stone to full
   implementation.  Even for devices that are always connected to the
   public Internet with just a single IPv4 address, a full
   implementation is preferable if achievable.  Full implementations
   also obtain the security benefits of ICE unrelated to NAT traversal;
   in particular, the voice hammer attack described in Section 16 is
   prevented only for full implementations, not lite.  Finally, it is
   often the case that a device that finds itself with a public address
   today will be placed in a network tomorrow where it will be behind a
   NAT.  It is difficult to definitively know, over the lifetime of a
   device or product, that it will always be used on the public
   Internet.  Full implementation provides assurance that communications
   will always work.

Appendix B.  Design Motivations

   ICE contains a number of normative behaviors that may themselves be
   simple, but derive from complicated or non-obvious thinking or use
   cases that merit further discussion.  Since these design motivations
   are not necessary to understand for purposes of implementation, they
   are discussed here in an appendix to the specification.  This section
   is non-normative.

B.1.  Pacing of STUN Transactions

   STUN transactions used to gather candidates and to verify
   connectivity are paced out at an approximate rate of one new
   transaction every Ta milliseconds.  Each transaction, in turn, has a
   retransmission timer RTO that is a function of Ta as well.  Why are
   these transactions paced, and why are these formulas used?

   Sending of these STUN requests will often have the effect of creating
   bindings on NAT devices between the client and the STUN servers.
   Experience has shown that many NAT devices have upper limits on the
   rate at which they will create new bindings.  Experiments have shown
   that once every 5 ms is well supported.  This is why Ta has a lower
   bound of 5 ms.  Furthermore, transmission of these packets on the
   network makes use of bandwidth and needs to be rate limited by the
   agent.  Deployments based on earlier draft versions of [RFC5245]
   tended to overload rate-constrained access links and perform poorly
   overall, in addition to negatively impacting the network.  As a
   consequence, the pacing ensures that the NAT device does not get
   overloaded and that traffic is kept at a reasonable rate.

   The definition of a "reasonable" rate is that STUN should not use
   more bandwidth than the RTP itself will use, once media starts
   flowing.  The formula for Ta is designed so that, if a STUN packet
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   were sent every Ta seconds, it would consume the same amount of
   bandwidth as RTP packets, summed across all media streams.  Of
   course, STUN has retransmits, and the desire is to pace those as
   well.  For this reason, RTO is set such that the first retransmit on
   the first transaction happens just as the first STUN request on the
   last transaction occurs.  Pictorially:

              First Packets              Retransmits

                    |                        |
                    |                        |
             -------+------           -------+------
            /               \        /               \
           /                 \      /                 \

           +--+    +--+    +--+    +--+    +--+    +--+
           |A1|    |B1|    |C1|    |A2|    |B2|    |C2|
           +--+    +--+    +--+    +--+    +--+    +--+

        ---+-------+-------+-------+-------+-------+------------ Time
           0       Ta      2Ta     3Ta     4Ta     5Ta

   In this picture, there are three transactions that will be sent (for
   example, in the case of candidate gathering, there are three host
   candidate/STUN server pairs).  These are transactions A, B, and C.
   The retransmit timer is set so that the first retransmission on the
   first transaction (packet A2) is sent at time 3Ta.

   Subsequent retransmits after the first will occur even less
   frequently than Ta milliseconds apart, since STUN uses an exponential
   back-off on its retransmissions.

B.2.  Candidates with Multiple Bases

Section 4.1.3 talks about eliminating candidates that have the same
   transport address and base.  However, candidates with the same
   transport addresses but different bases are not redundant.  When can
   an agent have two candidates that have the same IP address and port,
   but different bases?  Consider the topology of Figure 11:
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          +----------+
          | STUN Srvr|
          +----------+
               |
               |
             -----
           //     \\
          |         |
         |  B:net10  |
          |         |
           \\     //
             -----
               |
               |
          +----------+
          |   NAT    |
          +----------+
               |
               |
             -----
           //     \\
          |    A    |
         |192.168/16 |
          |         |
           \\     //
             -----
               |
               |
               |192.168.1.100      -----
          +----------+           //     \\             +----------+
          |          |          |         |            |          |
          | Initiator|---------|  C:net10  |-----------| Responder|
          |          |10.0.1.100|         | 10.0.1.101 |          |
          +----------+           \\     //             +----------+
                                   -----

           Figure 11: Identical Candidates with Different Bases

   In this case, the initiating agent is multihomed.  It has one IP
   address, 10.0.1.100, on network C, which is a net 10 private network.
   The responding agent is on this same network.  The initiating agent
   is also connected to network A, which is 192.168/16 and has an IP
   address of 192.168.1.100 on this network.  There is a NAT on this
   network, natting into network B, which is another net 10 private
   network, but not connected to network C.  There is a STUN server on
   network B.
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   The initiating agent obtains a host candidate on its IP address on
   network C (10.0.1.100:2498) and a host candidate on its IP address on
   network A (192.168.1.100:3344).  It performs a STUN query to its
   configured STUN server from 192.168.1.100:3344.  This query passes
   through the NAT, which happens to assign the binding 10.0.1.100:2498.
   The STUN server reflects this in the STUN Binding response.  Now, the
   initiating agent has obtained a server reflexive candidate with a
   transport address that is identical to a host candidate
   (10.0.1.100:2498).  However, the server reflexive candidate has a
   base of 192.168.1.100:3344, and the host candidate has a base of
   10.0.1.100:2498.

B.3.  Purpose of the Related Address and Related Port Attributes

   The candidate attribute contains two values that are not used at all
   by ICE itself -- related address and related port.  Why are they
   present?

   There are two motivations for its inclusion.  The first is
   diagnostic.  It is very useful to know the relationship between the
   different types of candidates.  By including it, an agent can know
   which relayed candidate is associated with which reflexive candidate,
   which in turn is associated with a specific host candidate.  When
   checks for one candidate succeed and not for others, this provides
   useful diagnostics on what is going on in the network.

   The second reason has to do with off-path Quality of Service (QoS)
   mechanisms.  When ICE is used in environments such as PacketCable
   2.0, proxies will, in addition to performing normal SIP operations,
   inspect the SDP in SIP messages, and extract the IP address and port
   for media traffic.  They can then interact, through policy servers,
   with access routers in the network, to establish guaranteed QoS for
   the media flows.  This QoS is provided by classifying the RTP traffic
   based on 5-tuple, and then providing it a guaranteed rate, or marking
   its Diffserv codepoints appropriately.  When a residential NAT is
   present, and a relayed candidate gets selected for media, this
   relayed candidate will be a transport address on an actual TURN
   server.  That address says nothing about the actual transport address
   in the access router that would be used to classify packets for QoS
   treatment.  Rather, the server reflexive candidate towards the TURN
   server is needed.  By carrying the translation in the SDP, the proxy
   can use that transport address to request QoS from the access router.

B.4.  Importance of the STUN Username

   ICE requires the usage of message integrity with STUN using its
   short-term credential functionality.  The actual short-term
   credential is formed by exchanging username fragments in the
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   candidate exchange.  The need for this mechanism goes beyond just
   security; it is actually required for correct operation of ICE in the
   first place.

   Consider agents L, R, and Z.  L and R are within private enterprise
   1, which is using 10.0.0.0/8.  Z is within private enterprise 2,
   which is also using 10.0.0.0/8.  As it turns out, R and Z both have
   IP address 10.0.1.1.  L sends candidates to Z.  Z, in responds L with
   its host candidates.  In this case, those candidates are
   10.0.1.1:8866 and 10.0.1.1:8877.  As it turns out, R is in a session
   at that same time, and is also using 10.0.1.1:8866 and 10.0.1.1:8877
   as host candidates.  This means that R is prepared to accept STUN
   messages on those ports, just as Z is.  L will send a STUN request to
   10.0.1.1:8866 and another to 10.0.1.1:8877.  However, these do not go
   to Z as expected.  Instead, they go to R!  If R just replied to them,
   L would believe it has connectivity to Z, when in fact it has
   connectivity to a completely different user, R.  To fix this, the
   STUN short-term credential mechanisms are used.  The username
   fragments are sufficiently random that it is highly unlikely that R
   would be using the same values as Z.  Consequently, R would reject
   the STUN request since the credentials were invalid.  In essence, the
   STUN username fragments provide a form of transient host identifiers,
   bound to a particular session established as part of the candidate
   exchange.

   An unfortunate consequence of the non-uniqueness of IP addresses is
   that, in the above example, R might not even be an ICE agent.  It
   could be any host, and the port to which the STUN packet is directed
   could be any ephemeral port on that host.  If there is an application
   listening on this socket for packets, and it is not prepared to
   handle malformed packets for whatever protocol is in use, the
   operation of that application could be affected.  Fortunately, since
   the ports exchanged are ephemeral and usually drawn from the dynamic
   or registered range, the odds are good that the port is not used to
   run a server on host R, but rather is the agent side of some
   protocol.  This decreases the probability of hitting an allocated
   port, due to the transient nature of port usage in this range.
   However, the possibility of a problem does exist, and network
   deployers should be prepared for it.  Note that this is not a problem
   specific to ICE; stray packets can arrive at a port at any time for
   any type of protocol, especially ones on the public Internet.  As
   such, this requirement is just restating a general design guideline
   for Internet applications -- be prepared for unknown packets on any
   port.
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B.5.  The Candidate Pair Priority Formula

   The priority for a candidate pair has an odd form.  It is:

      pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)

   Why is this?  When the candidate pairs are sorted based on this
   value, the resulting sorting has the MAX/MIN property.  This means
   that the pairs are first sorted based on decreasing value of the
   minimum of the two priorities.  For pairs that have the same value of
   the minimum priority, the maximum priority is used to sort amongst
   them.  If the max and the min priorities are the same, the
   controlling agent's priority is used as the tie-breaker in the last
   part of the expression.  The factor of 2*32 is used since the
   priority of a single candidate is always less than 2*32, resulting in
   the pair priority being a "concatenation" of the two component
   priorities.  This creates the MAX/MIN sorting.  MAX/MIN ensures that,
   for a particular agent, a lower-priority candidate is never used
   until all higher-priority candidates have been tried.

B.6.  Why Are Keepalives Needed?

   Once media begins flowing on a candidate pair, it is still necessary
   to keep the bindings alive at intermediate NATs for the duration of
   the session.  Normally, the media stream packets themselves (e.g.,
   RTP) meet this objective.  However, several cases merit further
   discussion.  Firstly, in some RTP usages, such as SIP, the media
   streams can be "put on hold".  This is accomplished by using the SDP
   "sendonly" or "inactive" attributes, as defined in RFC 3264
   [RFC3264].  RFC 3264 directs implementations to cease transmission of
   media in these cases.  However, doing so may cause NAT bindings to
   timeout, and media won't be able to come off hold.

   Secondly, some RTP payload formats, such as the payload format for
   text conversation [RFC4103], may send packets so infrequently that
   the interval exceeds the NAT binding timeouts.

   Thirdly, if silence suppression is in use, long periods of silence
   may cause media transmission to cease sufficiently long for NAT
   bindings to time out.

   For these reasons, the media packets themselves cannot be relied
   upon.  ICE defines a simple periodic keepalive utilizing STUN Binding
   indications.  This makes its bandwidth requirements highly
   predictable, and thus amenable to QoS reservations.

https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc4103
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B.7.  Why Prefer Peer Reflexive Candidates?

Section 4.1.2 describes procedures for computing the priority of
   candidate based on its type and local preferences.  That section
   requires that the type preference for peer reflexive candidates
   always be higher than server reflexive.  Why is that?  The reason has
   to do with the security considerations in Section 16.  It is much
   easier for an attacker to cause an agent to use a false server
   reflexive candidate than it is for an attacker to cause an agent to
   use a false peer reflexive candidate.  Consequently, attacks against
   address gathering with Binding requests are thwarted by ICE by
   preferring the peer reflexive candidates.

B.8.  Why Are Binding Indications Used for Keepalives?

   Media keepalives are described in Section 10.  These keepalives make
   use of STUN when both endpoints are ICE capable.  However, rather
   than using a Binding request transaction (which generates a
   response), the keepalives use an Indication.  Why is that?

   The primary reason has to do with network QoS mechanisms.  Once media
   begins flowing, network elements will assume that the media stream
   has a fairly regular structure, making use of periodic packets at
   fixed intervals, with the possibility of jitter.  If an agent is
   sending media packets, and then receives a Binding request, it would
   need to generate a response packet along with its media packets.
   This will increase the actual bandwidth requirements for the 5-tuple
   carrying the media packets, and introduce jitter in the delivery of
   those packets.  Analysis has shown that this is a concern in certain
   layer 2 access networks that use fairly tight packet schedulers for
   media.

   Additionally, using a Binding Indication allows integrity to be
   disabled, allowing for better performance.  This is useful for large-
   scale endpoints, such as PSTN gateways and SBCs.

B.9.  Selecting Candidate Type Preference

   One criterion for selection of the type and local preference values
   is the use of a media intermediary, such as a TURN server, a tunnel
   service such as VPN server, or NAT.  With a media intermediary, if
   media is sent to that candidate, it will first transit the media
   intermediary before being received.  Relayed candidates are one type
   of candidate that involves a media intermediary.  Another are host
   candidates obtained from a VPN interface.  When media is transited
   through a media intermediary, it can have a positive or negative
   effect on the latency between transmission and reception.  It may or
   may not increase the packet losses, because of the additional router
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   hops that may be taken.  It may increase the cost of providing
   service, since media will be routed in and right back out of a media
   intermediary run by a provider.  If these concerns are important, the
   type preference for relayed candidates must be carefully chosen.

   Another criterion for selection of preferences is IP address family.
   ICE works with both IPv4 and IPv6.  It provides a transition
   mechanism that allows dual-stack hosts to prefer connectivity over
   IPv6, but to fall back to IPv4 in case the v6 networks are
   disconnected.  Implementation should follow the guidelines from
   [I-D.ietf-ice-dualstack-fairness] to avoid excessive delays in the
   connectivity check phase if broken paths exist.

   Another criterion for selecting preferences is topological awareness.
   This is most useful for candidates that make use of intermediaries.
   In those cases, if an agent has preconfigured or dynamically
   discovered knowledge of the topological proximity of the
   intermediaries to itself, it can use that to assign higher local
   preferences to candidates obtained from closer intermediaries.

   Another criterion for selecting preferences might be security or
   privacy.  If a user is a telecommuter, and therefore connected to a
   corporate network and a local home network, the user may prefer their
   voice traffic to be routed over the VPN or similar tunnel in order to
   keep it on the corporate network when communicating within the
   enterprise, but use the local network when communicating with users
   outside of the enterprise.  In such a case, a VPN address would have
   a higher local preference than any other address.

Appendix C.  Connectivity Check Bandwidth

   The tables below show, for IPv4 and IPv6, the bandwidth required for
   performing connectivity checks, using different Ta values (given in
   ms) and different ufrag sizes (given in bytes).

   The results were provided by Jusin Uberti (Google) 11th April 2016.
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   IP version: IPv4
   Packet len (bytes): 108 + ufrag
        |
     ms |     4     8    12    16
   -----|------------------------
    500 | 1.86k 1.98k 2.11k 2.24k
    200 | 4.64k 4.96k 5.28k  5.6k
    100 | 9.28k 9.92k 10.6k 11.2k
     50 | 18.6k 19.8k 21.1k 22.4k
     20 | 46.4k 49.6k 52.8k 56.0k
     10 | 92.8k 99.2k  105k  112k
      5 |  185k  198k  211k  224k
      2 |  464k  496k  528k  560k
      1 |  928k  992k 1.06M 1.12M

   IP version: IPv6
   Packet len (bytes): 128 + ufrag
        |
     ms |     4     8    12    16
   -----|------------------------
    500 | 2.18k  2.3k 2.43k 2.56k
    200 | 5.44k 5.76k 6.08k  6.4k
    100 | 10.9k 11.5k 12.2k 12.8k
     50 | 21.8k 23.0k 24.3k 25.6k
     20 | 54.4k 57.6k 60.8k 64.0k
     10 |  108k  115k  121k  128k
      5 |  217k  230k  243k  256k
      2 |  544k  576k  608k  640k
      1 | 1.09M 1.15M 1.22M 1.28M

                  Figure 12: Connectivity Check Bandwidth
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