
<draft-ietf-idmr-cbt-spec-02.txt>
Inter-Domain Multicast Routing (IDMR) A. J. Ballardie
INTERNET-DRAFT University College London
 N. Jain
 Bay Networks, Inc.
 S. Reeve
 Bay Networks, Inc.

 June 20th, 1995

 Core Based Trees (CBT) Multicast

 -- Protocol Specification --

Status of this Memo

 This document is an Internet Draft. Internet Drafts are working do-
 cuments of the Internet Engineering Task Force (IETF), its Areas, and
 its Working Groups. Note that other groups may also distribute work-
 ing documents as Internet Drafts).

 Internet Drafts are draft documents valid for a maximum of six
 months. Internet Drafts may be updated, replaced, or obsoleted by
 other documents at any time. It is not appropriate to use Internet
 Drafts as reference material or to cite them other than as a "working
 draft" or "work in progress."

 Please check the I-D abstract listing contained in each Internet
 Draft directory to learn the current status of this or any other
 Internet Draft.

Abstract

 This document describes the Core Based Tree (CBT) multicast protocol
 specification. CBT is a next-generation multicast protocol that makes
 use of a shared delivery tree rather than separate per-sender trees
 utilized by most other multicast schemes [1, 2, 3].

 The specification includes a description of an optimization whereby
 native IP-style multicasts are forwarded over tree branches as well
 as subnetworks with group member presence. This mode of operation

Expires November 20th, 1995 [Page 1]

https://datatracker.ietf.org/doc/pdf/draft-ietf-idmr-cbt-spec-02.txt

INTERNET-DRAFT CBT Protocol Specification June 1995

 will be called CBT "native mode" and obviates the need to insert a
 CBT header into data packets before forwarding over CBT interfaces.
 Native mode is only relevant to CBT-only domains or ``clouds''.

 The CBT architecture is described in an accompanying document:
 draft-ietf-idmr-arch-00.txt. Other related documents include [4, 5].

_1. _D_o_c_u_m_e_n_t _L_a_y_o_u_t

 We describe the protocol details by means of example using the topol-
 ogy shown in figure 1. Examples show how a host joins a group and
 leaves a group, and we also show various tree maintenance scenarios.

 In this figure member hosts are shown as capital letters, routers are
 prefixed with R, and subnets are prefixed with S.

 Figure 1 is shown over...

https://datatracker.ietf.org/doc/pdf/draft-ietf-idmr-arch-00.txt

Expires November 20th, 1995 [Page 2]

INTERNET-DRAFT CBT Protocol Specification June 1995

 A B
 | S1 S4 |
 ------------------- ---
 | | | |
 ------ ------ ------ ------
 | R1 | | R2 | | R5 | | R6 |
 ------ ------ ------ ------
 C | | | | |
 | | | | S2 | S8 |
 ---------- -- -------------
 S3 |

 | R3 |
 | ------ D
 | S9 | | S5 |
 | | ---
 | |----| | |
 ---| R7 |-----| ------
 | |----| |------------------| R4 |
 | S7 | ------ F
 | | | S6 |
 |-E | ---------------------------------
 | |
 | ------
 |---| |---------------------| R8 |
 |R12 -----| ------ G
 |---| | | | S10
 | S14 ----------------------------
 | |
 I --| ------
 | | R9 |

 | S12
 | ----------------------------
 S15 | |
 | ------
 |----------------------|R10 |
 J ---| ------ H
 | | |
 | ----------------------------
 | S13

 Figure 1. Example Network Topology

Expires November 20th, 1995 [Page 3]

INTERNET-DRAFT CBT Protocol Specification June 1995

_2. _P_r_o_t_o_c_o_l _S_p_e_c_i_f_i_c_a_t_i_o_n

_2._1. _C_B_T _G_r_o_u_p _I_n_i_t_i_a_t_i_o_n

 Like any of the other multicast schemes, one user, the group initia-
 tor, initiates a CBT multicast group. Group initiation could be car-
 ried out by a network management centre, or by some other external
 means, rather than have a user act as group initiator. However, in
 the author's implementation, this flexibility has been afforded the
 user, and a CBT group is invoked by means of a graphical user inter-
 face (GUI), known as the CBT User Group Management Interface.

 NOTE: Work is currently in progress to address the issue of core
 placement.

_2._2. _T_r_e_e _J_o_i_n_i_n_g _P_r_o_c_e_s_s

 The following steps are involved in a host establishing itself as
 part of a CBT multicast tree:

 o+ the joining host must inform all routers on its subnet that it
 requires a Designated Router (DR) for the group it wishes to
 join (it is a requirement that only one router, the DR, forward
 to and from upstream to avoid loops).

 o+ the establishment of a DR for the group.

 o+ once established, the DR must proceed to join the distribution
 tree.

 The following CBT control messages come into play during the host
 joining process:

 NOTE: all CBT message types are described in section 8 irrespective

 of some of the comments included with certain message types below.

 o+ CORE_NOTIFICATION (sent only by a group initiating host to
 inform each core for the group that it has been elected as a
 core for the group).

Expires November 20th, 1995 [Page 4]

INTERNET-DRAFT CBT Protocol Specification June 1995

 o+ CORE_NOTIFICATION_ACK

 o+ DR_SOLICITATION

 o+ DR_ADVERTISEMENT_NOTIFICATION (sent only by a local CBT-capable
 router when that router is unaware of a DR for the group on the
 same subnet, and believes it is candidate for the best next-hop
 router off the LAN to the core address as specified in the
 DR_SOLICITATION. This message acts as a tie-breaker in the case
 where there are two or more such routers on a subnet).

 o+ DR_ADVERTISEMENT

 o+ TAG_REPORT (sent by a joining host to the DR subsequent to
 receiving a DR_ADVERTISEMENT. This message serves to invoke the
 DR to become part of the distribution tree, if not already, by
 sending a JOIN_REQUEST).

 o+ JOIN_REQUEST (sent only by the group's DR iff it is not yet part
 of, or in the process of, joining the corresponding CBT tree).

 o+ JOIN_ACK

 o+ HOST_JOIN_ACK (multicast across the subnet by the local DR as an
 indication that the DR is part of the distribution tree. This
 message may be sent in immediate response to receiving a
 TAG_REPORT, depending on whether the DR is already part of the
 CBT tree or not. If not it is sent subsequent to the DR receiv-
 ing a JOIN_ACK).

 A group-initiating host sends a CORE-NOTIFICATION message to each of
 the elected cores for the group. This message is acknowledged
 (CORE_NOTIFICATION_ACK) by each core individually. Provided at least
 one ACK is received a host will not be prevented from joining the
 tree.

 The purpose of the CORE_NOTIFICATION is twofold: firstly, to communi-
 cate the identities of all of the cores, together with their rank-
 ings, to each of them individually; secondly, to invoke the building
 of the core backbone or core tree. These two procedures follow on one
 to the other in the order just described. New receivers attempting to
 join whilst the building of the core backbone is still in progress
 have their explicit JOIN-REQUEST messages stored by whichever CBT-
 capable router involved in the core joining process is encountered
 first.

Expires November 20th, 1995 [Page 5]

INTERNET-DRAFT CBT Protocol Specification June 1995

 Taking our example topology in figure 1, host A is the group initia-
 tor. The elected cores are router R4 (primary core) and R9 (secon-
 dary core). Host A first sends a CORE_NOTIFICATION to each of R4 and
 R9, and each responds positively with a CORE_NOTIFICATION_ACK.
 CORE_NOTIFICATION messages are always unicast.

 Subsequent to sending a CORE_NOTIFICATION_ACK, each secondary core
 router (in this case there is only one secondary, R9) proceeds to
 join the primary core, and thus forms the core tree, or backbone; R9
 unicasts a JOIN_REQUEST (subcode CORE_JOIN) to R8, its best next-hop
 to the primary core, R4. JOIN_REQUESTs (and corresponding ACKs) are
 processed by all intervening CBT-capable routers, and forwarded if
 necessary. R8 forwards the JOIN_REQUEST to R4, remembering the incom-
 ing and outgoing interfaces of the JOIN_REQUEST.

 R4 receives the JOIN_REQUEST (subcode CORE_JOIN), realises it is the
 target of the join, and therefore sends a JOIN_ACK back out of the
 receiving interface to the previous-hop sender of the join. R8
 receives the JOIN_ACK and forwards it to R9 over the interface the
 join was received from R9. On receipt of the JOIN_ACK, R9 need take
 no further action. Core tree set up is complete.

 For the period between any CBT-capable router forwarding (or ori-
 ginating) a JOIN_REQUEST and receiving a JOIN_ACK the corresponding
 router is not permitted to acknowledge any subsequent joins received
 for the same group; rather, the router caches such joins till such
 time as it has itself received a JOIN_ACK for the original join, at
 which time it can acknowledge any cached joins. A router is said to
 be in a pending-join state if it is awaiting a JOIN_ACK itself.

 Returning to host A which has just received both

 CORE_NOTIFICATION_ACKs, it must now establish which local CBT router
 is DR for the group. Since A is the group initiator it is highly
 unlikely that a DR for the group will already exist. If A was joining
 an existing group a DR may already be present.

 Host A sends a DR_SOLICITATION (IP TTL 1) to the "all-CBT-routers"
 address (224.0.0.7). The solicitation contains one of core addresses
 as elected by the host, to which it wishes a join to be sent. Any
 routers on the same subnet receiving the solicitation establish
 whether they are the best next-hop to the specified core or not. If a
 router does consider itself a candidate and has no record for a DR
 for the group, it multicasts a DR_ADV_NOTIFICATION to the "all-CBT-
 routers" group (224.0.0.7). This message acts as a tie-breaker in the
 case where there is more than one CBT router on the subnet which

Expires November 20th, 1995 [Page 6]

INTERNET-DRAFT CBT Protocol Specification June 1995

 thinks it is the best next-hop to the core. The lowest-addressed
 source of a DR_ADV_NOTIFICATION wins the election and subsequently
 advertises itself as DR by means of a DR_ADVERTISEMENT, multicast to
 the "all-systems group (224.0.0.1). As R1 is the only router on A's
 subnet, it responds with a DR_ADV_NOTIFICATION followed by a
 DR_ADVERTISEMENT.

 The time between sending a DR_ADV_NOTIFICATION and a DR_ADVERTISEMENT
 should be configurable and ideally less than one second so as to keep
 join latency to a minimum.

 The DR election for subnet S4 is more complex. When host B sends a
 DR_SOLICITATION routers R2, R5 and R6 receive it. Assuming R2 and R5
 both believe they are the best next-hop to R4 (the specified core)
 both send a DR_ADV_NOTIFICATION. R2 (the lower addressed) wins the
 tie-breaker and subsequently multicasts a DR_ADVERTISEMENT to S4. All
 subnets with joining hosts proceed similarly.

 A DR candidate is a router whose outgoing interface, as specified in
 its routing table entry for the destination, is different than the
 interface over which the DR_SOLICITATION arrived.

 On receiving a DR_ADVERTISEMENT host A sends a TAG_REPORT to the DR,
 R1. R1 responds by unicasting a JOIN_REQUEST (subcode ACTIVE_JOIN) to
 R3 -- the best next-hop to R4, the desired target of the join. R3
 forwards (unicast) the received join to R4, remembering incoming and
 outgoing interfaces. R4, now already established on tree for the

 group responds to the JOIN_REQUEST with a JOIN_ACK, and sends it to
 R3, which in turn sends it to R1. The branch R1-R3-R4 is now complete
 and part of the distribution tree.

 On receipt of the JOIN_ACK, R1 multicasts to the "all-systems"
 address (224.0.0.1) a HOST_JOIN_ACK which is a notification to the
 joining end-system that the DR has been successful in joining the
 tree. The multicast application running on host A can now send data.

 Host B proceeds to join the group in a similar fashion, but there are
 some subtle differences. Host B is not the group initiator and it
 need not send CORE_NOTIFICATIONs. Host B's first step is to elect a
 DR, as described above. On receipt of a DR_ADVERTISEMENT from router
 R2 in this case, B unicasts a TAG_REPORT to R2. The core specified in
 the TAG_REPORT is R4. In response the the TAG_REPORT, R2 unicasts a
 JOIN_REQUEST (subcode ACTIVE_JOIN) to R3, the best next-hop to R4. R3
 however, has just joined the tree and so can acknowledge the received
 join, i.e. it need not travel all the way to R4. R3 unicasts a

Expires November 20th, 1995 [Page 7]

INTERNET-DRAFT CBT Protocol Specification June 1995

 JOIN_ACK to R2, which results in R2 multicasting a HOST_JOIN_ACK
 across subnet S4.

_3. _D_a_t_a _P_a_c_k_e_t _F_o_r_w_a_r_d_i_n_g (_C_B_T _m_o_d_e)

 "CBT mode" as opposed to "native mode" describes the
 forwarding/sending of data packets over CBT tree interfaces contain-
 ing a CBT header encapsulation. For efficiency, this encapsulation is
 as follows:

 ++
 | encaps IP hdr | CBT hdr | original IP hdr | data|
 ++

 Figure 2. Encapsulation for CBT mode

 By using the encapsulations above there is virtually no necessity to
 modify a packet's original IP header, and decapsulation is relatively

 efficient.

 It is worth pointing out at this point the distinction between sub-
 networks and tree branches, although they can be one and the same.
 For example, a multi-access subnetwork containing routers and end-
 systems could potentially be both a CBT tree branch and a subnetwork
 with group member presence. A tree branch which is not simultaneously
 a subnetwork is a "tunnel" or a point-to-point link.

 In CBT forwarding mode there are three forwarding methods used by CBT
 routers:

 o+ IP multicasting. This method is used to send a data packet
 across a directly-connected subnetwork with group member pres-
 ence. Thus, system host changes are not required for CBT. Simi-
 larly, end-systems originating multicast data do so in tradi-
 tional IP-style.

 o+ CBT unicasting. This method is used for sending data packets
 encapsulated (as illustrated above) across a tunnel or point-
 to-point link.

Expires November 20th, 1995 [Page 8]

INTERNET-DRAFT CBT Protocol Specification June 1995

 o+ CBT multicasting. This method sends data packets encapsulated
 (as illustrated above) but the outer encapsulating IP header
 contains a multicast address. This method is used when a parent
 or multiple children are reachable over a single physical inter-
 face, as could be the case on a multi-access Ethernet. The IP
 module of end-systems subscribed to the same group will discard
 these multicasts since the CBT payload type will not be recog-
 nized.

 CBT routers create Forwarding Information Base (FIB) entries whenever
 they send or receive a JOIN_ACK. The FIB describes the parent-child
 relationships on a per-group basis. A FIB entry dictates over which
 tree interfaces, and how (unicast or multicast) a data packet is to
 be sent. Additionally, a data packet is IP multicast over any
 directly-connected subnetworks with group member presence. Such
 interfaces are kept in a separate table relating to IGMP. A FIB entry
 is shown below:

 32-bits 4 4 4 4 | 4
 +-+
 | group-id | parent addr | parent vif | No. of | |
 | | index | index |children | children |
 +-+
 |chld addr |chld vif |
 | index | index |
 |+-+-+-+-+-+-+-+-+-+-+
 |chld addr |chld vif |
 | index | index |
 |+-+-+-+-+-+-+-+-+-+-+
 |chld addr |chld vif |
 | index | index |
 |+-+-+-+-+-+-+-+-+-+-+
 | |
 | etc. |
 |+-+-+-+-+-+-+-+-+-+-+

 Figure 3. CBT FIB entry

Expires November 20th, 1995 [Page 9]

INTERNET-DRAFT CBT Protocol Specification June 1995

 The field lengths shown above assume a maximum of 16 directly con-
 nected neighbouring routers.

 When a data packet arrives at a CBT router, the following rules
 apply:

 o+ if the packet is an IP-style multicast, it is checked to see if
 it originated locally (i.e. if the arrival interface subnetmask
 ANDed with the packet's source IP address equals the arrival
 interface's subnet number, the packet was sourced locally). If
 it does not the packet is discarded.

 o+ the packet is IP multicast to all directly connected subnets
 with group member presence. The packet is sent with an IP TTL
 value of 1 in this case.

 o+ the packet is encapsulated for CBT forwarding (see figure 2) and
 unicast to parent and children. However, if more than one child
 is reachable over the same interface the packet will be CBT mul-
 ticast. Therefore, it is possible that an IP-style multicast and
 a CBT multicast will be forwarded over a particular subnetwork.

 Using our example topology in figure 1, let's assume member G ori-
 ginates an IP multicast packet. R8 is the DR for subnet S10 (R4 is DR
 for all its attached subnets). R8 CBT unicasts the packet to each of
 its children, R9 and R12. These children are not reachable over the
 same interface. R8, being the DR for subnets S14 and S10 also IP mul-
 ticasts the packet to S14 (S10 received the IP style packet already
 from the originator). R9, the DR for S12, need not IP multicast onto
 S12 since there are no members present there. R9 CBT unicasts the
 packet to R10, which is the DR for S13 and S15. It IP multicasts to
 both S13 and S15.

 Going upstream from R8, R8 CBT unicasts to R4. It is DR for all
 directly connected subnets and therefore IP multicasts the data
 packet onto S5, S6 and S7, all of which have member presence. R4 uni-
 casts the packet to all outgoing children, R3 and R7 (NOTE: R4 does
 not have a parent since it is the primary core router for the group).
 R7 IP multicasts onto S9. R3 CBT unicasts to R1 and R2, its children.
 Finally, R1 IP multicasts onto S1 and S3, and R2 IP multicasts onto
 S4.

Expires November 20th, 1995 [Page 10]

INTERNET-DRAFT CBT Protocol Specification June 1995

_3._1. _N_o_n-_M_e_m_b_e_r _S_e_n_d_i_n_g

 For a multicast data packet to span beyond the scope of the originat-
 ing subnetwork at least one CBT-capable router must be present on
 that subnetwork. The DR for the group on the subnetwork must encap-
 sulate the IP-style packet and unicast it to a core for the group.
 This requires CBT routers to have access to a mapping mechanism
 between group addresses and core routers. This mechanism is
 currently beyond the scope of this document.

_4. _D_a_t_a _P_a_c_k_e_t _F_o_r_w_a_r_d_i_n_g (_n_a_t_i_v_e _m_o_d_e)

 In CBT "native mode" only one forwarding method is used, namely all
 data packets are forwarded over CBT tree interfaces as native IP mul-
 ticasts, i.e. there are no encapsulations required. This assumes that
 CBT is the multicast routing protocol in operation within the domain
 (or "cloud") in question. It also assumes that all routers within the
 domain of operation are CBT-capable, i.e. there are no "tunnels". If
 this latter constraint cannot be satisfied it is necessary to encap-
 sulate IP-over-IP before forwarding to a child or parent reachable
 via non-CBT-capable router(s).

 Besides the structural characteristics of "native mode" data packets,
 described above, the data packet forwarding rules are identical to
 those described in section 3.

_4._1. _N_o_n-_M_e_m_b_e_r _S_e_n_d_i_n_g (_n_a_t_i_v_e _m_o_d_e)

 For a multicast data packet to span beyond the scope of the originat-
 ing subnetwork at least one CBT-capable router must be present on
 that subnetwork. The DR for the group on the subnetwork must encap-
 sulate (IP-over-IP) the IP-style packet and unicast it to a core for
 the group. This requires CBT routers to have access to a mapping
 mechanism between group addresses and core routers. This mechanism
 is currently beyond the scope of this document.

Expires November 20th, 1995 [Page 11]

INTERNET-DRAFT CBT Protocol Specification June 1995

_5. _T_r_e_e _M_a_i_n_t_e_n_a_n_c_e

 Once a tree branch has been created, i.e. a CBT router has received a
 JOIN_ACK for a JOIN_REQUEST previously sent (forwarded), a child
 router is required to monitor the status of its parent/parent link at
 fixed intervals by means of a ``keepalive'' mechanism operating
 between them. The ``keepalive'' mechanism is implemented by means of

 two CBT control messages: CBT_ECHO_REQUEST and CBT_ECHO_REPLY.

 For any non-core router, if its parent router, or path to the parent,
 fails, that non-core router is initially responsible for re-attaching
 itself, and therefore all routers subordinate to it on the same
 branch, to the tree.

_5._1. _R_o_u_t_e_r _F_a_i_l_u_r_e

 A non-core router can detect a failure from the following two cases:

 o+ if a child stops receiving CBT_ECHO_REPLY messages. In this case
 the child realises that its parent has become unreachable and
 must therefore try and re-connect to the tree. It does so by
 arbitrarily choosing an alternate core from its list of cores
 for this group. It establishes a chosen core's reachability by
 unicasting a CBT_CORE_PING message to it, to which the core
 responds with a CBT_PING_REPLY. On receipt of the latter, the
 re-joining router sends a JOIN_REQUEST (subcode ACTIVE_REJOIN)
 to the best next-hop router on the path to the core. A router
 will continue arbitrarily choosing an alternate core until a
 CBT_PING_REPLY is received.

 o+ if a parent stops receiving CBT_ECHO_REQUESTs from a child. In
 this case the parent simply removes the child interface from its
 FIB entry for the particular group.

_5._2. _R_o_u_t_e_r _R_e-_S_t_a_r_t_s

 There are two cases to consider here:

 o+ Core re-start. In this case, the core router relies on receiving
 a CBT_CORE_PING message, which contains the list of cores for
 the specified group. Obviously, one of the core addresses will

Expires November 20th, 1995 [Page 12]

INTERNET-DRAFT CBT Protocol Specification June 1995

 be its own. If a core realises its core status for a group in
 this way, if it is not the primary it sends a JOIN_REQUEST (sub-
 code ACTIVE_JOIN) to the primary core. If the router in ques-

 tion is the primary it need not send a join, but rather awaits
 joins and considers itself part of the tree again.

 o+ Non-core re-start. In this case, the router can only join the
 tree again if a downstream router sends a JOIN_REQUEST through
 it, or it is elected DR for one of its directly attached sub-
 nets.

_5._3. _R_o_u_t_e _L_o_o_p_s

 Routing loops are only a concern when a router with at least one
 child is attempting to re-join a CBT tree. In this case the re-
 joining router sends a JOIN_REQUEST (subcode ACTIVE REJOIN) to the
 best next-hop on the path to the core. This join is forwarded as nor-
 mal until it reaches either the core or a non-core router that is
 already part of the tree. If the join reaches the specified core, the
 join terminates there and is ACKd as normal. If however, the join is
 terminated by non-core router, the ACTIVE_REJOIN is converted to a
 NON_ACTIVE_REJOIN and forwarded upstream. A JOIN_ACK is also sent
 downstream to acknowledge the received join. The NON_ACTIVE_REJOIN
 is a loop detection packet. All routers receiving this must forward
 it over their parent interface. If the originator of the correspond-
 ing ACTIVE_REJOIN should receive the NON_ACTIVE_REJOIN it immediately
 sends a QUIT_REQUEST to its recently established parent and the loop
 is broken.

 o+ Using figure 4 (over) to demonstrate this, if R3 is attempting
 to re-join the tree (R1 is the core in figure 4) and R3 believes
 its best next-hop to R1 is R6, and R6 believes R5 is its best
 next-hop to R1, which sees R4 as its best next-hop to R1 -- a
 loop is formed. R3 begins by sending a JOIN_REQUEST (subcode
 ACTIVE_REJOIN, since R4 is its child) to R6. R6 forwards the
 join to R5. R5 is on-tree for the group, so changes the join
 subcode to NON_ACTIVE_REJOIN, and forwards this to its parent,
 R4. R4 forwards the NON_ACTIVE_REJOIN to R3, its parent. R3
 originated the corresponding ACTIVE_REJOIN, and so it immedi-
 ately sends a QUIT_REQUEST to R6, which in turn sends a quit if
 it has not received an ACK from R5 already AND has itself a
 child or subnets with member presence. If so it need not send a
 quit -- the loop has been broken by R3 sending the first quit.

Expires November 20th, 1995 [Page 13]

INTERNET-DRAFT CBT Protocol Specification June 1995

 QUIT_REQUESTs are typically acknowledged by means of a QUIT_ACK, but
 there might be cases where, due to failure, the parent cannot
 respond. In this case the child nevertheless removes the parent
 information after some small number of re-tries.

 | R1 |

 |

 |

 | R2 |

 |

 | |
 ------ |
 | R3 |--------------------------|
 ------ |
 | |
 --------------------------- |
 | | ------
 ------ | | |
 | R4 | |-------| R6 |
 ------ | |----|
 | |
 --------------------------- |
 | |
 ------ |
 | R5 |--------------------------|
 ------ |
 |

 Figure 4: Example Loop Topology

_6. _D_a_t_a _P_a_c_k_e_t _L_o_o_p_s

 NOTE: this is only applicable when CBT header encapsulation is in
 use.

Expires November 20th, 1995 [Page 14]

INTERNET-DRAFT CBT Protocol Specification June 1995

 When a data packet hits its first on-tree router, that router is
 responsible for setting the on-tree bits in the CBT header. This
 indicates to all subsequent routers on the tree that the packet is in
 the process of spanning the tree for the group. However, it might be
 that a misbehaving router forwards an on-tree packet over a non-tree
 interface, and such a packet might work its way back onto the tree,
 potentially forming a data packet loop. Therefore, the on-tree bits
 in the CBT header serve to identify such packets -- should a router
 receive a data packet with its on-tree bits set over a non-tree
 interface the packet is immediately discarded.

_7. _T_r_e_e _T_e_a_r_d_o_w_n

 There are two scenarios whereby a tree branch may be torn down:

 o+ During a re-configuration, if a router's best next-hop to the
 specified core is one of its existing children then before send-
 ing the re-join it must tear down that particular downstream
 branch. It does so by sending a FLUSH_TREE message which is pro-
 cessed hop-by-hop down the branch. All routers receiving this
 message must process it and forward it to all their children.
 Routers that have received a flush message will re-establish
 themselves on the delivery tree if they have directly connected
 subnets with group presence. Subsequent to sending a FLUSH_TREE,
 the router can send the re-join to its child.

 o+ If a CBT router has no children it periodically checks all its
 directly connected subnets for group member presence. If no
 member presence is ascertained on any of its subnets it sends a
 QUIT_REQUEST upstream to remove itself from the tree.

 With regards to the latter scenario, lets see using the example
 topology of figure 1 how a tree branch is torn down.

 Assume member E leaves the group (if IGMPv2 is in use an explicit
 IGMP_LEAVE message will be sent by E). If R7 registers no further
 group presence (by means of IGMP) then R7 sends a QUIT_REQUEST to R4.
 R4 responds with a QUIT_ACK to R7. R4 has children AND subnets with
 group presence, and so does not itself attempt to quit the tree. The
 branch R4-R7 has been torn down.

Expires November 20th, 1995 [Page 15]

INTERNET-DRAFT CBT Protocol Specification June 1995

_8. _C_B_T _P_a_c_k_e_t _F_o_r_m_a_t_s _a_n_d _M_e_s_s_a_g_e _T_y_p_e_s

 CBT packets travel in IP datagrams. We distinguish between two types
 of CBT packet: CBT data packets, and CBT control packets.

 CBT data packets carry a CBT header when these packets are traversing
 CBT tree branches. The enscapsulation (for "CBT mode") is shown
 below:

 ++
 | encaps IP hdr | CBT hdr | original IP hdr | data|
 ++

 Figure 5. Encapsulation for CBT mode

 CBT control packets carry a CBT control header. All CBT control mes-
 sages are implemented over UDP. This makes sense for several reasons:
 firstly, all the information required to build a CBT delivery tree is
 kept in user space. Secondly, implementation is made considerably
 easier.

 CBT control messages fall into two categories: primary maintenance
 messages, which are concerned with tree-building, re-configuration,
 and teardown, and auxiliary maintenance messsages, which are mainly
 concerned with general tree maintenance.

_8._1. _C_B_T _H_e_a_d_e_r _F_o_r_m_a_t

See over....

Expires November 20th, 1995 [Page 16]

INTERNET-DRAFT CBT Protocol Specification June 1995

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | vers |unused | type | hdr length | protocol |
 +-+
 | checksum | IP TTL | on-tree|unused|
 +-+
 | group identifier |
 +-+
 | core address |
 +-+
 | packet origin |
 +-+
 | flow identifier |
 +-+
 | security fields |
 | (T.B.D) |
 +-+

 Figure 6. CBT Header

 Each of the fields is described below:

 o+ Vers: Version number -- this release specifies version 1.

 o+ type: indicates whether the payload is data or control infor-
 mation.

 o+ hdr length: length of the header, for purpose of checksum
 calculation.

 o+ protocol: upper-layer protocol number.

 o+ checksum: the 16-bit one's complement of the one's complement
 of the CBT header, calculated across all fields.

 o+ IP TTL: TTL value gleaned from the IP header where the packet

 originated. It is decremented each time it traverses a CBT
 router.

 o+ on-tree: indicates whether the packet is on- or off-tree.
 Once this field is set (i.e. on-tree), it is non-changing.

Expires November 20th, 1995 [Page 17]

INTERNET-DRAFT CBT Protocol Specification June 1995

 o+ group identifier: multicast group address.

 o+ core address: the unicast address of a core for the group. A
 core address is always inserted into the CBT header by an
 originating host, since at any instant, it does not know if
 the local DR for the group is on-tree. If it is not, the
 local DR must unicast the packet to the specified core.

 o+ packet origin: source address of the originating end-system.

 o+ flow-identifier: value uniquely identifying a previously set
 up data stream.

 o+ security fields: these fields (T.B.D.) will ensure the
 authenticity and integrity of the received packet.

_8._2. _C_o_n_t_r_o_l _P_a_c_k_e_t _H_e_a_d_e_r _F_o_r_m_a_t

The individual fields are described below. It should be noted that the
contents of the fields beyond ``group identifier'' are empty in some
control messages:

Expires November 20th, 1995 [Page 18]

INTERNET-DRAFT CBT Protocol Specification June 1995

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | vers |unused | type | code | unused |
 +-+
 | hdr length | checksum |
 +-+
 | group identifier |
 +-+
 | packet origin |
 +-+
 | core address |
 +-+
 | Core #1 |
 +-+
 | Core #2 |
 +-+
 | Core #3 |
 +-+
 | Core #4 |
 +-+
 | Core #5 |
 +-+
 | Resource Reservation fields |
 | (T.B.D) |
 +-+
 | security fields |
 | (T.B.D) |
 +-+

 Figure 7. CBT Control Packet Header

 o+ Vers: Version number -- this release specifies version 1.

 o+ type: indicates control message type (see sections 1.3, 1.4).

 o+ code: indicates sub-code of control message type.

 o+ header length: length of the header, for purpose of checksum
 calculation.

 o+ checksum: the 16-bit one's complement of the one's complement
 of the CBT control header, calculated across all fields.

Expires November 20th, 1995 [Page 19]

INTERNET-DRAFT CBT Protocol Specification June 1995

 o+ group identifier: multicast group address.

 o+ packet origin: source address of the originating end-system.

 o+ core address: desired/actual core affiliation of control mes-
 sage.

 o+ Core #Z: Maximum of 5 core addresses may be specified for any
 one group. An implementation is not expected to utilize more
 than, say, 3.

 NOTE: It was an engineering design decision to have a fixed max-
 imum number of core addresses, to avoid a variable-sized packet.

 o+ Resource Reservation fields: these fields (T.B.D.) are used
 to reserve resources as part of the CBT tree set up pro-
 cedure.

 o+ Security fields: these fields (T.B.D.) ensure the authenti-
 city and integrity of the received packet.

_8._3. _P_r_i_m_a_r_y _M_a_i_n_t_e_n_a_n_c_e _M_e_s_s_a_g_e _T_y_p_e_s

 There are six types of CBT primary maintenance message, namely:

 o+ JOIN-REQUEST: invoked by an end-system, generated and sent
 (unicast) by a CBT router to the specified core address. It
 is processed hop-by-hop on its way to the specified core. Its
 purpose is to establish the sending CBT router, and all
 intermediate CBT routers, as part of the corresponding
 delivery tree.

 o+ JOIN-ACK: an acknowledgement to the above. The full list of
 core addresses is carried in a JOIN-ACK, together with the
 actual core affiliation (the join may have been terminated by
 an on-tree router on its journey to the specified core, and
 the terminating router may or may not be affiliated to the
 core specified in the original join). A JOIN-ACK traverses
 the same path as the corresponding JOIN-REQUEST, and it is

Expires November 20th, 1995 [Page 20]

INTERNET-DRAFT CBT Protocol Specification June 1995

 the receipt of a JOIN-ACK that actually creates a tree
 branch.

 o+ JOIN-NACK: a negative acknowledgement, indicating that the
 tree join process has not been successful.

 o+ QUIT-REQUEST: a request, sent from a child to a parent, to be
 removed as a child to that parent.

 o+ QUIT-ACK: acknowledgement to the above. If the parent, or the
 path to it is down, no acknowledgement will be received
 within the timeout period. This results in the child
 nevertheless removing its parent information.

 o+ FLUSH-TREE: a message sent from parent to all children, which
 traverses a complete branch. This message results in all tree
 interface information being removed from each router on the
 branch, possibly because of a re-configuration scenario.

 The JOIN-REQUEST has three valid sub-codes, namely JOIN-ACTIVE, RE-
 JOIN-ACTIVE, and RE-JOIN-NACTIVE.

 A JOIN-ACTIVE is sent from a CBT router that has no children for the

 specified group.

 A RE-JOIN-ACTIVE is sent from a CBT router that has at least one
 child for the specified group.

 A RE-JOIN-NACTIVE originally started out as an active re-join, but
 has reached an on-tree router for the corresponding group. At this
 point, the router changes the join status to non-active re-join and
 forwards it on its parent branch, as does each CBT router that
 receives it. Should the router that originated the active re-join
 subsequently receive the non-active re-join, it must immediately send
 a QUIT-REQUEST to its parent router. It then attempts to re-join
 again. In this way the re-join acts as a loop-detection packet.

_8._4. _A_u_x_i_l_l_i_a_r_y _M_a_i_n_t_e_n_a_n_c_e _M_e_s_s_a_g_e _T_y_p_e_s

 There are eleven CBT auxilliary maintenance message types:

Expires November 20th, 1995 [Page 21]

INTERNET-DRAFT CBT Protocol Specification June 1995

 o+ CBT-DR-SOLICITATION: a request sent from a host to the CBT
 ``all-routers'' multicast address, for the address of the
 best next-hop CBT router on the LAN to the core as specified
 in the solicitation.

 o+ CBT-DR-ADVERTISEMENT: a reply to the above. Advertisements
 are addressed to the ``all-systems'' multicast group.

 o+ CBT-CORE-NOTIFICATION: unicast from a group initiating host
 to each core selected for the group, this message notifies
 each core of the identities of each of the other core(s) for
 the group, together with their core ranking. The receipt of
 this message invokes the building of the core tree by all
 cores other than the highest-ranked (primary core).

 o+ CBT-CORE-NOTIFICATION-ACK: a notification of acceptance to
 becoming a core for a group, to the corresponding end-system.

 o+ CBT-ECHO-REQUEST: once a tree branch is established, this

 messsage acts as a ``keepalive'', and is unicast from child
 to parent.

 o+ CBT-ECHO-REPLY: positive reply to the above.

 o+ CBT-CORE-PING: unicast from a CBT router to a core when a
 tree router's parent has failed. The purpose of this message
 is to establish core reachability before sending a JOIN-
 REQUEST to it.

 o+ CBT-PING-REPLY: positive reply to the above.

 o+ CBT-TAG-REPORT: unicast from an end-system to the designated
 router for the corresponding group, subsequent to the end-
 system receiving a designated router advertisement (as well
 as a core notification reply if group-initiating host). This
 message invokes the sending of a JOIN-REQUEST if the receiv-
 ing router is not already part of the corresponding tree.

 o+ CBT-HOST_JOIN_ACK: group-specific multicast by a CBT router
 that originated a JOIN-REQUEST on behalf of some end-system
 on the same LAN (subnet). The purpose of this message is to
 notify end-systems on the LAN belonging to the specified
 group of such things as: success in joining the delivery
 tree; actual core affiliation.

Expires November 20th, 1995 [Page 22]

INTERNET-DRAFT CBT Protocol Specification June 1995

 o+ CBT-DR-ADV-NOTIFICATION: multicast to the CBT ``all-routers''
 address, this message is sent subsequent to receiving a CBT-
 DR-SOLICITATION, but prior to any CBT-DR-ADVERTISEMENT being
 sent. It acts as a tie-breaking mechanism should more than
 one router on the subnet think itself the best next-hop to
 the addressed core. It also promts an already established DR
 to announce itself as such if it has not already done so in
 response to a CBT-DR-SOLICITATION.

_9. _I_n_t_e_r_o_p_e_r_a_b_i_l_i_t_y _I_s_s_u_e_s

 One of the design goals of CBT is for it to fully interwork with
 other IP multicast schemes. We have already described how CBT-style

 packets are transformed into IP-style multicasts, and vice-versa.

 In order for CBT to fully interwork with other schemes, it is neces-
 sary to define the interface(s) between a ``CBT cloud'' and the cloud
 of another scheme. The CBT authors are currently working out the
 details of the ``CBT-other'' interface, and therefore we omit further
 discussion of this topic at the present time.

_1_0. _C_B_T _S_e_c_u_r_i_t_y _A_r_c_h_i_t_e_c_t_u_r_e

 see current I-D: draft-ietf-idmr-mkd-02.txt

Expires November 20th, 1995 [Page 23]

INTERNET-DRAFT CBT Protocol Specification June 1995

Acknowledgements

 Special thanks goes to Paul Francis, NTT Japan, for the original
 brainstorming sessions that brought about this work.

 Thanks also to team at Bay Networks for their comments and sugges-
 tions, in particular Steve Ostrowski for his suggestion of using
 "native mode" as a router optimization, Eric Crawley, Scott Reeve,
 and Nitin Jain.

 I would also like to thank the participants of the IETF IDMR working

https://datatracker.ietf.org/doc/pdf/draft-ietf-idmr-mkd-02.txt

 group meetings for their general constructive comments and sugges-
 tions since the inception of CBT.

Expires November 20th, 1995 [Page 24]

INTERNET-DRAFT CBT Protocol Specification June 1995

Author's Address:

 Tony Ballardie,
 Department of Computer Science,
 University College London,
 Gower Street,
 London, WC1E 6BT,

 ENGLAND, U.K.

 Tel: ++44 (0)71 419 3462
 e-mail: A.Ballardie@cs.ucl.ac.uk

 Nitin Jain,
 Bay Networks, Inc.
 3 Federal Street,
 Billerica, MA 01821,
 USA.

 Tel: ++1 508 670 8888
 e-mail: njain@BayNetworks.com

 Scott Reeve,
 Bay Networks, Inc.
 3 Federal Street,
 Billerica, MA 01821,
 USA.

 Tel: ++1 508 670 8888
 e-mail: sreeve@BayNetworks.com

References

 [1] DVMRP. Described in "Multicast Routing in a Datagram Internet-
 work", S. Deering, PhD Thesis, 1990. Available via anonymous ftp from:
 gregorio.stanford.edu:vmtp/sd-thesis.ps.

 [2] J. Moy. Multicast Routing Extensions to OSPF. Communications of
 the ACM, 37(8): 61-66, August 1994.

Expires November 20th, 1995 [Page 25]

INTERNET-DRAFT CBT Protocol Specification June 1995

 [3] D. Farinacci, S. Deering, D. Estrin, and V. Jacobson. Protocol
 Independent Multicast (PIM) Dense-Mode Specification (draft-ietf-
idmr-pim-spec-01.ps). Working draft, 1994.

https://datatracker.ietf.org/doc/pdf/draft-ietf-idmr-pim-spec-01
https://datatracker.ietf.org/doc/pdf/draft-ietf-idmr-pim-spec-01

 [4] A. J. Ballardie. Scalable Multicast Key Distribution (draft-ietf-
 idmr-mkd-02.txt). Working draft, 1995.

 [5] A. J. Ballardie. "A New Approach to Multicast Communication in a
 Datagram Internetwork", PhD Thesis, 1995. Available via anonymous ftp
 from: cs.ucl.ac.uk:darpa/IDMR/ballardie-thesis.ps.Z.

Expires November 20th, 1995 [Page 26]

https://datatracker.ietf.org/doc/pdf/draft-ietf-idmr-mkd-02.txt
https://datatracker.ietf.org/doc/pdf/draft-ietf-idmr-mkd-02.txt

