
Network Working Group E. Ivov
Internet-Draft Atlassian
Intended status: Standards Track E. Rescorla
Expires: August 31, 2017 RTFM, Inc.
 J. Uberti
 Google
 P. Saint-Andre
 Filament
 February 27, 2017

Trickle ICE: Incremental Provisioning of Candidates for the Interactive
 Connectivity Establishment (ICE) Protocol

draft-ietf-ice-trickle-07

Abstract

 This document describes "Trickle ICE", an extension to the
 Interactive Connectivity Establishment (ICE) protocol that enables
 ICE agents to send and receive candidates incrementally rather than
 exchanging complete lists. With such incremental provisioning, ICE
 agents can begin connectivity checks while they are still gathering
 candidates and considerably shorten the time necessary for ICE
 processing to complete.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 31, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Ivov, et al. Expires August 31, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-ice-trickle-07
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Trickle ICE February 2017

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Determining Support for Trickle ICE 5
4. Sending the Initial ICE Description 6
5. Receiving the Initial ICE Description 7
5.1. Sending the Initial Response 7

 5.2. Forming Check Lists and Beginning Connectivity
 Checks . 7

6. Receiving the Initial Answer 8
7. Performing Connectivity Checks 8
7.1. Scheduling Checks . 8
7.2. Check List and Timer State Updates 9

8. Discovering and Sending Additional Local Candidates 9
 8.1. Pairing Newly Learned Candidates and Updating
 Check Lists . 11

8.1.1. Inserting a New Pair in a Check List 12
8.2. Announcing End of Candidates 13

9. Receiving Additional Remote Candidates 14
10. Receiving an End-Of-Candidates Notification 15
11. Trickle ICE and Peer Reflexive Candidates 15
12. Concluding ICE Processing 15
13. Subsequent Exchanges . 15
14. Unilateral Use of Trickle ICE (Half Trickle) 16
15. Requirements for Signaling Protocols 17
16. Example Flow . 17
17. IANA Considerations . 18
18. Security Considerations 18
19. Acknowledgements . 18
20. References . 18
20.1. Normative References 19
20.2. Informative References 19

Appendix A. Interaction with Regular ICE 20
Appendix B. Interaction with ICE Lite 21
Appendix C. Preserving Candidate Order while Trickling 22
Appendix D. Changes from Earlier Versions 23
D.1. Changes from draft-ietf-ice-trickle-04 23

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/draft-ietf-ice-trickle-04

Ivov, et al. Expires August 31, 2017 [Page 2]

Internet-Draft Trickle ICE February 2017

D.2. Changes from draft-ietf-ice-trickle-03 24
D.3. Changes from draft-ietf-ice-trickle-03 24
D.4. Changes from draft-ietf-ice-trickle-02 24
D.5. Changes from draft-ietf-ice-trickle-01 24
D.6. Changes from draft-ietf-ice-trickle-00 24
D.7. Changes from draft-mmusic-trickle-ice-02 24
D.8. Changes from draft-ivov-01 and draft-mmusic-00 25
D.9. Changes from draft-ivov-00 25
D.10. Changes from draft-rescorla-01 26
D.11. Changes from draft-rescorla-00 27

 Authors' Addresses . 27

1. Introduction

 The Interactive Connectivity Establishment (ICE) protocol
 [rfc5245bis] describes mechanisms for gathering candidates,
 prioritizing them, choosing default ones, exchanging them with a
 remote party, pairing them, and ordering them into check lists. Once
 all of these actions have been completed (and only then), the parties
 can begin a phase of connectivity checks and eventually select the
 pair of candidates that will be used in a media session or for a
 given media stream.

 Although the sequence described above has the advantage of being
 relatively straightforward to implement and debug once deployed, it
 can also be rather lengthy. Candidate gathering often involves
 things like querying STUN [RFC5389] servers and allocating relayed
 candidates at TURN [RFC5766] servers. All of these actions can be
 delayed for a noticeable amount of time; although they can be run in
 parallel, they still need to respect the pacing requirements from
 [rfc5245bis], which is likely to delay them even further. Some or
 all of these actions also need be completed by the remote agent.
 Both agents would next perform connectivity checks and only then
 would they be ready to begin streaming media.

 These factors can lead to relatively lengthy session establishment
 times and thus to a degraded user experience.

 This document defines an alternative or supplementary mode of
 operation for ICE implementations, known as "Trickle ICE", in which
 candidates can be exchanged incrementally. This enables ICE agents
 to exchange candidates as soon as an ICE negotiation session has been
 initiated. Connectivity checks for a media stream can also start as
 soon as the first candidates for that stream become available.

 Trickle ICE can reduce session establishment times in cases where
 connectivity is confirmed for the first exchanged candidates (e.g.,
 where candidates for one of the agents are directly reachable from

https://datatracker.ietf.org/doc/html/draft-ietf-ice-trickle-03
https://datatracker.ietf.org/doc/html/draft-ietf-ice-trickle-03
https://datatracker.ietf.org/doc/html/draft-ietf-ice-trickle-02
https://datatracker.ietf.org/doc/html/draft-ietf-ice-trickle-01
https://datatracker.ietf.org/doc/html/draft-ietf-ice-trickle-00
https://datatracker.ietf.org/doc/html/draft-mmusic-trickle-ice-02
https://datatracker.ietf.org/doc/html/draft-ivov-01
https://datatracker.ietf.org/doc/html/draft-mmusic-00
https://datatracker.ietf.org/doc/html/draft-ivov-00
https://datatracker.ietf.org/doc/html/draft-rescorla-01
https://datatracker.ietf.org/doc/html/draft-rescorla-00
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc5766

Ivov, et al. Expires August 31, 2017 [Page 3]

Internet-Draft Trickle ICE February 2017

 the second agent, such as candidates at a media relay). Even when
 this is not the case, performing candidate gathering for both agents
 and connectivity checks in parallel can considerably shorten ICE
 processing times.

 It is worth noting that there is quite a bit of operational
 experience with the Trickle ICE technique, going back as far as 2005
 (when the XMPP Jingle extension defined a "dribble mode" as specified
 in [XEP-0176]); this document incorporates feedback from those who
 have implemented and deployed the technique.

 In addition to the basics of Trickle ICE, this document also
 describes how to discover support for Trickle ICE, how regular ICE
 processing needs to be modified when building and updating check
 lists, and how Trickle ICE implementations interoperate with agents
 that only implement regular ICE processing as defined in
 [rfc5245bis].

 This specification does not define the usage of Trickle ICE with any
 specific signaling protocol (however, see
 [I-D.ietf-mmusic-trickle-ice-sip] for usage with SIP [RFC3261] and
 [XEP-0176] for usage with XMPP [RFC6120]). Similarly, it does not
 define Trickle ICE in terms of the Session Description Protocol (SDP)
 [RFC4566] or the offer/answer model [RFC3264] because the technique
 can be and already is used in application protocols that are not tied
 to SDP or to offer/answer semantics. However, because SDP and the
 offer/answer model are familiar to most readers of this
 specification, some examples in this document use those particulars
 in order to explain the underlying concepts.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This specification makes use of all terminology defined for
 Interactive Connectivity Establishment in [rfc5245bis]. In addition,
 it defines the following terms:

 Candidate Gatherer: A module used by an ICE agent to obtain local
 candidates. Candidate gatherers use different mechanisms for
 discovering local candidates, such as STUN and TURN.

 Generation: All of the candidates sent within an ICE negotiation
 session; these are the candidates that are associated with a local
 /remote ufrag pair (which will change on ICE restart, if any).

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc2119

Ivov, et al. Expires August 31, 2017 [Page 4]

Internet-Draft Trickle ICE February 2017

 ICE Description: Any session-related (as opposed to candidate-
 related) attributes required to configure an ICE agent. These
 include but are not limited to "ice-ufrag", "ice-pwd", and "ice-
 options".

 ICE Negotiation Session: A virtual session involving all of the
 interactions between ICE agents up until an ICE restart (if any).

 Initiator: The ICE agent that starts an ICE negotiation session.

 Responder: The ICE agent with which an initiator starts an ICE
 negotiation session.

 Trickled Candidates: Candidates that a Trickle ICE agent sends after
 sending an initial ICE description or responding to an initial ICE
 description, but within the same ICE negotiation session.
 Trickled candidates can be sent in parallel with candidate
 gathering and connectivity checks.

 Trickling: The act of sending trickled candidates.

 Half Trickle: A Trickle ICE mode of operation where the initiator
 gathers a full generation of candidates strictly before creating
 and sending the initial ICE description. Once sent, that ICE
 description can be processed by regular ICE agents and does not
 require support for this specification. It also allows Trickle
 ICE capable responders to still gather candidates and perform
 connectivity checks in a non-blocking way, thus roughly providing
 "half" the advantages of Trickle ICE. The mechanism is mostly
 meant for use in cases where the remote agent's support for
 Trickle ICE cannot be confirmed prior to sending an initial ICE
 description.

 Full Trickle: The typical mode of operation for Trickle ICE agents,
 in which an initial ICE description can include any number of
 candidates (even zero candidates) and does not need to include a
 full generation of candidates as in half trickle.

3. Determining Support for Trickle ICE

 To fully support Trickle ICE, applications SHOULD incorporate one of
 the following mechanisms to enable implementations to determine
 whether Trickle ICE is supported:

 1. Provide a capabilities discovery method so that agents can verify
 support of Trickle ICE prior to initiating a session (XMPP's
 Service Discovery [XEP-0030] is one such mechanism).

Ivov, et al. Expires August 31, 2017 [Page 5]

Internet-Draft Trickle ICE February 2017

 2. Make support for Trickle ICE mandatory so that user agents can
 assume support.

 If an application protocol does not provide a method of determining
 ahead of time whether Trickle ICE is supported, agents can make use
 of the half trickle procedure described in Section 14.

 Prior to sending an initial ICE description, agents using signaling
 protocols that support capabilities discovery can attempt to verify
 whether or not the remote party supports Trickle ICE. If an agent
 determines that the remote party does not support Trickle ICE, it
 MUST fall back to using regular ICE or abandon the entire session.

 Even if a signaling protocol does not include a capabilities
 discovery method, a user agent can provide an indication within the
 ICE description that it supports Trickle ICE (e.g., in SDP this would
 be a token of "trickle" in the ice-options attribute).

 Dedicated discovery semantics and half trickle are needed only prior
 to session initiation. After a session is established and Trickle
 ICE support is confirmed for both parties, either agent can use full
 trickle for subsequent exchanges.

4. Sending the Initial ICE Description

 An agent can start gathering candidates as soon as it has an
 indication that communication is imminent (e.g., a user interface cue
 or an explicit request to initiate a session). Unlike in regular
 ICE, in Trickle ICE implementations do not need to gather candidates
 in a blocking manner. Therefore, unless half trickle is being used,
 agents SHOULD generate and transmit their initial ICE description as
 early as possible, so that the remote party can start gathering and
 trickling candidates.

 Trickle ICE agents MAY include any mix of candidates in an ICE
 description. This includes the possibility of sending an ICE
 description that contains all the candidates that the agent plans to
 use (as in half trickle mode), sending an ICE description that
 contains only a publicly-reachable IP address (e.g., a candidate at a
 media relay that is known to not be behind a firewall), or sending an
 ICE description with no candidates at all (in which case the
 initiator can obtain the responder's initial candidate list sooner
 and the responder can begin candidate gathering more quickly).

 Methods for calculating priorities and foundations, as well as
 determining redundancy of candidates, work just as with regular ICE
 (with the exception of pruning of duplicate peer reflexive candidates
 as described under Section 5.2).

Ivov, et al. Expires August 31, 2017 [Page 6]

Internet-Draft Trickle ICE February 2017

5. Receiving the Initial ICE Description

 When a responder receives an initial ICE description, it will first
 check if the ICE description or initiator indicates support for
 Trickle ICE as explained in Section 3. If this is not the case, the
 agent MUST process the ICE description according to regular ICE
 procedures [rfc5245bis] (or, if no ICE support is detected at all,
 according to relevant processing rules for the underlying signaling
 protocol, such as offer/answer processing rules [RFC3264]).

 If support for Trickle ICE is confirmed, an agent will automatically
 assume support for regular ICE as well even if the support
 verification procedure in [rfc5245bis] indicates otherwise.
 Specifically, the rules from [rfc5245bis] would imply that ICE itself
 is not supported if the initial ICE description includes no
 candidates; however, such a conclusion is not warranted if the
 responder can confirm that the initiator supports Trickle ICE; in
 this case, fallback to [RFC3264] is not necessary.

 If the initial ICE description does indicate support for Trickle ICE,
 the agent will determine its role and start gathering and
 prioritizing candidates; while doing so, it will also respond by
 sending its own ICE description, so that both agents can start
 forming check lists and begin connectivity checks.

5.1. Sending the Initial Response

 An agent can respond to an initial ICE description at any point while
 gathering candidates. Here again the ICE description MAY contain any
 set of candidates, including all candidates or no candidates. (The
 benefit of including no candidates is to send the ICE description as
 quickly as possible, so that both parties can consider the overall
 session to be under active negotiation as soon as possible.)

 As noted in Section 3, in application protocols that use SDP the
 responder's ICE description can indicate support for Trickle ICE by
 including a token of "trickle" in the ice-options attribute.

5.2. Forming Check Lists and Beginning Connectivity Checks

 After the initiator and responder exchange ICE descriptions, and as
 soon as they have obtained local and remote candidates, agents begin
 forming candidate pairs, computing candidate pair priorities,
 ordering candidate pairs, pruning duplicate pairs, and creating check
 lists according to regular ICE procedures [rfc5245bis].

 According to those procedures, in order for candidate pairing to be
 possible and for duplicate candidates to be pruned, the candidates

https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3264

Ivov, et al. Expires August 31, 2017 [Page 7]

Internet-Draft Trickle ICE February 2017

 would need to be provided in the relevant ICE descriptions. Under
 Trickle ICE, check lists can be empty until candidate pairs are sent
 or received. Therefore Trickle ICE agents handle check lists and
 candidate pairing in a slightly different way than regular ICE
 agents: the agents still create the check lists, but they populate
 the check lists only after they actually have the candidate pairs.

 A Trickle ICE agent initially considers all check lists to be frozen.
 It then inspects the first check list and attempts to unfreeze all
 candidate pairs it has received so far that belong to the first
 component on the first media stream (i.e., the first media stream
 that was reported to the ICE implementation from the using
 application). If that first component of the first media stream does
 not contain candidates for one or more of the currently known pair
 foundations, and if candidate pairs already exist for that foundation
 in one of the following components or media streams, then the agent
 unfreezes the first of those candidate pairs.

 With regard to pruning of duplicate candidate pairs, a Trickle ICE
 agent SHOULD follow a policy of "highest priority wins, except for
 peer reflexive candidates".

6. Receiving the Initial Answer

 When processing an ICE description from a responder, the initiator
 follows regular ICE procedures to determine its role, after which it
 forms check lists (as described in Section 5.2) and begins
 connectivity checks.

7. Performing Connectivity Checks

 For the most part, Trickle ICE agents perform connectivity checks
 following regular ICE procedures. However, the fact that gathering
 and communicating candidates is asynchronous in Trickle ICE imposes a
 number of changes as described in the following sections.

7.1. Scheduling Checks

 The ICE specification [rfc5245bis], Section 5.8, requires that agents
 terminate the timer for a triggered check in relation to an active
 check list once the agent has exhausted all frozen pairs in the check
 list. This will not work with Trickle ICE, because more pairs will
 be added to the check list incrementally.

 Therefore, a Trickle ICE agent SHOULD NOT terminate the timer until
 the state of the check list is Completed or Failed as specified
 herein (see Section 8.2).

Ivov, et al. Expires August 31, 2017 [Page 8]

Internet-Draft Trickle ICE February 2017

7.2. Check List and Timer State Updates

 The ICE specification [rfc5245bis], Section 7.1.3.3, requires that
 agents update check lists and timer states upon completing a
 connectivity check transaction. During such an update, regular ICE
 agents would set the state of a check list to Failed if both of the
 following two conditions are satisfied:

 o all of the pairs in the check list are either in the Failed state
 or Succeeded state; and

 o there is not a pair in the valid list for each component of the
 media stream.

 With Trickle ICE, the above situation would often occur when
 candidate gathering and trickling are still in progress, even though
 it is quite possible that future checks will succeed. For this
 reason, Trickle ICE agents add the following conditions to the above
 list:

 o all candidate gatherers have completed and the agent is not
 expecting to discover any new local candidates;

 o the remote agent has sent an end-of-candidates indication for that
 check list as described in Section 8.2.

 Regular ICE requires that agents then update all other check lists,
 placing one pair from each of them into the Waiting state,
 effectively unfreezing all remaining check lists. However, under
 Trickle ICE other check lists might still be empty at that point.
 Therefore a Trickle ICE agent MUST monitor whether a check list is
 active or frozen independently of the state of the candidate pairs
 that the check list contains, and MUST consider a check list to be
 active when unfreezing the first candidate pair in the check list.
 When there is no candidate pair in a check list (i.e., when the check
 list is empty), a Trickle ICE agent MAY consider it to be either
 active or frozen. An empty frozen check list SHOULD be changed to
 active if another check list is completely finished (i.e., every pair
 is either Successful or Failed), or if another checklist has a valid
 candidate pair for all components.

8. Discovering and Sending Additional Local Candidates

 After ICE descriptions have been sent, agents will most likely
 continue discovering new local candidates as STUN, TURN, and other
 non-host candidate gathering mechanisms begin to yield results.
 Whenever an agent discovers such a new candidate it will compute its

Ivov, et al. Expires August 31, 2017 [Page 9]

Internet-Draft Trickle ICE February 2017

 priority, type, foundation and component ID according to regular ICE
 procedures.

 The new candidate is then checked for redundancy against the existing
 list of local candidates. If its transport address and base match
 those of an existing candidate, it will be considered redundant and
 will be ignored. This would often happen for server reflexive
 candidates that match the host addresses they were obtained from
 (e.g., when the latter are public IPv4 addresses). Contrary to
 regular ICE, Trickle ICE agents will consider the new candidate
 redundant regardless of its priority.

 Next the agent sends (i.e., trickles) the newly discovered
 candidate(s) to the remote agent. The actual delivery of the new
 candidates is handled by a signaling protocol such as SIP or XMPP.
 Trickle ICE imposes no restrictions on the way this is done (e.g.,
 some applications may choose not to send trickle updates for server
 reflexive candidates and instead rely on the discovery of peer
 reflexive ones).

 When trickle updates are sent, each candidate MUST be delivered to
 the receiving Trickle ICE implementation not more than once. If
 there are any candidate retransmissions, they need to be hidden from
 the ICE implementation.

 Also, candidate trickling needs to be correlated to a specific ICE
 negotiation session, so that if there is an ICE restart, any delayed
 updates for a previous session can be recognized as such and ignored
 by the receiving party. For example, applications that choose to
 signal candidates via SDP may include a ufrag value in the
 corresponding a=candidate line such as:

 a=candidate:1 1 UDP 2130706431 2001:db8::1 5000 typ host ufrag 8hhY

 Or as another example, WebRTC implementations may include a ufrag in
 the JavaScript objects that represent candidates.

 Note: The signaling protocol needs to provide a mechanism for both
 parties to indicate and agree on the ICE negotiation session in force
 (as identified by the ufrag) so that they have a consistent view of
 which candidates are to be paired. This is especially important in
 the case of ICE restarts (see Section 13).

 Once the candidate has been sent to the remote party, the agent
 checks if any remote candidates are currently known for this same

Ivov, et al. Expires August 31, 2017 [Page 10]

Internet-Draft Trickle ICE February 2017

 stream. If not, the new candidate will simply be added to the list
 of local candidates.

 Otherwise, if the agent has already learned of one or more remote
 candidates for this stream and component, it will begin pairing the
 new local candidates with them and adding the pairs to the existing
 check lists according to their priority.

 Note: A Trickle ICE agent MUST NOT pair a local candidate until it
 has been trickled to the remote agent.

8.1. Pairing Newly Learned Candidates and Updating Check Lists

 Forming candidate pairs works as described in the ICE specification
 [rfc5245bis]. However, actually adding the new pair to a check list
 happens according to the rules described below.

 If the check list where the pair is to be added already contains the
 maximum number of candidate pairs (100 by default as per
 [rfc5245bis]), the new pair is discarded.

 If the new pair's local candidate is server reflexive, the server
 reflexive candidate MUST be replaced by its base before adding the
 pair to the list.

 Once this is done, the agent examines the check list looking for
 another pair that would be redundant with the new one. If such a
 pair exists and the type of its remote candidate is not peer
 reflexive, the pair with the higher priority is kept and the one with
 the lower priority is discarded. If, on the other hand, the type of
 the remote candidate in the pre-existing pair is peer reflexive, the
 agent MUST replace it with the newly formed pair (regardless of their
 respective priorities); this is done by setting the priority of the
 new candidate to the priority of the pre-existing candidate and then
 re-sorting the check list.

 Note: So that both agents will have the same view of candidate
 priorities, it is important to replacing existing pairs with
 seemingly equivalent higher-priority ones and to always update
 peer-reflexive candidates if equivalent alternatives are received
 through signaling.

 For all other pairs, including those with a server reflexive local
 candidate that were not found to be redundant, the rules specified in
 the following section apply.

Ivov, et al. Expires August 31, 2017 [Page 11]

Internet-Draft Trickle ICE February 2017

8.1.1. Inserting a New Pair in a Check List

 Consider the following tabular representation of all checklists in an
 agent:

 +------------+------+------+------+------+------+
 | | f1 | f2 | f3 | f4 | f5 |
 +------------+------+------+------+------+------+
 | Audio.RTP | cp | cp | cp | | |
 +------------+------+------+------+------+------+
 | Audio.RTCP | cp | cp | cp | cp | |
 +------------+------+------+------+------+------+
 | Video.RTP | cp | | | | cp |
 +------------+------+------+------+------+------+
 | Video.RTCP | cp | | | | cp |
 +------------+------+------+------+------+------+

 Figure 1: Trickle State Updates

 Each row in the table represents a component for a given media
 stream. Each column represents one foundation. Each cell represents
 one candidate pair.

 When an agent commences ICE processing as per [rfc5245bis], it will
 unfreeze (i.e., place in the Waiting state) the topmost candidate
 pair in every column. Then, as the checks proceed, for each pair
 that enters the Succeeded state the agent will unfreeze the pair that
 is immediately underneath the pair that succeeded (e.g., if the pair
 in column 1, row 1 succeeds then the agent will unfreeze the pair in
 column 1, row 2). ICE also specifies that, if all the pairs in a
 media stream for one foundation are unfrozen (e.g., column 1, rows 1
 and 2 representing both components for the audio stream), then all of
 the candidate pairs in the entire column are unfrozen (e.g., column
 1, rows 3 and 4).

 Trickle ICE preserves all of these rules. This implies that if, for
 some reason, a Trickle agent were to begin connectivity checks with
 all of its pairs already present, the way that pair states change is
 indistinguishable from that of a regular ICE agent.

 Of course, the major difference with Trickle ICE is that candidates
 can arrive after connectivity checks have started. When this
 happens, an agent sets the state of the newly formed pair as follows:

 Waiting: if the newly formed pair is the topmost pair in this
 column;

Ivov, et al. Expires August 31, 2017 [Page 12]

Internet-Draft Trickle ICE February 2017

 Waiting: if the pair immediately above the newly formed pair in
 this column is in the Succeeded state;

 Waiting: if there is at least one pair in this column below the row
 of the newly formed pair whose state is either Succeeded or
 Failed.

 Frozen: in all other cases.

8.2. Announcing End of Candidates

 Once all candidate gathering is completed or expires for a specific
 media stream, the agent will generate an "end-of-candidates"
 indication for that stream and send it to the remote agent via the
 signaling channel. The exact form of the indication depends on the
 application protocol. The indication can be sent in the following
 ways:

 o As part of an initiation request (which would typically be the
 case with an initial ICE description for half trickle)

 o Along with the last candidate an agent can send for a stream

 o As a standalone notification (e.g., after STUN Binding requests or
 TURN Allocate requests to a server time out and the agent has no
 other active gatherers)

 Sending an end-of-candidates indication in a timely manner is
 important in order to avoid ambiguities and speed up the conclusion
 of ICE processing. In particular:

 o A controlled Trickle ICE agent SHOULD send an end-of-candidates
 indication after it has completed gathering for a media stream,
 unless ICE processing terminates before the agent has had a chance
 to complete gathering.

 o A controlling agent MAY conclude ICE processing prior to sending
 end-of-candidates indications for all streams. However, it is
 RECOMMENDED for a controlling agent to send end-of-candidates
 indications whenever possible for the sake of consistency and to
 keep middleboxes and controlled agents up-to-date on the state of
 ICE processing.

 When sending an end-of-candidates indication during trickling (rather
 than as a part of an initial ICE description or response), it is the
 responsibility of the using protocol to define methods for relating
 the indication to one or more specific media streams.

Ivov, et al. Expires August 31, 2017 [Page 13]

Internet-Draft Trickle ICE February 2017

 Receiving an end-of-candidates indication enables an agent to update
 check list states and, in case valid pairs do not exist for every
 component in every media stream, determine that ICE processing has
 failed. It also enables agents to speed up the conclusion of ICE
 processing when a candidate pair has been validated but it involves
 the use of lower-preference transports such as TURN. In such
 situations, an implementation MAY choose to wait and see if higher-
 priority candidates are received; in this case the end-of-candidates
 indication provides a notification that such candidates are not
 forthcoming.

 An agent MAY also choose to generate an end-of-candidates indication
 before candidate gathering has actually completed, if the agent
 determines that gathering has continued for more than an acceptable
 period of time. However, an agent MUST NOT send any more candidates
 after it has sent an end-of-candidates indication.

 When performing half trickle, an agent SHOULD send an end-of-
 candidates indication together with its initial ICE description
 unless it is planning to potentially send additional candidates
 (e.g., in case the remote party turns out to support Trickle ICE).

 After an agent sends the end-of-candidates indication, it will update
 the state of the corresponding check list as explained in

Section 7.2. Past that point, an agent MUST NOT send any new
 candidates within this ICE negotiation session. After an agent has
 received an end-of-candidates indication, it MUST also ignore any
 newly received candidates for that media stream or media session.
 Therefore, adding new candidates to the negotiation is possible only
 through an ICE restart (see Section 13).

 This specification does not override regular ICE semantics for
 concluding ICE processing. Therefore, even if end-of-candidates
 indications are sent, agents will still have to go through pair
 nomination. Also, if pairs have been nominated for components and
 media streams, ICE processing MAY still conclude even if end-of-
 candidates indications have not been received for all streams.

9. Receiving Additional Remote Candidates

 At any time during ICE processing, a Trickle ICE agent might receive
 new candidates from the remote agent. When this happens and no local
 candidates are currently known for this same stream, the new remote
 candidates are added to the list of remote candidates.

 Otherwise, the new candidates are used for forming candidate pairs
 with the pool of local candidates and they are added to the local
 check lists as described in Section 8.1.

Ivov, et al. Expires August 31, 2017 [Page 14]

Internet-Draft Trickle ICE February 2017

 Once the remote agent has completed candidate gathering, it will send
 an end-of-candidates indication. Upon receiving such an indication,
 the local agent MUST update check list states as per Section 7.2.
 This might lead to some check lists being marked as Failed.

10. Receiving an End-Of-Candidates Notification

 When an agent receives an end-of-candidates indication for a specific
 media stream, it will update the state of the relevant check list as
 per Section 7.2. If the check list is still in the Active state
 after the update, the agent will persist the fact that an end-of-
 candidates indication has been received and take it into account in
 future updates to the check list.

11. Trickle ICE and Peer Reflexive Candidates

 Even though Trickle ICE does not explicitly modify the procedures for
 handling peer-reflexive candidates, use of Trickle ICE can have an
 impact on how they are processed. With Trickle ICE, it is possible
 that server reflexive candidates can be discovered as peer reflexive
 in cases where incoming connectivity checks are received from these
 candidates before the trickle updates that carry them.

 While this would certainly increase the number of cases where ICE
 processing nominates and selects candidates discovered as peer-
 reflexive, it does not require any change in processing.

 It is also likely that some applications would prefer not to trickle
 server reflexive candidates to entities that are known to be publicly
 accessible and where sending a direct STUN binding request is likely
 to reach the destination faster than the trickle update that travels
 through the signaling path.

12. Concluding ICE Processing

 This specification does not directly modify the procedures for ending
 ICE processing described in Section 8 of [rfc5245bis], and Trickle
 ICE implementations follow the same rules.

13. Subsequent Exchanges

 Either agent MAY generate a subsequent ICE description at any time
 allowed by [RFC3264]. When this happens agents will use [rfc5245bis]
 semantics to determine whether or not the new ICE description
 requires an ICE restart. If an ICE restart occurs, the user agents
 can assume that Trickle ICE is still supported if support was
 determined previously, and thus can engage in Trickle ICE behavior as

https://datatracker.ietf.org/doc/html/rfc3264

Ivov, et al. Expires August 31, 2017 [Page 15]

Internet-Draft Trickle ICE February 2017

 they would in an initial exchange of ICE descriptions where support
 was determined through a capabilities discovery method.

14. Unilateral Use of Trickle ICE (Half Trickle)

 In half trickle mode, the initiator sends a regular ICE description
 with a full generation of candidates. This ensures that the ICE
 description can be processed by a regular ICE responder and is mostly
 meant for use in cases where support for Trickle ICE cannot be
 confirmed prior to sending an initial ICE description. The initial
 ICE description indicates support for Trickle ICE, which means the
 responder can respond with something less than a full generation of
 candidates and then trickle the rest. A half trickle ICE description
 would typically contain an end-of-candidates indication, although
 this is not mandatory because if trickle support is confirmed then
 the initiator can choose to trickle additional candidates before it
 sends an end-of-candidates indication.

 The half trickle mechanism can be used in cases where there is no way
 for an agent to verify in advance whether a remote party supports
 Trickle ICE. Because the initial ICE description contains a full
 generation of candidates, it can thus be handled by a regular ICE
 agent, while still allowing a Trickle ICE agent to use the
 optimization defined in this specification. This prevents
 negotiation from failing in the former case while still giving
 roughly half the Trickle ICE benefits in the latter (hence the name
 of the mechanism).

 Use of half trickle is only necessary during an initial exchange of
 ICE descriptions. After both parties have received a session
 description from their peer, they can each reliably determine Trickle
 ICE support and use it for all subsequent exchanges.

 In some instances, using half trickle might bring more than just half
 the improvement in terms of user experience. This can happen when an
 agent starts gathering candidates upon user interface cues that the
 user will soon be initiating an interaction, such as activity on a
 keypad or the phone going off hook. This would mean that some or all
 of the candidate gathering could be completed before the agent
 actually needs to send the ICE description. Because the responder
 will be able to trickle candidates, both agents will be able to start
 connectivity checks and complete ICE processing earlier than with
 regular ICE and potentially even as early as with full trickle.

 However, such anticipation is not always possible. For example, a
 multipurpose user agent or a WebRTC web page where communication is a
 non-central feature (e.g., calling a support line in case of a
 problem with the main features) would not necessarily have a way of

Ivov, et al. Expires August 31, 2017 [Page 16]

Internet-Draft Trickle ICE February 2017

 distinguishing between call intentions and other user activity. In
 such cases, using full trickle is most likely to result in an ideal
 user experience. Even so, using half trickle would be an improvement
 over regular ICE because it would result in a better experience for
 responders.

15. Requirements for Signaling Protocols

 In order to fully enable the use of Trickle ICE, this specification
 defines the following requirements for signaling protocols.

 o A signaling protocol SHOULD provide a way for parties to advertise
 and discover support for Trickle ICE before an ICE negotiation
 session begins (see Section 3).

 o A signaling protocol MUST provide methods for incrementally
 sending (i.e., "trickling") additional candidates after sending
 the initial ICE description (see Section 8).

 o A signaling protocol MUST provide a mechanism for both parties to
 indicate and agree on the ICE negotiation session in force (see

Section 8).

 o A signaling protocol MUST provide a way for parties to communicate
 the end-of-candidates indication (see Section 8.2).

16. Example Flow

 As an example, a typical successful Trickle ICE exchange with a
 signaling protocol that follows the offer/answer model would look
 this way:

Ivov, et al. Expires August 31, 2017 [Page 17]

Internet-Draft Trickle ICE February 2017

 Alice Bob
 | Offer |
 |-->|
 | Additional Candidates |
 |-->|
 | |
 | Answer |
 |<--|
 | Additional Candidates |
 |<--|
 | |
 | Additional Candidates and Connectivity Checks |
 |<--->|
 | |
 |<=============== MEDIA FLOWS =================>|

 Figure 2: Example

17. IANA Considerations

 This specification requests no actions from IANA.

18. Security Considerations

 This specification inherits most of its semantics from [rfc5245bis]
 and as a result all security considerations described there apply to
 Trickle ICE.

 If the privacy implications of revealing host addresses on an
 endpoint device are a concern, agents can generate an ICE description
 that contains no candidates and then only trickle candidates that do
 not reveal host addresses (e.g., relayed candidates).

19. Acknowledgements

 The authors would like to thank Bernard Aboba, Flemming Andreasen,
 Rajmohan Banavi, Taylor Brandstetter, Christer Holmberg, Jonathan
 Lennox, Enrico Marocco, Pal Martinsen, Martin Thomson, Dale R.
 Worley, and Brandon Williams for their reviews and suggestions on
 improving this document.

20. References

Ivov, et al. Expires August 31, 2017 [Page 18]

Internet-Draft Trickle ICE February 2017

20.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [rfc5245bis]
 Keranen, A., Keranen, A., and J. Rosenberg, "Interactive
 Connectivity Establishment (ICE): A Protocol for Network
 Address Translator (NAT) Traversal", draft-ietf-ice-

rfc5245bis-08 (work in progress), December 2016.

20.2. Informative References

 [I-D.ietf-mmusic-trickle-ice-sip]
 Ivov, E., Thomas, T., Marocco, E., and C. Holmberg, "A
 Session Initiation Protocol (SIP) usage for Trickle ICE",

draft-ietf-mmusic-trickle-ice-sip-06 (work in progress),
 October 2016.

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",

BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <http://www.rfc-editor.org/info/rfc1918>.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264, June
 2002.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
 Translation (NAT) Behavioral Requirements for Unicast
 UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
 2007, <http://www.rfc-editor.org/info/rfc4787>.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 DOI 10.17487/RFC5389, October 2008,
 <http://www.rfc-editor.org/info/rfc5389>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-ice-rfc5245bis-08
https://datatracker.ietf.org/doc/html/draft-ietf-ice-rfc5245bis-08
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-trickle-ice-sip-06
https://datatracker.ietf.org/doc/html/bcp5
https://datatracker.ietf.org/doc/html/rfc1918
http://www.rfc-editor.org/info/rfc1918
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc4787
http://www.rfc-editor.org/info/rfc4787
https://datatracker.ietf.org/doc/html/rfc5389
http://www.rfc-editor.org/info/rfc5389

Ivov, et al. Expires August 31, 2017 [Page 19]

Internet-Draft Trickle ICE February 2017

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

 [RFC6120] Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, March 2011.

 [XEP-0030]
 Hildebrand, J., Millard, P., Eatmon, R., and P. Saint-
 Andre, "XEP-0030: Service Discovery", XEP XEP-0030, June
 2008.

 [XEP-0176]
 Beda, J., Ludwig, S., Saint-Andre, P., Hildebrand, J.,
 Egan, S., and R. McQueen, "XEP-0176: Jingle ICE-UDP
 Transport Method", XEP XEP-0176, June 2009.

Appendix A. Interaction with Regular ICE

 The ICE protocol was designed to be flexible enough to work in and
 adapt to as many network environments as possible. Despite that
 flexibility, ICE as specified in [rfc5245bis] does not by itself
 support trickle ICE. This section describes how trickling of
 candidates interacts with ICE.

 [rfc5245bis] describes the conditions required to update check lists
 and timer states while an ICE agent is in the Running state. These
 conditions are verified upon transaction completion and one of them
 stipulates that:

 If there is not a pair in the valid list for each component of the
 media stream, the state of the check list is set to Failed.

 This could be a problem and cause ICE processing to fail prematurely
 in a number of scenarios. Consider the following case:

 1. Alice and Bob are both located in different networks with Network
 Address Translation (NAT). Alice and Bob themselves have
 different address but both networks use the same [RFC1918] block.

 2. Alice sends Bob the candidate 2001:db8:a0b:12f0::10 which also
 happens to correspond to an existing host on Bob's network.

 3. Bob creates a check list consisting solely of
 2001:db8:a0b:12f0::10 and starts checks.

https://datatracker.ietf.org/doc/html/rfc5766
https://datatracker.ietf.org/doc/html/rfc6120
https://datatracker.ietf.org/doc/html/rfc1918

Ivov, et al. Expires August 31, 2017 [Page 20]

Internet-Draft Trickle ICE February 2017

 4. These checks reach the host at 2001:db8:a0b:12f0::10 in Bob's
 network, which responds with an ICMP "port unreachable" error and
 per [rfc5245bis] Bob marks the transaction as Failed.

 At this point the check list only contains Failed candidates and the
 valid list is empty. This causes the media stream and potentially
 all ICE processing to fail.

 A similar race condition would occur if the initial ICE description
 from Alice only contains candidates that can be determined as
 unreachable from any of the candidates that Bob has gathered (e.g.,
 this would be the case if Bob's candidates only contain IPv4
 addresses and the first candidate that he receives from Alice is an
 IPv6 one).

 Another potential problem could arise when a non-trickle ICE
 implementation initiates an interaction with a Trickle ICE
 implementation. Consider the following case:

 1. Alice's client has a non-Trickle ICE implementation.

 2. Bob's client has support for Trickle ICE.

 3. Alice and Bob are behind NATs with address-dependent filtering
 [RFC4787].

 4. Bob has two STUN servers but one of them is currently
 unreachable.

 After Bob's agent receives Alice's initial ICE description it would
 immediately start connectivity checks. It would also start gathering
 candidates, which would take a long time because of the unreachable
 STUN server. By the time Bob's answer is ready and sent to Alice,
 Bob's connectivity checks may well have failed: until Alice gets
 Bob's answer, she won't be able to start connectivity checks and
 punch holes in her NAT. The NAT would hence be filtering Bob's
 checks as originating from an unknown endpoint.

Appendix B. Interaction with ICE Lite

 The behavior of ICE lite agents that are capable of Trickle ICE does
 not require any particular rules other than those already defined in
 this specification and [rfc5245bis]. This section is hence provided
 only for informational purposes.

 An ICE lite agent would generate an ICE description as per
 [rfc5245bis] and would indicate support for Trickle ICE. Given that

https://datatracker.ietf.org/doc/html/rfc4787

Ivov, et al. Expires August 31, 2017 [Page 21]

Internet-Draft Trickle ICE February 2017

 the ICE description will contain a full generation of candidates, it
 would also be accompanied by an end-of-candidates indication.

 When performing full trickle, a full ICE implementation could send an
 initial ICE description or response with no candidates. After
 receiving a response that identifies the remote agent as an ICE lite
 implementation, the initiator can choose to not send any additional
 candidates. The same is also true in the case when the ICE lite
 agent initiates the interaction and the full ICE agent is the
 responder. In these cases the connectivity checks would be enough
 for the ICE lite implementation to discover all potentially useful
 candidates as peer reflexive. The following example illustrates one
 such ICE session using SDP syntax:

 ICE Lite Bob
 Agent
 | Offer (a=ice-lite a=ice-options:trickle) |
 |-->|
 | |no cand
 | Answer (a=ice-options:trickle) |trickling
 |<--|
 | Connectivity Checks |
 |<--->|
 peer rflx| |
 cand disco| |
 | |
 |<=============== MEDIA FLOWS =================>|

 Figure 3: Example

 In addition to reducing signaling traffic this approach also removes
 the need to discover STUN bindings or make TURN allocations, which
 may considerably lighten ICE processing.

Appendix C. Preserving Candidate Order while Trickling

 One important aspect of regular ICE is that connectivity checks for a
 specific foundation and component are attempted simultaneously by
 both agents, so that any firewalls or NATs fronting the agents would
 whitelist both endpoints and allow all except for the first
 ("suicide") packets to go through. This is also important to
 unfreezing candidates at the right time. While not crucial,
 preserving this behavior in Trickle ICE is likely to improve ICE
 performance.

Ivov, et al. Expires August 31, 2017 [Page 22]

Internet-Draft Trickle ICE February 2017

 To achieve this, when trickling candidates agents MUST respect the
 order in which the components and streams as they have been
 negotiated appear (implicitly or explicitly) in the relevant ICE
 descriptions. Therefore a candidate for a specific component MUST
 NOT be sent prior to candidates for other components within the same
 foundation.

 For example, the following SDP description contains two components
 (RTP and RTCP) and two foundations (host and server reflexive):

 v=0
 o=jdoe 2890844526 2890842807 IN IP6 2001:db8:a0b:12f0::1
 s=
 c=IN IP4 2001:db8:a0b:12f0::1
 t=0 0
 a=ice-pwd:asd88fgpdd777uzjYhagZg
 a=ice-ufrag:8hhY
 m=audio 5000 RTP/AVP 0
 a=rtpmap:0 PCMU/8000
 a=candidate:1 1 UDP 2130706431 2001:db8:a0b:12f0::1 5000 typ host
 a=candidate:1 2 UDP 2130706431 2001:db8:a0b:12f0::1 5001 typ host
 a=candidate:2 1 UDP 1694498815 2001:db8:a0b:12f0::3 5000 typ srflx
 raddr 2001:db8:a0b:12f0::1 rport 8998
 a=candidate:2 2 UDP 1694498815 2001:db8:a0b:12f0::3 5001 typ srflx
 raddr 2001:db8:a0b:12f0::1 rport 8998

 For this description the RTCP host candidate MUST NOT be sent prior
 to the RTP host candidate. Similarly the RTP server reflexive
 candidate MUST be sent together with or prior to the RTCP server
 reflexive candidate.

 Similar considerations apply at the level of media streams in
 addition to foundations; this is covered by the requirement to always
 start unfreezing candidates starting from the first media stream as
 described under Section 5.2.

Appendix D. Changes from Earlier Versions

 Note to the RFC-Editor: please remove this section prior to
 publication as an RFC.

D.1. Changes from draft-ietf-ice-trickle-04

 o Removed dependency on SDP and offer/answer model.

https://datatracker.ietf.org/doc/html/draft-ietf-ice-trickle-04

Ivov, et al. Expires August 31, 2017 [Page 23]

Internet-Draft Trickle ICE February 2017

 o Removed mentions of aggressive nomination, since it is deprecated
 in 5245bis.

 o Added section on requirements for signaling protocols.

 o Clarified terminology.

 o Addressed various WG feedback.

D.2. Changes from draft-ietf-ice-trickle-03

 o Copy edit.

D.3. Changes from draft-ietf-ice-trickle-03

 o Provided more detailed description of unfreezing behavior,
 specifically how to replace pre-existing peer-reflexive candidates
 with higher-priority ones received via trickling.

D.4. Changes from draft-ietf-ice-trickle-02

 o Adjusted unfreezing behavior when there are disparate foundations.

D.5. Changes from draft-ietf-ice-trickle-01

 o Changed examples to use IPv6.

D.6. Changes from draft-ietf-ice-trickle-00

 o Removed dependency on SDP (which is to be provided in a separate
 specification).

 o Clarified text about the fact that a check list can be empty if no
 candidates have been sent or received yet.

 o Clarified wording about check list states so as not to define new
 states for "Active" and "Frozen" because those states are not
 defined for check lists (only for candidate pairs) in ICE core.

 o Removed open issues list because it was out of date.

 o Completed a thorough copy edit.

D.7. Changes from draft-mmusic-trickle-ice-02

 o Addressed feedback from Rajmohan Banavi and Brandon Williams.

https://datatracker.ietf.org/doc/html/draft-ietf-ice-trickle-03
https://datatracker.ietf.org/doc/html/draft-ietf-ice-trickle-03
https://datatracker.ietf.org/doc/html/draft-ietf-ice-trickle-02
https://datatracker.ietf.org/doc/html/draft-ietf-ice-trickle-01
https://datatracker.ietf.org/doc/html/draft-ietf-ice-trickle-00
https://datatracker.ietf.org/doc/html/draft-mmusic-trickle-ice-02

Ivov, et al. Expires August 31, 2017 [Page 24]

Internet-Draft Trickle ICE February 2017

 o Clarified text about determining support and about how to proceed
 if it can be determined that the answering agent does not support
 Trickle ICE.

 o Clarified text about check list and timer updates.

 o Clarified when it is appropriate to use half trickle or to send no
 candidates in an offer or answer.

 o Updated the list of open issues.

D.8. Changes from draft-ivov-01 and draft-mmusic-00

 o Added a requirement to trickle candidates by order of components
 to avoid deadlocks in the unfreezing algorithm.

 o Added an informative note on peer-reflexive candidates explaining
 that nothing changes for them semantically but they do become a
 more likely occurrence for Trickle ICE.

 o Limit the number of pairs to 100 to comply with 5245.

 o Added clarifications on the non-importance of how newly discovered
 candidates are trickled/sent to the remote party or if this is
 done at all.

 o Added transport expectations for trickled candidates as per Dale
 Worley's recommendation.

D.9. Changes from draft-ivov-00

 o Specified that end-of-candidates is a media level attribute which
 can of course appear as session level, which is equivalent to
 having it appear in all m-lines. Also made end-of-candidates
 optional for cases such as aggressive nomination for controlled
 agents.

 o Added an example for ICE lite and Trickle ICE to illustrate how,
 when talking to an ICE lite agent doesn't need to send or even
 discover any candidates.

 o Added an example for ICE lite and Trickle ICE to illustrate how,
 when talking to an ICE lite agent doesn't need to send or even
 discover any candidates.

 o Added wording that explicitly states ICE lite agents have to be
 prepared to receive no candidates over signaling and that they

https://datatracker.ietf.org/doc/html/draft-ivov-01
https://datatracker.ietf.org/doc/html/draft-mmusic-00
https://datatracker.ietf.org/doc/html/draft-ivov-00

Ivov, et al. Expires August 31, 2017 [Page 25]

Internet-Draft Trickle ICE February 2017

 should not freak out if this happens. (Closed the corresponding
 open issue).

 o It is now mandatory to use MID when trickling candidates and using
 m-line indexes is no longer allowed.

 o Replaced use of 0.0.0.0 to IP6 :: in order to avoid potential
 issues with RFC2543 SDP libraries that interpret 0.0.0.0 as an on-
 hold operation. Also changed the port number here from 1 to 9
 since it already has a more appropriate meaning. (Port change
 suggested by Jonathan Lennox).

 o Closed the Open Issue about use about what to do with cands
 received after end-of-cands. Solution: ignore, do an ICE restart
 if you want to add something.

 o Added more terminology, including trickling, trickled candidates,
 half trickle, full trickle,

 o Added a reference to the SIP usage for Trickle ICE as requested at
 the Boston interim.

D.10. Changes from draft-rescorla-01

 o Brought back explicit use of Offer/Answer. There are no more
 attempts to try to do this in an O/A independent way. Also
 removed the use of ICE Descriptions.

 o Added SDP specification for trickled candidates, the trickle
 option and 0.0.0.0 addresses in m-lines, and end-of-candidates.

 o Support and Discovery. Changed that section to be less abstract.
 As discussed in IETF85, the draft now says implementations and
 usages need to either determine support in advance and directly
 use trickle, or do half trickle. Removed suggestion about use of
 discovery in SIP or about letting implementing protocols do what
 they want.

 o Defined Half Trickle. Added a section that says how it works.
 Mentioned that it only needs to happen in the first o/a (not
 necessary in updates), and added Jonathan's comment about how it
 could, in some cases, offer more than half the improvement if you
 can pre-gather part or all of your candidates before the user
 actually presses the call button.

 o Added a short section about subsequent offer/answer exchanges.

https://datatracker.ietf.org/doc/html/rfc2543
https://datatracker.ietf.org/doc/html/draft-rescorla-01

Ivov, et al. Expires August 31, 2017 [Page 26]

Internet-Draft Trickle ICE February 2017

 o Added a short section about interactions with ICE Lite
 implementations.

 o Added two new entries to the open issues section.

D.11. Changes from draft-rescorla-00

 o Relaxed requirements about verifying support following a
 discussion on MMUSIC.

 o Introduced ICE descriptions in order to remove ambiguous use of
 3264 language and inappropriate references to offers and answers.

 o Removed inappropriate assumption of adoption by RTCWEB pointed out
 by Martin Thomson.

Authors' Addresses

 Emil Ivov
 Atlassian
 303 Colorado Street, #1600
 Austin 78701
 USA

 Phone: +1-512-640-3000
 Email: eivov@atlassian.com

 Eric Rescorla
 RTFM, Inc.
 2064 Edgewood Drive
 Palo Alto, CA 94303
 USA

 Phone: +1 650 678 2350
 Email: ekr@rtfm.com

 Justin Uberti
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Phone: +1 857 288 8888
 Email: justin@uberti.name

https://datatracker.ietf.org/doc/html/draft-rescorla-00

Ivov, et al. Expires August 31, 2017 [Page 27]

Internet-Draft Trickle ICE February 2017

 Peter Saint-Andre
 Filament
 P.O. Box 787
 Parker, CO 80134
 USA

 Phone: +1 720 256 6756
 Email: peter@filament.com
 URI: https://filament.com/

Ivov, et al. Expires August 31, 2017 [Page 28]

https://filament.com/

