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Status of this Memo

   This document is an Internet Draft.  Internet Drafts are working do-
   cuments of the Internet Engineering Task Force (IETF), its Areas, and
   its Working Groups. Note that other groups may also distribute work-
   ing documents as Internet Drafts).

   Internet Drafts are draft documents valid for a maximum of six
   months. Internet Drafts may be updated, replaced, or obsoleted by
   other documents at any time.  It is not appropriate to use Internet
   Drafts as reference material or to cite them other than as a "working
   draft" or "work in progress."

   Please check the I-D abstract listing contained in each Internet
   Draft directory to learn the current status of this or any other
   Internet Draft.

Abstract

   This document describes the Core Based Tree (CBT) network layer mul-
   ticast protocol specification. CBT is a next-generation multicast
   protocol that makes use of a shared delivery tree rather than
   separate per-sender trees utilized by most other multicast schemes
   [1, 2, 3].

   This specification includes a description of an optimization whereby
   native IP-style multicasts are forwarded over tree branches as well
   as subnetworks with group member presence. This mode of operation
   will be called CBT "native mode" and obviates the need to encapsulate
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   data packets before forwarding over CBT tree interfaces. Native mode
   is only relevant to CBT-only domains or ``clouds''. Also included are
   some new "data-driven" features.

   A special authors' note is included explaining the latest updates to
   the CBT specification, together with some nomenclature, and miscel-
   laneous items.

   This document is progressing through the IDMR working group of the
   IETF.  The CBT architecture is described in an accompanying document:

ftp://cs.ucl.ac.uk/darpa/IDMR/draft-ietf-idmr-arch-00.txt.  Other
   related documents include [4, 5]. For all IDMR-related documents, see

http://www.cs.ucl.ac.uk/ietf/idmr.

1.  Authors' Note

   The purpose of this note is to explain how the CBT protocol has
   evolved since the previous version (November 1995).

   Since the previous release, CBT has been assigned official IP proto-
   col and UDP port numbers (section 8).

   The CBT designers have constantly been seeking to streamline the pro-
   tocol and seek new mechanisms to simplify the group initiation pro-
   cedure. Especially, it has been a high priority to ensure that join
   latency be kept to an absolute minimum. The November '95 draft intro-
   duced the re-invented subnet designated router (DR) election pro-
   cedure, described here in section 2.3.

   The concept of proxy-ACKs was introduced in the November '95 draft,
   but these have been removed since the extra message overhead does not
   warrant the negligible gain they provide.

   The CBT loop detection mechanism (comprising rejoin-active and
   rejoin-nactive) has been slightly modified, and is now simpler and
   more straighforward. The revised mechanism incorporates a new join
   ack subcode, and is explained in section 5.3.

   Core selection, placement, and management, which have prevented sim-
   ple group initiation/joining, apparent in data-driven schemes (like
   DVMRP), have been separated out from the protocol itself. Core
   management is not a problem unique to CBT, but also PIM-Sparse Mode.
   Separate, protocol-independent core management mechanisms are
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   currently being proposed/developed [8, 9]. In the absence of core
   management/distribution protocol, the task could be manually handled
   by network management facilities.

   In CBT, the core routers for a particular group are categorised into
   PRIMARY CORE, and NON-PRIMARY (secondary) CORES.

   The core tree, the part of a tree linking all core routers together,
   is built on-demand (section 2.4). That is, the core tree is only
   built subsequent to a non-primary core receiving a join-request
   (non-primary core routers join the primary core router -- the primary
   need do nothing). Join-requests carry an ordered list of core routers
   (and the identity of the primary core in its own separate field),
   making it possible for the non-primary cores to know where to join.
   On-demand core tree building is explained as part of section 2.4.

   CBT now supports the aggregation of neighbour keepalives, which pre-
   viously were sent on a per group basis. Any two adjacent CBT routers
   need only send a single keepalive between each other, rather than one
   per group. Additional aggregation strategies are currently being
   worked on, and we present some ideas on aggregated rejoins in Appen-
   dix A.  An updated draft fully specifying CBT aggregation strategy
   should appear soon.

   The end result of these developments is that the CBT protocol is much
   simplified and more efficient.

2.  Protocol Specification

2.1.  CBT Group Initiation

   The requirement of hosts to discover the identity of candidate core
   routers (or RPs) differentiates the role of hosts in shared tree mul-
   ticast protocols and shortest-path tree multicast protocols; the
   latter need only announce their desire to join a group by means of an
   IGMP membership report. It is highly desirable that hosts wishing to
   join a shared tree need only do the same, leaving local multicast
   routers to discover <core, group> mappings, or have local routers
   configured with the identity of core(s) in the next level of a
   hierarchy, as suggested by Hierarchical PIM [8].
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   If the latter approach is eventually adopted by the IETF, then host
   operations need not differ due to the type of multicast tree being
   joined, and indeed, the type of tree being joined for a particular
   group can remain transparent to the host.

   If the latter approach is not adopted, then hosts need to inform
   their local multicast router of a <core, group> mapping for each
   group joined. This requires hosts to discover <core, group> mappings,
   which in turn requires the existence of a (global) core advertisement
   protocol. Hosts subsequently need a means of advertising <core,
   group> mappings to the local multicast router so it can initiate a
   join. This requires an extension to IGMP, for example, the presence
   of IGMP RP/Core Reports, as suggested in IGMP version 3 [7], or the
   protocol itself must provide a means (message) for advertising cores
   to the local router. In the absence of H-PIM, some similar mechanism,
   or IGMPv3, CBT implementors may wish to extend CBT to include a core
   reporting message for group initiators/joiners (for example, whenever
   a group is initiated/joined, a configuration file is read which holds
   <core, group> mappings).

   Alternatively, <core, group> mappings can be downloaded to local mul-
   ticast routers by means of network management tools.

2.2.  Tree Joining Process -- Overview

   A local CBT router is notified, by IGMP, of a host's desire to join a
   group. If more than one CBT router is present on the subnetwork, each
   will receive the IGMP membership report. However, only one, the
   default subnet designated router (DEFAULT DR) will act upon the
   receipt of a report by initiating a CBT join. Note, a CBT join is
   only initiated if the subnetwork is not yet part of the delivery
   tree. Also, we assume that the local CBT default DR discovers <core,
   group> mappings by one of the mechanisms described in the previous
   section. DR election is described in section 2.3.

   The following CBT control messages come into play subequent to the
   host sending an IGMP join (host membership report):

   +    JOIN_REQUEST

   +    JOIN_ACK

   A join-request is generated by a locally-elected DR (see next
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   section) in response to receiving an IGMP group membership report
   from a directly connected host. The join is sent to the next-hop on
   the path to the target core, as specified in the join packet. The
   join is processed by each such hop on the path to the core, until
   either the join reaches the target core itself, or hits a router that
   is already part of the corresponding distribution tree (as identified
   by the group address). In both cases, the router concerned terminates
   the join, and responds with a join-ack, which traverses the reverse-
   path of the corresponding join. This is possible due to the transient
   path state created by a join traversing a CBT router. The ack fixes
   that state.

2.3.  DR Election

   Multiple CBT routers may be connected to a multi-access subnetwork.
   In such cases it is necessary to elect a (sub)network designated
   router (DR) that is responsible for sending IGMP host membership
   queries, and generating join-requests in response to receiving IGMP
   group membership reports. Such joins are forwarded upstream by the
   DR.

   The IGMP querier election is as follows (note, here we talk about
   "CBT routers", but the described mechanism also applies to the gen-
   eral case).  At start-up, a CBT router assumes it is the only CBT-
   capable router on its subnetwork. It therefore sends two IGMP-HOST-
   MEMBERSHIP-QUERYs in short succession (within 5 secs) (for robust-
   ness) in order to quickly learn about any group memberships on the
   subnet. If other CBT routers are present on the same subnet, they
   will receive these IGMP queries, and depending on which router was
   already the elected querier, yield querier duty to the new router iff
   the new router is lower-addressed. If it is not, then the newly-
   started CBT router will yield when it hears a query from the already
   established querier.

   The CBT DEFAULT DR (D-DR) is always (footnote 1) the subnet's IGMP-
_________________________

  1 This document does not address the case where  some
routers  on a multi-access subnet may be running multi-
cast routing protocols other than CBT. In  such  cases,
IGMP querier may be a non-CBT router, in which case the
CBT DR election breaks. This will be discussed in a CBT
interoperability document, to appear shortly.
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   querier; in CBT these two roles go hand-in-hand. As a result, there
   is no protocol overhead whatsoever associated with electing the CBT
   D-DR.

2.4.  Tree Joining Process -- Details

   The receipt of an IGMP group membership report by a CBT D-DR for a
   CBT group not previously heard from triggers the tree joining pro-
   cess.

   Immediately subsequent to receiving an IGMP group membership report
   for a CBT group not previously heard from, the D-DR unicasts a JOIN-
   REQUEST to the first hop on the (unicast) path to the target core
   specified in the CBT join packet.

   Each CBT-capable router traversed on the path between the sending DR
   and the core processes the join. However, if a join hits a CBT router
   that is already on-tree (footnote), the join is not propogated
   further, but ACK'd downstream from that point.

   JOIN-REQUESTs carry the identity of all cores for the group. Assuming
   there are no on-tree routers in between, once the join (subcode
   ACTIVE_JOIN) reaches the target core, if the target core is not the
   primary core (as indicated in a separate field of the join packet) it
   first acknowledges the received join by means of a JOIN-ACK, then
   sends a JOIN-REQUEST, subcode REJOIN-ACTIVE, to the primary core
   router. Either the primary core, or the first on-tree router encoun-
   tered, acknowledges the received rejoin by means of a JOIN-ACK. In
   the former case, the primary core responds by sending a join-ack,
   subcode PRIMARY-REJOIN-ACK, which traverses the reverse-path of the
   join. In the latter case, the join-ack is returned with subcode NOR-
   MAL; the receiving router responds to this with a rejoin-Nactive, for
   loop detection. Note that loop detection is not necessary subsequent
   to receiving a join-ack with subcode PRIMARY-REJOIN-ACK.  Loop detec-
   tion is described further in section 5.3.

   To facilitate detailed protocol description, we use a sample topol-
   ogy, illustrated in Figure 1 (shown over). Member hosts are shown as
   individual capital letters, routers are prefixed with R, and subnets
_________________________
"on-tree" describes whether a router has  a  FIB  entry
for the corresponding group.
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   are prefixed with S.
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           A                               B
           |   S1              S4          |
   -------------------      -----------------------------------------------
             |                     |               |               |
           ------                 ------           ------           ------
           | R1 |                 | R2 |           | R5 |           | R6 |
           ------                 ------           ------           ------
      C     |  |                    |                |                 |
      |     |  |                    |    S2          |            S8   |
   ----------  ------------------------------------------        -------------
        S3                 |
                         ------
                         | R3 |
                 |       ------                       D
   | S9          |         |               S5         |
   |             |      ---------------------------------------------
   |  |----|     |                    |
   ---| R7 |-----|                  ------
   |  |----|     |------------------| R4 |
   |          S7 |                  ------            F
   |             |                    |         S6    |
   |-E           |            ---------------------------------
                      |                       |
                      |                     ------
             |---|    |---------------------| R8 |
             |R12 -----|                    ------      G
             |---|    |                       |         |  S10
                      | S14                ----------------------------
                      |                         |
                  I --|                       ------
                      |                       | R9 |
                                              ------
                                                |         S12
                     |             ----------------------------
                 S15 |                        |
                     |                      ------
                     |----------------------|R10 |
                J ---|                      ------      H
                     |                        |         |
                     |             ----------------------------
                     |                           S13

                    Figure 1. Example Network Topology
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   Taking the example topology in figure 1, host A is the group initia-
   tor, and has elected core routers R4 (primary core) and R9 (secondary
   core) by some external protocol. We assume the local CBT DR discovers
   <core,group> mappings by "some means", possible one of the mechanisms
   described in section 2.1.

   Router R1 receives an IGMP host membership report, and proceeds to
   unicast a JOIN-REQUEST, subcode ACTIVE-JOIN to the next-hop on the
   path to R4 (R3), the target core. R3 receives the join, caches the
   necessary group information, and forwards it to R4 -- the target of
   the join.

   R4, being the target of the join, sends a JOIN_ACK back out of the
   receiving interface to the previous-hop sender of the join, R3. A
   JOIN-ACK, like a JOIN-REQUEST, is processed hop-by-hop by each router
   on the reverse-path of the corresponding join. The receipt of a
   join-ack establishes the receiving router on the corresponding CBT
   tree, i.e. the router becomes part of a branch on the delivery tree.
   Finally, R3 sends a join-ack to R1.  A new CBT branch has been
   created, attaching subnet S1 to the CBT delivery tree for the
   corresponding group (footnote 2).

   For the period between any CBT-capable router forwarding (or ori-
   ginating) a JOIN_REQUEST and receiving a JOIN_ACK the corresponding
   router is not permitted to acknowledge any subsequent joins received
   for the same group; rather, the router caches such joins till such
   time as it has itself received a JOIN_ACK for the original join. Only
   then can it acknowledge any cached joins. A router is said to be in a
   pending-join state if it is awaiting a JOIN_ACK itself.

   Note that the presence of underlying transient asymmetric routes is
   irrelevant to the tree-building process; CBT tree branches are sym-
   metric by the nature in which they are built. Joins set up transient
   state (incoming and outgoing interface state) in all routers along a
   path to a particular core. The corresponding join-ack traverses the
   reverse-path of the join as dictated by the transient state, and not
   the path that underlying routing would dictate. Whilst permanent
   asymmetric routes could pose a problem for CBT, transient
_________________________

  2 At this point, it is proposed that IGMP (v3)  group
multicasts  a notification across the subnet indicating
to member hosts that the delivery tree has been  joined
successfully. Such a message would greatly benefit mul-
ticast protocols requiring explicit joins [5, 10].
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   asymmetricity is detected by the CBT protocol.

2.5.  Default DRs and Group DRs

   The DR election mechanism does not guarantee that the DR will be the
   router that actually forwards a join off a multi-access network; the
   first hop on the path to a particular core might be via another
   router on the same (sub)network, which actually forwards off-subnet.

   The CBT router that becomes the interface between the subnet and the
   rest of the CBT tree, i.e. the CBT router at which a join-ack arrives
   on the subnet, becomes the CBT GROUP DR. This group-specific DR (G-
   DR) is a token (implicit) identity. In the normal case where there is
   no subnet extra hop, the receipt of a JOIN-ACK means that the D-DR
   becomes the G-DR for the specified group.

   Although very much the same, let's see another example using our
   example topology of figure 1 of a host joining a CBT tree for the
   case where more than one CBT router exists on the host subnetwork.

   B's subnet, S4, has 3 CBT routers attached. Assume also that R6 has
   been elected IGMP-querier and CBT D-DR.

   R6 (S4's D-DR) receives an IGMP group membership report. By some
   means, R6 discovers the <core, group> mapping for the group specified
   in the report; R4 is the target core for the group. R6 generates a
   join-request for target core R4, subcode ACTIVE_JOIN.  R6's routing
   table says the next-hop on the path to R4 is R2, which is on the same
   subnet as R6. This is irrelevant to R6, which unicasts it to R2.  R2
   unicasts it to R3, which happens to be already on-tree for the speci-
   fied group (from R1's join). R3 therefore can acknowledge the arrived
   join and unicast it back to R2. R2 realises it is not the origin of
   the corresponding join-request, but sees that the origin (R6) is on
   the same subnet as itself, and that over which the join-ack should be
   forwarded to the origin, R6. R2 unicasts the join-ack on its final
   hop. R2 has thus become the group's G-DR, with R6 remaining the D-DR
   for all groups.

   If an IGMP membership report is received by a D-DR with a join for
   the same group already pending, or if the D-DR is already on-tree for
   the group, it takes no action.
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2.6.  Tree Teardown

   There are two scenarios whereby a tree branch may be torn down:

   +    During a re-configuration. If a router's best next-hop to the
        specified core is one of its existing children, then before
        sending the join it must tear down that particular downstream
        branch. It does so by sending a FLUSH_TREE message which is pro-
        cessed hop-by-hop down the branch.  All routers receiving this
        message must process it and forward it to all their children.
        Routers that have received a flush message will re-establish
        themselves on the delivery tree if they have directly connected
        subnets with group presence.

   +    If a CBT router has no children it periodically checks all its
        directly connected subnets for group member presence. If no
        member presence is ascertained on any of its subnets it sends a
        QUIT_REQUEST upstream to remove itself from the tree.

   The following example, using the example topology of figure 1, shows
   how a tree branch is gracefully torn down using a QUIT_REQUEST.

   Assume group member B leaves group G on subnet S4. B issues an IGMP
   HOST-MEMBERSHIP-LEAVE (relevant only to IGMPv2 and later versions)
   message which is multicast to the "all-routers" group (224.0.0.2).
   R6, the subnet's D-DR and IGMP-querier, responds with a group-
   specific-QUERY. No hosts respond within the required response inter-
   val, so D-DR assumes group G traffic is no longer wanted on subnet
   S4.

   Since R6 has no CBT children, and no other directly attached subnets
   with group G presence, it immediately follows on by sending a
   QUIT_REQUEST to R2, its parent on the tree for group G. R2 responds
   with a QUIT-ACK, unicast to R6; R2 removes the corresponding child
   information. R2 in turn sends a QUIT upstream to R3 (since it has no
   other children or subnet(s) with group presence).

      NOTE: immediately subsequent to sending a QUIT-REQUEST, the sender
      removes the corresponding parent information, i.e. it does not
      wait for the receipt of a QUIT-ACK.

   R3 responds to the QUIT by unicasting a QUIT-ACK to R2. R3 subse-
   quently checks whether it in turn can send a quit by checking group G
   presence on its directly attached subnets, and any group G children.
   It has the latter (R1 is its child on the group G tree), and so R3
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   cannot itself send a quit. However, the branch R3-R2-R6 has been
   removed from the tree.

3.  Data Packet Forwarding Rules

   When a router receives (non-locally originated) data packets for for-
   warding over directly attached member subnets, it only does so over
   the set of outgoing member subnets (interfaces) for which that router
   is DR, irrespective of whether group membership is registered on
   other local interfaces. In addition, in native mode, packets are for-
   warded over any remaining interfaces specified by the FIB entry for
   the group that are not in the above set (excluding the incoming
   interface). In CBT mode, encapsulated data packets are forwarded over
   the full set of interfaces specified by the FIB entry, except the
   incoming interface.

   A router only forwards data packets originated by directly attached
   hosts iff the router is the DR on the interface over which those
   packets were received.

4.  Data Packet Forwarding -- Encapsulation Details

   In "native mode" all data packets are forwarded over CBT tree inter-
   faces as native IP multicasts, i.e. there are no encapsulations
   required. This assumes that CBT is the multicast routing protocol in
   operation within the domain (or "cloud") in question, and that all
   routers within the domain of operation are CBT-capable, i.e. there
   are no "tunnels".

   In a multi-protocol environment, whose infrastructure may include
   non-multicast-capable routers, it is necessary to tunnel data packets
   between CBT-capable routers. This is called "CBT mode".  Data packets
   are de-capsulated by CBT routers (such that they become native mode
   data packets) before being forwarded over subnets with member hosts.
   When multicasting (native mode) to member hosts, the TTL value of the
   original IP header is set to one. CBT mode encapsulation is as fol-
   lows:
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           ++++++++++++++++++++++++++++++++++++++++++++++++++++++++
           | encaps IP hdr | CBT hdr | original IP hdr | data ....|
           ++++++++++++++++++++++++++++++++++++++++++++++++++++++++

                   Figure 2. Encapsulation for CBT mode

   The TTL value of the CBT header is set by the encapsulating CBT
   router directly attached to the origin of a data packet.  This value
   is decremented each time it is processed by a CBT router.  An encap-
   sulated data packet is discarded when the CBT header TTL value
   reaches zero.

   The purpose of the (outer) encapsulating IP header is to "tunnel"
   data packets between CBT-capable routers (or "islands"). The outer IP
   header's TTL value is set to the "length" of the corresponding tun-
   nel, or MAX_TTL (255)if this is not known, or subject to change.

   For native mode IP multicasts, i.e. those without any extra encapsu-
   lation, the TTL value of the IP header is decremented each time the
   packet is received by a multicast router.

   It is worth pointing out here the distinction between subnetworks and
   tree branches, although they can be one and the same. For example, a
   multi-access subnetwork containing routers and end-systems could
   potentially be both a CBT tree branch and a subnetwork with group
   member presence. A tree branch which is not simultaneously a subnet-
   work is either a "tunnel" or a point-to-point link.

   In CBT mode there are three forwarding methods used by CBT routers:

   +    IP multicasting. This method is used to send a data packet
        across a directly-connected subnetwork with group member pres-
        ence.  System host changes are not required for CBT. Similarly,
        end-systems originating multicast data do so in traditional IP-
        style.

   +    CBT unicasting. This method is used for sending data packets
        encapsulated (as illustrated above) across a tunnel or point-
        to-point link. En/de-capsulation takes place in CBT routers.

   +    CBT multicasting. Routers on multi-access links use this method
        to send data packets encapsulated (as illustrated above) but the
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        outer encapsulating IP header contains a multicast address. This
        method is used when a parent or multiple children are reachable
        over a single physical interface, as could be the case on a
        multi-access Ethernet.  The IP module of end-systems subscribed
        to the same group will discard these multicasts since the CBT
        payload type (protocol id) of the outer IP header is not recog-
        nizable by hosts.

   CBT routers create Forwarding Information Base (FIB) entries whenever
   they send or receive a JOIN_ACK. The FIB describes the parent-child
   relationships on a per-group basis. A FIB entry dictates over which
   tree interfaces, and how (unicast or multicast) a data packet is to
   be sent. Additionally, a data packet is IP multicast over any
   directly-connected subnetworks with group member presence. Such
   interfaces are kept in a separate table relating to IGMP. A FIB entry
   is shown below:

           32-bits          4            4           4              8
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+
       |   group-id  | parent addr | parent vif | No. of  |                    
|
       |             |    index    |   index    |children |      children      
|
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-++-+-+-+-+-+-+-+-+-
+
                                                          |chld addr |chld vif 
|
                                                          | index    |  index  
|
                                                          |+-+-+-+-+-+-+-+-+-+-
+
                                                          |chld addr |chld vif 
|
                                                          | index    |  index  
|
                                                          |+-+-+-+-+-+-+-+-+-+-
+
                                                          |chld addr |chld vif 
|
                                                          | index    |  index  
|
                                                          |+-+-+-+-+-+-+-+-+-+-
+
                                                          |                    
|
                                                          |         etc.       
|



                                                          |+-+-+-+-+-+-+-+-+-
+-|

                         Figure 3. CBT FIB entry

   Note that a CBT FIB is required for both CBT-mode and native-mode
   multicasting.

   The field lengths shown above assume a maximum of 16 directly con-
   nected neighbouring routers.
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   When a data packet arrives at a CBT router, the following rules
   apply:

   +    if the packet is an IP-style multicast, it is checked to see if
        it originated locally (i.e. if the arrival interface subnetmask
        bitwise ANDed with the packet's source IP address equals the
        arrival interface's subnet number, then the packet was sourced
        locally). If the packet is not of local origin, it is discarded.

   +    the packet is IP multicast to all directly connected subnets
        with group member presence. The packet is sent with an IP TTL
        value of 1 in this case.

   +    the packet is encapsulated for CBT forwarding (see figure 2) and
        unicast to parent and children. However, if more than one child
        is reachable over the same interface the packet will be CBT mul-
        ticast. Therefore, it is possible that an IP-style multicast and
        a CBT multicast will be forwarded over a particular subnetwork.

      NOTE: the TTL value of encapsulated data packets is manipulated as
      described at the beginning of this section.

   Using our example topology in figure 1, let's assume member G ori-
   ginates an IP multicast packet. R8 is the DR for subnet S10. R8 CBT
   unicasts the packet to each of its children, R9 and R12. These chil-
   dren are not reachable over the same interface. R8, being the DR for
   subnets S14 and S10 also IP multicasts the packet to S14 (S10
   received the IP style packet already from the originator). R9, the DR
   for S12, need not IP multicast onto S12 since there are no members
   present there. R9 CBT unicasts the packet to R10, which is the DR for
   S13 and S15. It IP multicasts to both S13 and S15.

   Going upstream from R8, R8 CBT unicasts to R4. It is DR for all
   directly connected subnets and therefore IP multicasts the data
   packet onto S5, S6 and S7, all of which have member presence. R4 uni-
   casts the packet to all outgoing children, R3 and R7 (NOTE: R4 does
   not have a parent since it is the primary core router for the group).
   R7 IP multicasts onto S9. R3 CBT unicasts to R1 and R2, its children.
   Finally, R1 IP multicasts onto S1 and S3, and R2 IP multicasts onto
   S4.
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4.1.  Non-Member Sending

   For a multicast data packet to span beyond the scope of the originat-
   ing subnetwork at least one CBT-capable router must be present on
   that subnetwork.  The default DR (D-DR) for the group on the subnet-
   work must encapsulate the (native) IP-style packet and unicast it to
   a core for the group. In native mode this encapsualation constitutes
   IP-in-IP. In CBT mode, the encapsulation required is shown in figure
   2. In both cases, CBT routers are required to know <core, group> map-
   pings. The alternatives for discovering these are discussed in sec-
   tion 2.1. Beyond this, this topic is beyond the scope of this docu-
   ment.

5.  Eliminating the Topology-Discovery Protocol in the Presence of Tun-
nels

   Traditionally, multicast protocols operating within a virtual topol-
   ogy, i.e. an overlay of the physical topology, have required the
   assistance of a multicast topology discovery protocol, such as that
   present in DVMRP. However, it is possible to have a multicast proto-
   col operate within a virtual topology without the need for a multi-
   cast topology discovery protocol. One way to achieve this is by hav-
   ing a router configure all its tunnels to its virtual neighbours in
   advance. A tunnel is identified by a local interface address and a
   remote interface address. Routing is replaced by "ranking" each such
   tunnel interface associated with a particular core address; if the
   highest-ranked route is unavailable (tunnel end-points are required
   to run an Hello-like protocol between themselves) then the next-
   highest ranked available route is selected, and so on. The exact
   specification of the Hello protocol is outside the scope of this
   document.

   CBT trees are built using the same join/join-ack mechanisms as
   before, only now some branches of a delivery tree run in native mode,
   whilst others (tunnels) run in CBT mode. Underlying unicast routing
   dictates which interface a packet should be forwarded over. Each
   interface is configured as either native mode or CBT mode, so a
   packet can be encapsulated (decapsulated) accordingly.

   As an example, router R's configuration would be as follows:

Expires August 9th, 1996                                       [Page 16]



INTERNET-DRAFT        CBT Protocol Specification           January 1996

   intf    type    mode    remote addr
   -----------------------------------
   #1      phys    native  -
   #2      tunnel  cbt     128.16.8.117
   #3      phys    native  -
   #4      tunnel  cbt     128.16.6.8
   #5      tunnel  cbt     128.96.41.1

   core    backup-intfs
   --------------------
   A         #5, #2
   B         #3, #5
   C         #2, #4

   The CBT FIB needs to be slightly modified to accommodate an extra
   field, "backup-intfs" (backup interfaces). The entry in this field
   specifies a backup interface whenever a tunnel interface specified in
   the FIB is down. Additional backups (should the first-listed backup
   be down) are specified for each core in the core backup table. For
   example, if interface (tunnel) #2 were down, and the target core of a
   CBT control packet were core A, the core backup table suggests using
   interface #5 as a replacement. If interface #5 happened to be down
   also, then the same table recommends interface #2 as a backup for
   core A.

6.  Tree Maintenance

   Once a tree branch has been created, i.e. a CBT router has received a
   JOIN_ACK for a JOIN_REQUEST previously sent (forwarded), a child
   router is required to monitor the status of its parent/parent link at
   fixed intervals by means of a ``keepalive'' mechanism operating
   between them.  The ``keepalive'' mechanism is implemented by means of
   two CBT control messages: CBT_ECHO_REQUEST and CBT_ECHO_REPLY.  Adja-
   cent CBT routers only need to send one keepalive per link, regardless
   of how many groups are present on that link.  This aggregation stra-
   tegy is expected to conserve considerable bandwidth on "busy" links,
   such as those nearer the "centre" of the network.

   The keepalive protocol is simple, as follows: a child unicasts a
   CBT-ECHO-REQUEST to its parent, which unicasts a CBT-ECHO-REPLY in
   response.
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   For any CBT router, if its parent router, or path to the parent,
   fails, the child is initially responsible for re-attaching itself,
   and therefore all routers subordinate to it on the same branch, to
   the tree.

6.1.  Router Failure

   An on-tree router can detect a failure from the following two cases:

   +    if the child responsible for sending keepalives across a partic-
        ular link stops receiving CBT_ECHO_REPLY messages. In this case
        the child realises that its parent has become unreachable and
        must therefore try and re-connect to the tree for all groups
        represented on the parent/child link. Until an aggregation stra-
        tegy is fully worked out, a (re)join must be sent for each group
        individually.  (We present some ideas on rejoin aggregation in

Appendix A).

        The rejoining router (that which is immediately subordinate to
        the failure) sends a JOIN_REQUEST (subcode ACTIVE_JOIN if it has
        no children attached, and subcode ACTIVE_REJOIN if at least one
        child is attached) to the best next-hop router on the path to
        the elected core. If no JOIN-ACK is received after three
        retransmissions, each transmission being at PEND-JOIN-INTERVAL
        (10 secs), an alternate core is elected from the core list, and
        the process repeated. If all cores have been tried unsuccess-
        fully, the D-DR has no option but to give up.

   +    if a parent stops receiving CBT_ECHO_REQUESTs from a child. In
        this case the parent simply removes the child interface from FIB
        entries that are represented by that parent/child link.

6.2.  Router Re-Starts

   There are two cases to consider here:

   +    Core re-start. All JOIN-REQUESTs (all types) carry the identi-
        ties (i.e. addresses) of each of the cores for a group. If a
        router is a core for a group, but has only recently re-started,
        it will not be aware that it is a core for any group(s). In such
        circumstances, a core only becomes aware that it is such by
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        receiving a JOIN-REQUEST. Subsequent to a core learning its
        status in this way, if it is not the primary core it ack-
        nowledges the received join, then sends a JOIN_REQUEST (subcode
        ACTIVE_REJOIN) to the primary core. If the re-started router is
        the primary core, it need take no action, i.e. in all cir-
        cumstances, the primary core simply waits to be joined by other
        routers.

   +    Non-core re-start. In this case, the router can only join the
        tree again if a downstream router sends a JOIN_REQUEST through
        it, or it is elected DR for one of its directly attached sub-
        nets, and subsequently receives an IGMP membership report.

6.3.  Route Loops

   Routing loops are only a concern when a router with at least one
   child is attempting to re-join a CBT tree. In this case the re-
   joining router sends a JOIN_REQUEST (subcode ACTIVE REJOIN) to the
   best next-hop on the path to an elected core. This join is forwarded
   as normal until it reaches either the specified core, another core,
   or a non-core router that is already part of the tree. If the rejoin
   reaches the primary core, loop detection is not necessary. The pri-
   mary core acks an active-rejoin by means of a JOIN-ACK, subcode
   PRIMARY-REJOIN-ACK. This ack must be processed by each router on the
   reverse-path of the active-rejoin. If an active-rejoin is terminated
   by any router on the tree other than the primary core, loop detection
   must take place, as we now describe.

   If, in response to an active-rejoin, a JOIN-ACK is returned, subcode
   NORMAL (as opposed to an ack with subcode PRIMARY-REJOIN-ACK), the
   router receiving the ack subsequently generates a JOIN-REQUEST, sub-
   code NACTIVE-REJOIN (non-active rejoin). This packet serves only to
   detect loops; it does not create any transient state in the routers
   it traverses, other than the originating router. Any on-tree router
   receiving a non-active rejoin is required to forward it over its
   parent interface for the specified group. In this way, it will either
   reach the primary core, which returns, directly to the sender, a join
   ack with subcode PRIMARY-NACTIVE-ACK (so the sender knows no loop is
   present), or the sender receives the non-active rejoin it sent, via
   one of its child interfaces, in which case the rejoin obviously
   formed a loop.

   If a loop is present, the non-active join originator immediately
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   sends a QUIT_REQUEST to its newly-established parent and the loop is
   broken.

   Using figure 4 (over) to demonstrate this, if R3 is attempting to
   re-join the tree (R1 is the core in figure 4) and R3 believes its
   best next-hop to R1 is R6, and R6 believes R5 is its best next-hop to
   R1, which sees R4 as its best next-hop to R1 -- a loop is formed. R3
   begins by sending a JOIN_REQUEST (subcode ACTIVE_REJOIN, since R4 is
   its child) to R6.  R6 forwards the join to R5. R5 is on-tree for the
   group, so responds to the active-rejoin with a JOIN-ACK, subcode NOR-
   MAL (the ack traverses R6 on its way to R3). R3 now generates a
   JOIN-REQUEST, subcode NACTIVE-REJOIN, and forwards this to its
   parent, R6.  R6 forwards the non-active rejoin to R5, its parent. R5
   does similarly, as does R4. Now, the non-active rejoin has reached
   R3, which originated it, so R3 concludes a loop is present on the
   parent interface for the specified group. It immediately sends a
   QUIT_REQUEST to R6, which in turn sends a quit if it has not received
   an ACK from R5 already AND has itself a child or subnets with member
   presence. If so it does not send a quit -- the loop has been broken
   by R3 sending the first quit.

   QUIT_REQUESTs are typically acknowledged by means of a QUIT_ACK. A
   child removes its parent information immediately subsequent to send-
   ing its first QUIT-REQUEST. The ack here serves to notify the (old)
   child that it (the parent) has in fact removed its child information.
   However, there might be cases where, due to failure, the parent can-
   not respond.  The child sends a QUIT-REQUEST a maximum of three
   times, at PEND-QUIT-INTERVAL (10 sec) intervals.
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                   ------
                   | R1 |
                   ------
                     |
           ---------------------------
                     |
                   ------
                   | R2 |
                   ------
                     |
           ---------------------------
                     |                             |
                   ------                          |
                   | R3 |--------------------------|
                   ------                          |
                     |                             |
           ---------------------------             |
                     |                             |       ------
                   ------                          |       |    |
                   | R4 |                          |-------| R6 |
                   ------                          |       |----|
                     |                             |
           ---------------------------             |
                     |                             |
                   ------                          |
                   | R5 |--------------------------|
                   ------                          |
                                                   |

                     Figure 4: Example Loop Topology

   In another scenario the rejoin travels over a loop-free path, and the
   first on-tree router encountered is the primary core, R1. In figure
   4, R3 sends a join, subcode REJOIN_ACTIVE to R2, the next-hop on the
   path to core R1. R2 forwards the re-join to R1, the primary core,
   which returns a JOIN-ACK, subcode PRIMARY-REJOIN-ACK, over the
   reverse-path of the rejoin-active. Whenever a router receives a
   PRIMARY-REJOIN-ACK no loop detection is necessary.

   If we assume R2 is on tree for the corresponding group, R3 sends a
   join, subcode REJOIN_ACTIVE to R2, which replies with a join ack,
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   subcode NORMAL. R3 must then generate a loop detection packet (join
   request, subcode REJOIN-NACTIVE) which is forwarded to its parent,
   R2, which does similarly. On receipt of the rejoin-Nactive, the pri-
   mary core unicasts a join ack back directly to R3, with subcode
   PRIMARY-NACTIVE-ACK.  This confirms to R3 that its rejoin does not
   form a loop.

7.  Data Packet Loops

   The CBT protocol builds a loop-free distribution tree. If all routers
   that comprise a particular tree function correctly, data packets
   should never traverse a tree branch more than once.

   CBT routers will only forward native-style data packets if they are
   received over a valid on-tree interface. A native-style data packet
   that is not received over such an interface is discarded.

   Encapsulated CBT data packets from a non-member sender can arrive via
   an "off-tree" interface (this is how CBT-mode sends data across tun-
   nels, and how data from non-member senders in native-mode or CBT-mode
   reaches a tree).  The encapsulating CBT data packet header includes
   an "on-tree" field, which contains the value 0x00 until the data
   packet reaches an on-tree router. At this point, the router must con-
   vert this value to 0xff to indicate the data packet is now on-tree.
   This value remains unchanged, and from here on the packet should
   traverse only on-tree interfaces. If an encapsulated packet happens
   to "wander" off-tree and back on again, the latter on-tree router
   will receive the CBT encapsulated packet via an off-tree interface.
   However, this router will recognise that the "on-tree" field of the
   encapsulating CBT header is set to 0xff, and so immediately discards
   the packet.

8.  CBT Packet Formats and Message Types

   CBT packets travel in IP datagrams. We distinguish between two types
   of CBT packet: CBT data packets, and CBT control packets.  CBT con-
   trol packets carry a CBT control header. All CBT control messages are
   implemented over UDP. CBT mode data (figure 2) requires a CBT data
   packet header.
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8.1.  CBT Header Format (for CBT Mode data)

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  vers |unused |      type     |   hdr length  | on-tree|unused|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          checksum             |      IP TTL   |     unused    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        group identifier                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  reserved     |      reserved     |     Type     |   Length   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        .....VALUE....                         |
   |                (for flow-id and/or security options)          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                          Figure 5. CBT Header

   Each of the fields is described below:

      +    Vers: Version number -- this release specifies version 1.

      +    type: indicates CBT payload is data. The only value defined
           for this field is 255 (0xff).

      +    hdr length: length of the header, for purpose of checksum
           calculation.

      +    on-tree: indicates whether the packet is on-tree (0xff) or
           off-tree (0x00).  Once this field is set (i.e. on-tree), it
           is non-changing. This field can only be set by a router that
           has a FIB entry for the corresponding group, i.e. a router
           that has received a join-ack for a join-request previously
           sent/forwarded.

      +    checksum: the 16-bit one's complement of the one's complement
           of the CBT header, calculated across all fields.

      +    IP TTL: TTL value gleaned from the IP header where the packet
           originated. It is decremented each time it traverses a CBT
           router.
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      +    group identifier: multicast group address.

      +    The TLV fields at the end of the header are for a flow-
           identifier, and/or security options, if and when implemented.
           A "type" value of zero implies a "length" of zero, implying
           there is no "value" field.

8.2.  Control Packet Header Format

The individual fields are described below. It should be noted that only
certain fields beyond ``group identifier'' are processed for the dif-
ferent control messages.

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  vers |unused |      type     |      code     |   # cores     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         hdr length            |            checksum           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        group identifier                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          packet origin                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       primary core address                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                   target core address (core #1)               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                             Core #2                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                             Core #3                           |
   |                               ....                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  reserved     |      reserved     |     Type     |   Length   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        .....VALUE....                         |
   |                (for flow-id and/or security options)          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 6. CBT Control Packet Header

      +    Vers: Version number -- this release specifies version 1.
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      +    type: indicates control message type (see sections 7.3,
           7.3.1).

      +    code: indicates subcode of control message type.

      +    # cores: number of core addresses carried by this control
           packet (does not include "primary core address" field).

      +    header length: length of the header, for purpose of checksum
           calculation.

      +    checksum: the 16-bit one's complement of the one's complement
           of the CBT control header, calculated across all fields.

      +    group identifier: multicast group address.

      +    packet origin: address of the CBT router that originated the
           control packet.

      +    primary core address: the address of the primary core for the
           group.

      +    target core address: desired core affiliation of control mes-
           sage.

      +    Core #Z: Z refers to some arbitrary IP address representing a
           core.

      +    The TLV fields at the end of the header are for a flow-
           identifier, and/or security options, if implemented. A "type"
           value of zero implies a "length" of zero, implying there is
           no "value" field.

8.3.  CBT Control Message Types

   There are eight types of CBT message. All are encoded in the CBT con-
   trol header, shown in figure 6.

      +    JOIN-REQUEST (type 1): generated by a router and unicast to
           the specified core address. It is processed hop-by-hop on its
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           way to the specified core. Its purpose is to establish the
           sending CBT router, and all intermediate CBT routers, as part
           of the corresponding delivery tree. Note that all cores are
           carried in join-requests.

      +    JOIN-ACK (type 2): an acknowledgement to the above. The full
           list of core addresses is carried in a JOIN-ACK, together
           with the actual core affiliation (the join may have been ter-
           minated by an on-tree router on its journey to the specified
           core, and the terminating router may or may not be affiliated
           to the core specified in the original join). A JOIN-ACK
           traverses the same path as the corresponding JOIN-REQUEST,
           with each CBT router on the path processing the ack. It is
           the receipt of a JOIN-ACK that actually creates a tree
           branch.

      +    JOIN-NACK (type 3): a negative acknowledgement, indicating
           that the tree join process has not been successful.

      +    QUIT-REQUEST (type 4): a request, sent from a child to a
           parent, to be removed as a child to that parent.

      +    QUIT-ACK (type 5): acknowledgement to the above. If the
           parent, or the path to it is down, no acknowledgement will be
           received within the timeout period.  This results in the
           child nevertheless removing its parent information.

      +    FLUSH-TREE (type 6): a message sent from parent to all chil-
           dren, which traverses a complete branch. This message results
           in all tree interface information being removed from each
           router on the branch, possibly because of a re-configuration
           scenario.

      +    CBT-ECHO-REQUEST (type 7): once a tree branch is established,
           this messsage acts as a ``keepalive'', and is unicast from
           child to parent (one per link, NOT one per group).

      +    CBT-ECHO-REPLY (type 8): positive reply to the above.
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8.3.1.  CBT Control Message Subcodes

   The JOIN-REQUEST has three valid subcodes:

      +    ACTIVE-JOIN (code 0) - sent from a CBT router that has no
           children for the specified group.

      +    REJOIN-ACTIVE (code 1) - sent from a CBT router that has at
           least one child for the specified group.

      +    REJOIN-NACTIVE (code 2) - generated by a router subsequent to
           receiving a join ack, subcode NORMAL, in response to a
           active-rejoin.

   A JOIN-ACK has three valid subcodes:

      +    NORMAL (code 0) - sent by a core router, or on-tree non-core
           router acknowledging joins with subcodes ACTIVE-JOIN and
           REJOIN-ACTIVE.

      +    PRIMARY-REJOIN-ACK (code 1) - sent by a primary core to ack-
           nowledge the receipt of a join-request received with subcode
           REJOIN-ACTIVE. This message traverses the reverse-path of the
           corresponding re-join, and is processed by each router on
           that path.

      +    PRIMARY-NACTIVE-ACK (code 2) - sent by a primary core to ack-
           nowledge the receipt of a join-request received with subcode
           REJOIN-NACTIVE. This ack is unicast directly to the router
           that generated the rejoin-Nactive, i.e. the ack it is not
           processed hop-by-hop.

9.  CBT Protocol and Port Numbers

   CBT mode (data) encapsulation (figure 2) requires an IP protocol
   number assignment for CBT. An official protocol number has recently
   been approved by the IANA; CBT has IP protocol number 7.

   CBT control packets travel inside UDP datagrams, as the following
   diagram illustrates:
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           ++++++++++++++++++++++++++++++++++++++++++++
           | IP header | UDP header | CBT control pkt |
           ++++++++++++++++++++++++++++++++++++++++++++

             Figure 7. Encapsulation for CBT control messages

   CBT therefore requires a UDP port assignment for control messages.
   An official UDP port number has recently been approved by the IANA;
   CBT control messages are received on UDP port 7777.

10.  Default Timer Values

   There are several CBT control messages which are transmitted at fixed
   intervals. These values, retransmission times, and timeout values,
   are given below. Note these are recommended default values only, and
   are configurable with each implementation (all times are in seconds):

   +    CBT-ECHO-INTERVAL 30 (time between sending successive CBT-ECHO-
        REQUESTs to parent).

   +    PEND-JOIN-INTERVAL 10 (retransmission time for join-request if
        no ack rec'd)

   +    PEND-JOIN-TIMEOUT 30 (time to try joining a different core, or
        give up)

   +    EXPIRE-PENDING-JOIN 90 (remove transient state for join that has
        not been ack'd)

   +    PEND_QUIT_INTERVAL 10 (retransmission time for quit-request if
        no ack rec'd)

   +    CBT-ECHO-TIMEOUT 90 (time to consider parent unreachable)

   +    CHILD-ASSERT-INTERVAL 90 (increment child timeout if no ECHO
        rec'd from a child)

   +    CHILD-ASSERT-EXPIRE-TIME 180 (time to consider child gone)

   +    IFF-SCAN-INTERVAL 300 (scan all interfaces for group presence.
        If none, send QUIT)
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11.  Interoperability Issues

   One of the design goals of CBT is for it to fully interwork with
   other IP multicast schemes. We have already described how CBT-style
   packets are transformed into IP-style multicasts, and vice-versa.

   In order for CBT to fully interwork with other schemes, it is neces-
   sary to define the interface(s) between a ``CBT cloud'' and the cloud
   of another scheme. The CBT authors are currently working out the
   details of interoperability, and we expect an interoperability docu-
   ment to be available shortly.

12.  CBT Security Architecture

   see current I-D: ftp://cs.ucl.ac.uk/darpa/IDMR/draft-ietf-idmr-mkd-
01.{ps,txt}
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APPENDIX A

   A single rejoin could be sent for all the groups the keepalive
   represents. This constitutes an aggregated rejoin strategy; a single
   rejoin message can serve to rejoin multiple groups to their respec-
   tive trees, provided those groups share a common core (that which is
   being rejoined). Therefore, it may be that several rejoins need to be
   sent to re-connect all groups traversing the router after a failure.
   Similarly, the corresponding join-ack would represent an aggregate.

   NOTE: it remains to be worked out how the new parent establishes from
   the aggregated rejoin all those groups which the rejoin represents
   (so the new parent can create/modify the necessary FIB entries).  A
   "group aggregate" field may be necessary in the control packet.
   Alternatively, when the ack is received in response to the rejoin,
   each group represented by the rejoin sends a group-specific echo
   until an ack is received for each.
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