
ICE A. Keranen
Internet-Draft C. Holmberg
Obsoletes: 5245 (if approved) Ericsson
Intended status: Standards Track J. Rosenberg
Expires: April 2, 2018 jdrosen.net
 September 29, 2017

Interactive Connectivity Establishment (ICE): A Protocol for Network
Address Translator (NAT) Traversal

draft-ietf-ice-rfc5245bis-12

Abstract

 This document describes a protocol for Network Address Translator
 (NAT) traversal for UDP-based multimedia. This protocol is called
 Interactive Connectivity Establishment (ICE). ICE makes use of the
 Session Traversal Utilities for NAT (STUN) protocol and its
 extension, Traversal Using Relay NAT (TURN).

 This document obsoletes RFC 5245.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 2, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Keranen, et al. Expires April 2, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft ICE September 2017

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 5
2. Overview of ICE . 6
2.1. Gathering Candidate Addresses 8
2.2. Connectivity Checks 10
2.3. Sorting Candidates 11
2.4. Frozen Candidates . 12
2.5. Security for Checks 13
2.6. Concluding ICE . 13
2.7. Lite Implementations 14
2.8. Usages of ICE . 15

3. Terminology . 15
4. ICE Candidate Gathering and Exchange 18
4.1. f Implementation . 19
4.1.1. Gathering Candidates 19
4.1.1.1. Host Candidates 20
4.1.1.2. Server Reflexive and Relayed Candidates 21
4.1.1.3. Computing Foundations 22
4.1.1.4. Keeping Candidates Alive 23

4.1.2. Prioritizing Candidates 23
4.1.2.1. Recommended Formula 23

 4.1.2.2. Guidelines for Choosing Type and Local
 Preferences 24

4.1.3. Eliminating Redundant Candidates 25
4.2. Lite Implementation Procedures 25
4.3. Encoding the Candidate Information 26
4.4. Verifying ICE Support 27

5. ICE Candidate Processing 28
5.1. Procedures for Full Implementation 28

Keranen, et al. Expires April 2, 2018 [Page 2]

Internet-Draft ICE September 2017

5.1.1. Determining Role 28
5.1.2. Forming the Check Lists 29
5.1.2.1. Check List State 30
5.1.2.2. Forming Candidate Pairs 30
5.1.2.3. Computing Pair Priority and Ordering Pairs . . . 33
5.1.2.4. Pruning the Pairs 33
5.1.2.5. Removing lower-priority Pairs 33
5.1.2.6. Computing Candidate Pair States 34

5.1.3. ICE State . 37
5.1.4. Scheduling Checks 37
5.1.4.1. Triggered Check Queue 37
5.1.4.2. Performing Connectivity Checks 38

5.2. Lite Implementation Procedures 39
6. Performing Connectivity Checks 39
6.1. STUN Extensions . 40
6.1.1. PRIORITY . 40
6.1.2. USE-CANDIDATE . 40
6.1.3. ICE-CONTROLLED and ICE-CONTROLLING 40

6.2. STUN Client Procedures 40
6.2.1. Creating Permissions for Relayed Candidates 40
6.2.2. Forming Credentials 41
6.2.3. DiffServ Treatment 41
6.2.4. Sending the Request 41
6.2.5. Processing the Response 41
6.2.5.1. Role Conflict 42
6.2.5.2. Failure . 42
6.2.5.2.1. Non-Symmetric Transport Addresses 42
6.2.5.2.2. ICMP Error 43
6.2.5.2.3. Unrecoverable STUN Response 43

6.2.5.3. Success . 43
6.2.5.3.1. Discovering Peer Reflexive Candidates 43
6.2.5.3.2. Constructing a Valid Pair 44
6.2.5.3.3. Updating Candidate Pair States 45
6.2.5.3.4. Updating the Nominated Flag 45

6.2.5.4. Check List State Updates 46
6.3. STUN Server Procedures 46
6.3.1. Additional Procedures for Full Implementations . . . 47
6.3.1.1. Detecting and Repairing Role Conflicts 47
6.3.1.2. Computing Mapped Address 48
6.3.1.3. Learning Peer Reflexive Candidates 48
6.3.1.4. Triggered Checks 49
6.3.1.5. Updating the Nominated Flag 50

6.3.2. Additional Procedures for Lite Implementations . . . 50
7. Concluding ICE Processing 50
7.1. Procedures for Full Implementations 51
7.1.1. Nominating Pairs 51
7.1.2. Updating States 52

7.2. Procedures for Lite Implementations 53

Keranen, et al. Expires April 2, 2018 [Page 3]

Internet-Draft ICE September 2017

7.3. Freeing Candidates 54
7.3.1. Full Implementation Procedures 54
7.3.2. Lite Implementation Procedures 54

8. ICE Restarts . 54
9. ICE Option . 55
10. Keepalives . 55
11. Media Handling . 56
11.1. Sending Media . 56
11.2. Procedures for Lite Implementations 57
11.3. Procedures for All Implementations 57

12. Receiving Media . 57
13. Extensibility Considerations 58
14. Setting Ta and RTO . 59
14.1. General . 59
14.2. Ta . 59
14.3. RTO . 61

15. Example . 61
16. Security Considerations 66
16.1. Attacks on Connectivity Checks 66
16.2. Attacks on Server Reflexive Address Gathering 69
16.3. Attacks on Relayed Candidate Gathering 69
16.4. Insider Attacks . 70
16.4.1. STUN Amplification Attack 70

17. STUN Extensions . 71
17.1. New Attributes . 71
17.2. New Error Response Codes 72

18. Operational Considerations 72
18.1. NAT and Firewall Types 72
18.2. Bandwidth Requirements 72
18.2.1. STUN and TURN Server Capacity Planning 72
18.2.2. Gathering and Connectivity Checks 73
18.2.3. Keepalives . 73

18.3. ICE and ICE-lite . 74
18.4. Troubleshooting and Performance Management 74
18.5. Endpoint Configuration 74

19. IANA Considerations . 75
19.1. STUN Attributes . 75
19.2. STUN Error Responses 75
19.3. ICE Options . 75

20. IAB Considerations . 76
20.1. Problem Definition 76
20.2. Exit Strategy . 77
20.3. Brittleness Introduced by ICE 77
20.4. Requirements for a Long-Term Solution 78
20.5. Issues with Existing NAPT Boxes 79

21. Changes from RFC 5245 . 79
22. Acknowledgements . 79
23. References . 80

https://datatracker.ietf.org/doc/html/rfc5245

Keranen, et al. Expires April 2, 2018 [Page 4]

Internet-Draft ICE September 2017

23.1. Normative References 80
23.2. Informative References 80

Appendix A. Lite and Full Implementations 84
Appendix B. Design Motivations 85
B.1. Pacing of STUN Transactions 85
B.2. Candidates with Multiple Bases 86

 B.3. Purpose of the Related Address and Related Port
 Attributes . 88

B.4. Importance of the STUN Username 88
B.5. The Candidate Pair Priority Formula 90
B.6. Why Are Keepalives Needed? 90
B.7. Why Prefer Peer Reflexive Candidates? 91
B.8. Why Are Binding Indications Used for Keepalives? 91
B.9. Selecting Candidate Type Preference 91

Appendix C. Connectivity Check Bandwidth 92
 Authors' Addresses . 93

1. Introduction

 Protocols establishing multimedia sessions between peers typically
 involve exchanging IP addresses and ports for the media sources and
 sinks. However this poses challenges when operated through Network
 Address Translators (NATs) [RFC3235]. These protocols also seek to
 create a media flow directly between participants, so that there is
 no application layer intermediary between them. This is done to
 reduce media latency, decrease packet loss, and reduce the
 operational costs of deploying the application. However, this is
 difficult to accomplish through NATs. A full treatment of the
 reasons for this is beyond the scope of this specification.

 Numerous solutions have been defined for allowing these protocols to
 operate through NATs. These include Application Layer Gateways
 (ALGs), the Middlebox Control Protocol [RFC3303], the original Simple
 Traversal of UDP Through NAT (STUN) [RFC3489] specification, and
 Realm Specific IP [RFC3102] [RFC3103] along with session description
 extensions needed to make them work, such as the Session Description
 Protocol (SDP) [RFC4566] attribute for the Real Time Control Protocol
 (RTCP) [RFC3605]. Unfortunately, these techniques all have pros and
 cons which, make each one optimal in some network topologies, but a
 poor choice in others. The result is that administrators and
 implementors are making assumptions about the topologies of the
 networks in which their solutions will be deployed. This introduces
 complexity and brittleness into the system. What is needed is a
 single solution that is flexible enough to work well in all
 situations.

 This specification defines Interactive Connectivity Establishment
 (ICE) as a technique for NAT traversal for UDP-based media streams

https://datatracker.ietf.org/doc/html/rfc3235
https://datatracker.ietf.org/doc/html/rfc3303
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3102
https://datatracker.ietf.org/doc/html/rfc3103
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc3605

Keranen, et al. Expires April 2, 2018 [Page 5]

Internet-Draft ICE September 2017

 (though ICE has been extended to handle other transport protocols,
 such as TCP [RFC6544]). ICE works by exchanging a multiplicity of IP
 addresses and ports which are then tested for connectivity by peer-
 to-peer connectivity checks. The IP addresses and ports are
 exchanged via mechanisms (for example, including in a offer/answer
 exchange) and the connectivity checks are performed using Session
 Traversal Utilities for NAT (STUN) specification [RFC5389]. ICE also
 makes use of Traversal Using Relays around NAT (TURN) [RFC5766], an
 extension to STUN. Because ICE exchanges a multiplicity of IP
 addresses and ports for each media stream, it also allows for address
 selection for multihomed and dual-stack hosts, and for this reason it
 deprecates [RFC4091] and [RFC4092].

2. Overview of ICE

 In a typical ICE deployment, we have two endpoints (known as ICE
 AGENTS) that want to communicate. They are able to communicate
 indirectly via some signaling protocol (such as SIP), by which they
 can exchange ICE candidates. Note that ICE is not intended for NAT
 traversal for the signaling protocol, which is assumed to be provided
 via another mechanism. At the beginning of the ICE process, the
 agents are ignorant of their own topologies. In particular, they
 might or might not be behind a NAT (or multiple tiers of NATs). ICE
 allows the agents to discover enough information about their
 topologies to potentially find one or more paths by which they can
 communicate.

 Figure 1 shows a typical environment for ICE deployment. The two
 endpoints are labelled L and R (for left and right, which helps
 visualize call flows). Both L and R are behind their own respective
 NATs though they may not be aware of it. The type of NAT and its
 properties are also unknown. Agents L and R are capable of engaging
 in an candidate exchange process, whose purpose is to set up a media
 session between L and R. Typically, this exchange will occur through
 a signaling (e.g., SIP) server.

 In addition to the agents, a signaling server and NATs, ICE is
 typically used in concert with STUN or TURN servers in the network.
 Each agent can have its own STUN or TURN server, or they can be the
 same.

https://datatracker.ietf.org/doc/html/rfc6544
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5766
https://datatracker.ietf.org/doc/html/rfc4091
https://datatracker.ietf.org/doc/html/rfc4092

Keranen, et al. Expires April 2, 2018 [Page 6]

Internet-Draft ICE September 2017

 +---------+
 +--------+ |Signaling| +--------+
 | STUN | |Server | | STUN |
 | Server | +---------+ | Server |
 +--------+ / \ +--------+
 / \
 / \
 / <- Signaling -> \
 / \
 +--------+ +--------+
 | NAT | | NAT |
 +--------+ +--------+
 / \
 / \
 +-------+ +-------+
 | Agent | | Agent |
 | L | | R |
 +-------+ +-------+

 Figure 1: ICE Deployment Scenario

 The basic idea behind ICE is as follows: each agent has a variety of
 candidate TRANSPORT ADDRESSES (combination of IP address and port for
 a particular transport protocol, which is always UDP in this
 specification) it could use to communicate with the other agent.
 These might include:

 o A transport address on a directly attached network interface

 o A translated transport address on the public side of a NAT (a
 "server reflexive" address)

 o A transport address allocated from a TURN server (a "relayed
 address")

 Potentially, any of L's candidate transport addresses can be used to
 communicate with any of R's candidate transport addresses. In
 practice, however, many combinations will not work. For instance, if
 L and R are both behind NATs, their directly attached interface
 addresses are unlikely to be able to communicate directly (this is
 why ICE is needed, after all!). The purpose of ICE is to discover
 which pairs of addresses will work. The way that ICE does this is to
 systematically try all possible pairs (in a carefully sorted order)
 until it finds one or more that work.

Keranen, et al. Expires April 2, 2018 [Page 7]

Internet-Draft ICE September 2017

2.1. Gathering Candidate Addresses

 In order to execute ICE, an agent has to identify all of its address
 candidates. A CANDIDATE is a transport address -- a combination of
 IP address and port for a particular transport protocol (with only
 UDP specified here). This document defines three types of
 candidates, some derived from physical or logical network interfaces,
 others discoverable via STUN and TURN. Naturally, one viable
 candidate is a transport address obtained directly from a local
 interface. Such a candidate is called a HOST CANDIDATE. The local
 interface could be Ethernet or WiFi, or it could be one that is
 obtained through a tunnel mechanism, such as a Virtual Private
 Network (VPN) or Mobile IP (MIP). In all cases, such a network
 interface appears to the agent as a local interface from which ports
 (and thus candidates) can be allocated.

 If an agent is multihomed, it obtains a candidate from each IP
 address. Depending on the location of the PEER (the other agent in
 the session) on the IP network relative to the agent, the agent may
 be reachable by the peer through one or more of those IP addresses.
 Consider, for example, an agent that has a local IP address on a
 private net 10 network (I1), and a second connected to the public
 Internet (I2). A candidate from I1 will be directly reachable when
 communicating with a peer on the same private net 10 network, while a
 candidate from I2 will be directly reachable when communicating with
 a peer on the public Internet. Rather than trying to guess which IP
 address will work, the initiating agent sends both the candidates to
 its peer.

 Next, the agent uses STUN or TURN to obtain additional candidates.
 These come in two flavors: translated addresses on the public side of
 a NAT (SERVER REFLEXIVE CANDIDATES) and addresses on TURN servers
 (RELAYED CANDIDATES). When TURN servers are utilized, both types of
 candidates are obtained from the TURN server. If only STUN servers
 are utilized, only server reflexive candidates are obtained from
 them. The relationship of these candidates to the host candidate is
 shown in Figure 2. In this figure, both types of candidates are
 discovered using TURN. In the figure, the notation X:x means IP
 address X and UDP port x.

Keranen, et al. Expires April 2, 2018 [Page 8]

Internet-Draft ICE September 2017

 To Internet

 |
 |
 | /------------ Relayed
 Y:y | / Address
 +--------+
 | |
 | TURN |
 | Server |
 | |
 +--------+
 |
 |
 | /------------ Server
 X1':x1'|/ Reflexive
 +------------+ Address
 | NAT |
 +------------+
 |
 | /------------ Local
 X:x |/ Address
 +--------+
 | |
 | Agent |
 | |
 +--------+

 Figure 2: Candidate Relationships

 When the agent sends the TURN Allocate request from IP address and
 port X:x, the NAT (assuming there is one) will create a binding
 X1':x1', mapping this server reflexive candidate to the host
 candidate X:x. Outgoing packets sent from the host candidate will be
 translated by the NAT to the server reflexive candidate. Incoming
 packets sent to the server reflexive candidate will be translated by
 the NAT to the host candidate and forwarded to the agent. The host
 candidate associated with a given server reflexive candidate is the
 BASE.

 Note: "Base" refers to the address an agent sends from for a
 particular candidate. Thus, as a degenerate case, host candidates
 also have a base, but it's the same as the host candidate.

 When there are multiple NATs between the agent and the TURN server,
 the TURN request will create a binding on each NAT, but only the
 outermost server reflexive candidate (the one nearest the TURN

Keranen, et al. Expires April 2, 2018 [Page 9]

Internet-Draft ICE September 2017

 server) will be discovered by the agent. If the agent is not behind
 a NAT, then the base candidate will be the same as the server
 reflexive candidate and the server reflexive candidate is redundant
 and will be eliminated.

 The Allocate request then arrives at the TURN server. The TURN
 server allocates a port y from its local IP address Y, and generates
 an Allocate response, informing the agent of this relayed candidate.
 The TURN server also informs the agent of the server reflexive
 candidate, X1':x1' by copying the source transport address of the
 Allocate request into the Allocate response. The TURN server acts as
 a packet relay, forwarding traffic between L and R. In order to send
 traffic to L, R sends traffic to the TURN server at Y:y, and the TURN
 server forwards that to X1':x1', which passes through the NAT where
 it is mapped to X:x and delivered to L.

 When only STUN servers are utilized, the agent sends a STUN Binding
 request [RFC5389] to its STUN server. The STUN server will inform
 the agent of the server reflexive candidate X1':x1' by copying the
 source transport address of the Binding request into the Binding
 response.

2.2. Connectivity Checks

 Once L has gathered all of its candidates, it orders them in highest
 to lowest-priority and sends them to R over the signaling channel.
 When R receives the candidates from L, it performs the same gathering
 process and responds with its own list of candidates. At the end of
 this process, each agent has a complete list of both its candidates
 and its peer's candidates. It pairs them up, resulting in CANDIDATE
 PAIRS. To see which pairs work, each agent schedules a series of
 CHECKS. Each check is a STUN request/response transaction that the
 client will perform on a particular candidate pair by sending a STUN
 request from the local candidate to the remote candidate.

 The basic principle of the connectivity checks is simple:

 1. Sort the candidate pairs in priority order.

 2. Send checks on each candidate pair in priority order.

 3. Acknowledge checks received from the other agent.

 With both agents performing a check on a candidate pair, the result
 is a 4-way handshake:

https://datatracker.ietf.org/doc/html/rfc5389

Keranen, et al. Expires April 2, 2018 [Page 10]

Internet-Draft ICE September 2017

 L R
 - -
 STUN request -> \ L's
 <- STUN response / check

 <- STUN request \ R's
 STUN response -> / check

 Figure 3: Basic Connectivity Check

 It is important to note that the STUN requests are sent to and from
 the exact same IP addresses and ports that will be used for media
 (e.g., RTP, RTCP, or other protocols). Consequently, agents
 demultiplex STUN and media using the contents of the packets, rather
 than the port on which they are received.

 Because a STUN Binding request is used for the connectivity check,
 the STUN Binding response will contain the agent's translated
 transport address on the public side of any NATs between the agent
 and its peer. If this transport address is different from that of
 other candidates the agent already learned, it represents a new
 candidate, called a PEER REFLEXIVE CANDIDATE, which then gets tested
 by ICE just the same as any other candidate.

 As an optimization, as soon as R gets L's check message, R schedules
 a connectivity check message to be sent to L on the same candidate
 pair. This accelerates the process of finding a valid candidate, and
 is called a TRIGGERED CHECK.

 At the end of this handshake, both L and R know that they can send
 (and receive) messages end-to-end in both directions.

2.3. Sorting Candidates

 Because the algorithm above searches all candidate pairs, if a
 working pair exists it will eventually find it no matter what order
 the candidates are tried in. In order to produce faster (and better)
 results, the candidates are sorted in a specified order. The
 resulting list of sorted candidate pairs is called the CHECK LIST.
 The algorithm is described in Section 4.1.2 but follows two general
 principles:

 o Each agent gives its candidates a numeric priority, which is sent
 along with the candidate to the peer.

 o The local and remote priorities are combined so that each agent
 has the same ordering for the candidate pairs.

Keranen, et al. Expires April 2, 2018 [Page 11]

Internet-Draft ICE September 2017

 The second property is important for getting ICE to work when there
 are NATs in front of L and R. Frequently, NATs will not allow
 packets in from a host until the agent behind the NAT has sent a
 packet towards that host. Consequently, ICE checks in each direction
 will not succeed until both sides have sent a check through their
 respective NATs.

 The agent works through this check list by sending a STUN request for
 the next candidate pair on the list periodically. These are called
 ORDINARY CHECKS.

 In general, the priority algorithm is designed so that candidates of
 similar type get similar priorities and so that more direct routes
 (that is, through fewer media relays and through fewer NATs) are
 preferred over indirect ones (ones with more media relays and more
 NATs). Within those guidelines, however, agents have a fair amount
 of discretion about how to tune their algorithms.

2.4. Frozen Candidates

 The previous description only addresses the case where the agents
 wish to establish a media session with one COMPONENT (a piece of a
 media stream requiring a single transport address; a media stream may
 require multiple components, each of which has to work for the media
 stream as a whole to be work). Sometimes (e.g., with RTP and RTCP in
 separate components), the agents actually need to establish
 connectivity for more than one flow.

 The network properties are likely to be very similar for each
 component (especially because RTP and RTCP are sent and received from
 the same IP address). It is usually possible to leverage information
 from one media component in order to determine the best candidates
 for another. ICE does this with a mechanism called "frozen
 candidates".

 Each candidate is associated with a property called its FOUNDATION.
 Two candidates have the same foundation when they are "similar" -- of
 the same type and obtained from the same host candidate and STUN/TURN
 server using the same protocol. Otherwise, their foundation is
 different. A candidate pair has a foundation too, which is just the
 concatenation of the foundations of its two candidates. Initially,
 only candidate pairs with unique foundations are tested and other
 candidate pairs are marked "frozen". When connectivity checks
 succeed for a candidate pair, other candidate pairs with the same
 foundation are unfrozen. This avoids repeated checking of components
 that are superficially more attractive but in fact are likely to
 fail.

Keranen, et al. Expires April 2, 2018 [Page 12]

Internet-Draft ICE September 2017

 While we've described "frozen" here as a separate mechanism for
 expository purposes, in fact it is an integral part of ICE and the
 ICE prioritization algorithm automatically ensures that the right
 candidates are unfrozen and checked in the right order. However, if
 the ICE usage does not utilize multiple components or media streams,
 it does not need to implement this algorithm.

2.5. Security for Checks

 Because ICE is used to discover which addresses can be used to send
 media between two agents, it is important to ensure that the process
 cannot be hijacked to send media to the wrong location. Each STUN
 connectivity check is covered by a message authentication code (MAC)
 computed using a key exchanged in the signaling channel. This MAC
 provides message integrity and data origin authentication, thus
 stopping an attacker from forging or modifying connectivity check
 messages. Furthermore, if for example a SIP [RFC3261] caller is
 using ICE, and their call forks, the ICE exchanges happen
 independently with each forked recipient. In such a case, the keys
 exchanged in the signaling help associate each ICE exchange with each
 forked recipient.

2.6. Concluding ICE

 ICE checks are performed in a specific sequence, so that high-
 priority candidate pairs are checked first, followed by lower-
 priority ones. One way to conclude ICE is to declare victory as soon
 as a check for each component of each media stream completes
 successfully. Indeed, this is a reasonable algorithm, and details
 for it are provided below. However, it is possible that a packet
 loss will cause a higher-priority check to take longer to complete.
 In that case, allowing ICE to run a little longer might produce
 better results. More fundamentally, however, the prioritization
 defined by this specification may not yield "optimal" results. As an
 example, if the aim is to select low-latency media paths, usage of a
 relay is a hint that latencies may be higher, but it is nothing more
 than a hint. An actual round-trip time (RTT) measurement could be
 made, and it might demonstrate that a pair with lower priority is
 actually better than one with higher priority.

 Consequently, ICE assigns one of the agents in the role of the
 CONTROLLING AGENT, and the other of the CONTROLLED AGENT. The
 controlling agent nominates a candidate pair from the valid candidate
 pairs to be used for media.

 When nominating, the controlling agent lets the checks continue until
 at least one valid candidate pair for each media stream is found and
 then chooses a candidate pair from the valid candidate pairs and

https://datatracker.ietf.org/doc/html/rfc3261

Keranen, et al. Expires April 2, 2018 [Page 13]

Internet-Draft ICE September 2017

 sends a STUN request on the selected pair with a flag set to indicate
 to the controlled peer that it has nominated the selected pair. This
 is shown in Figure 4.

 L R
 - -
 STUN request -> \ L's
 <- STUN response / check

 <- STUN request \ R's
 STUN response -> / check

 STUN request + flag -> \ L's
 <- STUN response / check

 Figure 4: Nomination

 Once the STUN transaction with the flag completes, both sides cancel
 any future checks for that media stream and will send and receive
 media using this pair.

 Once ICE is concluded, it can be restarted at any time for one or all
 of the media streams by either agent. This is done by sending an
 updated candidate information indicating a restart.

2.7. Lite Implementations

 In order for ICE to work, both agents need to support it. However,
 certain agents will always be connected to the public Internet and
 have a public IP address at which it can receive packets from any
 correspondent. To make it easier for these devices to support ICE,
 ICE defines a special type of implementation called LITE (in contrast
 to the normal FULL implementation). Lite agents only use host
 candidates and do not generate connectivity checks or run the state
 machines, though they need to be able to respond to connectivity
 checks. When a lite implementation connects with a full
 implementation, the full agent takes the role of the controlling
 agent, and the lite agent takes on the controlled role. When two
 lite implementations connect, no checks are sent.

 For guidance on when a lite implementation is appropriate, see the
 discussion in Appendix A.

 It is important to note that the lite implementation was added to
 this specification to provide a stepping stone to full

Keranen, et al. Expires April 2, 2018 [Page 14]

Internet-Draft ICE September 2017

 implementation. Even for devices that are always connected to the
 public Internet, a full implementation is preferable if achievable.

2.8. Usages of ICE

 This document specifies generic use of ICE with protocols that
 provide means to exchange candidate information between the ICE
 peers. The specific details of (i.e how to encode candidate
 information and the actual candidate exchange process) for different
 protocols using ICE are described in separate usage documents. One
 possible way the agents can exchange the candidate information is to
 use [RFC3264] based Offer/Answer semantics as part of the SIP
 [RFC3261] protocol [I-D.ietf-mmusic-ice-sip-sdp].

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

 Readers should be familiar with the terminology defined in the STUN
 [RFC5389], and NAT Behavioral requirements for UDP [RFC4787].

 This specification makes use of the following additional terminology:

 ICE Session: An ICE session consists of all ICE-related actions
 starting with the candidate gathering, followed by the
 interactions (candidate exchange, connectivity checks, nominations
 and keep-alives) between the ICE agents until all the candidates
 are released or ICE-restart is triggered.

 ICE Agent: An ICE agent is the protocol implementation involved in
 the ICE candidate exchange. There are two agents involved in a
 typical candidate exchange.

 Initiating Peer, Initiating Agent, Initiator: An initiating agent is
 an ICE agent that initiates the ICE candidate exchange process.

 Responding Peer, Responding Agent, Responder: A receiving agent is
 an ICE agent that receives and responds to the candidate exchange
 process initiated by the initiating agent.

 ICE Candidate Exchange, Candidate Exchange: The process where the
 ICE agents exchange information (e.g., candidates and passwords)
 that is needed to perform ICE. [RFC3264] Offer/Answer with SDP
 encoding is one example of a protocol that can be used for
 exchanging the candidate information.

https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc3264

Keranen, et al. Expires April 2, 2018 [Page 15]

Internet-Draft ICE September 2017

 Peer: From the perspective of one of the agents in a session, its
 peer is the other agent. Specifically, from the perspective of
 the initiating agent, the peer is the responding agent. From the
 perspective of the responding agent, the peer is the initiating
 agent.

 Transport Address: The combination of an IP address and transport
 protocol (such as UDP or TCP) port.

 Media, Media Stream, Media Session: When ICE is used to setup
 multimedia sessions, the media is usually transported over RTP,
 and a media stream composes of a stream of RTP packets. When ICE
 is used with other than multimedia sessions, the terms "media",
 "media stream", and "media session" are still used in this
 specification to refer to the IP data packets that are exchanged
 between the peers on the path created and tested with ICE.

 Candidate, Candidate Information: A transport address that is a
 potential point of contact for receipt of media. Candidates also
 have properties -- their type (server reflexive, relayed, or
 host), priority, foundation, and base.

 Component: A component is a piece of a media stream requiring a
 single transport address; a media stream may require multiple
 components, each of which has to work for the media stream as a
 whole to work. For media streams based on RTP, unless RTP and
 RTCP are multiplexed in the same port, there are two components
 per media stream -- one for RTP, and one for RTCP.

 Host Candidate: A candidate obtained by binding to a specific port
 from an IP address on the host. This includes IP addresses on
 physical interfaces and logical ones, such as ones obtained
 through Virtual Private Networks (VPNs).

 Server Reflexive Candidate: A candidate whose IP address and port
 are a binding allocated by a NAT for an agent when it sent a
 packet through the NAT to a server, such as a STUN server.

 Peer Reflexive Candidate: A candidate whose IP address and port are
 a binding allocated by a NAT for an agent when it sent a packet
 through the NAT to its peer.

 Relayed Candidate: A candidate obtained from a relay server, such as
 a TURN server.

 Base: The transport address that an agent sends from for a
 particular candidate. For host, server reflexive and peer
 reflexive candidates the base is the same as the host candidate.

Keranen, et al. Expires April 2, 2018 [Page 16]

Internet-Draft ICE September 2017

 For relayed candidates the base is the same as the relayed
 candidate (i.e., the transport address used by the TURN server to
 send from).

 Foundation: An arbitrary string used in the freezing algorithm to
 group similar candidates. Is the same for two candidates that
 have the same type, base IP address, protocol (UDP, TCP, etc.),
 and STUN or TURN server. If any of these are different, then the
 foundation will be different.

 Local Candidate: A candidate that an agent has obtained and may send
 to its peer.

 Remote Candidate: A candidate that an agent received from its peer.

 Default Destination/Candidate: The default destination for a
 component of a media stream is the transport address that would be
 used by an agent that is not ICE-aware. A default candidate for a
 component is one whose transport address matches the default
 destination for that component.

 Candidate Pair: A pair of a local candidate and a remote candidate.

 Check, Connectivity Check, STUN Check: A STUN Binding request for
 the purposes of verifying connectivity. A check is sent from the
 base of the local candidate to the remote candidate of a candidate
 pair.

 Check List: An ordered set of candidate pairs that an agent will use
 to generate checks.

 Ordinary Check: A connectivity check generated by an agent as a
 consequence of a timer that fires periodically, instructing it to
 send a check.

 Triggered Check: A connectivity check generated as a consequence of
 the receipt of a connectivity check from the peer.

 Valid List: An ordered set of candidate pairs for a media stream
 that have been validated by a successful STUN transaction.

 Check List Set: The ordered list of all check lists. The order is
 determined by each ICE usage.

 Full Implementation: An ICE implementation that performs the
 complete set of functionality defined by this specification.

Keranen, et al. Expires April 2, 2018 [Page 17]

Internet-Draft ICE September 2017

 Lite Implementation: An ICE implementation that omits certain
 functions, implementing only as much as is necessary for a peer
 implementation that is full to gain the benefits of ICE. Lite
 implementations do not maintain any of the state machines and do
 not generate connectivity checks.

 Controlling Agent: The ICE agent that nominates a candidate pair.
 In any session, one agent is always controlling. The other is the
 controlled agent.

 Controlled Agent: The ICE agent that waits for the controlling agent
 to nominate a candidate pair and selects the candidate nominated
 by the controlling side.

 Nomination, Regular Nomination: The process of the controlling agent
 indicating to the controlled agent which candidate pair the
 controlled agent should use to send media.

 Nominated: If a valid candidate pair has its nominated flag set, it
 means that it may be selected by ICE for sending and receiving
 media.

 Selected Pair, Selected Candidate Pair: The candidate pair selected
 by an ICE agent for sending media. Each of its candidates is
 called the selected candidate. Before a pair has been selected,
 any valid candidate pair can be used for sending and receiving
 media.

 Using Protocol, ICE Usage: The protocol that uses ICE for NAT
 traversal. A usage specification defines the protocol-specific
 details on how the procedures defined here are applied to that
 protocol.

4. ICE Candidate Gathering and Exchange

 As part of ICE processing, both the initiating and responding agents
 exchange encoded candidate information as defined by the Usage
 Protocol (ICE Usage). Specifics of the encoding mechanism and the
 semantics of candidate information exchange is out of scope of this
 specification.

 However at a higher level, the diagram below shows how the ICE agents
 (initiator and responder) exchange their respective candidate(s)
 information.

Keranen, et al. Expires April 2, 2018 [Page 18]

Internet-Draft ICE September 2017

 Initiating Responding
 Agent Agent
 (I) (R)
 Gather, | |
 prioritize, | |
 eliminate | |
 redundant | |
 candidates, | |
 Encode | |
 candidates | |
 | I's Candidate Information |
 |------------------------------>|
 | | Gather,
 | | prioritize,
 | | eliminate
 | | redundant
 | | candidates,
 | | Encode
 | | candidates
 | R's Candidate Information |
 |<------------------------------|
 | |

 Figure 5: Candidate Gathering and Exchange Sequence

 As shown, the agents involved in the candidate exchange perform (1)
 candidate gathering, (2) candidate prioritization, (3) redundant
 candidate elimination, (4) (possibly) default candidate selection,
 and (5) sending of the candidates to the peer. All but the last of
 these five steps differ for full and lite implementations.

4.1. f Implementation

4.1.1. Gathering Candidates

 An agent gathers candidates when it believes that communication is
 imminent. An initiating agent can do this based on a user interface
 cue, or based on an explicit request to initiate a session. Every
 candidate is a transport address. It also has a type and a base.
 Four types are defined and gathered by this specification -- host
 candidates, server reflexive candidates, peer reflexive candidates,
 and relayed candidates. The server reflexive candidates are gathered
 using STUN or TURN, and relayed candidates are obtained through TURN.
 Peer reflexive candidates are obtained in later phases of ICE, as a
 consequence of connectivity checks.

 The process for gathering candidates at the responding agent is
 identical to the process for the initiating agent. It is RECOMMENDED

Keranen, et al. Expires April 2, 2018 [Page 19]

Internet-Draft ICE September 2017

 that the responding agent begins this process immediately on receipt
 of the candidate information, prior to alerting the user. Such
 gathering MAY begin when an agent starts.

4.1.1.1. Host Candidates

 Host candidates are obtained by binding to ports on an IP address
 attached to an interface (physical or virtual, including VPN
 interfaces) on the host.

 For each component of each media stream the agent wishes to use, the
 agent SHOULD obtain a candidate on each IP address that the host has,
 with the exceptions listed below. The agent obtains each candidate
 by binding to a UDP port on the specific IP address. A host
 candidate (and indeed every candidate) is always associated with a
 specific component for which it is a candidate.

 Each component has an ID assigned to it, called the component ID.
 For RTP-based media streams, unless both RTP and RTCP are multiplexed
 in the same UDP port (RTP/RTCP multiplexing), the RTP itself has a
 component ID of 1, and RTCP a component ID of 2. In case of RTP/RTCP
 multiplexing, a component ID of 1 is used for both RTP and RTCP.

 When candidates are obtained, unless the agent knows for sure that
 RTP/RTCP multiplexing will be used (i.e. the agent knows that the
 other agent also supports, and is willing to use, RTP/RTCP
 multiplexing), or unless the agent only supports RTP/RTCP
 multiplexing, the agent MUST obtain a separate candidate for RTCP.
 If an agent has obtained a candidate for RTCP, and ends up using RTP/
 RTCP multiplexing, the agent does not need to perform connectivity
 checks on the RTCP candidate. Absence of a component ID 2 as such
 does not imply use of RTCP/RTP multiplexing, as it could also mean
 that RTCP is not used.

 If an agent is using separate candidates for RTP and RTCP, it will
 end up with 2*K host candidates if an agent has K IP addresses.

 Note that the responding agent, when obtaining its candidates, will
 typically know if the other agent supports RTP/RTCP multiplexing, in
 which case it will not need to obtain a separate candidate for RTCP.
 However, absence of a component ID 2 as such does not imply use of
 RTCP/RTP multiplexing, as it could also mean that RTCP is not used.

 For other than RTP-based streams, use of multiple components is
 discouraged since using them increases the complexity of ICE
 processing. If multiple components are needed, the component IDs
 SHOULD start with 1 and increase by 1 for each component.

Keranen, et al. Expires April 2, 2018 [Page 20]

Internet-Draft ICE September 2017

 The base for each host candidate is set to the candidate itself.

 The host candidates are gathered from all IP addresses with the
 following exceptions:

 o Addresses from a loopback interface MUST NOT be included in the
 candidate addresses.

 o Deprecated IPv4-compatible IPv6 addresses [RFC4291] and IPv6 site-
 local unicast addresses [RFC3879] MUST NOT be included in the
 address candidates.

 o IPv4-mapped IPv6 addresses SHOULD NOT be included in the address
 candidates unless the application using ICE does not support IPv4
 (i.e., is an IPv6-only application [RFC4038]).

 o If one or more host candidates corresponding to an IPv6 address
 generated using a mechanism that prevents location tracking
 [RFC7721] are gathered, host candidates corresponding to IPv6
 addresses that do allow location tracking, that are configured on
 the same interface, and are part of the same network prefix MUST
 NOT be gathered; and host candidates corresponding to IPv6 link-
 local addresses MUST NOT be gathered.

4.1.1.2. Server Reflexive and Relayed Candidates

 An agent SHOULD gather server reflexive and relayed candidates.
 These requirements are at SHOULD strength to allow for provider
 variation. Use of STUN and TURN servers may be unnecessary in
 certain networks and use of TURN servers may be expensive, so some
 deployments may elect not to use them. If an agent does not gather
 server reflexive or relayed candidates, it is RECOMMENDED that the
 functionality be implemented and just disabled through configuration,
 so that it can be re-enabled through configuration if conditions
 change in the future.

 The agent pairs each host candidate with the STUN or TURN servers
 with which it is configured or has discovered by some means. It is
 RECOMMENDED that a domain name be configured, and the DNS procedures
 in [RFC5389] (using SRV records with the "stun" service) be used to
 discover the STUN server, and the DNS procedures in [RFC5766] (using
 SRV records with the "turn" service) be used to discover the TURN
 server.

 When multiple STUN or TURN servers are available (or when they are
 learned through DNS records and multiple results are returned), the
 agent MAY gather candidates for all of them and SHOULD gather
 candidates for at least one of them (one STUN server and one TURN

https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc3879
https://datatracker.ietf.org/doc/html/rfc4038
https://datatracker.ietf.org/doc/html/rfc7721
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5766

Keranen, et al. Expires April 2, 2018 [Page 21]

Internet-Draft ICE September 2017

 server). It does so by pairing host candidates with STUN or TURN
 servers and, for each pair, the agent sends a Binding or Allocate
 request to the server from the host candidate. Binding requests to a
 STUN server are not authenticated, and any ALTERNATE-SERVER attribute
 in a response is ignored. Agents MUST support the backwards
 compatibility mode for the Binding request defined in [RFC5389].
 Allocate requests SHOULD be authenticated using a

 Every Ta milliseconds thereafter, the agent can generate another new
 STUN or TURN transaction. This transaction can either be a retry of
 a previous transaction that failed with a recoverable error (such as
 authentication failure), or a transaction for a new host candidate
 and STUN or TURN server pair. The agent SHOULD NOT generate
 transactions more frequently than one every Ta milliseconds. See

Section 14 for guidance on how to set Ta and the STUN retransmit
 timer, RTO.

 The agent will receive a Binding or Allocate response. A successful
 Allocate response will provide the agent with a server reflexive
 candidate (obtained from the mapped address) and a relayed candidate
 in the XOR-RELAYED-ADDRESS attribute. If the Allocate request is
 rejected because the server lacks resources to fulfill it, the agent
 SHOULD instead send a Binding request to obtain a server reflexive
 candidate. A Binding response will provide the agent with only a
 server reflexive candidate (also obtained from the mapped address).
 The base of the server reflexive candidate is the host candidate from
 which the Allocate or Binding request was sent. The base of a
 relayed candidate is that candidate itself. If a relayed candidate
 is identical to a host candidate (which can happen in rare cases),
 the relayed candidate MUST be discarded.

 If an IPv6-only agent is in a network that utilizes NAT64 [RFC6146]
 and DNS64 [RFC6147] technologies, it may also gather IPv4 server
 reflexive and/or relayed candidates from IPv4-only STUN or TURN
 servers. IPv6-only agents SHOULD also utilize IPv6 prefix discovery
 [RFC7050] to discover the IPv6 prefix used by NAT64 (if any) and
 generate server reflexive candidates for each IPv6-only interface
 accordingly. The NAT64 server reflexive candidates are prioritized
 like IPv4 server reflexive candidates.

4.1.1.3. Computing Foundations

 The agent assigns each candidate a foundation. Two candidates MUST
 have the same foundation when all of the following are true:

 o They have the same type (host, relayed, server reflexive, or peer
 reflexive).

https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc6146
https://datatracker.ietf.org/doc/html/rfc6147
https://datatracker.ietf.org/doc/html/rfc7050

Keranen, et al. Expires April 2, 2018 [Page 22]

Internet-Draft ICE September 2017

 o Their bases have the same IP address (the ports can be different).

 o For reflexive and relayed candidates, the STUN or TURN servers
 used to obtain them have the same IP address.

 o They were obtained using the same transport protocol (TCP, UDP).

 Similarly, two candidates MUST have different foundations if their
 types are different, their bases have different IP addresses, the
 STUN or TURN servers used to obtain them have different IP addresses,
 or their transport protocols are different.

4.1.1.4. Keeping Candidates Alive

 Once server reflexive and relayed candidates are allocated, they MUST
 be kept alive until ICE processing has completed, as described in

Section 7.3. For server reflexive candidates learned through a
 Binding request, the bindings MUST be kept alive by additional
 Binding requests to the server. Refreshes for allocations are done
 using the Refresh transaction, as described in [RFC5766]. The
 Refresh requests will also refresh the server reflexive candidate.

4.1.2. Prioritizing Candidates

 The prioritization process results in the assignment of a priority to
 each candidate. Each candidate for a media stream MUST have a unique
 priority that MUST be a positive integer between 1 and (2**31 - 1).
 This priority will be used by ICE to determine the order of the
 connectivity checks and the relative preference for candidates.

 An agent SHOULD compute this priority using the formula in
Section 4.1.2.1 and choose its parameters using the guidelines in
Section 4.1.2.2. If an agent elects to use a different formula, ICE

 may take longer to converge since both agents will not be coordinated
 in their checks.

 The process for prioritizing candidates is common across the
 initiating and the responding agent.

4.1.2.1. Recommended Formula

 The recommended formula combines a preference for the candidate type
 (server reflexive, peer reflexive, relayed, and host), a preference
 for IP address for which the candidate was obtained, and component ID
 using the following formula:

https://datatracker.ietf.org/doc/html/rfc5766

Keranen, et al. Expires April 2, 2018 [Page 23]

Internet-Draft ICE September 2017

 priority = (2^24)*(type preference) +
 (2^8)*(local preference) +
 (2^0)*(256 - component ID)

 The type preference MUST be an integer from 0 (lowest preference) to
 126 (highest preference) inclusive and MUST be identical for all
 candidates of the same type and MUST be different for candidates of
 different types. The type preference for peer reflexive candidates
 MUST be higher than that of server reflexive candidates. Setting the
 value to 0 means that candidates of this type will only be used as a
 last resort. Note that candidates gathered based on the procedures
 of Section 4.1.1 will never be peer reflexive candidates; candidates
 of these type are learned from the connectivity checks performed by
 ICE.

 The local preference MUST be an integer from 0 (lowest preference) to
 65535 (highest preference) inclusive. When there is only a single IP
 address, this value SHOULD be set to 65535. If there are multiple
 candidates for a particular component for a particular media stream
 that have the same type, the local preference MUST be unique for each
 one. If an agent is dual-stack, the local preference should be set
 according to the current best practice described in
 [I-D.ietf-ice-dualstack-fairness].

 The component ID MUST be an integer between 1 and 256 inclusive.

4.1.2.2. Guidelines for Choosing Type and Local Preferences

 The RECOMMENDED values for type preferences are 126 for host
 candidates, 110 for peer reflexive candidates, 100 for server
 reflexive candidates, and 0 for relayed candidates.

 If an agent is multihomed and has multiple IP addresses, the
 recommendations in [I-D.ietf-ice-dualstack-fairness] SHOULD be
 followed. If multiple TURN servers are used, local priorities for
 the candidates obtained from the TURN servers are chosen in a similar
 fashion as for multihomed local candidates: the local preference
 value is used to indicate a preference among different servers but
 the preference MUST be unique for each one.

 When choosing type preferences, agents may take into account factors
 such as latency, packet loss, cost, network topology, security,
 privacy, and others.

Keranen, et al. Expires April 2, 2018 [Page 24]

Internet-Draft ICE September 2017

4.1.3. Eliminating Redundant Candidates

 Next, agents (initiating and responding) eliminate redundant
 candidates. Two candidates can have the same transport address yet
 have different bases, and these would not be considered redundant.
 Frequently, a server reflexive candidate and a host candidate will be
 redundant when the agent is not behind a NAT. A candidate is
 redundant if and only if its transport address and base equal those
 of another candidate. The agent SHOULD eliminate the redundant
 candidate with the lower priority.

4.2. Lite Implementation Procedures

 Lite implementations only utilize host candidates. A lite
 implementation MUST, for each component of each media stream,
 allocate zero or one IPv4 candidates. It MAY allocate zero or more
 IPv6 candidates, but no more than one per each IPv6 address utilized
 by the host. Since there can be no more than one IPv4 candidate per
 component of each media stream, if an agent has multiple IPv4
 addresses, it MUST choose one for allocating the candidate. If a
 host is dual-stack, it is RECOMMENDED that it allocate one IPv4
 candidate and one global IPv6 address. With the lite implementation,
 ICE cannot be used to dynamically choose amongst candidates.
 Therefore, including more than one candidate from a particular scope
 is NOT RECOMMENDED, since only a connectivity check can truly
 determine whether to use one address or the other.

 Each component has an ID assigned to it, called the component ID.
 For RTP-based media streams, unless RTCP is multiplexed in the same
 port with RTP, the RTP itself has a component ID of 1, and RTCP a
 component ID of 2. If an agent is using RTCP without multiplexing,
 it MUST obtain candidates for it. However, absence of a component ID
 2 as such does not imply use of RTCP/RTP multiplexing, as it could
 also mean that RTCP is not used.

 Each candidate is assigned a foundation. The foundation MUST be
 different for two candidates allocated from different IP addresses,
 and MUST be the same otherwise. A simple integer that increments for
 each IP address will suffice. In addition, each candidate MUST be
 assigned a unique priority amongst all candidates for the same media
 stream. This priority SHOULD be equal to:

 priority = (2^24)*(126) +
 (2^8)*(IP precedence) +
 (2^0)*(256 - component ID)

Keranen, et al. Expires April 2, 2018 [Page 25]

Internet-Draft ICE September 2017

 If a host is v4-only, it SHOULD set the IP precedence to 65535. If a
 host is v6 or dual-stack, the IP precedence SHOULD be the precedence
 value for IP addresses described in RFC 6724 [RFC6724].

 Next, an agent chooses a default candidate for each component of each
 media stream. If a host is IPv4-only, there would only be one
 candidate for each component of each media stream, and therefore that
 candidate is the default. If a host is IPv6 or dual-stack, the
 selection of default is a matter of local policy. This default
 SHOULD be chosen such that it is the candidate most likely to be used
 with a peer. For IPv6-only hosts, this would typically be a globally
 scoped IPv6 address. For dual-stack hosts, the IPv4 address is
 RECOMMENDED.

 The procedures in this section is common across the initiating and
 responding agents.

4.3. Encoding the Candidate Information

 Agents (initiating and responding) need the following information
 about candidates to be exchanged. How this information is encoded or
 exchanged is out of scope of this specification. The using protocol
 should provide a means for exchanging new, additional information in
 the future, including per-candidate information.

 Candidates: One or more candidates. For each candidate:

 Address: The IP address and transport protocol port of the
 candidate.

 Transport: The transport protocol of the candidate. This MAY be
 omitted if the using protocol will only ever run over a single
 transport protocol. If it runs over more than one, or if
 others are anticipated to be used in the future, this should be
 present.

 Foundation: A sequence of up to 32 characters.

 Component ID: The component ID of the candidate. This MAY be
 omitted if the using protocol does not use the concept of
 components.

 Priority: The 32-bit priority of the candidate.

 Type: The type of the candidate.

https://datatracker.ietf.org/doc/html/rfc6724
https://datatracker.ietf.org/doc/html/rfc6724

Keranen, et al. Expires April 2, 2018 [Page 26]

Internet-Draft ICE September 2017

 Related Address and Port: The related IP address and port of the
 candidate. These MAY be omitted or set to invalid values if
 the agent does not want to reveal them, e.g., for privacy
 reasons.

 Extensibility Parameters: The using protocol should define some
 means for adding new per-candidate ICE parameters in the
 future.

 Lite or Full: Whether the agent is a lite agent or full agent.

 Connectivity check pacing value: The pacing value for connectivity
 checks that the agent wishes to use. If the agent wishes to use a
 value other than default, it MUST include this in the exchange.

 Username Fragment and Password: Values used to perform connectivity
 checks. The username fragment MUST contain at least 24 bits of
 randomness, and the password MUST contain at least 128 bits of
 randomness.

 Extensions: New media-stream or session-level attributes (ice-
 options).

 If the using protocol is using the ICE mismatch feature, a way is
 needed to convey this parameter in answers. It is a boolean flag.

 The exchange of parameters is symmetric; both agents need to send the
 same set of attributes as defined above.

 The using protocol may (or may not) need to deal with backwards
 compatibility with older implementations that do not support ICE. If
 the fallback mechanism is being used, then presumably the using
 protocol provides a way of conveying the default candidate (its IP
 address and port) in addition to the ICE parameters.

 Once an agent has sent its candidate information, it MUST be prepared
 to receive both STUN and media packets on each candidate. As
 discussed in Section 11.1, media packets can be sent to a candidate
 prior to its appearance as the default destination for media.

4.4. Verifying ICE Support

 Certain middleboxes, such as ALGs, may alter the ICE candidate
 information that breaks ICE. If the using protocol is vulnerable to
 this kind of changes, called ICE mismatch, the responding agent needs
 to detect this and signal this back to the initiating agent. The
 details on whether this is needed and how it is done is defined by

Keranen, et al. Expires April 2, 2018 [Page 27]

Internet-Draft ICE September 2017

 the usage specifications. One exception to the above is that an
 initiating agent would never indicate ICE mismatch.

5. ICE Candidate Processing

 Once an agent has gathered its candidates and exchanged candidates
 with its peer (Section 4), it will determine its own role. In
 addition, full implementations will form check lists, and begin
 performing connectivity checks with the peer.

5.1. Procedures for Full Implementation

5.1.1. Determining Role

 For each session, each agent (Initiating and Responding) takes on a
 role. There are two roles -- controlling and controlled. The
 controlling agent is responsible for the choice of the final
 candidate pairs used for communications. For a full agent, this
 means nominating the candidate pairs that can be used by ICE for each
 media stream, and for updating the peer with the ICE's selection,
 when needed. The controlled agent is told which candidate pairs to
 use for each media stream, and does not require updating the peer to
 signal this information. The sections below describe in detail the
 actual procedures followed by controlling and controlled nodes.

 The rules for determining the role and the impact on behavior are as
 follows:

 Both agents are full: The Initiating Agent which started the ICE
 processing MUST take the controlling role, and the other MUST take
 the controlled role. Both agents will form check lists, run the
 ICE state machines, and generate connectivity checks. The
 controlling agent will execute the logic in Section 7.1 to
 nominate pairs that will be selected by ICE, and then both agents
 end ICE as described in Section 7.1.2.

 One agent full, one lite: The full agent MUST take the controlling
 role, and the lite agent MUST take the controlled role. The full
 agent will form check lists, run the ICE state machines, and
 generate connectivity checks. That agent will execute the logic
 in Section 7.1 to nominate pairs that will be selected by ICE, and
 use the logic in Section 7.1.2 to end ICE. The lite
 implementation will just listen for connectivity checks, receive
 them and respond to them, and then conclude ICE as described in

Section 7.2. For the lite implementation, the state of ICE
 processing for each media stream is considered to be Running, and
 the state of ICE overall is Running.

Keranen, et al. Expires April 2, 2018 [Page 28]

Internet-Draft ICE September 2017

 Both lite: The Initiating Agent which started the ICE processing
 MUST take the controlling role, and the other MUST take the
 controlled role. In this case, no connectivity checks are ever
 sent. Rather, once the candidates are exchanged, each agent
 performs the processing described in Section 7 without
 connectivity checks. It is possible that both agents will believe
 they are controlled or controlling. In the latter case, the
 conflict is resolved through glare detection capabilities in the
 signaling protocol enabling the candidate exchange. The state of
 ICE processing for each media stream is considered to be Running,
 and the state of ICE overall is Running.

 Once the roles are determined for a session, they persist througout
 the lifetime of the session. The roles can be re-determined as part
 of an ICE restart (Section 8), but an ICE agent MUST NOT re-determine
 the role as part of an ICE restart unless one or more of the
 following criteria is fulfilled:

 Full becomes lite: If the controlling agent is full, and switches to
 lite, the roles MUST be re-determined if the peer agent is also
 full.

 Role conflict: If the ICE restart causes a role conflict, the roles
 might be re-determined due to the role conflict procedures in

Section 6.3.1.1.

 NOTE: There are certain 3PCC scenarios where an ICE restart might
 cause a role conflict.

 NOTE: The ICE agents needs to inform each other whether they are full
 or lite before the roles are determined. The mechanism for that is
 signalling protocol specific, and outside the scope of the document.

 An ICE agent MUST be prepared that the peer might re-determine the
 roles as part of any ICE restart, even if the criteria for doing so
 are not fulfilled. This can happen if the peer is compliant with an
 older version of this specification.

5.1.2. Forming the Check Lists

 There is one check list for each media stream. To form a check list,
 an agent (initiating and responding) forms candidate pairs, computes
 pair priorities, orders pairs by priority, prunes pairs, removes
 lower-priority pairs, and sets check list states. If candidates are
 added to a check list (e.g, due to detection of peer reflexive
 candidates), the agent will re-perform these steps for the updated
 check list.

Keranen, et al. Expires April 2, 2018 [Page 29]

Internet-Draft ICE September 2017

5.1.2.1. Check List State

 Each CHECK LIST has a state, which captures the state of ICE checks
 for the media stream associated with the CHECK LIST. The states are:

 Running: The check list is neither Completed yet nor Failed yet.
 Check lists are initially set to the Running state.

 Completed: The check list has a selected candidate pair for each
 component of the media stream.

 Failed: The check list does not have a valid candidate pair for each
 component of the media stream and all of the candidate pairs in
 the check list are in either the Failed or Succeeded state. In
 other words, at least one component of the check list has
 candidate pairs that are all in the Failed state, which means the
 component has failed, which means the check list has failed.

 Additionally, a check list with at least one pair in the Waiting
 state is called "active", while a check list with all pairs in the
 frozen state is called "Frozen".

5.1.2.2. Forming Candidate Pairs

 The agent pairs each local candidate with each remote candidate for
 the same component of the same media stream with the same IP address
 family. It is possible that some of the local candidates won't get
 paired with remote candidates, and some of the remote candidates
 won't get paired with local candidates. This can happen if one agent
 doesn't include candidates for the all of the components for a media
 stream. If this happens, the number of components for that media
 stream is effectively educed, and considered to be equal to the
 minimum across both agents of the maximum component ID provided by
 each agent across all components for the media stream.

 In the case of RTP, this would happen when one agent provides
 candidates for RTCP, and the other does not. As another example, the
 initiating agent can multiplex RTP and RTCP on the same port
 [RFC5761]. However, since the initiating agent doesn't know if the
 peer agent can perform such multiplexing, it includes candidates for
 RTP and RTCP on separate ports. If the peer agent can perform such
 multiplexing, it would include just a single component for each
 candidate -- for the combined RTP/RTCP mux. ICE would end up acting
 as if there was just a single component for this candidate.

 With IPv6 it is common for a host to have multiple host candidates
 for each interface. To keep the amount of resulting candidate pairs
 reasonable and to avoid candidate pairs that are highly unlikely to

https://datatracker.ietf.org/doc/html/rfc5761

Keranen, et al. Expires April 2, 2018 [Page 30]

Internet-Draft ICE September 2017

 work, IPv6 link-local addresses [RFC4291] MUST NOT be paired with
 other than link-local addresses.

 The candidate pairs whose local and remote candidates are both the
 default candidates for a particular component is called the default
 candidate pair for that component. This is the pair that would be
 used to transmit media if both agents had not been ICE aware.

 Figure 6 shows the properties of and relationships between transport
 addresses, candidates, candidate pairs, and check lists.

Keranen, et al. Expires April 2, 2018 [Page 31]

https://datatracker.ietf.org/doc/html/rfc4291

Internet-Draft ICE September 2017

 +--+
 | |
 | +---------------------+ |
 | |+----+ +----+ +----+ | +Type | | | | | | |
 | || IP | |Port| |Tran| | +Priority |
 | ||Addr| | | | | | +Foundation |
 | |+----+ +----+ +----+ | +Component ID |
 | | Transport | +Related Address |
 | | Addr | |
 | +---------------------+ +Base |
 | Candidate |
 +--+
 * *
 * *************************************
 * *
 +-------------------------------+
 .| |
 | Local Remote |
 | +----+ +----+ +default? |
 | |Cand| |Cand| +valid? |
 | +----+ +----+ +nominated?|
 | +State |
 | |
 | |
 | Candidate Pair |
 +-------------------------------+
 * *
 * ************
 * *
 +------------------+
 | Candidate Pair |
 +------------------+
 +------------------+
 | Candidate Pair |
 +------------------+
 +------------------+
 | Candidate Pair |
 +------------------+

 Check
 List

 Figure 6: Conceptual Diagram of a Check List

Keranen, et al. Expires April 2, 2018 [Page 32]

Internet-Draft ICE September 2017

5.1.2.3. Computing Pair Priority and Ordering Pairs

 The agent computes a priority for each candidate pair. Let G be the
 priority for the candidate provided by the controlling agent. Let D
 be the priority for the candidate provided by the controlled agent.
 The priority for a pair is computed as follows, where G>D?1:0 is an
 expression whose value is 1 if G is greater than D, and 0 otherwise.

 pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)

 The agent sorts each check list in decreasing order of candidate pair
 priority. If two pairs have identical priority, the ordering amongst
 them is arbitrary.

5.1.2.4. Pruning the Pairs

 This sorted list of candidate pairs is used to determine a sequence
 of connectivity checks that will be performed. Each check involves
 sending a request from a local candidate to a remote candidate.
 Since an agent cannot send requests directly from a reflexive
 candidate (server reflexive or peer reflexive), but only from its
 base, the agent next goes through the sorted list of candidate pairs.
 For each pair where the local candidate is reflexive, the candidate
 MUST be replaced by its base.

 The agent prunes each check list. This is done by removing a
 candidate pair if it is redundant with a higher priority candidate
 pair in the same check list. Two candidate pairs are redundant if
 their local candidates have the same base and their remote candidates
 are identical. The result is a sequence of ordered candidate pairs,
 called the check list for that media stream.

5.1.2.5. Removing lower-priority Pairs

 In order to limit the attacks described in Section 16.4.1, an agent
 MUST limit the total number of connectivity checks the agent performs
 across all check lists to a specific value, and this value MUST be
 configurable. A default of 100 is RECOMMENDED. This limit is
 enforced by discarding the lower-priority candidate pairs until there
 are less than 100. It is RECOMMENDED that a lower value be utilized
 when possible, set to the maximum number of plausible checks that
 might be seen in an actual deployment configuration. The requirement
 for configuration is meant to provide a tool for fixing this value in
 the field if, once deployed, it is found to be problematic.

Keranen, et al. Expires April 2, 2018 [Page 33]

Internet-Draft ICE September 2017

5.1.2.6. Computing Candidate Pair States

 Each candidate pair in the check list has a foundation (the
 combination of the foundations of the local and remote candidates in
 the pair) and one of the following states:

 Waiting: A check has not been sent for this pair, but the pair is
 not Frozen.

 In-Progress: A check has been sent for this pair, but the
 transaction is in progress.

 Succeeded: A check has been sent for this pair, and produced a
 successful result.

 Failed: A check has been sent for this pair, and failed (a response
 to the check was never received, or a failure response was
 received).

 Frozen: A check for this pair has not been sent, and it can not be
 sent until the pair is unfrozen and moved into the Waiting state.

 Pairs move between states as shown in Figure 7.

Keranen, et al. Expires April 2, 2018 [Page 34]

Internet-Draft ICE September 2017

 +-----------+
 | |
 | |
 | Frozen |
 | |
 | |
 +-----------+
 |
 |unfreeze
 |
 V
 +-----------+ +-----------+
 | | | |
 | | perform | |
 | Waiting |-------->|In-Progress|
 | | | |
 | | | |
 +-----------+ +-----------+
 / |
 // |
 // |
 // |
 / |
 // |
 failure // |success
 // |
 / |
 // |
 // |
 // |
 V V
 +-----------+ +-----------+
 | | | |
 | | | |
 | Failed | | Succeeded |
 | | | |
 | | | |
 +-----------+ +-----------+

 Figure 7: Pair State FSM

 1. The initial states for each pair in a CHECK LIST are computed by
 performing the following sequence of steps:

 2. The check lists are placed in an ordered list (the order is
 determined by each ICE usage), called the check list set.

Keranen, et al. Expires April 2, 2018 [Page 35]

Internet-Draft ICE September 2017

 3. The agent initially places all candidate pairs in the Frozen
 state.

 4. The agent sets all of the check lists in the check list set to
 the Running state.

 5. For each foundation, the agent sets the state of exactly one
 candidate pair to the Waiting state (unfreezing it). The
 candidate pair to unfreeze is choosen by finding the first
 candidate pair (ordered by lowest component ID and then highest
 priority if component IDs are equal) in the first check list
 (ordered by the check list set) that has that foundation.

 NOTE: The procedures above are different from RFC5245, where only
 candidate pairs in the first check list of were initially placed in
 the Waiting state. Now it applies to candidate pairs in the the
 first check list which have that foundation, even if the first check
 list to have that foundation is not the first check list in the check
 list set.

 The table in Figure 8 illustrates an example.

 Table legend:

 Each row (m1, m2,...) represents a check list associated with a media
 stream. m1 represents the first check list in the check list set.

 Each column (f1, f2,...) represents a foundation. Every candidate pair
 within a given column share the same foundation.

 f-cp represents a candidate pair in the Frozen state.

 w-cp represents a candidate pair in the Waiting state.

 1. The agent sets all of the pairs in the check list set to the Frozen
 state.

 f1 f2 f3 f4 f5

 m1 | f-cp f-cp f-cp
 |
 m2 | f-cp f-cp f-cp f-cp
 |
 m3 | f-cp f-cp

https://datatracker.ietf.org/doc/html/rfc5245

Keranen, et al. Expires April 2, 2018 [Page 36]

Internet-Draft ICE September 2017

 2. For each foundation, the candidate pair with the lowest component ID
 is placed in the Waiting state, unless a candidate pair associated with
 the same foundation has already been put in the Waiting state in one of
 the other examined check lists in the check list set.

 f1 f2 f3 f4 f5

 m1 | w-cp w-cp w-cp
 |
 m2 | f-cp f-cp f-cp w-cp
 |
 m3 | f-cp w-cp

 In the first check list (m1) the candidate pair for each foundation is
 placed in the Waiting state, as no pairs for the same foundations have
 yet been placed in the Waiting state.

 In the second check list (m2) the candidate pair for foundation f4 is
 placed in the Waiting state. The candidate pair for foundations f1, f2
 and f3 are kept in the Frozen state, as candidate pairs for those
 foundations have already been placed in the Waiting state (within check
 list m1).

 In the third check list (m3) the candidate pair for foundation f5 is
 placed in the Waiting state. The candidate pair for foundation f1 is
 kept in the Frozen state, as a candidate pair for that foundation have
 already been placed in the Waiting state (within check list m1).

 Once each check list have been processed, one candidate pair for each
 foundation in the check list set has been placed in the Waiting state.

 Figure 8: Initial Pair State

5.1.3. ICE State

 The ICE agent has a state determined by the state of the check lists.
 The state is Completed if all check lists are Completed, Failed if
 all check lists are Failed, and Running otherwise.

5.1.4. Scheduling Checks

5.1.4.1. Triggered Check Queue

 Once the agent has computed the check lists and created the check
 list set, as described in Section 5.1.2, the agent will begin
 performing connectivity checks (ordinary and triggered). For

Keranen, et al. Expires April 2, 2018 [Page 37]

Internet-Draft ICE September 2017

 triggered connectivity checks, the agent maintains a FIFO queue for
 each check list, called the TRIGGERED CHECK QUEUE, which contains
 candidate pairs for which checks are to be sent at the next available
 opportunity.

5.1.4.2. Performing Connectivity Checks

 The generation of ordinary and triggered connectivity checks is
 governed by timer Ta. As soon as the initial states for the
 candidate pairs in the check list set have been set, a check is
 performed for a candidate pair within the first check list in the
 Running state, following the procedures in Section 6. After that,
 whenever Ta fires the next check list in the Running state in the
 check list set is selected, and a check is performed for a candidate
 within that check list. After the last check list in the Running
 state in the check list set has been processed, the first check list
 is selected again. Etc.

 Whenever Ta fires, the agent will perform a check for a candidate
 pair within the selected check list by performing the following
 steps:

 1. If the triggered check queue associated with the check list
 contains one or more candidate pairs, the agent removes the top
 pair from the queue, performs a connectivity check on that pair,
 puts the candidate pair state to In-Progress, and aborts the
 subsequent steps.

 2. If there is no candidate pair in the Waiting state, and if there
 are one or more pairs in the Frozen state, for each pair in the
 Frozen state the agent checks the foundation associated with the
 pair. For a given foundation, if there is no pair (in any check
 list in the check list set) in the Waiting or In-Progress state,
 the agent puts the candidate pair state to Waiting and continues
 with the next step.

 3. If there are one or more candidate pairs in the Waiting state,
 the agent selects the highest-priority candidate pair (if there
 are multiple pairs with the same priority, the pair with the
 lowest component ID is selected) in the Waiting state, performs a
 connectivity check on that pair, puts the candidate pair par
 state to In-Progress, and abort the subsequent steps.

 4. If this step is reached, no check could be performed for the
 selected check list. So, without waiting for timer Ta to expire
 again, select the next check list in the Running state and return
 to step #1. If this happens for every single check list in the

Keranen, et al. Expires April 2, 2018 [Page 38]

Internet-Draft ICE September 2017

 Running state, meaning there are no remaining candidate pairs to
 perform connectivity checks for, abort these steps.

 Once the agent has selected a candidate pair, for which a
 connectivity check is to be performed, the agent performs the check
 by sending a STUN request from the base associated with the local
 candidate of the pair to the remote candidate of the pair, as
 described in Section 6.2.4.

 Based on local policy, an agent MAY choose to terminate performing
 the connectivity checks for one or more checks lists in the check
 list set at any time. However, only the controlling agent is allowed
 to conclude ICE (Section 7).

 To compute the message integrity for the check, the agent uses the
 remote username fragment and password learned from the candidate
 information obtained from its peer. The local username fragment is
 known directly by the agent for its own candidate.

 The Initiator performs the ordinary checks on receiving the candidate
 information from the Peer (responder) and having formed the check
 lists. On the other hand the responding agent either performs the
 triggered or ordinary checks as described above.

5.2. Lite Implementation Procedures

 Lite implementations skips most of the steps in Section 5 except for
 verifying the peer's ICE support and determining its role in the ICE
 processing.

 On determining the role for a lite implementation being the
 controlling agent means selecting a candidate pair based on the ones
 in the candidate exchange (for IPv4, there is only ever one pair),
 and then updating the peer with the new candidate information
 reflecting that selection, when needed (it is never needed for an
 IPv4-only host). The controlled agent is told which candidate pairs
 to use for each media stream, and no further candidate updates are
 needed to signal this information.

6. Performing Connectivity Checks

 This section describes how connectivity checks are performed.

 An ICE agent MUST be compliant to to [RFC5389]. A full
 implementation acts both as a STUN client and a STUN server, while a
 lite implementation only acts as a STUN server (as it does not
 generate connectivity checks).

https://datatracker.ietf.org/doc/html/rfc5389

Keranen, et al. Expires April 2, 2018 [Page 39]

Internet-Draft ICE September 2017

6.1. STUN Extensions

 ICE extends STUN by defining new attributes: PRIORITY, USE-CANDIDATE,
 ICE-CONTROLLED, and ICE-CONTROLLING. The new attributes are formally
 defined in Section 17.1. This section describes the usage of the new
 attributes.

 The new attributes are only applicable to ICE connectivity checks.

6.1.1. PRIORITY

 The priority attribute MUST be included in a Binding request and be
 set to the value computed by the algorithm in Section 4.1.2 for the
 local candidate, but with the candidate type preference of peer
 reflexive candidates.

6.1.2. USE-CANDIDATE

 The controlling ICE agent MUST include the USE-CANDIDATE attribute in
 order to nominate a candidate pair Section 7.1.1. The controlled ICE
 agent MUST NOT include the USE-CANDIDATE attribute in a Binding
 request.

6.1.3. ICE-CONTROLLED and ICE-CONTROLLING

 The controlling ICE agent MUST include the ICE-CONTROLLED attribute
 in a Binding request. The controlled ICE agent MUST include the ICE-
 CONTROLLING attribute in a Binding request.

 The content of either attribute are used as tie-breaker values when
 an ICE role conflict occurs Section 6.3.1.1.

6.2. STUN Client Procedures

6.2.1. Creating Permissions for Relayed Candidates

 If the connectivity check is being sent using a relayed local
 candidate, the client MUST create a permission first if it has not
 already created one previously. It would have created one previously
 if it had told the TURN server to create a permission for the given
 relayed candidate towards the IP address of the remote candidate. To
 create the permission, the agent follows the procedures defined in
 [RFC5766]. The permission MUST be created towards the IP address of
 the remote candidate. It is RECOMMENDED that the agent defer
 creation of a TURN channel until ICE completes, in which case
 permissions for connectivity checks are normally created using a
 CreatePermission request. Once established, the agent MUST keep the
 permission active until ICE concludes.

https://datatracker.ietf.org/doc/html/rfc5766

Keranen, et al. Expires April 2, 2018 [Page 40]

Internet-Draft ICE September 2017

6.2.2. Forming Credentials

 A connectivity check Binding request MUST utilize the STUN short-term
 credential mechanism.

 The username for the credential is formed by concatenating the
 username fragment provided by the peer with the username fragment of
 the agent sending the request, separated by a colon (":").

 The password is equal to the password provided by the peer.

 For example, consider the case where ICE agent L is the Initiating
 agent and ICE agent R is the Responding agent. Agent L included a
 username fragment of LFRAG for its candidates and a password of
 LPASS. Agent R provided a username fragment of RFRAG and a password
 of RPASS. A connectivity check from L to R utilizes the username
 RFRAG:LFRAG and a password of RPASS. A connectivity check from R to
 L utilizes the username LFRAG:RFRAG and a password of LPASS. The
 responses utilize the same usernames and passwords as the requests
 (note that the USERNAME attribute is not present in the response).

6.2.3. DiffServ Treatment

 If an ICE agent is using Diffserv Codepoint markings [RFC2475] in its
 media packets, the agent SHOULD apply those same markings to its
 connectivity checks.

6.2.4. Sending the Request

 A connectivity check is generated by sending a Binding request from
 the base associated with a local candidate to a remote candidate.
 [RFC5389] describes how Binding requests are constructed and
 generated.

 Support for backwards compatibility with RFC 3489 MUST NOT be assumed
 when performing connectivity checks. The FINGERPRINT mechanism MUST
 be used for connectivity checks.

6.2.5. Processing the Response

 This section defines additional procedures for processing Binding
 responses specific to ICE connectivity checks.

 When a Binding response is received, it is correlated to the
 corresponding Binding request using the transaction ID [RFC5389],
 which then associates the response with the candidate pair for which
 the Binding request was sent. After that, the response is processed

https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc5389

Keranen, et al. Expires April 2, 2018 [Page 41]

Internet-Draft ICE September 2017

 according to the procedures for a role conflict, a failure, or a
 success, according to the procedures below.

6.2.5.1. Role Conflict

 If the Binding request generates a 487 (Role Conflict) error
 response, and if the ICE agent included an ICE-CONTROLLED attribute
 in the request, the agent MUST switch to the controlling role. If
 the ICE agent included an ICE-CONTROLLING attribute in the request,
 the agent MUST switch to the controlled role.

 Once the ICE agent has switched its role, the agent MUST add the
 candidate pair whose check generated the 487 error response to the
 triggered check queue associated with the check list to which the
 pair belongs, and set the candidate pair state to Waiting. When the
 triggered connectivity check is later performed, the ICE-CONTROLLING/
 ICE-CONTROLLED attribute of the Binding request will indicate the
 agent's new role. The ICE agent MAY change the tie-breaker value.

 NOTE: A role switch requires an ICE agent to recompute pair
 priorities (Section 5.1.2.3), since the priority values depend on the
 role.

 NOTE: A role switch will also impact whether the ICE agent is
 responsible for nominating candidate pairs, and whether the agent is
 responsible for initiating the exchange of the updated candidate
 information with the peer once ICE is concluded.

6.2.5.2. Failure

 This section describes cases when the candidate pair state is set to
 Failed.

 NOTE: When the ICE agent sets the candidate pair state to Failed as a
 result a connectivity check error, the agent does not change the
 states of other candidate pairs with the same foundation.

6.2.5.2.1. Non-Symmetric Transport Addresses

 The ICE agent MUST check that the source and destination transport
 addresses in the Binding request and response are symmetric. I.e.,
 the source IP address and port of the response MUST be equal the
 destination IP address and port to which the Binding request was
 sent, and that the destination IP address and port of the response
 MUST be equal to the source IP address and port from which the
 Binding request was sent. If the addresses are not symmetric, the
 ICE agent MUST set the candidate pair state to Failed.

Keranen, et al. Expires April 2, 2018 [Page 42]

Internet-Draft ICE September 2017

6.2.5.2.2. ICMP Error

 An ICE agent MAY support processing of ICMP errors for connectivity
 checks. If the agent supports processing of ICMP errors, and if a
 Binging request generates an ICMP error, the agent SHOULD set the
 state of the candidate pair to Failed.

6.2.5.2.3. Unrecoverable STUN Response

 If the Binding request generates a STUN error response that is
 unrecoverable [RFC5389] or times out, the ICE agent SHOULD set the
 candidate pair state to Failed.

6.2.5.3. Success

 A connectivity check is considered a success if each of the following
 criteria is true:

 o The Binding request generated a success response; and

 o The source and destination transport addresses in the Binding
 request and response are symmetric.

6.2.5.3.1. Discovering Peer Reflexive Candidates

 The ICE agent MUST check the mapped address from the STUN response.
 If the transport address does not match any of the local candidates
 that the agent knows about, the mapped address represents a new
 candidate: a peer reflexive candidate. Like other candidates, a peer
 reflexive candidate has a type, base, priority, and foundation. They
 are computed as follows:

 o The type is peer reflexive.

 o The base is local candidate of the candidate pair from which the
 Binding request was sent.

 o The priority is the value of the PRIORITY attribute in the Binding
 request.

 o The foundation is described in Section 4.1.1.3.

 The peer reflexive candidate is then added to the list of local
 candidates for the media stream. The username fragment and password
 are the same as for all other local candidates for that media stream.

 The ICE agent does not need to pair the peer reflexive candidate with
 remote candidates, as a valid candidate pair will be created due to

https://datatracker.ietf.org/doc/html/rfc5389

Keranen, et al. Expires April 2, 2018 [Page 43]

Internet-Draft ICE September 2017

 the procedures in Section 6.2.5.3.2. If an agent wishes to pair the
 peer reflexive candidate with remote candidates other than the one in
 the valid pair that will be generated, the agent MAY provide updated
 candidate information to the peer that includes the peer reflexive
 candidate. This will cause the peer reflexive candidate to be paired
 with all other remote candidates.

6.2.5.3.2. Constructing a Valid Pair

 The agent constructs a candidate pair whose local candidate equals
 the mapped address of the response, and whose remote candidate equals
 the destination address to which the request was sent. This is
 called a valid pair.

 The valid pair may equal the pair that generated the connectivity
 check, or it may equal a different pair in a check list (sometimes in
 a different check list than the one to which the pair that generated
 the connectivity checks), or it may be a pair not currently in any
 check list.

 The ICE agent maintains a separate list, called the VALID LIST, for
 each check list in the check list set. The valid list will contain
 valid pairs. Initially each valid list is empty.

 Each valid pair within the valid list has a flag, called the
 Nominated Flag. When a valid pair is added to a valid list, the flag
 value is set to 'false'.

 The valid pair will be added to a valid list as follows:

 1. If the valid pair equals the pair that generated the check, the
 pair is added to the valid list associated with the check list to
 which the pair belongs; or

 2. If the valid pair equals another pair in a check list, that pair
 is added to the valid list associated with the check list of that
 pair. The pair that generated the check is not added to a valid
 list; or

 3. If the valid pair is not in any check list, the agent computes
 the priority for the pair based on the priority of each
 candidate, using the algorithm in Section 5.1.2. The priority of
 the local candidate depends on its type. Unless the type is peer
 reflexive, the priority is equal to the priority signaled for
 that candidate in the candidate exchange. If the type is peer
 reflexive, it is equal to the PRIORITY attribute the agent placed
 in the Binding request that just completed. The priority of the
 remote candidate is taken from the candidate information of the

Keranen, et al. Expires April 2, 2018 [Page 44]

Internet-Draft ICE September 2017

 peer. If the candidate does not appear there, then the check
 must have been a triggered check to a new remote candidate. In
 that case, the priority is taken as the value of the PRIORITY
 attribute in the Binding request that triggered the check that
 just completed. The pair is then added to the valid list.

 NOTE: It will be very common that the valid pair will not be in any
 check list. Recall that the check list has pairs whose local
 candidates are never reflexive; those pairs had their local
 candidates converted to the base of the reflexive candidates, and
 then pruned if they were redundant. When the response to the Binding
 request arrives, the mapped address will be reflexive if there is a
 NAT between the two. In that case, the valid pair will have a local
 candidate that doesn't match any of the pairs in the check list.

6.2.5.3.3. Updating Candidate Pair States

 The agent sets the states of both the candidate pair that generated
 the check and the constructed valid pair (which may be different) to
 Succeeded.

 The agent MUST set the states for all other Frozen candidate pairs in
 all check lists with the same foundation to Waiting.

 NOTE: Within a given check list, candidate pairs with the same
 foundations will typically have different component ID values.

6.2.5.3.4. Updating the Nominated Flag

 If the request had included a USE-CANDIDATE attribute in the Binding
 request, the controlling agent sets the Nominated Flag of the valid
 pair to true. This concludes the ICE processing for this media
 stream; see Section 7.

 If the response was the result of a triggered check that was sent in
 response to a request that itself had the USE-CANDIDATE attribute,
 the controlled agent may now set the Nominated Flag for the pair
 learned from the original request. This case is described in

Section 6.3.1.5.

 An ICE agent MUST NOT select a candidate pair until it has sent a
 Binding request and received the corresponding Binding response
 associated with the candidate pair.

Keranen, et al. Expires April 2, 2018 [Page 45]

Internet-Draft ICE September 2017

6.2.5.4. Check List State Updates

 Regardless of whether a connectivity check was successful or failed,
 the completion of the check may require updating of check list
 states. For each check list in the check list set, if all of the
 candidate pairs are in either Failed or Succeeded state, and if there
 is not a valid pair in the valid list for each component of the media
 stream associated with the check list, the state of the check list is
 set to Failed. If there is a valid pair for each component in the
 valid list, the state of the check list is set to Succeeded.

6.3. STUN Server Procedures

 An agent (lite or full) MUST be prepared to receive Binding requests
 on the base of each candidate it included in its most recent
 candidate exchange.

 The agent MUST use the short-term credential mechanism (i.e., the
 MESSAGE-INTEGRITY attribute) to authenticate the request and perform
 a message integrity check. Likewise, the short-term credential
 mechanism MUST be used for the response. The agent MUST consider the
 username to be valid if it consists of two values separated by a
 colon, where the first value is equal to the username fragment
 generated by the agent in an candidate exchange for a session in-
 progress. It is possible (and in fact very likely) that the
 initiating agent will receive a Binding request prior to receiving
 the candidates from its peer. If this happens, the agent MUST
 immediately generate a response (including computation of the mapped
 address as described in Section 6.3.1.2). The agent has sufficient
 information at this point to generate the response; the password from
 the peer is not required. Once the answer is received, it MUST
 proceed with the remaining steps required, namely, Section 6.3.1.3,

Section 6.3.1.4, and Section 6.3.1.5 for full implementations. In
 cases where multiple STUN requests are received before the answer,
 this may cause several pairs to be queued up in the triggered check
 queue.

 An agent MUST NOT utilize the ALTERNATE-SERVER mechanism, and MUST
 NOT support the backwards-compatibility mechanisms to RFC 3489. It
 MUST utilize the FINGERPRINT mechanism.

 If the agent is using Diffserv Codepoint markings [RFC2475] in its
 media packets, it SHOULD apply the same markings to Binding
 responses. The same would apply to any layer 2 markings the endpoint
 might be applying to media packets.

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc2475

Keranen, et al. Expires April 2, 2018 [Page 46]

Internet-Draft ICE September 2017

6.3.1. Additional Procedures for Full Implementations

 This subsection defines the additional server procedures applicable
 to full implementations, when the full implementation accepts the
 Binding request.

6.3.1.1. Detecting and Repairing Role Conflicts

 In certain usages of ICE (such as third party call control), both
 agents may end up choosing the same role, resulting in a role
 conflict. The section describes a mechanism for detecting and
 repairing role conflicts. The usage document MUST specify whether
 this mechanism is needed.

 An agent MUST examine the Binding request for either the ICE-
 CONTROLLING or ICE-CONTROLLED attribute. It MUST follow these
 procedures:

 o If neither ICE-CONTROLLING nor ICE-CONTROLLED is present in the
 request, the peer agent may have implemented a previous version of
 this specification. There may be a conflict, but it cannot be
 detected.

 o If the agent is in the controlling role, and the ICE-CONTROLLING
 attribute is present in the request:

 * If the agent's tie-breaker value is larger than or equal to the
 contents of the ICE-CONTROLLING attribute, the agent generates
 a Binding error response and includes an ERROR-CODE attribute
 with a value of 487 (Role Conflict) but retains its role.

 * If the agent's tie-breaker value is less than the contents of
 the ICE-CONTROLLING attribute, the agent switches to the
 controlled role.

 o If the agent is in the controlled role, and the ICE-CONTROLLED
 attribute is present in the request:

 * If the agent's tie-breaker value is larger than or equal to the
 contents of the ICE-CONTROLLED attribute, the agent switches to
 the controlling role.

 * If the agent's tie-breaker value is less than the contents of
 the ICE-CONTROLLED attribute, the agent generates a Binding
 error response and includes an ERROR-CODE attribute with a
 value of 487 (Role Conflict) but retains its role.

Keranen, et al. Expires April 2, 2018 [Page 47]

Internet-Draft ICE September 2017

 o If the agent is in the controlled role and the ICE-CONTROLLING
 attribute was present in the request, or the agent was in the
 controlling role and the ICE-CONTROLLED attribute was present in
 the request, there is no conflict.

 A change in roles will require an agent to recompute pair priorities
 (Section 5.1.2.3), since those priorities are a function of role.
 The change in role will also impact whether the agent is responsible
 for selecting nominated pairs and initiating exchange with updated
 candidate information upon conclusion of ICE.

 The remaining sections in Section 6.3.1 are followed if the agent
 generated a successful response to the Binding request, even if the
 agent changed roles.

6.3.1.2. Computing Mapped Address

 For requests received on a relayed candidate, the source transport
 address used for STUN processing (namely, generation of the XOR-
 MAPPED-ADDRESS attribute) is the transport address as seen by the
 TURN server. That source transport address will be present in the
 XOR-PEER-ADDRESS attribute of a Data Indication message, if the
 Binding request was delivered through a Data Indication. If the
 Binding request was delivered through a ChannelData message, the
 source transport address is the one that was bound to the channel.

6.3.1.3. Learning Peer Reflexive Candidates

 If the source transport address of the request does not match any
 existing remote candidates, it represents a new peer reflexive remote
 candidate. This candidate is constructed as follows:

 o The type is peer reflexive.

 o The priority is the value of the PRIORITY attribute in the Binding
 request.

 o The foundation is an arbitrary value, different from the
 foundations of all other remote candidates. If any subsequent
 candidate exchanges contain this peer reflexive candidate, it will
 signal the actual foundation for the candidate.

 o The component ID is the component ID of the local candidate to
 which the request was sent.

 This candidate is added to the list of remote candidates. However,
 the agent does not pair this candidate with any local candidates.

Keranen, et al. Expires April 2, 2018 [Page 48]

Internet-Draft ICE September 2017

6.3.1.4. Triggered Checks

 Next, the agent constructs a pair whose local candidate is equal to
 the transport address on which the STUN request was received, and a
 remote candidate equal to the source transport address where the
 request came from (which may be the peer reflexive remote candidate
 that was just learned). The local candidate will either be a host
 candidate (for cases where the request was not received through a
 relay) or a relayed candidate (for cases where it is received through
 a relay). The local candidate can never be a server reflexive
 candidate. Since both candidates are known to the agent, it can
 obtain their priorities and compute the candidate pair priority.
 This pair is then looked up in the check list. There can be one of
 several outcomes:

 o If the pair is already on the check list:

 * If the state of that pair is Waiting or Frozen, a check for
 that pair is enqueued into the triggered check queue if not
 already present.

 * If the state of that pair is In-Progress, the agent cancels the
 in-progress transaction. Cancellation means that the agent
 will not retransmit the request, will not treat the lack of
 response to be a failure, but will wait the duration of the
 transaction timeout for a response. In addition, the agent
 MUST create a new connectivity check for that pair
 (representing a new STUN Binding request transaction) by
 enqueueing the pair in the triggered check queue. The state of
 the pair is then changed to Waiting.

 * If the state of the pair is Failed, it is changed to Waiting
 and the agent MUST create a new connectivity check for that
 pair (representing a new STUN Binding request transaction), by
 enqueueing the pair in the triggered check queue.

 * If the state of that pair is Succeeded, nothing further is
 done.

 These steps are done to facilitate rapid completion of ICE when both
 agents are behind NAT.

 o If the pair is not already on the check list:

 * The pair is inserted into the check list based on its priority.

 * Its state is set to Waiting.

Keranen, et al. Expires April 2, 2018 [Page 49]

Internet-Draft ICE September 2017

 * The pair is enqueued into the triggered check queue.

 When a triggered check is to be sent, it is constructed and processed
 as described in Section 6.2.4. These procedures require the agent to
 know the transport address, username fragment, and password for the
 peer. The username fragment for the remote candidate is equal to the
 part after the colon of the USERNAME in the Binding request that was
 just received. Using that username fragment, the agent can check the
 candidates received from its peer (there may be more than one in
 cases of forking), and find this username fragment. The
 corresponding password is then selected.

6.3.1.5. Updating the Nominated Flag

 If the Binding request received by the agent had the USE-CANDIDATE
 attribute set, and the agent is in the controlled role, the agent
 looks at the state of the pair computed in Section 6.3.1.4:

 o If the state of this pair is Succeeded, it means that the check
 generated by this pair produced a successful response. This would
 have caused the agent to construct a valid pair when that success
 response was received (see Section 6.2.5.3.2). The agent now sets
 the nominated flag value of the valid pair to true. This may end
 ICE processing for this media stream; see Section 7.

 o If the state of this pair is In-Progress, and if its check
 produces a successful result, the resulting valid pair has its
 nominated flag set when the response arrives. This may end ICE
 processing for this media stream when it arrives; see Section 7.

6.3.2. Additional Procedures for Lite Implementations

 If the check that was just received contained a USE-CANDIDATE
 attribute, the agent constructs a candidate pair whose local
 candidate is equal to the transport address on which the request was
 received, and whose remote candidate is equal to the source transport
 address of the request that was received. This candidate pair is
 assigned an arbitrary priority, and placed into a list of valid
 candidates called the valid list. The agent sets the nominated flag
 for that pair to true. ICE processing is considered complete for a
 media stream if the valid list contains a candidate pair for each
 component.

7. Concluding ICE Processing

 This section describes how an agent completes ICE.

Keranen, et al. Expires April 2, 2018 [Page 50]

Internet-Draft ICE September 2017

7.1. Procedures for Full Implementations

 Concluding ICE involves nominating pairs by the controlling agent and
 updating of state machinery.

7.1.1. Nominating Pairs

 Prior to nominating, the agent let connectivity quecks continue until
 some stopping criterion is met. After that, based on an evaluation
 criterion, the agent selects a pair among the valid pairs in the
 valid list for nomination.

 Once the controlling agent has selected a valid pair for nomination,
 it repeats the connectivity check that produced this valid pair (by
 enqueueing the pair that generated the check into the triggered check
 queue), this time with the USE-CANDIDATE attribute. The connectivity
 check should succeed (since the previous did), causing the nominated
 flag value of that and only that pair to be set to true. However, if
 the connectivity check fails Section 6.2.5.2, the controlling agent
 MUST remove the candidate pair from the VALID LIST, set the candidate
 pair state to Failed and set the CHECK LIST state to Failed.

 Eventually, if the nominations succeed, there will be only a single
 nominated pair in the VALID LIST for each component. Once the state
 of the CHECK LIST is set to Completed, that exact pair is selected by
 ICE for sending and receiving media for that component.

 The criterion details for stopping the connectivity checks and for
 selecting a pair for nomiation, are outside the scope of this
 specification. They are a matter of local optimization. The only
 requirement is that the agent MUST eventually pick one and only one
 candidate pair and generate a check for that pair with the USE-
 CANDIDATE attribute present.

 If the controlled agent accepts the nomination request from the
 controlling agent, the controlled agent MUST select the nominated
 candidate pair, if the controlled agent is receiving Binding
 responses associated with that candidate pair. Before the agent has
 received Binding responses associated with the candidate pair, the
 agent can send media on any candidate for which it has received
 Binding responses.

 If the controlled agent does not accept the nomination request from
 the controlling agent, the controlled agent MUST reject the
 nomination request with an appropriate error code response (e.g.,
 400) [RFC5389], and MUST set the CHECK LIST state to Failed.

https://datatracker.ietf.org/doc/html/rfc5389

Keranen, et al. Expires April 2, 2018 [Page 51]

Internet-Draft ICE September 2017

 If more than one candidate pair is nominated by the controlling
 agent, and if the controlled agent accepts multiple nominations
 requests, the controlled agent MUST select the candidate pair with
 the highest priority.

 NOTE: A controlling agent that does not support this specification
 (i.e. it is implemented according to RFC 5245) might nominate more
 than one candidate pair. This was referred to as aggressive
 nomination in RFC 5245. The usage of the 'ice2' ice option by
 endpoints supporting this specifcation should prevent such
 controlling agents from using aggressive nomination.

7.1.2. Updating States

 For both controlling and controlled agents, the state of ICE
 processing depends on the presence of nominated candidate pairs in
 the valid list and on the state of the check list. Note that, at any
 time, more than one of the following cases can apply:

 o If there are no nominated pairs in the valid list for a media
 stream and the state of the check list is Running, ICE processing
 continues.

 o If there is at least one nominated pair in the valid list for a
 media stream and the state of the check list is Running:

 * The agent MUST remove all Waiting and Frozen pairs in the CHECK
 LIST and triggered check queue for the same component as the
 nominated pairs for that media stream.

 * If an In-Progress pair in the check list is for the same
 component as a nominated pair, the agent SHOULD cease
 retransmissions for its check if its pair priority is lower
 than the lowest-priority nominated pair for that component.

 o Once there is at least one nominated pair in the valid list for
 every component of at least one media stream and the state of the
 check list is Running:

 * The agent MUST change the state of processing for its check
 list for that media stream to Completed.

 * The agent MUST continue to respond to any checks it may still
 receive for that media stream, and MUST perform triggered
 checks if required by the processing of Section 6.3.

 * The agent MUST continue retransmitting any In-Progress checks
 for that check list.

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5245

Keranen, et al. Expires April 2, 2018 [Page 52]

Internet-Draft ICE September 2017

 * The agent MAY begin transmitting media for this media stream as
 described in Section 11.1.

 o Once the state of each check list is Completed:

 * The agent sets the state of ICE processing overall to
 Completed.

 o If the state of the check list is Failed, ICE has not been able to
 complete for this media stream. The correct behavior depends on
 the state of the check lists for other media streams:

 * If all check lists are Failed, ICE processing overall is
 considered to be in the Failed state, and the agent SHOULD
 consider the session a failure, SHOULD NOT restart ICE, and the
 controlling agent SHOULD terminate the entire session.

 * If at least one of the check lists for other media streams is
 Completed, the controlling agent SHOULD remove the failed media
 stream from the session while sending updated candidate list to
 its peer.

 * If none of the check lists for other media streams are
 Completed, but at least one is Running, the agent SHOULD let
 ICE continue.

7.2. Procedures for Lite Implementations

 When ICE concludes, a lite agent can free host candidates that were
 not used by ICE, as described in Section 7.3.

 If the peer is a full agent, the lite agent selects a candidate pair
 when the full agent nominates it. When the lite agent has selected a
 candidate pair for all components of all media streams, the ICE
 session is Completed.

 If the peer is a lite agent, the agent pairs local candidates with
 remote candidates that are for the same media stream and have the
 same component, transport protocol, and IP address family. For each
 component of each media stream, if there is only one candidate pair,
 that pair is added to the valid list. If there is more than one
 pair, it is RECOMMENDED that an agent follow the procedures of RFC

6724 [RFC6724] to select a pair and add it to the valid list.

 If all of the components for all media streams had one pair, the
 state of ICE processing is Completed. Otherwise, the controlling
 agent MUST send an updated candidate list to reconcile different
 agents selecting different candidate pairs. ICE processing is

https://datatracker.ietf.org/doc/html/rfc6724
https://datatracker.ietf.org/doc/html/rfc6724
https://datatracker.ietf.org/doc/html/rfc6724

Keranen, et al. Expires April 2, 2018 [Page 53]

Internet-Draft ICE September 2017

 complete after and only after the updated canddiate exchange is
 complete.

7.3. Freeing Candidates

7.3.1. Full Implementation Procedures

 The procedures in Section 7 require that an agent continue to listen
 for STUN requests and continue to generate triggered checks for a
 media stream, even once processing for that stream completes. The
 rules in this section describe when it is safe for an agent to cease
 sending or receiving checks on a candidate that was not selected by
 ICE, and then free the candidate.

 Once a checklist has reached the Completed state, the agent SHOULD
 wait an additional three seconds, and then it can cease responding to
 checks or generating triggered checks on all local candidates other
 than the ones in the selected candidate pairs (one for each
 component). Once all ICE sessions have ceased using a given local
 candidate (a candidate may be used by multiple ICE sessions, e.g. in
 forking scenarios), the agent can free that candidate. The three-
 second delay handles cases when aggressive nomination is used, and
 the selected pairs can quickly change after ICE has completed.

 Freeing of server reflexive candidates is never explicit; it happens
 by lack of a keepalive.

7.3.2. Lite Implementation Procedures

 A lite implementation can free candidates not selected by ICE as soon
 as ICE processing has reached the Completed state for all ICE
 sessions using those candidates.

8. ICE Restarts

 An agent MAY restart ICE for existing media streams. An ICE restart
 causes all previous state of the media streams, excluding the roles
 of the agents to be flushed. The only difference between an ICE
 restart and a brand new media session is that during the restart,
 media can continue to be sent using existing media sessions, and that
 a new media session always requires the roles to be determined.

 The following actions can be accomplished only using an ICE restart
 (the agent MUST use ICE restarts to do so):

 o Change the destinations of media streams.

 o Change from a lite implementation to a full implementation.

Keranen, et al. Expires April 2, 2018 [Page 54]

Internet-Draft ICE September 2017

 o Change from a full implementation to a lite implementation.

 To restart ICE, an agent MUST change both the password and the
 username fragment for the media stream(s) being restarted. The new
 candidate set MAY include some, none, or all of the previous
 candidates.

 As described in Section 5.1.1, ICE agents MUST NOT re-determine the
 roles as part as an ICE restart, unless certain criteria that require
 the roles to be re-determined are fulfilled.

9. ICE Option

 This section defines a new ICE option, 'ice2'. The ICE option
 indicates that the ICE agent that includes it in a candidate exchange
 is compliant to this specification. For example, the ICE agent will
 not use the aggressive nomination procedure defined in [RFC5245].

 An ICE agent compliant to this specification MUST inform the peer
 about the compliance using the 'ice2' option.

 NOTE: The encoding of the 'ice2' ICE option, and the message(s) used
 to carry it to the peer, are protocol specific. The encoding for the
 Session Description Protocol (SDP) [RFC4566] is defined in
 [I-D.ietf-mmusic-ice-sip-sdp].

10. Keepalives

 All endpoints MUST send keepalives for each media session. These
 keepalives serve the purpose of keeping NAT bindings alive for the
 media session. The keepalives SHOULD be sent using a format that is
 supported by its peer. ICE endpoints allow for STUN-based keepalives
 for UDP streams, and as such, STUN keepalives MUST be used when an
 agent is a full ICE implementation and is communicating with a peer
 that supports ICE (lite or full).

 For each candidate pair that an agent is using to send media, if no
 packet has been sent on that pair in the last Tr seconds, an agent
 MUST send a keepalive on that pair. Agents SHOULD use a Tr value of
 15 seconds. Agents MUST NOT use a Tr value smaller than 15 seconds.
 An agent MUST begin sending keepalives once a candidate pair is
 selected or a candidate pair is used to send media, whichever happens
 first. An agent MUST stop sending keepalives once the session
 terminates or the media stream is removed. An agent MAY use another
 value for Tr, e.g. based on configuration or network/NAT
 characteristics. For example, if an agent has a dynamic way to
 discover the binding lifetimes of the intervening NATs, it can use
 that value to determine Tr. Administrators deploying ICE in more

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc4566

Keranen, et al. Expires April 2, 2018 [Page 55]

Internet-Draft ICE September 2017

 controlled networking environments SHOULD set Tr to the longest
 duration possible in their environment.

 When STUN is being used for keepalives, a STUN Binding Indication is
 used [RFC5389]. The Indication MUST NOT utilize any authentication
 mechanism. It SHOULD contain the FINGERPRINT attribute to aid in
 demultiplexing, but SHOULD NOT contain any other attributes. It is
 used solely to keep the NAT bindings alive. The Binding Indication
 is sent using the same local and remote candidates that are being
 used for media. Though Binding Indications are used for keepalives,
 an agent MUST be prepared to receive a connectivity check as well.
 If a connectivity check is received, a response is generated as
 discussed in [RFC5389], but there is no impact on ICE processing
 otherwise.

 An agent MUST begin the keepalive processing once ICE has selected
 candidates for usage with media, or media begins to flow, whichever
 happens first. Keepalives end once the session terminates or the
 media stream is removed.

11. Media Handling

11.1. Sending Media

 An agent MAY send media on any valid candidate pair before a
 candidate pair is selected.

 An agent MUST send media on the selected candidate pair after it is
 selected.

 An agent sends media from the base of the local candidate to the
 remote candidate. In the case of a local relayed candidate, media is
 forwarded through the base (located in the TURN server), using the
 procedures defined in [RFC5766].

 If the local candidate is a relayed candidate, it is RECOMMENDED that
 an agent creates a channel on the TURN server towards the remote
 candidate. This is done using the procedures for channel creation as
 defined in Section 11 of [RFC5766].

 The selected pair for a component of a media stream is:

 o empty if the state of the CHECK LIST for that media stream is
 Running, and there is no previous selected pair for that component
 due to an ICE restart

 o equal to the previous selected pair for a component of a media
 stream if the state of the CHECK LIST for that media stream is

https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5766
https://datatracker.ietf.org/doc/html/rfc5766#section-11

Keranen, et al. Expires April 2, 2018 [Page 56]

Internet-Draft ICE September 2017

 Running, and there was a previous selected pair for that component
 due to an ICE restart

 Unless an agent is able to produce a selected pair for all components
 associated with a media stream, the agent MUST NOT continue sending
 media for any component associated with that media stream.

11.2. Procedures for Lite Implementations

 A lite implementation MUST NOT send media until it has a valid list
 that contains a candidate pair for each component of that media
 stream. Once that happens, the agent MAY begin sending media
 packets. To do that, it sends media to the remote candidate in the
 pair (setting the destination address and port of the packet equal to
 that remote candidate), and will send it from the base associated
 with the candidate pair used for sending media. In case of a relayed
 candidate, media is sent from the agent and forwarded through the
 base (located in the TURN server), using the procedures defined in
 [RFC5766].

11.3. Procedures for All Implementations

 ICE has interactions with jitter buffer adaptation mechanisms. An
 RTP stream can begin using one candidate, and switch to another one,
 though this happens rarely with ICE. The newer candidate may result
 in RTP packets taking a different path through the network -- one
 with different delay characteristics. As discussed below, agents are
 encouraged to re-adjust jitter buffers when there are changes in
 source or destination address of media packets. Furthermore, many
 audio codecs use the marker bit to signal the beginning of a
 talkspurt, for the purposes of jitter buffer adaptation. For such
 codecs, it is RECOMMENDED that the sender set the marker bit
 [RFC3550] when an agent switches transmission of media from one
 candidate pair to another.

12. Receiving Media

 Even though ICE agents are only allowed to send media using valid
 candidate pairs (and, once a candidate pair has been selected, only
 on the selected pair) ICE implementations SHOULD by default be
 prepared to receive media on any of the candidates provided in the
 most recent candidate exchange with the peer. Specific ICE usages
 MAY define rules that differs from this, e.g., by defining that media
 must not be sent until selected pairs have been procduced for each
 component associated with that media.

https://datatracker.ietf.org/doc/html/rfc5766
https://datatracker.ietf.org/doc/html/rfc3550

Keranen, et al. Expires April 2, 2018 [Page 57]

Internet-Draft ICE September 2017

 It is RECOMMENDED that, when an agent receives an RTP packet with a
 new source or destination IP address for a particular media stream,
 that the agent re-adjust its jitter buffers.

RFC 3550 [RFC3550] describes an algorithm in Section 8.2 for
 detecting synchronization source (SSRC) collisions and loops. These
 algorithms are based, in part, on seeing different source transport
 addresses with the same SSRC. However, when ICE is used, such
 changes will sometimes occur as the media streams switch between
 candidates. An agent will be able to determine that a media stream
 is from the same peer as a consequence of the STUN exchange that
 proceeds media transmission. Thus, if there is a change in source
 transport address, but the media packets come from the same peer
 agent, this SHOULD NOT be treated as an SSRC collision.

13. Extensibility Considerations

 This specification makes very specific choices about how both agents
 in a session coordinate to arrive at the set of candidate pairs that
 are selected for media. It is anticipated that future specifications
 will want to alter these algorithms, whether they are simple changes
 like timer tweaks or larger changes like a revamp of the priority
 algorithm. When such a change is made, providing interoperability
 between the two agents in a session is critical.

 First, ICE provides the ice-options attribute. Each extension or
 change to ICE is associated with a token. When an agent supporting
 such an extension or change triggers candidate exchange, it MUST
 include the token for that extension in this attribute. This allows
 each side to know what the other side is doing. This attribute MUST
 NOT be present if the agent doesn't support any ICE extensions or
 changes.

 One of the complications in achieving interoperability is that ICE
 relies on a distributed algorithm running on both agents to converge
 on an agreed set of candidate pairs. If the two agents run different
 algorithms, it can be difficult to guarantee convergence on the same
 candidate pairs. The regular nomination procedure described in

Section 7 eliminates some of the tight coordination by delegating the
 selection algorithm completely to the controlling agent.
 Consequently, when a controlling agent is communicating with a peer
 that supports options it doesn't know about, the agent MUST run a
 regular nomination algorithm. When regular nomination is used, ICE
 will converge perfectly even when both agents use different pair
 prioritization algorithms. One of the keys to such convergence is
 triggered checks, which ensure that the nominated pair is validated
 by both agents. Consequently, any future ICE enhancements MUST
 preserve triggered checks.

https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc3550

Keranen, et al. Expires April 2, 2018 [Page 58]

Internet-Draft ICE September 2017

 ICE is also extensible to other media streams beyond RTP, and for
 transport protocols beyond UDP. Extensions to ICE for non-RTP media
 streams need to specify how many components they utilize, and assign
 component IDs to them, starting at 1 for the most important component
 ID. Specifications for new transport protocols must define how, if
 at all, various steps in the ICE processing differ from UDP.

14. Setting Ta and RTO

14.1. General

 During the ICE gathering phase (Section 4.1.1) and while ICE is
 performing connectivity checks (Section 6), an agent triggers STUN
 and TURN transactions. These transactions are paced at a rate
 indicated by Ta, and the retransmission interval for each transaction
 is calculated based on the the retransmission timer for the STUN
 transactions (RTO) [RFC5389].

 This section describes how the Ta and RTO values are computed during
 the ICE gathering phase and while ICE is performing connectivity
 checks.

 NOTE: Previously, in RFC 5245, different formulas were defined for
 computing Ta and RTO, depending on whether ICE was used for a real-
 time media stream (e.g. RTP) or not.

 The formulas below result in a behavior whereby an agent will send
 its first packet for every single connectivity check before
 performing a retransmit. This can be seen in the formulas for the
 RTO (which represents the retransmit interval). Those formulas scale
 with N, the number of checks to be performed. As a result of this,
 ICE maintains a nicely constant rate, but becomes more sensitive to
 packet loss. The loss of the first single packet for any
 connectivity check is likely to cause that pair to take a long time
 to be validated, and instead, a lower-priority check (but one for
 which there was no packet loss) is much more likely to complete
 first. This results in ICE performing sub-optimally, choosing lower-
 priority pairs over higher-priority pairs. Implementors should be
 aware of this consequence, but still should utilize the timer values
 described here.

14.2. Ta

 ICE agents SHOULD use the default Ta value, 50 ms, but MAY use
 another value based on the characteristics of the associated media.

 If an ICE agent wants to use another Ta value than the default value,
 the agent MUST indicate the proposed value to its peer during the ICE

https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5245

Keranen, et al. Expires April 2, 2018 [Page 59]

Internet-Draft ICE September 2017

 exchange. Both agents MUST use the higher value of the proposed
 values. If an agent does not propose a value, the default value is
 used for that agent when comparing which value is higher.

 Regardless of the Ta value chosen for each ICE agent, the combination
 of all transactions from all ICE agents (if a given implementation
 runs several concurrent ICE agents) MUST NOT be sent more often than
 once every 5ms (as though there were one global Ta value for pacing
 all ICE agents).

 This mechanism of a global minimum pacing interval of 5ms is not
 generally applicable to transport protocols, but is applicable to ICE
 based on the following reasoning.

 o Start with the following rules which would be generally applicable
 to transport protocols:

 1. Let MaxBytes be the maximum number of bytes allowed to be
 outstanding in the network at start-up, which SHOULD be 14600
 bytes per RFC 6928.

 2. Let HTO be the transaction timeout, which SHOULD be 2*RTT if
 RTT is known and 500ms otherwise. This is based on the RTO
 for STUN messages from RFC 5389 and the the TCP initial RTO,
 which is 1 sec in RFC 6298.

 3. Let MinPacing be the minimum pacing interval between
 transactions, which SHOULD be 5ms.

 o Observe that ICE agents typically do not know the RTT for ICE
 transactions (connectivity checks in particular), meaning that HTO
 will almost always be 500ms.

 o Observe that a MinPacing of 5ms and HTO of 500ms gives at most 100
 packets/HTO, which for a typical ICE check of less than 120 bytes
 means a maximum of 12000 outstanding bytes in the network, which
 is less than the maximum expressed by rule 1.

 o Thus, for ICE, the rule set reduces down to just the MinPacing
 rule, which is equivalant to having a global Ta value.

 NOTE: Appendix C shows examples of required bandwidth, using
 different Ta values.

https://datatracker.ietf.org/doc/html/rfc6928
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc6298

Keranen, et al. Expires April 2, 2018 [Page 60]

Internet-Draft ICE September 2017

14.3. RTO

 During the ICE gathering phase, ICE agents SHOULD calculate the RTO
 value using the following formula:

 RTO = MAX (500ms, Ta * (Num-Of-Pairs))

 Num-Of-Pairs: the number of pairs of candidates
 with STUN or TURN servers.

 For connectivity checks, ICE agents SHOULD calculate the RTO value
 using the following formula:

 RTO = MAX (500ms, Ta*N * (Num-Waiting + Num-In-Progress))

 Num-Waiting: the number of checks in the check list in the
 Waiting state.

 Num-In-Progress: the number of checks in the In-Progress state.

 Note that the RTO will be different for each transaction as the
 number of checks in the Waiting and In-Progress states change.

 ICE agents MAY calculate the RTO value using other mechanisms than
 those described above. ICE agents MUST NOT use a RTO value smaller
 than 500 ms.

15. Example

 The example is based on the simplified topology of Figure 9.

Keranen, et al. Expires April 2, 2018 [Page 61]

Internet-Draft ICE September 2017

 +-------+
 |STUN |
 |Server |
 +-------+
 |
 +---------------------+
 | |
 | Internet |
 | |
 +---------------------+
 | |
 | |
 +---------+ |
 | NAT | |
 +---------+ |
 | |
 | |
 +-----+ +-----+
 | L | | R |
 +-----+ +-----+

 Figure 9: Example Topology

 Two agents, L and R, are using ICE. Both are full ICE
 implementations. Both agents have a single IPv4 address. For agent
 L, it is 10.0.1.1 in private address space [RFC1918], and for agent
 R, 192.0.2.1 on the public Internet. Both are configured with the
 same STUN server (shown in this example for simplicity, although in
 practice the agents do not need to use the same STUN server), which
 is listening for STUN Binding requests at an IP address of 192.0.2.2
 and port 3478. TURN servers are not used in this example. Agent L
 is behind a NAT, and agent R is on the public Internet. The NAT has
 an endpoint independent mapping property and an address dependent
 filtering property. The public side of the NAT has an IP address of
 192.0.2.3.

 To facilitate understanding, transport addresses are listed using
 variables that have mnemonic names. The format of the name is
 entity-type-seqno, where entity refers to the entity whose IP address
 the transport address is on, and is one of "L", "R", "STUN", or
 "NAT". The type is either "PUB" for transport addresses that are
 public, and "PRIV" for transport addresses that are private.
 Finally, seq-no is a sequence number that is different for each
 transport address of the same type on a particular entity. Each
 variable has an IP address and port, denoted by varname.IP and
 varname.PORT, respectively, where varname is the name of the
 variable.

https://datatracker.ietf.org/doc/html/rfc1918

Keranen, et al. Expires April 2, 2018 [Page 62]

Internet-Draft ICE September 2017

 The STUN server has advertised transport address STUN-PUB-1 (which is
 192.0.2.2:3478).

 In the call flow itself, STUN messages are annotated with several
 attributes. The "S=" attribute indicates the source transport
 address of the message. The "D=" attribute indicates the destination
 transport address of the message. The "MA=" attribute is used in
 STUN Binding response messages and refers to the mapped address.
 "USE-CAND" implies the presence of the USE-CANDIDATE attribute.

 The call flow examples omit STUN authentication operations, and focus
 on a single media stream between two full implementations.

 L NAT STUN R
 |STUN alloc. | | |
 |(1) STUN Req | | |
 |S=$L-PRIV-1 | | |
 |D=$STUN-PUB-1 | | |
 |------------->| | |
 | |(2) STUN Req | |
 | |S=$NAT-PUB-1 | |
 | |D=$STUN-PUB-1 | |
 | |------------->| |
 | |(3) STUN Res | |
 | |S=$STUN-PUB-1 | |
 | |D=$NAT-PUB-1 | |
 | |MA=$NAT-PUB-1 | |
 | |<-------------| |
 |(4) STUN Res | | |
 |S=$STUN-PUB-1 | | |
 |D=$L-PRIV-1 | | |
 |MA=$NAT-PUB-1 | | |
 |<-------------| | |
 |(5) L's Candidate Information| |
 |--->|
 | | | | STUN
 | | | | alloc.
 | | |(6) STUN Req |
 | | |S=$R-PUB-1 |
 | | |D=$STUN-PUB-1 |
 | | |<-------------|
 | | |(7) STUN Res |
 | | |S=$STUN-PUB-1 |
 | | |D=$R-PUB-1 |
 | | |MA=$R-PUB-1 |
 | | |------------->|
 |(8) R's Candidate Information| |

Keranen, et al. Expires April 2, 2018 [Page 63]

Internet-Draft ICE September 2017

 |<---|
 | |(9) Bind Req | |Begin
 | |S=$R-PUB-1 | |Connectivity
 | |D=L-PRIV-1 | |Checks
 | |<----------------------------| |
 | |Dropped | |
 |(10) Bind Req | | |
 |S=$L-PRIV-1 | | |
 |D=$R-PUB-1 | | |
 |------------->| | |
 | |(11) Bind Req | |
 | |S=$NAT-PUB-1 | |
 | |D=$R-PUB-1 | |
 | |---------------------------->|
 | |(12) Bind Res | |
 | |S=$R-PUB-1 | |
 | |D=$NAT-PUB-1 | |
 | |MA=$NAT-PUB-1 | |
 | |<----------------------------|
 |(13) Bind Res | | |
 |S=$R-PUB-1 | | |
 |D=$L-PRIV-1 | | |
 |MA=$NAT-PUB-1 | | |
 |<-------------| | |
 |Media flows | | |
 | |(14) Bind Req | |
 | |S=$R-PUB-1 | |
 | |D=$NAT-PUB-1 | |
 | |<----------------------------|
 |(15) Bind Req | | |
 |S=$R-PUB-1 | | |
 |D=$L-PRIV-1 | | |
 |<-------------| | |
 |(16) Bind Res | | |
 |S=$L-PRIV-1 | | |
 |D=$R-PUB-1 | | |
 |MA=$R-PUB-1 | | |
 |------------->| | |
 | |(17) Bind Res | |
 | |S=$NAT-PUB-1 | |
 | |D=$R-PUB-1 | |
 | |MA=$R-PUB-1 | |
 | |---------------------------->|
 | | | |Media flows

 Figure 10: Example Flow

Keranen, et al. Expires April 2, 2018 [Page 64]

Internet-Draft ICE September 2017

 First, agent L obtains a host candidate from its local IP address
 (not shown), and from that, sends a STUN Binding request to the STUN
 server to get a server reflexive candidate (messages 1-4). Recall
 that the NAT has the address and port independent mapping property.
 Here, it creates a binding of NAT-PUB-1 for this UDP request, and
 this becomes the server reflexive candidate.

 Agent L sets a type preference of 126 for the host candidate and 100
 for the server reflexive. The local preference is 65535. Based on
 this, the priority of the host candidate is 2130706431 and for the
 server reflexive candidate is 1694498815. The host candidate is
 assigned a foundation of 1, and the server reflexive, a foundation of
 2. These are sent to the peer.

 This candidate information is received at agent R. Agent R will
 obtain a host candidate, and from it, obtain a server reflexive
 candidate (messages 6-7). Since R is not behind a NAT, this
 candidate is identical to its host candidate, and they share the same
 base. It therefore discards this redundant candidate and ends up
 with a single host candidate. With identical type and local
 preferences as L, the priority for this candidate is 2130706431. It
 chooses a foundation of 1 for its single candidate. Then R's
 candidates are then sent to L.

 Since neither side indicated that it is lite, the initiating agent
 that began ICE processing (agent L) becomes the controlling agent.

 Agents L and R both pair up the candidates. They both initially have
 two pairs. However, agent L will prune the pair containing its
 server reflexive candidate, resulting in just one. At agent L, this
 pair has a local candidate of $L_PRIV_1 and remote candidate of
 $R_PUB_1, and has a candidate pair priority of 4.57566E+18 (note that
 an implementation would represent this as a 64-bit integer so as not
 to lose precision). At agent R, there are two pairs. The highest
 priority has a local candidate of $R_PUB_1 and remote candidate of
 $L_PRIV_1 and has a priority of 4.57566E+18, and the second has a
 local candidate of $R_PUB_1 and remote candidate of $NAT_PUB_1 and
 priority 3.63891E+18.

 Agent R begins its connectivity check (message 9) for the first pair
 (between the two host candidates). Since R is the controlled agent
 for this session, the check omits the USE-CANDIDATE attribute. The
 host candidate from agent L is private and behind a NAT, and thus
 this check won't be successful, because the packet cannot be routed
 from R to L.

 When agent L gets the R's candidates, it performs its one and only
 connectivity check (messages 10-13). Since the check succeeds, agent

Keranen, et al. Expires April 2, 2018 [Page 65]

Internet-Draft ICE September 2017

 L creates a new pair, whose local candidate is from the mapped
 address in the Binding response (NAT-PUB-1 from message 13) and whose
 remote candidate is the destination of the request (R-PUB-1 from
 message 10). This is added to the valid list. Agent L can now send
 media if it so chooses.

 Soon after receipt of the STUN Binding request from agent L (message
 11), agent R will generate its triggered check. This check happens
 to match the next one on its check list -- from its host candidate to
 agent L's server reflexive candidate. This check (messages 14-17)
 will succeed. Consequently, agent R constructs a new candidate pair
 using the mapped address from the response as the local candidate (R-
 PUB-1) and the destination of the request (NAT-PUB-1) as the remote
 candidate. This pair is added to the valid list for that media
 stream. Since the check was generated in the reverse direction of a
 check that contained the USE-CANDIDATE attribute, the candidate pair
 is marked as selected. Consequently, processing for this stream
 moves into the Completed state, and agent R can also send media.

16. Security Considerations

 There are several types of attacks possible in an ICE system. This
 section considers these attacks and their countermeasures. These
 countermeasures include:

 o Using ICE in conjunction with secure signaling techniques, such as
 SIPS.

 o Limiting the total number of connectivity checks to 100, and
 optionally limiting the number of candidates they'll accept in an
 candidate exchange.

16.1. Attacks on Connectivity Checks

 An attacker might attempt to disrupt the STUN connectivity checks.
 Ultimately, all of these attacks fool an agent into thinking
 something incorrect about the results of the connectivity checks.
 The possible false conclusions an attacker can try and cause are:

 False Invalid: An attacker can fool a pair of agents into thinking a
 candidate pair is invalid, when it isn't. This can be used to
 cause an agent to prefer a different candidate (such as one
 injected by the attacker) or to disrupt a call by forcing all
 candidates to fail.

 False Valid: An attacker can fool a pair of agents into thinking a
 candidate pair is valid, when it isn't. This can cause an agent

Keranen, et al. Expires April 2, 2018 [Page 66]

Internet-Draft ICE September 2017

 to proceed with a session, but then not be able to receive any
 media.

 False Peer Reflexive Candidate: An attacker can cause an agent to
 discover a new peer reflexive candidate, when it shouldn't have.
 This can be used to redirect media streams to a Denial-of-Service
 (DoS) target or to the attacker, for eavesdropping or other
 purposes.

 False Valid on False Candidate: An attacker has already convinced an
 agent that there is a candidate with an address that doesn't
 actually route to that agent (for example, by injecting a false
 peer reflexive candidate or false server reflexive candidate). It
 must then launch an attack that forces the agents to believe that
 this candidate is valid.

 If an attacker can cause a false peer reflexive candidate or false
 valid on a false candidate, it can launch any of the attacks
 described in [RFC5389].

 To force the false invalid result, the attacker has to wait for the
 connectivity check from one of the agents to be sent. When it is,
 the attacker needs to inject a fake response with an unrecoverable
 error response, such as a 400. However, since the candidate is, in
 fact, valid, the original request may reach the peer agent, and
 result in a success response. The attacker needs to force this
 packet or its response to be dropped, through a DoS attack, layer 2
 network disruption, or other technique. If it doesn't do this, the
 success response will also reach the originator, alerting it to a
 possible attack. Fortunately, this attack is mitigated completely
 through the STUN short-term credential mechanism. The attacker needs
 to inject a fake response, and in order for this response to be
 processed, the attacker needs the password. If the candidate
 exchange signaling is secured, the attacker will not have the
 password and its response will be discarded.

 Forcing the fake valid result works in a similar way. The agent
 needs to wait for the Binding request from each agent, and inject a
 fake success response. The attacker won't need to worry about
 disrupting the actual response since, if the candidate is not valid,
 it presumably wouldn't be received anyway. However, like the fake
 invalid attack, this attack is mitigated by the STUN short-term
 credential mechanism in conjunction with a secure candidate exchange.

 Forcing the false peer reflexive candidate result can be done either
 with fake requests or responses, or with replays. We consider the
 fake requests and responses case first. It requires the attacker to
 send a Binding request to one agent with a source IP address and port

https://datatracker.ietf.org/doc/html/rfc5389

Keranen, et al. Expires April 2, 2018 [Page 67]

Internet-Draft ICE September 2017

 for the false candidate. In addition, the attacker must wait for a
 Binding request from the other agent, and generate a fake response
 with a XOR-MAPPED-ADDRESS attribute containing the false candidate.
 Like the other attacks described here, this attack is mitigated by
 the STUN message integrity mechanisms and secure candidate exchanges.

 Forcing the false peer reflexive candidate result with packet replays
 is different. The attacker waits until one of the agents sends a
 check. It intercepts this request, and replays it towards the other
 agent with a faked source IP address. It must also prevent the
 original request from reaching the remote agent, either by launching
 a DoS attack to cause the packet to be dropped, or forcing it to be
 dropped using layer 2 mechanisms. The replayed packet is received at
 the other agent, and accepted, since the integrity check passes (the
 integrity check cannot and does not cover the source IP address and
 port). It is then responded to. This response will contain a XOR-
 MAPPED-ADDRESS with the false candidate, and will be sent to that
 false candidate. The attacker must then receive it and relay it
 towards the originator.

 The other agent will then initiate a connectivity check towards that
 false candidate. This validation needs to succeed. This requires
 the attacker to force a false valid on a false candidate. Injecting
 of fake requests or responses to achieve this goal is prevented using
 the integrity mechanisms of STUN and the candidate exchange. Thus,
 this attack can only be launched through replays. To do that, the
 attacker must intercept the check towards this false candidate, and
 replay it towards the other agent. Then, it must intercept the
 response and replay that back as well.

 This attack is very hard to launch unless the attacker is identified
 by the fake candidate. This is because it requires the attacker to
 intercept and replay packets sent by two different hosts. If both
 agents are on different networks (for example, across the public
 Internet), this attack can be hard to coordinate, since it needs to
 occur against two different endpoints on different parts of the
 network at the same time.

 If the attacker itself is identified by the fake candidate, the
 attack is easier to coordinate. However, if the media path is
 secured (e.g., using SRTP [RFC3711]), the attacker will not be able
 to play the media packets, but will only be able to discard them,
 effectively disabling the media stream for the call. However, this
 attack requires the agent to disrupt packets in order to block the
 connectivity check from reaching the target. In that case, if the
 goal is to disrupt the media stream, it's much easier to just disrupt
 it with the same mechanism, rather than attack ICE.

https://datatracker.ietf.org/doc/html/rfc3711

Keranen, et al. Expires April 2, 2018 [Page 68]

Internet-Draft ICE September 2017

16.2. Attacks on Server Reflexive Address Gathering

 ICE endpoints make use of STUN Binding requests for gathering server
 reflexive candidates from a STUN server. These requests are not
 authenticated in any way. As a consequence, there are numerous
 techniques an attacker can employ to provide the client with a false
 server reflexive candidate:

 o An attacker can compromise the DNS, causing DNS queries to return
 a rogue STUN server address. That server can provide the client
 with fake server reflexive candidates. This attack is mitigated
 by DNS security, though DNS-SEC is not required to address it.

 o An attacker that can observe STUN messages (such as an attacker on
 a shared network segment, like WiFi) can inject a fake response
 that is valid and will be accepted by the client.

 o An attacker can compromise a STUN server by means of a virus, and
 cause it to send responses with incorrect mapped addresses.

 A false mapped address learned by these attacks will be used as a
 server reflexive candidate in the ICE exchange. For this candidate
 to actually be used for media, the attacker must also attack the
 connectivity checks, and in particular, force a false valid on a
 false candidate. This attack is very hard to launch if the false
 address identifies a fourth party (neither the initiator, responder,
 nor attacker), since it requires attacking the checks generated by
 each agent in the session, and is prevented by SRTP if it identifies
 the attacker themself.

 If the attacker elects not to attack the connectivity checks, the
 worst it can do is prevent the server reflexive candidate from being
 used. However, if the peer agent has at least one candidate that is
 reachable by the agent under attack, the STUN connectivity checks
 themselves will provide a peer reflexive candidate that can be used
 for the exchange of media. Peer reflexive candidates are generally
 preferred over server reflexive candidates. As such, an attack
 solely on the STUN address gathering will normally have no impact on
 a session at all.

16.3. Attacks on Relayed Candidate Gathering

 An attacker might attempt to disrupt the gathering of relayed
 candidates, forcing the client to believe it has a false relayed
 candidate. Exchanges with the TURN server are authenticated using a
 long-term credential. Consequently, injection of fake responses or
 requests will not work. In addition, unlike Binding requests,
 Allocate requests are not susceptible to replay attacks with modified

Keranen, et al. Expires April 2, 2018 [Page 69]

Internet-Draft ICE September 2017

 source IP addresses and ports, since the source IP address and port
 are not utilized to provide the client with its relayed candidate.

 However, TURN servers are susceptible to DNS attacks, or to viruses
 aimed at the TURN server, for purposes of turning it into a zombie or
 rogue server. These attacks can be mitigated by DNS-SEC and through
 good box and software security on TURN servers.

 Even if an attacker has caused the client to believe in a false
 relayed candidate, the connectivity checks cause such a candidate to
 be used only if they succeed. Thus, an attacker must launch a false
 valid on a false candidate, per above, which is a very difficult
 attack to coordinate.

16.4. Insider Attacks

 In addition to attacks where the attacker is a third party trying to
 insert fake candidate information or stun messages, there are attacks
 possible with ICE when the attacker is an authenticated and valid
 participant in the ICE exchange.

16.4.1. STUN Amplification Attack

 The STUN amplification attack is similar to the voice hammer.
 However, instead of voice packets being directed to the target, STUN
 connectivity checks are directed to the target. The attacker sends
 an a large number of candidates, say, 50. The responding agent
 receives the candidate information, and starts its checks, which are
 directed at the target, and consequently, never generate a response.
 The answerer will start a new connectivity check every Ta ms (say,
 Ta=20ms). However, the retransmission timers are set to a large
 number due to the large number of candidates. As a consequence,
 packets will be sent at an interval of one every Ta milliseconds, and
 then with increasing intervals after that. Thus, STUN will not send
 packets at a rate faster than media would be sent, and the STUN
 packets persist only briefly, until ICE fails for the session.
 Nonetheless, this is an amplification mechanism.

 It is impossible to eliminate the amplification, but the volume can
 be reduced through a variety of heuristics. Agents SHOULD limit the
 total number of connectivity checks they perform to 100.
 Additionally, agents MAY limit the number of candidates they'll
 accept.

 Frequently, protocols that wish to avoid these kinds of attacks force
 the initiator to wait for a response prior to sending the next
 message. However, in the case of ICE, this is not possible. It is
 not possible to differentiate the following two cases:

Keranen, et al. Expires April 2, 2018 [Page 70]

Internet-Draft ICE September 2017

 o There was no response because the initiator is being used to
 launch a DoS attack against an unsuspecting target that will not
 respond.

 o There was no response because the IP address and port are not
 reachable by the initiator.

 In the second case, another check should be sent at the next
 opportunity, while in the former case, no further checks should be
 sent.

17. STUN Extensions

17.1. New Attributes

 This specification defines four new STUN attributes, PRIORITY, USE-
 CANDIDATE, ICE-CONTROLLED, and ICE-CONTROLLING.

 The PRIORITY attribute indicates the priority that is to be
 associated with a peer reflexive candidate, should one be discovered
 by this check. It is a 32-bit unsigned integer, and has an attribute
 value of 0x0024.

 The USE-CANDIDATE attribute indicates that the candidate pair
 resulting from this check should be used for transmission of media.
 The attribute has no content (the Length field of the attribute is
 zero); it serves as a flag. It has an attribute value of 0x0025.

 The ICE-CONTROLLED attribute is present in a Binding request and
 indicates that the client believes it is currently in the controlled
 role. The content of the attribute is a 64-bit unsigned integer in
 network byte order, which contains a random number. The number is
 used for solving role conflicts, when it is referred to as the tie-
 breaker value. An ICE agent MUST use the same number for all Binding
 requests, for all streams, within an ICE session. The ICE agent MAY
 change the number when an ICE restart occurs.

 The ICE-CONTROLLING attribute is present in a Binding request and
 indicates that the client believes it is currently in the controlling
 role. The content of the attribute is a 64-bit unsigned integer in
 network byte order, which contains a random number. The number is
 used for solving role conflicts, when it is referred to as the tie-
 breaker value. An ICE agent MUST use the same number for all Binding
 requests, for all streams, within an ICE session. The ICE agent MAY
 change the number when an ICE restart occurs.

Keranen, et al. Expires April 2, 2018 [Page 71]

Internet-Draft ICE September 2017

17.2. New Error Response Codes

 This specification defines a single error response code:

 487 (Role Conflict): The Binding request contained either the ICE-
 CONTROLLING or ICE-CONTROLLED attribute, indicating an ICE role
 that conflicted with the server. The server compared the tie-
 breaker values of the client and the server and determined that
 the client needs to switch roles.

18. Operational Considerations

 This section discusses issues relevant to network operators looking
 to deploy ICE.

18.1. NAT and Firewall Types

 ICE was designed to work with existing NAT and firewall equipment.
 Consequently, it is not necessary to replace or reconfigure existing
 firewall and NAT equipment in order to facilitate deployment of ICE.
 Indeed, ICE was developed to be deployed in environments where the
 Voice over IP (VoIP) operator has no control over the IP network
 infrastructure, including firewalls and NAT.

 That said, ICE works best in environments where the NAT devices are
 "behave" compliant, meeting the recommendations defined in [RFC4787]
 and [RFC5382]. In networks with behave-compliant NAT, ICE will work
 without the need for a TURN server, thus improving voice quality,
 decreasing call setup times, and reducing the bandwidth demands on
 the network operator.

18.2. Bandwidth Requirements

 Deployment of ICE can have several interactions with available
 network capacity that operators should take into consideration.

18.2.1. STUN and TURN Server Capacity Planning

 First and foremost, ICE makes use of TURN and STUN servers, which
 would typically be located in the network operator's data centers.
 The STUN servers require relatively little bandwidth. For each
 component of each media stream, there will be one or more STUN
 transactions from each client to the STUN server. In a basic voice-
 only IPv4 VoIP deployment, there will be four transactions per call
 (one for RTP and one for RTCP, for both caller and callee). Each
 transaction is a single request and a single response, the former
 being 20 bytes long, and the latter, 28. Consequently, if a system
 has N users, and each makes four calls in a busy hour, this would

https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc5382

Keranen, et al. Expires April 2, 2018 [Page 72]

Internet-Draft ICE September 2017

 require N*1.7bps. For one million users, this is 1.7 Mbps, a very
 small number (relatively speaking).

 TURN traffic is more substantial. The TURN server will see traffic
 volume equal to the STUN volume (indeed, if TURN servers are
 deployed, there is no need for a separate STUN server), in addition
 to the traffic for the actual media. The amount of calls requiring
 TURN for media relay is highly dependent on network topologies, and
 can and will vary over time. In a network with 100% behave-compliant
 NAT, it is exactly zero. At time of writing, large-scale consumer
 deployments were seeing between 5 and 10 percent of calls requiring
 TURN servers. Considering a voice-only deployment using G.711 (so 80
 kbps in each direction), with .2 erlangs during the busy hour, this
 is N*3.2 kbps. For a population of one million users, this is 3.2
 Gbps, assuming a 10% usage of TURN servers.

18.2.2. Gathering and Connectivity Checks

 The process of gathering of candidates and performing of connectivity
 checks can be bandwidth intensive. ICE has been designed to pace
 both of these processes. The gathering phase and the connectivity
 check phase are meant to generate traffic at roughly the same
 bandwidth as the media traffic itself. This was done to ensure that,
 if a network is designed to support multimedia traffic of a certain
 type (voice, video, or just text), it will have sufficient capacity
 to support the ICE checks for that media. Of course, the ICE checks
 will cause a marginal increase in the total utilization; however,
 this will typically be an extremely small increase.

 Congestion due to the gathering and check phases has proven to be a
 problem in deployments that did not utilize pacing. Typically,
 access links became congested as the endpoints flooded the network
 with checks as fast as they can send them. Consequently, network
 operators should make sure that their ICE implementations support the
 pacing feature. Though this pacing does increase call setup times,
 it makes ICE network friendly and easier to deploy.

18.2.3. Keepalives

 STUN keepalives (in the form of STUN Binding Indications) are sent in
 the middle of a media session. However, they are sent only in the
 absence of actual media traffic. In deployments that are not
 utilizing Voice Activity Detection (VAD), the keepalives are never
 used and there is no increase in bandwidth usage. When VAD is being
 used, keepalives will be sent during silence periods. This involves
 a single packet every 15-20 seconds, far less than the packet every
 20-30 ms that is sent when there is voice. Therefore, keepalives
 don't have any real impact on capacity planning.

Keranen, et al. Expires April 2, 2018 [Page 73]

Internet-Draft ICE September 2017

18.3. ICE and ICE-lite

 Deployments utilizing a mix of ICE and ICE-lite interoperate
 perfectly. They have been explicitly designed to do so, without loss
 of function.

 However, ICE-lite can only be deployed in limited use cases. Those
 cases, and the caveats involved in doing so, are documented in

Appendix A.

18.4. Troubleshooting and Performance Management

 ICE utilizes end-to-end connectivity checks, and places much of the
 processing in the endpoints. This introduces a challenge to the
 network operator -- how can they troubleshoot ICE deployments? How
 can they know how ICE is performing?

 ICE has built-in features to help deal with these problems.
 Signaling servers, typically deployed in the data centers of the
 network operator, will see the contents of the candidate exchanges
 that convey the ICE parameters. These parameters include the type of
 each candidate (host, server reflexive, or relayed), along with their
 related addresses. Once ICE processing has completed, an updated
 candidate exchange takes place, signaling the selected address (and
 its type). This updated signaling is performed exactly for the
 purposes of educating network equipment (such as a diagnostic tool
 attached to a signaling) about the results of ICE processing.

 As a consequence, through the logs generated by a signaling server, a
 network operator can observe what types of candidates are being used
 for each call, and what address were selected by ICE. This is the
 primary information that helps evaluate how ICE is performing.

18.5. Endpoint Configuration

 ICE relies on several pieces of data being configured into the
 endpoints. This configuration data includes timers, credentials for
 TURN servers, and hostnames for STUN and TURN servers. ICE itself
 does not provide a mechanism for this configuration. Instead, it is
 assumed that this information is attached to whatever mechanism is
 used to configure all of the other parameters in the endpoint. For
 SIP phones, standard solutions such as the configuration framework
 [RFC6080] have been defined.

https://datatracker.ietf.org/doc/html/rfc6080

Keranen, et al. Expires April 2, 2018 [Page 74]

Internet-Draft ICE September 2017

19. IANA Considerations

 The original ICE specification registered four new STUN attributes,
 and one new STUN error response. The STUN attributes and error
 response are reproduced here. In addition, this specification
 registers a new ICE option.

19.1. STUN Attributes

 IANA has registered four STUN attributes:

 0x0024 PRIORITY
 0x0025 USE-CANDIDATE
 0x8029 ICE-CONTROLLED
 0x802A ICE-CONTROLLING

19.2. STUN Error Responses

 IANA has registered following STUN error response code:

 487 Role Conflict: The client asserted an ICE role (controlling or
 controlled) that is in conflict with the role of the server.

19.3. ICE Options

 IANA is requested to register the following ICE option in the "ICE
 Options" sub-registry of the "Interactive Connectivity Establishment
 (ICE) registry", following the procedures defined in [RFC6336].

https://datatracker.ietf.org/doc/html/rfc6336

Keranen, et al. Expires April 2, 2018 [Page 75]

Internet-Draft ICE September 2017

 ICE Option name:

 ice2

 Contact:

 Name: Christer Holmberg
 E-mail: christer.holmberg(at)ericsson(dot)com
 Address: Oy LM Ericsson Ab, 02420 Jorvas, FINLAND

 Change control:

 IESG

 Description:

 The ICE option indicates that the ICE agent using the ICE option
 is compliant and implemented according to RFC XXXX.

 Reference:

 RFC XXXX

20. IAB Considerations

 The IAB has studied the problem of "Unilateral Self-Address Fixing",
 which is the general process by which a agent attempts to determine
 its address in another realm on the other side of a NAT through a
 collaborative protocol reflection mechanism [RFC3424]. ICE is an
 example of a protocol that performs this type of function.
 Interestingly, the process for ICE is not unilateral, but bilateral,
 and the difference has a significant impact on the issues raised by
 IAB. Indeed, ICE can be considered a B-SAF (Bilateral Self-Address
 Fixing) protocol, rather than an UNSAF protocol. Regardless, the IAB
 has mandated that any protocols developed for this purpose document a
 specific set of considerations. This section meets those
 requirements.

20.1. Problem Definition

 From RFC 3424, any UNSAF proposal must provide:

 Precise definition of a specific, limited-scope problem that is to
 be solved with the UNSAF proposal. A short-term fix should not be
 generalized to solve other problems; this is why "short-term fixes
 usually aren't".

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424

Keranen, et al. Expires April 2, 2018 [Page 76]

Internet-Draft ICE September 2017

 The specific problems being solved by ICE are:

 Provide a means for two peers to determine the set of transport
 addresses that can be used for communication.

 Provide a means for a agent to determine an address that is
 reachable by another peer with which it wishes to communicate.

20.2. Exit Strategy

 From RFC 3424, any UNSAF proposal must provide:

 Description of an exit strategy/transition plan. The better
 short-term fixes are the ones that will naturally see less and
 less use as the appropriate technology is deployed.

 ICE itself doesn't easily get phased out. However, it is useful even
 in a globally connected Internet, to serve as a means for detecting
 whether a router failure has temporarily disrupted connectivity, for
 example. ICE also helps prevent certain security attacks that have
 nothing to do with NAT. However, what ICE does is help phase out
 other UNSAF mechanisms. ICE effectively selects amongst those
 mechanisms, prioritizing ones that are better, and deprioritizing
 ones that are worse. Local IPv6 addresses can be preferred. As NATs
 begin to dissipate as IPv6 is introduced, server reflexive and
 relayed candidates (both forms of UNSAF addresses) simply never get
 used, because higher-priority connectivity exists to the native host
 candidates. Therefore, the servers get used less and less, and can
 eventually be remove when their usage goes to zero.

 Indeed, ICE can assist in the transition from IPv4 to IPv6. It can
 be used to determine whether to use IPv6 or IPv4 when two dual-stack
 hosts communicate with SIP (IPv6 gets used). It can also allow a
 network with both 6to4 and native v6 connectivity to determine which
 address to use when communicating with a peer.

20.3. Brittleness Introduced by ICE

 From RFC 3424, any UNSAF proposal must provide:

 Discussion of specific issues that may render systems more
 "brittle". For example, approaches that involve using data at
 multiple network layers create more dependencies, increase
 debugging challenges, and make it harder to transition.

 ICE actually removes brittleness from existing UNSAF mechanisms. In
 particular, classic STUN (as described in RFC 3489 [RFC3489]) has
 several points of brittleness. One of them is the discovery process

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3489

Keranen, et al. Expires April 2, 2018 [Page 77]

Internet-Draft ICE September 2017

 that requires an agent to try to classify the type of NAT it is
 behind. This process is error-prone. With ICE, that discovery
 process is simply not used. Rather than unilaterally assessing the
 validity of the address, its validity is dynamically determined by
 measuring connectivity to a peer. The process of determining
 connectivity is very robust.

 Another point of brittleness in classic STUN and any other unilateral
 mechanism is its absolute reliance on an additional server. ICE
 makes use of a server for allocating unilateral addresses, but allows
 agents to directly connect if possible. Therefore, in some cases,
 the failure of a STUN server would still allow for a call to progress
 when ICE is used.

 Another point of brittleness in classic STUN is that it assumes that
 the STUN server is on the public Internet. Interestingly, with ICE,
 that is not necessary. There can be a multitude of STUN servers in a
 variety of address realms. ICE will discover the one that has
 provided a usable address.

 The most troubling point of brittleness in classic STUN is that it
 doesn't work in all network topologies. In cases where there is a
 shared NAT between each agent and the STUN server, traditional STUN
 may not work. With ICE, that restriction is removed.

 Classic STUN also introduces some security considerations.
 Fortunately, those security considerations are also mitigated by ICE.

 Consequently, ICE serves to repair the brittleness introduced in
 classic STUN, and does not introduce any additional brittleness into
 the system.

 The penalty of these improvements is that ICE increases session
 establishment times.

20.4. Requirements for a Long-Term Solution

 From RFC 3424, any UNSAF proposal must provide:

 ... requirements for longer term, sound technical solutions --
 contribute to the process of finding the right longer term
 solution.

 Our conclusions from RFC 3489 remain unchanged. However, we feel ICE
 actually helps because we believe it can be part of the long-term
 solution.

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3489

Keranen, et al. Expires April 2, 2018 [Page 78]

Internet-Draft ICE September 2017

20.5. Issues with Existing NAPT Boxes

 From RFC 3424, any UNSAF proposal must provide:

 Discussion of the impact of the noted practical issues with
 existing, deployed NA[P]Ts and experience reports.

 A number of NAT boxes are now being deployed into the market that try
 to provide "generic" ALG functionality. These generic ALGs hunt for
 IP addresses, either in text or binary form within a packet, and
 rewrite them if they match a binding. This interferes with classic
 STUN. However, the update to STUN [RFC5389] uses an encoding that
 hides these binary addresses from generic ALGs.

 Existing NAPT boxes have non-deterministic and typically short
 expiration times for UDP-based bindings. This requires
 implementations to send periodic keepalives to maintain those
 bindings. ICE uses a default of 15 s, which is a very conservative
 estimate. Eventually, over time, as NAT boxes become compliant to
 behave [RFC4787], this minimum keepalive will become deterministic
 and well-known, and the ICE timers can be adjusted. Having a way to
 discover and control the minimum keepalive interval would be far
 better still.

21. Changes from RFC 5245

 Following is the list of changes from RFC 5245

 o The specification was generalized to be more usable with any
 protocol and the parts that are specific to SIP and SDP were moved
 to a SIP/SDP usage document [I-D.ietf-mmusic-ice-sip-sdp].

 o Default candidates, multiple components, ICE mismatch detection,
 subsequent offer/answer, and role conflict resolution were made
 optional since they are not needed with every protocol using ICE.

 o With IPv6, the precedence rules of RFC 6724 are used instead of
 the obsoleted RFC 3483 and using address preferences provided by
 the host operating system is recommended.

 o Candidate gathering rules regarding loopback addresses and IPv6
 addresses were clarified.

22. Acknowledgements

 Most of the text in this document comes from the original ICE
 specification, RFC 5245. The authors would like to thank everyone
 who has contributed to that document. For additional contributions

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc6724
https://datatracker.ietf.org/doc/html/rfc3483
https://datatracker.ietf.org/doc/html/rfc5245

Keranen, et al. Expires April 2, 2018 [Page 79]

Internet-Draft ICE September 2017

 to this revision of the specification we would like to thank Emil
 Ivov, Paul Kyzivat, Pal-Erik Martinsen, Simon Perrault, Eric
 Rescorla, Thomas Stach, Peter Thatcher, Martin Thomson, Justin
 Uberti, and Suhas Nandakumar.

23. References

23.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 DOI 10.17487/RFC5389, October 2008, <https://www.rfc-

editor.org/info/rfc5389>.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, DOI
 10.17487/RFC5766, April 2010, <https://www.rfc-

editor.org/info/rfc5766>.

 [RFC6336] Westerlund, M. and C. Perkins, "IANA Registry for
 Interactive Connectivity Establishment (ICE) Options", RFC

6336, DOI 10.17487/RFC6336, July 2011, <https://www.rfc-
editor.org/info/rfc6336>.

 [RFC6724] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
 "Default Address Selection for Internet Protocol Version 6
 (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
 <https://www.rfc-editor.org/info/rfc6724>.

23.2. Informative References

 [RFC3605] Huitema, C., "Real Time Control Protocol (RTCP) attribute
 in Session Description Protocol (SDP)", RFC 3605, DOI
 10.17487/RFC3605, October 2003, <https://www.rfc-

editor.org/info/rfc3605>.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002, <https://www.rfc-

editor.org/info/rfc3261>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5389
https://www.rfc-editor.org/info/rfc5389
https://www.rfc-editor.org/info/rfc5389
https://datatracker.ietf.org/doc/html/rfc5766
https://www.rfc-editor.org/info/rfc5766
https://www.rfc-editor.org/info/rfc5766
https://datatracker.ietf.org/doc/html/rfc6336
https://datatracker.ietf.org/doc/html/rfc6336
https://www.rfc-editor.org/info/rfc6336
https://www.rfc-editor.org/info/rfc6336
https://datatracker.ietf.org/doc/html/rfc6724
https://www.rfc-editor.org/info/rfc6724
https://datatracker.ietf.org/doc/html/rfc3605
https://www.rfc-editor.org/info/rfc3605
https://www.rfc-editor.org/info/rfc3605
https://datatracker.ietf.org/doc/html/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3261

Keranen, et al. Expires April 2, 2018 [Page 80]

Internet-Draft ICE September 2017

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264, DOI
 10.17487/RFC3264, June 2002, <https://www.rfc-

editor.org/info/rfc3264>.

 [RFC3489] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
 "STUN - Simple Traversal of User Datagram Protocol (UDP)
 Through Network Address Translators (NATs)", RFC 3489, DOI
 10.17487/RFC3489, March 2003, <https://www.rfc-

editor.org/info/rfc3489>.

 [RFC3235] Senie, D., "Network Address Translator (NAT)-Friendly
 Application Design Guidelines", RFC 3235, DOI 10.17487/

RFC3235, January 2002, <https://www.rfc-editor.org/info/
rfc3235>.

 [RFC3303] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A., and
 A. Rayhan, "Middlebox communication architecture and
 framework", RFC 3303, DOI 10.17487/RFC3303, August 2002,
 <https://www.rfc-editor.org/info/rfc3303>.

 [RFC3102] Borella, M., Lo, J., Grabelsky, D., and G. Montenegro,
 "Realm Specific IP: Framework", RFC 3102, DOI 10.17487/

RFC3102, October 2001, <https://www.rfc-editor.org/info/
rfc3102>.

 [RFC3103] Borella, M., Grabelsky, D., Lo, J., and K. Taniguchi,
 "Realm Specific IP: Protocol Specification", RFC 3103, DOI
 10.17487/RFC3103, October 2001, <https://www.rfc-

editor.org/info/rfc3103>.

 [RFC3424] Daigle, L., Ed. and IAB, "IAB Considerations for
 UNilateral Self-Address Fixing (UNSAF) Across Network
 Address Translation", RFC 3424, DOI 10.17487/RFC3424,
 November 2002, <https://www.rfc-editor.org/info/rfc3424>.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
 July 2003, <https://www.rfc-editor.org/info/rfc3550>.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",

RFC 3711, DOI 10.17487/RFC3711, March 2004,
 <https://www.rfc-editor.org/info/rfc3711>.

https://datatracker.ietf.org/doc/html/rfc3264
https://www.rfc-editor.org/info/rfc3264
https://www.rfc-editor.org/info/rfc3264
https://datatracker.ietf.org/doc/html/rfc3489
https://www.rfc-editor.org/info/rfc3489
https://www.rfc-editor.org/info/rfc3489
https://datatracker.ietf.org/doc/html/rfc3235
https://datatracker.ietf.org/doc/html/rfc3235
https://www.rfc-editor.org/info/rfc3235
https://www.rfc-editor.org/info/rfc3235
https://datatracker.ietf.org/doc/html/rfc3303
https://www.rfc-editor.org/info/rfc3303
https://datatracker.ietf.org/doc/html/rfc3102
https://datatracker.ietf.org/doc/html/rfc3102
https://www.rfc-editor.org/info/rfc3102
https://www.rfc-editor.org/info/rfc3102
https://datatracker.ietf.org/doc/html/rfc3103
https://www.rfc-editor.org/info/rfc3103
https://www.rfc-editor.org/info/rfc3103
https://datatracker.ietf.org/doc/html/rfc3424
https://www.rfc-editor.org/info/rfc3424
https://datatracker.ietf.org/doc/html/rfc3550
https://www.rfc-editor.org/info/rfc3550
https://datatracker.ietf.org/doc/html/rfc3711
https://www.rfc-editor.org/info/rfc3711

Keranen, et al. Expires April 2, 2018 [Page 81]

Internet-Draft ICE September 2017

 [RFC3879] Huitema, C. and B. Carpenter, "Deprecating Site Local
 Addresses", RFC 3879, DOI 10.17487/RFC3879, September
 2004, <https://www.rfc-editor.org/info/rfc3879>.

 [RFC4038] Shin, M-K., Ed., Hong, Y-G., Hagino, J., Savola, P., and
 E. Castro, "Application Aspects of IPv6 Transition", RFC

4038, DOI 10.17487/RFC4038, March 2005, <https://www.rfc-
editor.org/info/rfc4038>.

 [RFC4091] Camarillo, G. and J. Rosenberg, "The Alternative Network
 Address Types (ANAT) Semantics for the Session Description
 Protocol (SDP) Grouping Framework", RFC 4091, DOI
 10.17487/RFC4091, June 2005, <https://www.rfc-

editor.org/info/rfc4091>.

 [RFC4092] Camarillo, G. and J. Rosenberg, "Usage of the Session
 Description Protocol (SDP) Alternative Network Address
 Types (ANAT) Semantics in the Session Initiation Protocol
 (SIP)", RFC 4092, DOI 10.17487/RFC4092, June 2005,
 <https://www.rfc-editor.org/info/rfc4092>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, DOI 10.17487/RFC4566,
 July 2006, <https://www.rfc-editor.org/info/rfc4566>.

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
 <https://www.rfc-editor.org/info/rfc2475>.

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",

BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <https://www.rfc-editor.org/info/rfc1918>.

 [RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
 Translation (NAT) Behavioral Requirements for Unicast
 UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
 2007, <https://www.rfc-editor.org/info/rfc4787>.

 [RFC5761] Perkins, C. and M. Westerlund, "Multiplexing RTP Data and
 Control Packets on a Single Port", RFC 5761, DOI 10.17487/

RFC5761, April 2010, <https://www.rfc-editor.org/info/
rfc5761>.

https://datatracker.ietf.org/doc/html/rfc3879
https://www.rfc-editor.org/info/rfc3879
https://datatracker.ietf.org/doc/html/rfc4038
https://datatracker.ietf.org/doc/html/rfc4038
https://www.rfc-editor.org/info/rfc4038
https://www.rfc-editor.org/info/rfc4038
https://datatracker.ietf.org/doc/html/rfc4091
https://www.rfc-editor.org/info/rfc4091
https://www.rfc-editor.org/info/rfc4091
https://datatracker.ietf.org/doc/html/rfc4092
https://www.rfc-editor.org/info/rfc4092
https://datatracker.ietf.org/doc/html/rfc4291
https://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/rfc4566
https://www.rfc-editor.org/info/rfc4566
https://datatracker.ietf.org/doc/html/rfc2475
https://www.rfc-editor.org/info/rfc2475
https://datatracker.ietf.org/doc/html/bcp5
https://datatracker.ietf.org/doc/html/rfc1918
https://www.rfc-editor.org/info/rfc1918
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc4787
https://www.rfc-editor.org/info/rfc4787
https://datatracker.ietf.org/doc/html/rfc5761
https://datatracker.ietf.org/doc/html/rfc5761
https://www.rfc-editor.org/info/rfc5761
https://www.rfc-editor.org/info/rfc5761

Keranen, et al. Expires April 2, 2018 [Page 82]

Internet-Draft ICE September 2017

 [RFC4103] Hellstrom, G. and P. Jones, "RTP Payload for Text
 Conversation", RFC 4103, DOI 10.17487/RFC4103, June 2005,
 <https://www.rfc-editor.org/info/rfc4103>.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245, DOI
 10.17487/RFC5245, April 2010, <https://www.rfc-

editor.org/info/rfc5245>.

 [RFC5382] Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,

RFC 5382, DOI 10.17487/RFC5382, October 2008,
 <https://www.rfc-editor.org/info/rfc5382>.

 [RFC6080] Petrie, D. and S. Channabasappa, Ed., "A Framework for
 Session Initiation Protocol User Agent Profile Delivery",

RFC 6080, DOI 10.17487/RFC6080, March 2011,
 <https://www.rfc-editor.org/info/rfc6080>.

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
 April 2011, <https://www.rfc-editor.org/info/rfc6146>.

 [RFC6147] Bagnulo, M., Sullivan, A., Matthews, P., and I. van
 Beijnum, "DNS64: DNS Extensions for Network Address
 Translation from IPv6 Clients to IPv4 Servers", RFC 6147,
 DOI 10.17487/RFC6147, April 2011, <https://www.rfc-

editor.org/info/rfc6147>.

 [RFC6544] Rosenberg, J., Keranen, A., Lowekamp, B., and A. Roach,
 "TCP Candidates with Interactive Connectivity
 Establishment (ICE)", RFC 6544, DOI 10.17487/RFC6544,
 March 2012, <https://www.rfc-editor.org/info/rfc6544>.

 [RFC7050] Savolainen, T., Korhonen, J., and D. Wing, "Discovery of
 the IPv6 Prefix Used for IPv6 Address Synthesis", RFC

7050, DOI 10.17487/RFC7050, November 2013,
 <https://www.rfc-editor.org/info/rfc7050>.

 [I-D.ietf-mmusic-ice-sip-sdp]
 Petit-Huguenin, M., Keranen, A., and S. Nandakumar,
 "Session Description Protocol (SDP) Offer/Answer
 procedures for Interactive Connectivity Establishment
 (ICE)", draft-ietf-mmusic-ice-sip-sdp-13 (work in
 progress), June 2017.

https://datatracker.ietf.org/doc/html/rfc4103
https://www.rfc-editor.org/info/rfc4103
https://datatracker.ietf.org/doc/html/rfc5245
https://www.rfc-editor.org/info/rfc5245
https://www.rfc-editor.org/info/rfc5245
https://datatracker.ietf.org/doc/html/bcp142
https://datatracker.ietf.org/doc/html/rfc5382
https://www.rfc-editor.org/info/rfc5382
https://datatracker.ietf.org/doc/html/rfc6080
https://www.rfc-editor.org/info/rfc6080
https://datatracker.ietf.org/doc/html/rfc6146
https://www.rfc-editor.org/info/rfc6146
https://datatracker.ietf.org/doc/html/rfc6147
https://www.rfc-editor.org/info/rfc6147
https://www.rfc-editor.org/info/rfc6147
https://datatracker.ietf.org/doc/html/rfc6544
https://www.rfc-editor.org/info/rfc6544
https://datatracker.ietf.org/doc/html/rfc7050
https://datatracker.ietf.org/doc/html/rfc7050
https://www.rfc-editor.org/info/rfc7050
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-sip-sdp-13

Keranen, et al. Expires April 2, 2018 [Page 83]

Internet-Draft ICE September 2017

 [RFC7721] Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
 Considerations for IPv6 Address Generation Mechanisms",

RFC 7721, DOI 10.17487/RFC7721, March 2016,
 <https://www.rfc-editor.org/info/rfc7721>.

 [I-D.ietf-ice-dualstack-fairness]
 Martinsen, P., Reddy, T., and P. Patil, "ICE Multihomed
 and IPv4/IPv6 Dual Stack Guidelines", draft-ietf-ice-

dualstack-fairness-07 (work in progress), November 2016.

Appendix A. Lite and Full Implementations

 ICE allows for two types of implementations. A full implementation
 supports the controlling and controlled roles in a session, and can
 also perform address gathering. In contrast, a lite implementation
 is a minimalist implementation that does little but respond to STUN
 checks.

 Because ICE requires both endpoints to support it in order to bring
 benefits to either endpoint, incremental deployment of ICE in a
 network is more complicated. Many sessions involve an endpoint that
 is, by itself, not behind a NAT and not one that would worry about
 NAT traversal. A very common case is to have one endpoint that
 requires NAT traversal (such as a VoIP hard phone or soft phone) make
 a call to one of these devices. Even if the phone supports a full
 ICE implementation, ICE won't be used at all if the other device
 doesn't support it. The lite implementation allows for a low-cost
 entry point for these devices. Once they support the lite
 implementation, full implementations can connect to them and get the
 full benefits of ICE.

 Consequently, a lite implementation is only appropriate for devices
 that will *always* be connected to the public Internet and have a
 public IP address at which it can receive packets from any
 correspondent. ICE will not function when a lite implementation is
 placed behind a NAT.

 ICE allows a lite implementation to have a single IPv4 host candidate
 and several IPv6 addresses. In that case, candidate pairs are
 selected by the controlling agent using a static algorithm, such as
 the one in RFC 6724, which is recommended by this specification.
 However, static mechanisms for address selection are always prone to
 error, since they cannot ever reflect the actual topology and can
 never provide actual guarantees on connectivity. They are always
 heuristics. Consequently, if an agent is implementing ICE just to
 select between its IPv4 and IPv6 addresses, and none of its IP
 addresses are behind NAT, usage of full ICE is still RECOMMENDED in
 order to provide the most robust form of address selection possible.

https://datatracker.ietf.org/doc/html/rfc7721
https://www.rfc-editor.org/info/rfc7721
https://datatracker.ietf.org/doc/html/draft-ietf-ice-dualstack-fairness-07
https://datatracker.ietf.org/doc/html/draft-ietf-ice-dualstack-fairness-07
https://datatracker.ietf.org/doc/html/rfc6724

Keranen, et al. Expires April 2, 2018 [Page 84]

Internet-Draft ICE September 2017

 It is important to note that the lite implementation was added to
 this specification to provide a stepping stone to full
 implementation. Even for devices that are always connected to the
 public Internet with just a single IPv4 address, a full
 implementation is preferable if achievable. Full implementations
 also obtain the security benefits of ICE unrelated to NAT traversal;
 in particular, the voice hammer attack described in Section 16 is
 prevented only for full implementations, not lite. Finally, it is
 often the case that a device that finds itself with a public address
 today will be placed in a network tomorrow where it will be behind a
 NAT. It is difficult to definitively know, over the lifetime of a
 device or product, that it will always be used on the public
 Internet. Full implementation provides assurance that communications
 will always work.

Appendix B. Design Motivations

 ICE contains a number of normative behaviors that may themselves be
 simple, but derive from complicated or non-obvious thinking or use
 cases that merit further discussion. Since these design motivations
 are not necessary to understand for purposes of implementation, they
 are discussed here in an appendix to the specification. This section
 is non-normative.

B.1. Pacing of STUN Transactions

 STUN transactions used to gather candidates and to verify
 connectivity are paced out at an approximate rate of one new
 transaction every Ta milliseconds. Each transaction, in turn, has a
 retransmission timer RTO that is a function of Ta as well. Why are
 these transactions paced, and why are these formulas used?

 Sending of these STUN requests will often have the effect of creating
 bindings on NAT devices between the client and the STUN servers.
 Experience has shown that many NAT devices have upper limits on the
 rate at which they will create new bindings. Experiments have shown
 that once every 5 ms is well supported. This is why Ta has a lower
 bound of 5 ms. Furthermore, transmission of these packets on the
 network makes use of bandwidth and needs to be rate limited by the
 agent. Deployments based on earlier draft versions of [RFC5245]
 tended to overload rate-constrained access links and perform poorly
 overall, in addition to negatively impacting the network. As a
 consequence, the pacing ensures that the NAT device does not get
 overloaded and that traffic is kept at a reasonable rate.

 The definition of a "reasonable" rate is that STUN should not use
 more bandwidth than the RTP itself will use, once media starts
 flowing. The formula for Ta is designed so that, if a STUN packet

https://datatracker.ietf.org/doc/html/rfc5245

Keranen, et al. Expires April 2, 2018 [Page 85]

Internet-Draft ICE September 2017

 were sent every Ta seconds, it would consume the same amount of
 bandwidth as RTP packets, summed across all media streams. Of
 course, STUN has retransmits, and the desire is to pace those as
 well. For this reason, RTO is set such that the first retransmit on
 the first transaction happens just as the first STUN request on the
 last transaction occurs. Pictorially:

 First Packets Retransmits

 | |
 | |
 -------+------ -------+------
 / \ / \
 / \ / \

 +--+ +--+ +--+ +--+ +--+ +--+
 |A1| |B1| |C1| |A2| |B2| |C2|
 +--+ +--+ +--+ +--+ +--+ +--+

 ---+-------+-------+-------+-------+-------+------------ Time
 0 Ta 2Ta 3Ta 4Ta 5Ta

 In this picture, there are three transactions that will be sent (for
 example, in the case of candidate gathering, there are three host
 candidate/STUN server pairs). These are transactions A, B, and C.
 The retransmit timer is set so that the first retransmission on the
 first transaction (packet A2) is sent at time 3Ta.

 Subsequent retransmits after the first will occur even less
 frequently than Ta milliseconds apart, since STUN uses an exponential
 back-off on its retransmissions.

B.2. Candidates with Multiple Bases

Section 4.1.3 talks about eliminating candidates that have the same
 transport address and base. However, candidates with the same
 transport addresses but different bases are not redundant. When can
 an agent have two candidates that have the same IP address and port,
 but different bases? Consider the topology of Figure 11:

Keranen, et al. Expires April 2, 2018 [Page 86]

Internet-Draft ICE September 2017

 +----------+
 | STUN Srvr|
 +----------+
 |
 |

 // \\
 | |
 | B:net10 |
 | |
 \\ //

 |
 |
 +----------+
 | NAT |
 +----------+
 |
 |

 // \\
 | A |
 |192.168/16 |
 | |
 \\ //

 |
 |
 |192.168.1.100 -----
 +----------+ // \\ +----------+
 | | | | | |
 | Initiator|---------| C:net10 |-----------| Responder|
 | |10.0.1.100| | 10.0.1.101 | |
 +----------+ \\ // +----------+

 Figure 11: Identical Candidates with Different Bases

 In this case, the initiating agent is multihomed. It has one IP
 address, 10.0.1.100, on network C, which is a net 10 private network.
 The responding agent is on this same network. The initiating agent
 is also connected to network A, which is 192.168/16 and has an IP
 address of 192.168.1.100 on this network. There is a NAT on this
 network, natting into network B, which is another net 10 private
 network, but not connected to network C. There is a STUN server on
 network B.

Keranen, et al. Expires April 2, 2018 [Page 87]

Internet-Draft ICE September 2017

 The initiating agent obtains a host candidate on its IP address on
 network C (10.0.1.100:2498) and a host candidate on its IP address on
 network A (192.168.1.100:3344). It performs a STUN query to its
 configured STUN server from 192.168.1.100:3344. This query passes
 through the NAT, which happens to assign the binding 10.0.1.100:2498.
 The STUN server reflects this in the STUN Binding response. Now, the
 initiating agent has obtained a server reflexive candidate with a
 transport address that is identical to a host candidate
 (10.0.1.100:2498). However, the server reflexive candidate has a
 base of 192.168.1.100:3344, and the host candidate has a base of
 10.0.1.100:2498.

B.3. Purpose of the Related Address and Related Port Attributes

 The candidate attribute contains two values that are not used at all
 by ICE itself -- related address and related port. Why are they
 present?

 There are two motivations for its inclusion. The first is
 diagnostic. It is very useful to know the relationship between the
 different types of candidates. By including it, an agent can know
 which relayed candidate is associated with which reflexive candidate,
 which in turn is associated with a specific host candidate. When
 checks for one candidate succeed and not for others, this provides
 useful diagnostics on what is going on in the network.

 The second reason has to do with off-path Quality of Service (QoS)
 mechanisms. When ICE is used in environments such as PacketCable
 2.0, proxies will, in addition to performing normal SIP operations,
 inspect the SDP in SIP messages, and extract the IP address and port
 for media traffic. They can then interact, through policy servers,
 with access routers in the network, to establish guaranteed QoS for
 the media flows. This QoS is provided by classifying the RTP traffic
 based on 5-tuple, and then providing it a guaranteed rate, or marking
 its Diffserv codepoints appropriately. When a residential NAT is
 present, and a relayed candidate gets selected for media, this
 relayed candidate will be a transport address on an actual TURN
 server. That address says nothing about the actual transport address
 in the access router that would be used to classify packets for QoS
 treatment. Rather, the server reflexive candidate towards the TURN
 server is needed. By carrying the translation in the SDP, the proxy
 can use that transport address to request QoS from the access router.

B.4. Importance of the STUN Username

 ICE requires the usage of message integrity with STUN using its
 short-term credential functionality. The actual short-term
 credential is formed by exchanging username fragments in the

Keranen, et al. Expires April 2, 2018 [Page 88]

Internet-Draft ICE September 2017

 candidate exchange. The need for this mechanism goes beyond just
 security; it is actually required for correct operation of ICE in the
 first place.

 Consider agents L, R, and Z. L and R are within private enterprise
 1, which is using 10.0.0.0/8. Z is within private enterprise 2,
 which is also using 10.0.0.0/8. As it turns out, R and Z both have
 IP address 10.0.1.1. L sends candidates to Z. Z, in responds L with
 its host candidates. In this case, those candidates are
 10.0.1.1:8866 and 10.0.1.1:8877. As it turns out, R is in a session
 at that same time, and is also using 10.0.1.1:8866 and 10.0.1.1:8877
 as host candidates. This means that R is prepared to accept STUN
 messages on those ports, just as Z is. L will send a STUN request to
 10.0.1.1:8866 and another to 10.0.1.1:8877. However, these do not go
 to Z as expected. Instead, they go to R! If R just replied to them,
 L would believe it has connectivity to Z, when in fact it has
 connectivity to a completely different user, R. To fix this, the
 STUN short-term credential mechanisms are used. The username
 fragments are sufficiently random that it is highly unlikely that R
 would be using the same values as Z. Consequently, R would reject
 the STUN request since the credentials were invalid. In essence, the
 STUN username fragments provide a form of transient host identifiers,
 bound to a particular session established as part of the candidate
 exchange.

 An unfortunate consequence of the non-uniqueness of IP addresses is
 that, in the above example, R might not even be an ICE agent. It
 could be any host, and the port to which the STUN packet is directed
 could be any ephemeral port on that host. If there is an application
 listening on this socket for packets, and it is not prepared to
 handle malformed packets for whatever protocol is in use, the
 operation of that application could be affected. Fortunately, since
 the ports exchanged are ephemeral and usually drawn from the dynamic
 or registered range, the odds are good that the port is not used to
 run a server on host R, but rather is the agent side of some
 protocol. This decreases the probability of hitting an allocated
 port, due to the transient nature of port usage in this range.
 However, the possibility of a problem does exist, and network
 deployers should be prepared for it. Note that this is not a problem
 specific to ICE; stray packets can arrive at a port at any time for
 any type of protocol, especially ones on the public Internet. As
 such, this requirement is just restating a general design guideline
 for Internet applications -- be prepared for unknown packets on any
 port.

Keranen, et al. Expires April 2, 2018 [Page 89]

Internet-Draft ICE September 2017

B.5. The Candidate Pair Priority Formula

 The priority for a candidate pair has an odd form. It is:

 pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)

 Why is this? When the candidate pairs are sorted based on this
 value, the resulting sorting has the MAX/MIN property. This means
 that the pairs are first sorted based on decreasing value of the
 minimum of the two priorities. For pairs that have the same value of
 the minimum priority, the maximum priority is used to sort amongst
 them. If the max and the min priorities are the same, the
 controlling agent's priority is used as the tie-breaker in the last
 part of the expression. The factor of 2*32 is used since the
 priority of a single candidate is always less than 2*32, resulting in
 the pair priority being a "concatenation" of the two component
 priorities. This creates the MAX/MIN sorting. MAX/MIN ensures that,
 for a particular agent, a lower-priority candidate is never used
 until all higher-priority candidates have been tried.

B.6. Why Are Keepalives Needed?

 Once media begins flowing on a candidate pair, it is still necessary
 to keep the bindings alive at intermediate NATs for the duration of
 the session. Normally, the media stream packets themselves (e.g.,
 RTP) meet this objective. However, several cases merit further
 discussion. Firstly, in some RTP usages, such as SIP, the media
 streams can be "put on hold". This is accomplished by using the SDP
 "sendonly" or "inactive" attributes, as defined in RFC 3264
 [RFC3264]. RFC 3264 directs implementations to cease transmission of
 media in these cases. However, doing so may cause NAT bindings to
 timeout, and media won't be able to come off hold.

 Secondly, some RTP payload formats, such as the payload format for
 text conversation [RFC4103], may send packets so infrequently that
 the interval exceeds the NAT binding timeouts.

 Thirdly, if silence suppression is in use, long periods of silence
 may cause media transmission to cease sufficiently long for NAT
 bindings to time out.

 For these reasons, the media packets themselves cannot be relied
 upon. ICE defines a simple periodic keepalive utilizing STUN Binding
 indications. This makes its bandwidth requirements highly
 predictable, and thus amenable to QoS reservations.

https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc4103

Keranen, et al. Expires April 2, 2018 [Page 90]

Internet-Draft ICE September 2017

B.7. Why Prefer Peer Reflexive Candidates?

Section 4.1.2 describes procedures for computing the priority of
 candidate based on its type and local preferences. That section
 requires that the type preference for peer reflexive candidates
 always be higher than server reflexive. Why is that? The reason has
 to do with the security considerations in Section 16. It is much
 easier for an attacker to cause an agent to use a false server
 reflexive candidate than it is for an attacker to cause an agent to
 use a false peer reflexive candidate. Consequently, attacks against
 address gathering with Binding requests are thwarted by ICE by
 preferring the peer reflexive candidates.

B.8. Why Are Binding Indications Used for Keepalives?

 Media keepalives are described in Section 10. These keepalives make
 use of STUN when both endpoints are ICE capable. However, rather
 than using a Binding request transaction (which generates a
 response), the keepalives use an Indication. Why is that?

 The primary reason has to do with network QoS mechanisms. Once media
 begins flowing, network elements will assume that the media stream
 has a fairly regular structure, making use of periodic packets at
 fixed intervals, with the possibility of jitter. If an agent is
 sending media packets, and then receives a Binding request, it would
 need to generate a response packet along with its media packets.
 This will increase the actual bandwidth requirements for the 5-tuple
 carrying the media packets, and introduce jitter in the delivery of
 those packets. Analysis has shown that this is a concern in certain
 layer 2 access networks that use fairly tight packet schedulers for
 media.

 Additionally, using a Binding Indication allows integrity to be
 disabled, allowing for better performance. This is useful for large-
 scale endpoints, such as PSTN gateways and SBCs.

B.9. Selecting Candidate Type Preference

 One criterion for selection of the type and local preference values
 is the use of a media intermediary, such as a TURN server, a tunnel
 service such as VPN server, or NAT. With a media intermediary, if
 media is sent to that candidate, it will first transit the media
 intermediary before being received. Relayed candidates are one type
 of candidate that involves a media intermediary. Another are host
 candidates obtained from a VPN interface. When media is transited
 through a media intermediary, it can have a positive or negative
 effect on the latency between transmission and reception. It may or
 may not increase the packet losses, because of the additional router

Keranen, et al. Expires April 2, 2018 [Page 91]

Internet-Draft ICE September 2017

 hops that may be taken. It may increase the cost of providing
 service, since media will be routed in and right back out of a media
 intermediary run by a provider. If these concerns are important, the
 type preference for relayed candidates must be carefully chosen.

 Another criterion for selection of preferences is IP address family.
 ICE works with both IPv4 and IPv6. It provides a transition
 mechanism that allows dual-stack hosts to prefer connectivity over
 IPv6, but to fall back to IPv4 in case the v6 networks are
 disconnected. Implementation should follow the guidelines from
 [I-D.ietf-ice-dualstack-fairness] to avoid excessive delays in the
 connectivity check phase if broken paths exist.

 Another criterion for selecting preferences is topological awareness.
 This is most useful for candidates that make use of intermediaries.
 In those cases, if an agent has preconfigured or dynamically
 discovered knowledge of the topological proximity of the
 intermediaries to itself, it can use that to assign higher local
 preferences to candidates obtained from closer intermediaries.

 Another criterion for selecting preferences might be security or
 privacy. If a user is a telecommuter, and therefore connected to a
 corporate network and a local home network, the user may prefer their
 voice traffic to be routed over the VPN or similar tunnel in order to
 keep it on the corporate network when communicating within the
 enterprise, but use the local network when communicating with users
 outside of the enterprise. In such a case, a VPN address would have
 a higher local preference than any other address.

Appendix C. Connectivity Check Bandwidth

 The tables below show, for IPv4 and IPv6, the bandwidth required for
 performing connectivity checks, using different Ta values (given in
 ms) and different ufrag sizes (given in bytes).

 The results were provided by Jusin Uberti (Google) 11th April 2016.

Keranen, et al. Expires April 2, 2018 [Page 92]

Internet-Draft ICE September 2017

 IP version: IPv4
 Packet len (bytes): 108 + ufrag
 |
 ms | 4 8 12 16
 -----|------------------------
 500 | 1.86k 1.98k 2.11k 2.24k
 200 | 4.64k 4.96k 5.28k 5.6k
 100 | 9.28k 9.92k 10.6k 11.2k
 50 | 18.6k 19.8k 21.1k 22.4k
 20 | 46.4k 49.6k 52.8k 56.0k
 10 | 92.8k 99.2k 105k 112k
 5 | 185k 198k 211k 224k
 2 | 464k 496k 528k 560k
 1 | 928k 992k 1.06M 1.12M

 IP version: IPv6
 Packet len (bytes): 128 + ufrag
 |
 ms | 4 8 12 16
 -----|------------------------
 500 | 2.18k 2.3k 2.43k 2.56k
 200 | 5.44k 5.76k 6.08k 6.4k
 100 | 10.9k 11.5k 12.2k 12.8k
 50 | 21.8k 23.0k 24.3k 25.6k
 20 | 54.4k 57.6k 60.8k 64.0k
 10 | 108k 115k 121k 128k
 5 | 217k 230k 243k 256k
 2 | 544k 576k 608k 640k
 1 | 1.09M 1.15M 1.22M 1.28M

 Figure 12: Connectivity Check Bandwidth

Authors' Addresses

 Ari Keranen
 Ericsson
 Hirsalantie 11
 02420 Jorvas
 Finland

 Email: ari.keranen@ericsson.com

Keranen, et al. Expires April 2, 2018 [Page 93]

Internet-Draft ICE September 2017

 Christer Holmberg
 Ericsson
 Hirsalantie 11
 02420 Jorvas
 Finland

 Email: christer.holmberg@ericsson.com

 Jonathan Rosenberg
 jdrosen.net
 Monmouth, NJ
 US

 Email: jdrosen@jdrosen.net
 URI: http://www.jdrosen.net

http://www.jdrosen.net

Keranen, et al. Expires April 2, 2018 [Page 94]

