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Status of this Memo

   This document is an Internet Draft.  Internet Drafts are working do-
   cuments of the Internet Engineering Task Force (IETF), its Areas, and
   its Working Groups. Note that other groups may also distribute work-
   ing documents as Internet Drafts).

   Internet Drafts are draft documents valid for a maximum of six
   months. Internet Drafts may be updated, replaced, or obsoleted by
   other documents at any time.  It is not appropriate to use Internet
   Drafts as reference material or to cite them other than as a "working
   draft" or "work in progress."

   Please check the I-D abstract listing contained in each Internet
   Draft directory to learn the current status of this or any other
   Internet Draft.

Abstract

   This document describes the Core Based Tree (CBT) network layer mul-
   ticast protocol. CBT is a next-generation multicast protocol that
   makes use of a shared delivery tree rather than separate per-sender
   trees utilized by most other multicast schemes [1, 2, 3].

   This specification includes an optimization whereby unencapsulated
   (native) IP-style multicasts are forwarded by CBT, resulting in very
   good forwarding performance.  This mode of operation is called CBT
   "native mode".  Native mode can only be used in CBT-only domains or
   "clouds".
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   This document is progressing through the IDMR working group of the
   IETF.  The CBT architecture is described in an accompanying document:

ftp://cs.ucl.ac.uk/darpa/IDMR/draft-ietf-idmr-arch-03.txt.  Other
   related documents include [4, 5]. For all IDMR-related documents, see

http://www.cs.ucl.ac.uk/ietf/idmr.

1.  Changes since Previous Revision (04)

   This note summarizes the changes to this document since the previous
   revision (revision 04).

   +    inclusion of a "group mask" field for aggregated joins/join-acks
        (sections 10.2, 8.1, and Appendix A).

   +    removal of the term "Group DR (G-DR)", which was only a "token"
        identity.

   +    more complete explanation of the use of CBT's IP protocol and
        UDP port numbers (section 11).

   +    more complete explanation of non-member sender case (section 6).

   +    the term FIB (forwarding information base) has been replaced
        throughout with the term "forwarding database (db)".

   +    editorial changes throughout for extra clarity.

   Finally, in keeping with CBT's tradition of simplicity, this revision
   is 1 page less than the previous revision :-) .

2.  Some Terminology

   In CBT, the core routers for a particular group are categorised into
   PRIMARY CORE, and NON-PRIMARY (secondary) CORES.

   The "core tree" is the part of a tree linking all core routers of a
   particular group together.
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3.  Protocol Specification

3.1.  Tree Joining Process -- Overview

   A CBT router is notified of a local host's desire to join a group via
   IGMP [6].  We refer to a CBT router with directly attached hosts as a
   "leaf CBT router", or just "leaf" router.

   The following CBT control messages come into play subequent to a
   subnet's CBT leaf router receiving an IGMP membership report (also
   termed "IGMP join"):

   +    JOIN_REQUEST

   +    JOIN_ACK

   If the CBT leaf router is the subnet's default designated router (see
   next section), it generates a CBT join-request in response to receiv-
   ing an IGMP group membership report from a directly connected host.
   The CBT join is sent to the next-hop on the unicast path to a target
   core, specified in the join packet; a router elects a "target core"
   based on a static configuration. If, on receipt of an IGMP-join, the
   locally-elected DR has already joined the corresponding tree, then it
   need do nothing more with respect to joining.

   The join is processed by each such hop on the path to the core, until
   either the join reaches the target core itself, or hits a router that
   is already part of the corresponding distribution tree (as identified
   by the group address). In both cases, the router concerned terminates
   the join, and responds with a join-ack, which traverses the reverse-
   path of the corresponding join. This is possible due to the transient
   path state created by a join traversing a CBT router. The ack fixes
   that state.

3.2.  DR Election

   Multiple CBT routers may be connected to a multi-access subnetwork.
   In such cases it is necessary to elect a subnetwork designated router
   (D-DR) that is responsible for generating and sending CBT joins
   upstream, on behalf of the subnetwork.
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   CBT DR election happens "on the back" of IGMP [6]; on a subnet with
   multiple multicast routers, an IGMP "querier" is elected as part of
   IGMP; at start-up, a multicast router assumes no other multicast
   routers are present on its subnetwork, and so begins by believing it
   is the subnet's IGMP querier. It sends a small number IGMP-HOST-
   MEMBERSHIP-QUERYs in short succession in order to quickly learn about
   any group memberships on the subnet. If other multicast routers are
   present on the same subnet, they will receive these IGMP queries; a
   multicast router yields querier duty as soon as it hears an IGMP
   query from a lower-addressed router on the same subnetwork.

   The CBT default DR (D-DR) is always (footnote 1) the subnet's IGMP-
   querier. As a result, there is no protocol overhead whatsoever asso-
   ciated with electing a CBT D-DR.

3.3.  Tree Joining Process -- Details

   The receipt of an IGMP group membership report by a CBT D-DR for a
   CBT group not previously heard from triggers the tree joining pro-
   cess; the D-DR unicasts a JOIN-REQUEST to the first hop on the (uni-
   cast) path to the target core specified in the CBT join packet.

   Each CBT-capable router traversed on the path between the sending DR
   and the core processes the join. However, if a join hits a CBT router
   that is already on-tree (footnote 2), the join is not propogated
   further, but ACK'd downstream from that point.

   JOIN-REQUESTs carry the identity of all the cores associated with the
   group. Assuming there are no on-tree routers in between, once the
   join (subcode ACTIVE_JOIN) reaches the target core, if the target
   core is not the primary core (as indicated in a separate field of the
   join packet) it first acknowledges the received join by means of a
_________________________

  1 This document does not address the case where  some
routers  on a multi-access subnet may be running multi-
cast routing protocols other than CBT. In  such  cases,
IGMP querier may be a non-CBT router, in which case the
CBT DR election breaks. This will be discussed in a CBT
interoperability document, to appear shortly.
  2 "on-tree" refers to whether a router has a forward-
ing db entry for the corresponding group.
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   JOIN-ACK, then sends a JOIN-REQUEST, subcode REJOIN-ACTIVE, to the
   primary core router.

   If the rejoin-active reaches the primary core, it responds by sending
   a JOIN-ACK, subcode PRIMARY-REJOIN-ACK, which traverses the reverse-
   path of the join. The primary-rejoin-ack serves to confirm no loop is
   present without requiring explicit loop detection.

   If some other on-tree router is encountered before the rejoin-active
   reaches the primary, that router responds with a JOIN-ACK, subcode
   NORMAL.  On receipt of the ack, subcode normal, the router sends a
   join, subcode REJOIN-NACTIVE, which acts as a loop detection packet
   (see section 8.3).  Note that loop detection is not necessary subse-
   quent to receiving a join-ack with subcode PRIMARY-REJOIN-ACK.

   To facilitate detailed protocol description, we use a sample topol-
   ogy, illustrated in Figure 1 (shown over). Member hosts are shown as
   individual capital letters, routers are prefixed with R, and subnets
   are prefixed with S.
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           A                               B
           |   S1              S4          |
   -------------------      -----------------------------------------------
             |                     |               |               |
           ------                 ------           ------           ------
           | R1 |                 | R2 |           | R5 |           | R6 |
           ------                 ------           ------           ------
      C     |  |                    |                |                 |
      |     |  |                    |    S2          |            S8   |
   ----------  ------------------------------------------        -------------
        S3                 |
                         ------
                         | R3 |
                 |       ------                       D
   | S9          |         |               S5         |
   |             |      ---------------------------------------------
   |  |----|     |                    |
   ---| R7 |-----|                  ------
   |  |----|     |------------------| R4 |
   |          S7 |                  ------            F
   |             |                    |         S6    |
   |-E           |            ---------------------------------
                      |                       |
                      |                     ------
             |---|    |---------------------| R8 |
             |R12 ----|                     ------      G
             |---|    |                       |         |  S10
                      | S14                ----------------------------
                      |                         |
                  I --|                       ------
                      |                       | R9 |
                                              ------
                                                |         S12
                     |             ----------------------------
                 S15 |                        |
                     |                      ------
                     |----------------------|R10 |
                J ---|                      ------      H
                     |                        |         |
                     |             ----------------------------
                     |                           S13

                    Figure 1. Example Network Topology
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   Taking the example topology in figure 1, host A is the group initia-
   tor, and has configured core routers R4 (primary core) and R9 (secon-
   dary core).

   Router R1 receives an IGMP host membership report, and proceeds to
   unicast a JOIN-REQUEST, subcode ACTIVE-JOIN to the next-hop on the
   path to R4 (R3), the target core. R3 receives the join, caches the
   necessary group information, and forwards it to R4 -- the target of
   the join.

   R4, being the target of the join, sends a JOIN_ACK (subcode NORMAL)
   back out of the receiving interface to the previous-hop sender of the
   join, R3. A JOIN-ACK, like a JOIN-REQUEST, is processed hop-by-hop by
   each router on the reverse-path of the corresponding join. The
   receipt of a join-ack establishes the receiving router on the
   corresponding CBT tree, i.e. the router becomes part of a branch on
   the delivery tree. Finally, R3 sends a join-ack to R1.  A new CBT
   branch has been created, attaching subnet S1 to the CBT delivery tree
   for the corresponding group.

   For the period between any CBT-capable router forwarding (or ori-
   ginating) a JOIN_REQUEST and receiving a JOIN_ACK the corresponding
   router is not permitted to acknowledge any subsequent joins received
   for the same group; rather, the router caches such joins till such
   time as it has itself received a JOIN_ACK for the original join. Only
   then can it acknowledge any cached joins. A router is said to be in a
   "pending-join" state if it is awaiting a JOIN_ACK itself.

   Note that the presence of asymmetric routes in the underlying unicast
   routing, does not affect the tree-building process; CBT tree branches
   are symmetric by the nature in which they are built. Joins set up
   transient state (incoming and outgoing interface state) in all
   routers along a path to a particular core. The corresponding join-ack
   traverses the reverse-path of the join as dictated by the transient
   state, and not the path that underlying routing would dictate. Whilst
   permanent asymmetric routes could pose a problem for CBT, transient
   asymmetricity is detected by the CBT protocol.

3.4.  Forwarding Joins on Multi-Access Subnets

   The DR election mechanism does not guarantee that the DR will be the
   router that actually forwards a join off a multi-access network; the
   first hop on the path to a particular core might be via another
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   router on the same subnetwork, which actually forwards off-subnet.

   Although very much the same, let's see another example using our
   example topology of figure 1 of a host joining a CBT tree for the
   case where more than one CBT router exists on the host subnetwork.

   B's subnet, S4, has 3 CBT routers attached. Assume also that R6 has
   been elected IGMP-querier and CBT D-DR.

   R6 (S4's D-DR) receives an IGMP group membership report. R6's config-
   ured information suggests R4 as the target core for this group. R6
   thus generates a join-request for target core R4, subcode
   ACTIVE_JOIN.  R6's routing table says the next-hop on the path to R4
   is R2, which is on the same subnet as R6. This is irrelevant to R6,
   which unicasts it to R2.  R2 unicasts it to R3, which happens to be
   already on-tree for the specified group (from R1's join). R3 there-
   fore can acknowledge the arrived join and unicast the ack back to R2.
   R2 forwards it to R6, the origin of the join-request.

   If an IGMP membership report is received by a D-DR with a join for
   the same group already pending, or if the D-DR is already on-tree for
   the group, it takes no action.

3.5.  On-Demand "Core Tree" Building

   The "core tree", the part of a CBT tree linking all of its cores
   together, is built on-demand. That is, the core tree is only built
   subsequent to a non-primary (secondary) core receiving a join-
   request. This triggers the secondary core to join the primary core;
   the primary need never join anything.

   Join-requests carry an ordered list of core routers (and the identity
   of the primary core in its own separate field), making it possible
   for the secondary cores to know where to join when they themselves
   receive a join. Hence, the primary core must be uniquely identified
   as such across a whole group. A secondary joins the primary subse-
   quent to sending an ack for the join just received.
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3.6.  Tree Teardown

   There are two scenarios whereby a tree branch may be torn down:

   +    During a re-configuration. If a router's best next-hop to the
        specified core is one of its existing children, then before
        sending the join it must tear down that particular downstream
        branch. It does so by sending a FLUSH_TREE message which is pro-
        cessed hop-by-hop down the branch.  All routers receiving this
        message must process it and forward it to all their children.
        Routers that have received a flush message will re-establish
        themselves on the delivery tree if they have directly connected
        subnets with group presence.

   +    If a CBT router has no children it periodically checks all its
        directly connected subnets for group member presence. If no
        member presence is ascertained on any of its subnets it sends a
        QUIT_REQUEST upstream to remove itself from the tree.

        The receipt of a quit-request triggers the receiving parent
        router to immediately query its forwarding database, and estab-
        lish whether there remains any directly connected group member-
        ship, or any children, for the said group. If not, the router
        itself sends a quit-request upstream.

   The following example, using the example topology of figure 1, shows
   how a tree branch is gracefully torn down using a QUIT_REQUEST.

   Assume group member B leaves group G on subnet S4. B issues an IGMP
   HOST-MEMBERSHIP-LEAVE (relevant only to IGMPv2 and later versions)
   message which is multicast to the "all-routers" group (224.0.0.2).
   R6, the subnet's D-DR and IGMP-querier, responds with a group-
   specific-QUERY. No hosts respond within the required response inter-
   val, so D-DR assumes group G traffic is no longer wanted on subnet
   S4.

   Since R6 has no CBT children, and no other directly attached subnets
   with group G presence, it immediately follows on by sending a
   QUIT_REQUEST to R2, its parent on the tree for group G. R2 responds
   with a QUIT-ACK, unicast to R6; R2 removes the corresponding child
   information. R2 in turn sends a QUIT upstream to R3 (since it has no
   other children or subnet(s) with group presence).

      NOTE: immediately subsequent to sending a QUIT-REQUEST, the sender
      removes the corresponding parent information, i.e. it does not
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      wait for the receipt of a QUIT-ACK.

   R3 responds to the QUIT by unicasting a QUIT-ACK to R2. R3 subse-
   quently checks whether it in turn can send a quit by checking group G
   presence on its directly attached subnets, and any group G children.
   It has the latter (R1 is its child on the group G tree), and so R3
   cannot itself send a quit. However, the branch R3-R2-R6 has been
   removed from the tree.

4.  Data Packet Forwarding Rules

4.1.  Native Mode

   In native mode, when a router receives a data packet, the packet's
   TTL is decremented, and, provided the packet's TTL remains greater
   than/equal to 1, forwards the data packet over all outgoing inter-
   faces that are part of the corresponding CBT tree.

4.2.  CBT Mode

   In CBT mode, routers ignore all non-locally originated native mode
   multicast data packets. Locally-originated multicast data is only
   processed by a subnet's D-DR; in this case, the D-DR forwards the
   native multicast data packet, TTL 1, over any outgoing member subnets
   for which that router is D-DR. Additionally, the D-DR encapsulates
   the locally-originated multicast and forwards it, CBT mode, over all
   tree interfaces, as dictated by the CBT forwarding database.

   When a router, operating in CBT mode, receives an encapsulated multi-
   cast data packet, it decapsulates one copy to send, native mode and
   TTL 1, over any directly attached member subnets for which it is D-
   DR. Additionally, an encapsulated copy is forwarded over all outgoing
   tree interfaces, as dictated by the CBT forwarding database.

   Like the outer encapsulating IP header, the TTL value of the encapsu-
   lating CBT header is decremented each time it is processed by a CBT
   router.

   An example of CBT mode forwarding is provided towards the end of the
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   next section.

5.  CBT Mode -- Encapsulation Details

   In a multi-protocol environment, whose infrastructure may include
   non-multicast-capable routers, it is necessary to tunnel data packets
   between CBT-capable routers. This is called "CBT mode".  Data packets
   are de-capsulated by CBT routers (such that they become native mode
   data packets) before being forwarded over subnets with member hosts.
   When multicasting (native mode) to member hosts, the TTL value of the
   original IP header is set to one. CBT mode encapsulation is as fol-
   lows:

           ++++++++++++++++++++++++++++++++++++++++++++++++++++++++
           | encaps IP hdr | CBT hdr | original IP hdr | data ....|
           ++++++++++++++++++++++++++++++++++++++++++++++++++++++++

                   Figure 2. Encapsulation for CBT mode

   The TTL value of the CBT header is set by the encapsulating CBT
   router directly attached to the origin of a data packet.  This value
   is decremented each time it is processed by a CBT router.  An encap-
   sulated data packet is discarded when the CBT header TTL value
   reaches zero.

   The purpose of the (outer) encapsulating IP header is to "tunnel"
   data packets between CBT-capable routers (or "islands"). The outer IP
   header's TTL value is set to the "length" of the corresponding tun-
   nel, or MAX_TTL (255)if this is not known, or subject to change.

   It is worth pointing out here the distinction between subnetworks and
   tree branches (especially apparent in CBT mode), although they can be
   one and the same. For example, a multi-access subnetwork containing
   routers and end-systems could potentially be both a CBT tree branch
   and a subnetwork with group member presence. A tree branch which is
   not simultaneously a subnetwork is either a "tunnel" or a point-to-
   point link.
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   In CBT mode there are three forwarding methods used by CBT routers:

   +    IP multicasting. This method sends an unaltered (unencapsulated)
        data packet across a directly-connected subnetwork with group
        member presence.  Any host originating multicast data, does so
        in this form.

   +    CBT unicasting. This method is used for sending data packets
        encapsulated (as illustrated above) across a tunnel or point-
        to-point link. En/de-capsulation takes place in CBT routers.

   +    CBT multicasting. Routers on multi-access links use this method
        to send data packets encapsulated (as illustrated above) but the
        outer encapsulating IP header contains a multicast address. This
        method is used when a parent or multiple children are reachable
        over a single physical interface, as could be the case on a
        multi-access Ethernet.  The IP module of end-systems subscribed
        to the same group will discard these multicasts since the CBT
        payload type (protocol id) of the outer IP header is not recog-
        nizable by hosts.

   CBT routers create forwarding database (db) entries whenever they
   send or receive a JOIN_ACK. The forwarding database describes the
   parent-child relationships on a per-group basis. A forwarding data-
   base entry dictates over which tree interfaces, and how (unicast or
   multicast) a data packet is to be sent. A forwarding db entry is
   shown below:

   Note that a CBT forwarding db is required for both CBT-mode and
   native-mode multicasting.

   The field lengths shown above assume a maximum of 16 directly con-
   nected neighbouring routers.

   Using our example topology in figure 1, let's assume the CBT routers
   are operating in CBT mode.

   Member G originates an IP multicast (native mode) packet. R8 is the
   DR for subnet S10. R8 therefore sends a (native mode) copy over any
   member subnets for which it is DR - S14 and S10 (the copy over S10 is
   not sent, since the packet was originally received from S10). The
   multicast packet is CBT mode encapsulated by R8, and unicast to each
   of its children, R9 and R12; these children are not reachable over
   the same interface, otherwise R8 could have sent a CBT mode multi-
   cast.  R9, the DR for S12, need not IP multicast (native mode) onto
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           32-bits          4            4           4              8
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
+
       |   group-id  | parent addr | parent vif | No. of  |                    
|
       |             |    index    |   index    |children |      children      
|
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+-+-+-+-+-++-+-+-+-+-+-+-+-+-
+
                                                          |chld addr |chld vif 
|
                                                          | index    |  index  
|
                                                          |+-+-+-+-+-+-+-+-+-+-
+
                                                          |chld addr |chld vif 
|
                                                          | index    |  index  
|
                                                          |+-+-+-+-+-+-+-+-+-+-
+
                                                          |chld addr |chld vif 
|
                                                          | index    |  index  
|
                                                          |+-+-+-+-+-+-+-+-+-+-
+
                                                          |                    
|
                                                          |         etc.       
|
                                                          |+-+-+-+-+-+-+-+-+-
+-|

                 Figure 3. CBT forwarding database entry

   S12 since there are no members present there. R9, in CBT mode, uni-
   casts the packet to R10, which is the DR for S13 and S15. R10 decap-
   sulates the CBT mode packet and IP multicasts (native mode) to each
   of S13 and S15.

   Going upstream from R8, R8 CBT mode unicasts to R4. It is DR for all
   directly connected subnets and therefore IP multicasts (native mode)
   the data packet onto S5, S6 and S7, all of which have member pres-
   ence. R4 unicasts, CBT mode, the packet to all outgoing children, R3



   and R7 (NOTE: R4 does not have a parent since it is the primary core
   router for the group). R7 IP multicasts (native mode) onto S9. R3 CBT
   mode unicasts to R1 and R2, its children. Finally, R1 IP multicasts
   (native mode) onto S1 and S3, and R2 IP multicasts (native mode) onto
   S4.

6.  Non-Member Sending

   For a multicast data packet to span beyond the scope of the originat-
   ing subnetwork at least one CBT-capable router must be present on
   that subnetwork.  The default DR (D-DR) for the group on the
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   subnetwork must encapsulate the (native) IP-style packet and unicast
   it to a core for the group. The encapsulation required is shown in
   figure 2; CBT mode encapsulation is necessary so the receiving CBT
   router can demultiplex the packet accordingly.

   If the encapsulated packet hits the tree at a non-core router, the
   packet is forwarded according to the forwarding rules of section 4.2.

   If the first on-tree router encountered is the target core, various
   scenarios define what happens next:

   +    if the target core is not the primary, and the target core has
        not yet joined the tree (because it has not yet itself received
        any join-requests), the target core simply forwards the encapsu-
        lated packet to the primary core.

        if the target core is not the primary, but has children, the
        target core forwards the data according to the rules of section

4.2.

   +    if the target core is the primary, the primary forwards the data
        according to the rules of section 4.2.

7.  Eliminating the Topology-Discovery Protocol in the Presence of Tun-
nels

   Traditionally, multicast protocols operating within a virtual topol-
   ogy, i.e. an overlay of the physical topology, have required the
   assistance of a multicast topology discovery protocol, such as that
   present in DVMRP [1]. However, it is possible to have a multicast
   protocol operate within a virtual topology without the need for a
   multicast topology discovery protocol. One way to achieve this is by
   having a router configure all its tunnels to its virtual neighbours
   in advance. A tunnel is identified by a local interface address and a
   remote interface address. Routing is replaced by "ranking" each such
   tunnel interface associated with a particular core address; if the
   highest-ranked route is unavailable (tunnel end-points are required
   to run an Hello-like protocol between themselves) then the next-
   highest ranked available route is selected, and so on. The exact
   specification of the Hello protocol is outside the scope of this
   document.

   CBT trees are built using the same join/join-ack mechanisms as
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   before, only now some branches of a delivery tree run in native mode,
   whilst others (tunnels) run in CBT mode. Underlying unicast routing
   dictates which interface a packet should be forwarded over. Each
   interface is configured as either native mode or CBT mode, so a
   packet can be encapsulated (decapsulated) accordingly.

   As an example, router R's configuration would be as follows:

   intf    type    mode    remote addr
   -----------------------------------
   #1      phys    native  -
   #2      tunnel  cbt     128.16.8.117
   #3      phys    native  -
   #4      tunnel  cbt     128.16.6.8
   #5      tunnel  cbt     128.96.41.1

   core    backup-intfs
   --------------------
   A         #5, #2
   B         #3, #5
   C         #2, #4

   The CBT forwarding database needs to be slightly modified to accommo-
   date an extra field, "backup-intfs" (backup interfaces). The entry in
   this field specifies a backup interface whenever a tunnel interface
   specified in the forwarding db is down. Additional backups (should
   the first-listed backup be down) are specified for each core in the
   core backup table. For example, if interface (tunnel) #2 were down,
   and the target core of a CBT control packet were core A, the core
   backup table suggests using interface #5 as a replacement. If inter-
   face #5 happened to be down also, then the same table recommends
   interface #2 as a backup for core A.

8.  Tree Maintenance

   Once a tree branch has been created, i.e. a CBT router has received a
   JOIN_ACK for a JOIN_REQUEST previously sent (or forwarded), a child
   router is required to monitor the status of its parent/parent link at
   fixed intervals by means of a "keepalive" mechanism operating between
   them.  The "keepalive" mechanism is implemented by means of two CBT
   control messages: CBT_ECHO_REQUEST and CBT_ECHO_REPLY.  Adjacent CBT
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   routers only need to send one keepalive per link, regardless of how
   many groups are present on that link.  This aggregation strategy is
   expected to conserve considerable bandwidth on "busy" links, such as
   transit network, or backbone network, links.

   The keepalive protocol is simple, as follows: a child unicasts a
   CBT-ECHO-REQUEST to its parent, which unicasts a CBT-ECHO-REPLY in
   response.

   For any CBT router, if its parent router, or path to the parent,
   fails, the child is initially responsible for re-attaching itself,
   and therefore all routers subordinate to it on the same branch, to
   the tree.

   CBT echo requests and replies can be aggregated and sent on a per
   link basis, rather than individually for each group; the CBT control
   packet header (section 10.2) accommodates such aggregation.

8.1.  Router Failure

   An on-tree router can detect a failure from the following two cases:

   +    if the child responsible for sending keepalives across a partic-
        ular link stops receiving CBT_ECHO_REPLY messages. In this case
        the child realises that its parent has become unreachable and
        must therefore try and re-connect to the tree for all groups
        represented on the parent/child link. For all groups sharing a
        common core set (corelist), provided those groups can be speci-
        fied as a CIDR-like aggregate, an aggregated join can be sent
        representing a range of groups.  Aggregated joins are made pos-
        sible by the presence of a "group mask" field in the CBT control
        packet header. Aggregated joins are also discussed in Appendix

A.

        If a range of groups cannot be represented by a mask, then each
        group must be re-joined individually.

        CBT's re-join strategy is as follows: the rejoining router which
        is immediately subordinate to the failure sends a JOIN_REQUEST
        (subcode ACTIVE_JOIN if it has no children attached, and subcode
        ACTIVE_REJOIN if at least one child is attached) to the best
        next-hop router on the path to the elected core. If no JOIN-ACK
        is received after three retransmissions, each transmission being
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        at PEND-JOIN-INTERVAL (10 secs), the next-highest priority core
        is elected from the core list, and the process repeated. If all
        cores have been tried unsuccessfully, the D-DR has no option but
        to give up.

   +    if a parent stops receiving CBT_ECHO_REQUESTs from a child. In
        this case, if the parent has not received an expected keepalive
        after CHILD_ASSERT_EXPIRE_TIME, all children reachable across
        that link are removed from the parent's forwarding database.

8.2.  Router Re-Starts

   There are two cases to consider here:

   +    Core re-start. All JOIN-REQUESTs (all types) carry the identi-
        ties (i.e. IP addresses) of each of the cores for a group. If a
        router is a core for a group, but has only recently re-started,
        it will not be aware that it is a core for any group(s). In such
        circumstances, a core only becomes aware that it is such by
        receiving a JOIN-REQUEST. Subsequent to a core learning its
        status in this way, if it is not the primary core it ack-
        nowledges the received join, then sends a JOIN_REQUEST (subcode
        ACTIVE_REJOIN) to the primary core. If the re-started router is
        the primary core, it need take no action, i.e. in all cir-
        cumstances, the primary core simply waits to be joined by other
        routers.

   +    Non-core re-start. In this case, the router can only join the
        tree again if a downstream router sends a JOIN_REQUEST through
        it, or it is elected DR for one of its directly attached sub-
        nets, and subsequently receives an IGMP membership report.

8.3.  Route Loops

   Routing loops are only a concern when a router with at least one
   child is attempting to re-join a CBT tree. In this case the re-
   joining router sends a JOIN_REQUEST (subcode ACTIVE REJOIN) to the
   best next-hop on the path to an elected core. This join is forwarded
   as normal until it reaches either the specified core, another core,
   or a non-core router that is already part of the tree. If the rejoin
   reaches the primary core, loop detection is not necessary because the
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   primary never has a parent. The primary core acks an active-rejoin by
   means of a JOIN-ACK, subcode PRIMARY-REJOIN-ACK. This ack must be
   processed by each router on the reverse-path of the active-rejoin;
   this ack creates tree state, just like a normal join-ack.

   If an active-rejoin is terminated by any router on the tree other
   than the primary core, loop detection must take place, as we now
   describe.

   If, in response to an active-rejoin, a JOIN-ACK is returned, subcode
   NORMAL (as opposed to an ack with subcode PRIMARY-REJOIN-ACK), the
   router receiving the ack subsequently generates a JOIN-REQUEST, sub-
   code NACTIVE-REJOIN (non-active rejoin). This packet serves only to
   detect loops; it does not create any transient state in the routers
   it traverses, other than the originating router. Any on-tree router
   receiving a non-active rejoin is required to forward it over its
   parent interface for the specified group. In this way, it will either
   reach the primary core, which returns, directly to the sender, a join
   ack with subcode PRIMARY-NACTIVE-ACK (so the sender knows no loop is
   present), or the sender receives the non-active rejoin it sent, via
   one of its child interfaces, in which case the rejoin obviously
   formed a loop.

   If a loop is present, the non-active join originator immediately
   sends a QUIT_REQUEST to its newly-established parent and the loop is
   broken.

   Using figure 4 (over) to demonstrate this, if R3 is attempting to
   re-join the tree (R1 is the core in figure 4) and R3 believes its
   best next-hop to R1 is R6, and R6 believes R5 is its best next-hop to
   R1, which sees R4 as its best next-hop to R1 -- a loop is formed. R3
   begins by sending a JOIN_REQUEST (subcode ACTIVE_REJOIN, since R4 is
   its child) to R6.  R6 forwards the join to R5. R5 is on-tree for the
   group, so responds to the active-rejoin with a JOIN-ACK, subcode NOR-
   MAL (the ack traverses R6 on its way to R3).

   R3 now generates a JOIN-REQUEST, subcode NACTIVE-REJOIN, and forwards
   this to its parent, R6.  R6 forwards the non-active rejoin to R5, its
   parent. R5 does similarly, as does R4. Now, the non-active rejoin has
   reached R3, which originated it, so R3 concludes a loop is present on
   the parent interface for the specified group. It immediately sends a
   QUIT_REQUEST to R6, which in turn sends a quit if it has not received
   an ACK from R5 already AND has itself a child or subnets with member
   presence. If so it does not send a quit -- the loop has been broken
   by R3 sending the first quit.
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   QUIT_REQUESTs are typically acknowledged by means of a QUIT_ACK. A
   child removes its parent information immediately subsequent to send-
   ing its first QUIT-REQUEST. The ack here serves to notify the (old)
   child that it (the parent) has in fact removed its child information.
   However, there might be cases where, due to failure, the parent can-
   not respond.  The child sends a QUIT-REQUEST a maximum of three
   times, at PEND-QUIT-INTERVAL (10 sec) intervals.

                   ------
                   | R1 |
                   ------
                     |
           ---------------------------
                     |
                   ------
                   | R2 |
                   ------
                     |
           ---------------------------
                     |                             |
                   ------                          |
                   | R3 |--------------------------|
                   ------                          |
                     |                             |
           ---------------------------             |
                     |                             |       ------
                   ------                          |       |    |
                   | R4 |                          |-------| R6 |
                   ------                          |       |----|
                     |                             |
           ---------------------------             |
                     |                             |
                   ------                          |
                   | R5 |--------------------------|
                   ------                          |
                                                   |

                     Figure 4: Example Loop Topology

   In another scenario the rejoin travels over a loop-free path, and the
   first on-tree router encountered is the primary core, R1. In figure
   4, R3 sends a join, subcode REJOIN_ACTIVE to R2, the next-hop on the
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   path to core R1. R2 forwards the re-join to R1, the primary core,
   which returns a JOIN-ACK, subcode PRIMARY-REJOIN-ACK, over the
   reverse-path of the rejoin-active. Whenever a router receives a
   PRIMARY-REJOIN-ACK no loop detection is necessary.

   If we assume R2 is on tree for the corresponding group, R3 sends a
   join, subcode REJOIN_ACTIVE to R2, which replies with a join ack,
   subcode NORMAL. R3 must then generate a loop detection packet (join
   request, subcode REJOIN-NACTIVE) which is forwarded to its parent,
   R2, which does similarly. On receipt of the rejoin-Nactive, the pri-
   mary core unicasts a join ack back directly to R3, with subcode
   PRIMARY-NACTIVE-ACK.  This confirms to R3 that its rejoin does not
   form a loop.

9.  Data Packet Loops

   The CBT protocol builds a loop-free distribution tree. If all routers
   that comprise a particular tree function correctly, data packets
   should never traverse a tree branch more than once.

   CBT mode data packets from a non-member sender must arrive on a tree
   via an "off-tree" interface. The CBT mode data packet's header
   includes an "on-tree" field, which contains the value 0x00 until the
   data packet reaches an on-tree router. The first on-tree router must
   convert this value to 0xff. This value remains unchanged, and from
   here on the packet should traverse only on-tree interfaces. If an
   encapsulated packet happens to "wander" off-tree and back on again,
   an on-tree router will receive the CBT encapsulated packet via an
   off-tree interface. However, this router will recognise that the
   "on-tree" field of the encapsulating CBT header is set to 0xff, and
   so immediately discards the packet.

10.  CBT Packet Formats and Message Types

   We distinguish between two types of CBT packet: CBT mode data pack-
   ets, and CBT control packets. CBT control packets carry a CBT control
   packet header.

   For "conventional router" implementations, it is recommended CBT con-
   trol packets be encapsulated in IP, as illustrated below:
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           +++++++++++++++++++++++++++++++
           | IP header | CBT control pkt |
           +++++++++++++++++++++++++++++++

   In CBT mode, the original data packet is encapsulated in a CBT header
   and an IP header, as illustrated below:

           ++++++++++++++++++++++++++++++++++++++++++++++++++++++++
           | IP header | CBT header | original IP hdr | data .... |
           ++++++++++++++++++++++++++++++++++++++++++++++++++++++++

   The IP protocol field of the IP header is used to demultiplex a
   packet correctly; CBT has been assigned IP protocol number 7.  The
   CBT module then demultiplexes based on the encapsulating CBT header's
   "type" field, thereby distinguishing between CBT control packets and
   CBT mode data packets (the first 16 bits of both the CBT control and
   CBT data packet headers are identical).

   Some implementations of CBT encapsulate CBT control packets in UDP
   (like the workstation router version). In these implementations, the
   encapsulation of CBT contol packets is as follows:

           ++++++++++++++++++++++++++++++++++++++++++++
           | IP header | UDP header | CBT control pkt |
           ++++++++++++++++++++++++++++++++++++++++++++

   CBT has been assigned UDP port number 7777 for this purpose.

   It is recommended for performance reasons that conventional router
   implementations implement the IP encapsulation for control packets,
   not the UDP encapsulation.

   The CBT data packet header is illustrated below:
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10.1.  CBT Header Format (for CBT Mode data)

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  vers |unused |      type     |   hdr length  | on-tree|unused|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          checksum             |      IP TTL   |     unused    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        group identifier                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  reserved     |      reserved     |     Type     |   Length   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        .....Flow-id value.....                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     unused    |       unused      |     Type     |   Length   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                   .....Security Information.....              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                          Figure 5. CBT Header

   Each of the fields is described below:

      +    Vers: Version number -- this release specifies version 1.

      +    type: indicates CBT payload; values are defined for control
           (0x00), and data (0xff). For the value 0x00 (control), a CBT
           control header is assumed present rather than a CBT header.

      +    hdr length: length of the header, for purpose of checksum
           calculation.

      +    on-tree: indicates whether the packet is on-tree (0xff) or
           off-tree (0x00).

      +    checksum: the 16-bit one's complement of the one's complement
           of the CBT header, calculated across all fields.

      +    IP TTL: TTL value gleaned from the IP header where the packet
           originated.

      +    group identifier: multicast group address.
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      +    The TLV fields at the end of the header are for a flow-
           identifier, and/or security options, if and when implemented.
           A "type" value of zero implies a "length" of zero, implying
           there is no "value" field.

10.2.  Control Packet Header Format

The individual fields are described below.

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  vers |unused |      type     |      code     |   # cores     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         hdr length            |            checksum           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        group identifier                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           group mask                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          packet origin                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       primary core address                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                   target core address (core #1)               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                             Core #2                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                             Core #3                           |
   |                               ....                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  reserved     |      reserved     |     Type     |   Length   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        .....Flow-id value.....                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     unused    |       unused      |     Type     |   Length   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     .....Security data.....                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 6. CBT Control Packet Header
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      +    Vers: Version number -- this release specifies version 1.

      +    type: indicates control message type (see sections 10.3).

      +    code: indicates subcode of control message type.

      +    # cores: number of core addresses carried by this control
           packet.

      +    header length: length of the header, for purpose of checksum
           calculation.

      +    checksum: the 16-bit one's complement of the one's complement
           of the CBT control header, calculated across all fields.

      +    group identifier: multicast group address.

      +    group mask: mask value for aggregated CBT joins/join-acks.
           Zero for non-aggregated joins/join-acks.

      +    packet origin: address of the CBT router that originated the
           control packet.

      +    primary core address: the address of the primary core for the
           group.

      +    target core address: desired core affiliation of control mes-
           sage.

      +    Core #1, #2, #3 etc.: IP address for each of a group's cores.

      +    The TLV fields at the end of the header are for a flow-
           identifier, and/or security options, if implemented. A "type"
           value of zero implies a "length" of zero, implying there is
           no "value" field.
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10.3.  CBT Control Message Types

   There are ten types of CBT message. All are encoded in the CBT con-
   trol header, shown in figure 6.

      +    JOIN-REQUEST (type 1): generated by a router and unicast to
           the specified core address. It is processed hop-by-hop on its
           way to the specified core. Its purpose is to establish the
           originating CBT router, and all intermediate CBT routers, as
           part of the corresponding delivery tree. Note that all cores
           are carried in join-requests.

      +    JOIN-ACK (type 2): an acknowledgement to the above. The full
           list of core addresses is carried in a JOIN-ACK, together
           with the actual core affiliation (the join may have been ter-
           minated by an on-tree router on its journey to the specified
           core, and the terminating router may or may not be affiliated
           to the core specified in the original join). A JOIN-ACK
           traverses the reverse path as the corresponding JOIN-REQUEST,
           with each CBT router on the path processing the ack. It is
           the receipt of a JOIN-ACK that actually "fixes" tree state.

      +    JOIN-NACK (type 3): a negative acknowledgement, indicating
           that the tree join process has not been successful.

      +    QUIT-REQUEST (type 4): a request, sent from a child to a
           parent, to be removed as a child to that parent.

      +    QUIT-ACK (type 5): acknowledgement to the above. If the
           parent, or the path to it is down, no acknowledgement will be
           received within the timeout period.  This results in the
           child nevertheless removing its parent information.

      +    FLUSH-TREE (type 6): a message sent from parent to all chil-
           dren, which traverses a complete branch. This message results
           in all tree interface information being removed from each
           router on the branch, possibly because of a re-configuration
           scenario.

      +    CBT-ECHO-REQUEST (type 7): once a tree branch is established,
           this messsage acts as a "keepalive", and is unicast from
           child to parent (can be aggregated from one per group to one
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           per link).

      +    CBT-ECHO-REPLY (type 8): positive reply to the above.

      +    CBT-BR-KEEPALIVE (type 9): applicable to border routers only,
           when attaching a CBT domain to some other domain. See [11]
           for more information.

      +    CBT-BR-KEEPALIVE-ACK (type 10): acknowledgement to the above.

10.3.1.  CBT Control Message Subcodes

   The JOIN-REQUEST has three valid subcodes:

      +    ACTIVE-JOIN (code 0) - sent from a CBT router that has no
           children for the specified group.

      +    REJOIN-ACTIVE (code 1) - sent from a CBT router that has at
           least one child for the specified group.

      +    REJOIN-NACTIVE (code 2) - generated by a router subsequent to
           receiving a join ack, subcode NORMAL, in response to a
           active-rejoin.

   A JOIN-ACK has three valid subcodes:

      +    NORMAL (code 0) - sent by a core router, or on-tree non-core
           router acknowledging joins with subcodes ACTIVE-JOIN and
           REJOIN-ACTIVE.

      +    PRIMARY-REJOIN-ACK (code 1) - sent by a primary core to ack-
           nowledge the receipt of a join-request received with subcode
           REJOIN-ACTIVE. This message traverses the reverse-path of the
           corresponding re-join, and is processed by each router on
           that path.

      +    PRIMARY-NACTIVE-ACK (code 2) - sent by a primary core to ack-
           nowledge the receipt of a join-request received with subcode
           REJOIN-NACTIVE. This ack is unicast directly to the router
           that generated the rejoin-Nactive, i.e. the ack it is not
           processed hop-by-hop.

Expires October, 1996                                          [Page 26]



INTERNET-DRAFT        CBT Protocol Specification             April 1996

11.  CBT Protocol and Port Numbers

   CBT has been assigned IP protocol number 7, and UDP port number 7777.
   The UDP port number is only required for certain CBT implementations,
   as described at the beginning of section 10.

12.  Default Timer Values

   There are several CBT control messages which are transmitted at fixed
   intervals. These values, retransmission times, and timeout values,
   are given below. Note these are recommended default values only, and
   are configurable with each implementation (all times are in seconds):

   +    CBT-ECHO-INTERVAL 30 (time between sending successive CBT-ECHO-
        REQUESTs to parent).

   +    PEND-JOIN-INTERVAL 10 (retransmission time for join-request if
        no ack rec'd)

   +    PEND-JOIN-TIMEOUT 30 (time to try joining a different core, or
        give up)

   +    EXPIRE-PENDING-JOIN 90 (remove transient state for join that has
        not been ack'd)

   +    PEND_QUIT_INTERVAL 10 (retransmission time for quit-request if
        no ack rec'd)

   +    CBT-ECHO-TIMEOUT 90 (time to consider parent unreachable)

   +    CHILD-ASSERT-INTERVAL 90 (increment child timeout if no ECHO
        rec'd from a child)

   +    CHILD-ASSERT-EXPIRE-TIME 180 (time to consider child gone)

   +    IFF-SCAN-INTERVAL 300 (scan all interfaces for group presence.
        If none, send QUIT)

   +    BR-KEEPALIVE-INTERVAL 200 (backup designated BR to designated BR
        keepalive interval)

   +    BR-KEEPALIVE-RETRY-INTERVAL 30 (keepalive interval if BR fails
        to respond)
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13.  Interoperability Issues

   Interoperability between CBT and DVMRP has recently been defined in
ftp://cs.ucl.ac.uk/darpa/IDMR/draft-ietf-idmr-cbt-dvmrp-00.txt.

   Interoperability with other multicast protocols will be fully speci-
   fied shortly.

14.  CBT Security Architecture

   see [4].
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APPENDIX A

   There are situations where it is advantageous to send a single join-
   request that represents potentially many groups. One such example is
   provided in [11], whereby a designated border router is required to
   join all groups inside a CBT domain.

   Such aggregated joining is only possible if each of the groups the
   join represents shares a common corelist. Furthermore, aggregation is
   only efficient over contiguous ranges of group addresses; the "group
   mask" field in the CBT control packet header is used to specify a
   CIDR-like group address mask.
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