
Inter-Domain Multicast Routing (IDMR)                       A. Ballardie
INTERNET-DRAFT                                                Consultant
                                                                 B. Cain
                                                            Bay Networks
                                                                Z. Zhang
                                                            Bay Networks

                                                             August 1998

Core Based Trees (CBT version 3) Multicast Routing

                      -- Protocol Specification --

Status of this Memo

   This document is an Internet Draft.  Internet Drafts are working doc-
   uments of the Internet Engineering Task Force (IETF), its Areas, and
   its Working Groups. Note that other groups may also distribute work-
   ing documents as Internet Drafts).

   Internet Drafts are draft documents valid for a maximum of six
   months. Internet Drafts may be updated, replaced, or obsoleted by
   other documents at any time.  It is not appropriate to use Internet
   Drafts as reference material or to cite them other than as a "working
   draft" or "work in progress."

   Please check the I-D abstract listing contained in each Internet
   Draft directory to learn the current status of this or any other
   Internet Draft.

Abstract

   This document describes the Core Based Tree (CBT version 3) network
   layer multicast routing protocol. CBT builds a shared multicast dis-
   tribution tree per group, and is suited to inter- and intra-domain
   multicast routing.

   CBT may use a separate multicast routing table, or it may use that of
   underlying unicast routing, to establish paths between senders and
   receivers. The CBT architecture is described in [1].

   This specification supercedes and obsoletes RFC 2189. Changes from

Expires February 1999                                           [Page 1]

https://datatracker.ietf.org/doc/html/rfc2189


INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

RFC 2189 include support for source specific joining and pruning to
   provide better CBT transit domain capability, new packet formats, and
   new robustness features. Section 1 documents the primary changes to

RFC 2189.

   This document is progressing through the IDMR working group of the
   IETF.  CBT related documents include [1, 2, 3, 5, 8]. For all IDMR-
   related documents, see http://www.cs.ucl.ac.uk/ietf/idmr.

TABLE OF CONTENTS

1. Changes from RFC 2189 .......................................... 4

2. Building a CBT Multicast Domain ................................ 5

3. Introduction & Terminology ..................................... 5

4. CBT Functional Overview ........................................ 6

4.1. The First Step: Joining the Tree .......................... 6

4.2. Transient State ........................................... 7

4.3. Getting on-tree ........................................... 8

4.3. Pruning & Prune State ..................................... 8

4.4. The Forwarding Cache ...................................... 9

4.5. Packet Forwarding ......................................... 11

4.7. The "Keepalive" Protocol .................................. 11

4.8. Control Message Precedence & Forwarding Criteria .......... 12

4.9. Broadcast LANs ............................................ 14

4.10. The "all-cbt-routers" Group .............................. 15

4.11. Non-Member Sending ....................................... 15

5. Protocol Specification Details ................................. 15

5.1. CBT HELLO Protocol ........................................ 16

Expires February 1999                                           [Page 2]

https://datatracker.ietf.org/doc/html/rfc2189
https://datatracker.ietf.org/doc/html/rfc2189
http://www.cs.ucl.ac.uk/ietf/idmr
https://datatracker.ietf.org/doc/html/rfc2189


INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

5.1.1. Sending HELLOs ..................................... 17

5.1.2. Receiving HELLOs ................................... 17

5.2. JOIN_REQUEST Processing ................................... 20

5.2.1. Sending JOIN_REQUESTs .............................. 20

5.2.2. Receiving JOIN_REQUESTs ............................ 20

          5.2.3. Additional Aspects Related to Receiving Multicast
          JOIN_REQUESTs ............................................. 21

5.3. JOIN_ACK Processing ....................................... 21

5.3.1. Sending JOIN_ACKs .................................. 21

5.3.2. Receiving JOIN_ACKs ................................ 22

5.4. QUIT_NOTIFICATION Processing .............................. 22

5.4.1. Sending QUIT_NOTIFICATIONs ......................... 22

5.4.2. Receiving QUIT_NOTIFICATIONs ....................... 23

5.5. ECHO_REQUEST Processing ................................... 24

5.5.1. Sending ECHO_REQUESTs .............................. 24

5.5.2. Receiving ECHO_REQUESTs ............................ 24

5.6. ECHO_REPLY Processing ..................................... 25

5.6.1. Sending ECHO_REPLYs ................................ 25

5.6.2. Receiving ECHO_REPLYs .............................. 25

5.7. FLUSH_TREE Processing ..................................... 26

5.7.1. Sending FLUSH_TREE messages ........................ 26

5.7.2. Receiving FLUSH_TREE messages ...................... 26

6. Timers and Default Values ...................................... 27

Expires February 1999                                           [Page 3]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

7. CBT Packet Formats and Message Types ........................... 28

7.1. CBT Common Control Packet Header .......................... 28

7.2. Packet Format for CBT Control Packet Types 0 - 6 .......... 29

7.2.1. Option Type Definitions ............................ 30

7.2.2. Sample Control Packets ............................. 31

8. Core Router Discovery .......................................... 33

8.1. "Bootstrap" Mechanism Overview ............................ 34

8.2. Bootstrap Message Format .................................. 35

8.3. Candidate Core Advertisement Message Format ............... 36

  Acknowledgements .................................................. 36

  References ........................................................ 37

  Author Information ................................................ 38

1.  Changes from RFC 2189

+o    forwarding cache support for entries of different granularities,
     i.e. (*, G), (*, Core), or (S, G), and support for S and/or G masks
     for representing S and/or G aggregates

+o    included support for joins, quits (prunes), and flushes of differ-
     ent granularities, i.e. (*, G), (*, Core), or (S, G), where S
     and/or G can be aggregates

+o    optional one-way join capability

+o    improved the LAN HELLO protocol and included a state diagram

+o    revised packet format, and provided option support for all control
     packets

Expires February 1999                                           [Page 4]

https://datatracker.ietf.org/doc/html/rfc2189


INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

+o    added downstream state timeout to CBT router

+o    revised the CBT "keepalive" mechanism between adjacent on-tree CBT
     routers

+o    overall provided added clarification of protocol events and mecha-
     nisms

     Unfortunately, most of these changes are not backwards compatible
     with RFC 2189, but at the time of writing, these changes remain in
     advent of any widespread implementation or deployment.

2.  Building a CBT Multicast Domain

   When building a CBT multicast domain that attaches to other multicast
   domains, this document should be used in conjunction with draft-ietf-

idmr-cbt-br-spec-**.txt, which describes the CBT Border Router Speci-
   fication and discusses various issues related to CBT domain intercon-
   nection.

3.  Introduction & Terminology

   In CBT, a "core router" (or just "core") is a router which acts as a
   "meeting point" between a sender and group receivers. The term "ren-
   dezvous point (RP)" is used equivalently in some documents [2].

   A router that is part of a CBT distribution tree is known as an "on-
   tree" router. An router which is on-tree for a group is one which has
   forwarding state for the group.

   We refer to a broadcast interface as any interface that is multicast
   capable.

   An "upstream" interface (or router) is one which is on the path
   towards the group's core router with respect to this router. A "down-
   stream" interface (or router) is one which is on the path away from
   the group's core router with respect to this router.

Expires February 1999                                           [Page 5]

https://datatracker.ietf.org/doc/html/rfc2189
https://datatracker.ietf.org/doc/html/draft-ietf-idmr-cbt-br-spec
https://datatracker.ietf.org/doc/html/draft-ietf-idmr-cbt-br-spec


INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

4.  CBT Functional Overview

   The CBT protocol is designed to build and maintain a shared multicast
   distribution tree that spans only those networks and links leading to
   interested receivers.

4.1.  The First Step: Joining the Tree

   As a first step, a host first expresses its interest in joining a
   group by multicasting an IGMP host membership report [3] across its
   attached link. Note that all CBT routers, similar to other multicast
   protocol routers, are expected to participate in IGMP for the purpose
   of monitoring directly attached group memberships, and acting as IGMP
   querier should the need arise.

   On receiving an IGMP Host Membership Report, a local CBT router
   invokes the tree joining process (unless it has already) by generat-
   ing a JOIN_REQUEST message, which is sent to the next hop on the path
   towards the group's core router (how the local router discovers which
   core to join is discussed in section 8). This join message must be
   explicitly acknowledged (JOIN_ACK) either by the core router itself,
   or by another router that is on the path between the sending router
   and the core, which itself has already successfully joined the tree.

   By default, joins/join-acks create bi-directional forwarding state,
   i.e. data can flow in the direction downstream -> upstream, or
   upstream -> downstream. In some circumstances a join/join-ack may
   include an option which instantiates uni-directional forwarding
   state; an interface over which a uni-directional join-ack is for-
   warded (not received) is automatically marked as pruned.  Data is
   permitted to be received via a pruned interface, but must not be for-
   warded over a pruned interface. Prune state can also be instantiated
   by the QUIT_NOTIFICATION message (see section 4.8).

   A join-request is made uni-directional by the inclusion of the "uni-
   directional" join option (see section 7.2.1), which is copied to the
   corresponding join-ack; join-request options are always copied to the
   corresponding join-ack.

   CBT now supports source specific joins/prunes so as to be better
   equipped when deployed in a transit domain; source specific control
   messages are only ever generated by CBT Border Routers (BRs). Source
   specific control messages follow G, not S, i.e. they are routed

Expires February 1999                                           [Page 6]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

   towards the core (not S) and no further.  Thus, (S, G) state only
   exists on the "core tree" in a CBT domain - those routers and links
   between a BR and core router.

4.2.  Transient State

   The join message sets up transient join state in the router that
   originates it (a LAN's designated router (DR)) and the routers it
   traverses (an exception is described in section 4.9), and this state
   consists of <group, [source], downstream address, upstream address>;
   "source" is optional, and relevant only to source specific control
   messages.

   On broadcast networks "downstream address" is the local IP address of
   the interface over which this router received the join (or IGMP Host
   Membership Report), and "upstream address" is the local IP address of
   the interface over which this router forwarded the join (according to
   this router's routing table). On non-broadcast networks "downstream
   address" is the IP address of the join's previous hop, and "upstream
   address" is the IP address of the next hop (according to this
   router's routing table). Transient state eventually times out unless
   the join is explicitly acknowledged. When a join is acknowledged, the
   transient join state is transferred to the router's multicast for-
   warding cache, thus becoming "permanent".

   If "downstream address" implies a broadcast LAN, the transient state
   MUST be able to distinguish between a member host being reachable
   over that interface, and a downstream router being reachable over
   that interface.  This is necessary so that, on receipt of a JOIN_ACK,
   a router with transient state knows whether "downstream address" only
   leads to a group member, in which case the JOIN_ACK need not be for-
   warded, or whether "downstream address" leads to a downstream router
   that either originated or forwarded the join prior to this router
   receiving it, in which case this router must forward a received
   JOIN_ACK. Precisely how this distinction is made is implementation
   dependent. A router must also be able to distinguish these two condi-
   tions wrt its forwarding cache.

Expires February 1999                                           [Page 7]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

4.3.  Getting "On-tree"

   A router which terminates a JOIN_REQUEST (see section 4.8) sends a
   JOIN_ACK in response.  A join acknowledgement (JOIN_ACK) traverses
   the reverse path of the corresponding join message, which is possible
   due to the presence of the transient join state. Once the acknowl-
   edgement reaches the router that originated the join message, the new
   receiver can receive traffic sent to the group.

   A router is not considered "on-tree" until it has received a JOIN_ACK
   for a previously sent/forwarded JOIN_REQUEST, and has instantiated
   the relevant forwarding state.

   Loops cannot be created in a CBT tree because a) there is only one
   active core per group, and b) tree building/maintenance scenarios
   which may lead to the creation of tree loops are avoided.  For exam-
   ple, if a router's parent router for a group becomes unreachable, the
   router (child) immediately "flushes" all of its downstream branches,
   allowing them to individually rejoin if necessary.  Transient unicast
   loops do not pose a threat because a new join message that loops back
   on itself will never get acknowledged, and thus eventually times out.

4.4.  Pruning and Prune State

   Any of a forwarding cache entry's children can be "pruned" by the
   immediate downstream router (child); in CBT, pruning is implemented
   by means of the QUIT_NOTIFICATION message, which is sent hop-by-hop
   in the direction: downstream --> upstream.  A pruned child must be
   distinguishable from a non-pruned child - how is implementation
   dependent. One possible way would be to associate a "prune bit" with
   each child in the forwarding cache.

   The granularity of a quit (prune) can be (*, G), (*, Core), or (S,
   G).  (*, Core) and (S, G) prunes are only relevant to core tree
   branches, i.e.  those routers between a CBT BR and a core (inclu-
   sive). (*, G) prunes are applicable anywhere on a CBT tree.

   In previous versions of CBT, a quit was sent by a child router to
   cause its parent to remove it from the tree. Whilst this capability
   remains, in this version of CBT a quit can also be sent by a child to
   make the parent's forwarding state more specific.

   Refer to section 4.8 for the procedures relating to receiving and

Expires February 1999                                           [Page 8]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

   forwarding a quit (prune) message.

   Data is permitted to be received via a pruned interface, but must not
   be forwarded over a pruned interface.  Thus, pruning is always uni-
   directional - it can stop data flowing downstream, but does not pre-
   vent data from flowing upstream.

   CBT BRs are able to take advantage of this uni-directionality; if the
   BR does not have any directly attached group members, and is not
   serving a neighbouring domain with group traffic, it can elect not to
   receive traffic for the group which is sourced inside, or received
   via, the CBT domain.  At the same time, if the BR is the ingress BR
   for a particular (*, G), or (S, G), externally sourced traffic for
   (*, G) or (S, G) need not be encapsulated by the ingress BR and uni-
   cast to the relevant core router - the BR can send the traffic using
   native IP multicast.

4.5.  The Forwarding Cache

   A CBT router MUST implement a multicast forwarding cache which sup-
   ports source specific (i.e. (S, G)) as well as source independent
   (i.e. (*, G) and (*, Core)) entries. This forwarding cache is known
   as the router's private CBT forwarding cache, or PFC.

   All implementations SHOULD also implement a shared (i.e. protocol
   independent) multicast forwarding cache - recommended in [8] to
   facilitate interoperability - which is only used by Border Routers
   and shared by all protocols operating on the Border Router (hence
   "shared"). This forwarding cache is known as the router's shared for-
   warding cache, or SFC. By having all CBT implementations support an
   SFC, any CBT router is eligible to become a Border Router.

   (*, Core) entries are only relevant to a CBT PFC.  This state is rep-
   resented in the cache by specifying the core's IP unicast address in
   place of a group address/group address range.

   Wrt representing groups (G's) in the forwarding cache, G may be an
   individual Class D 32-bit group address, or may be a prefix repre-
   senting a contiguous range of group addresses (a group aggregate).

   Similarly, for source specific PFC entries, S can be an aggregate.
   Therefore, the PFC SHOULD support the inclusion of masks or mask
   lengths to be associated with each of S and G.

Expires February 1999                                           [Page 9]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

   In CBT, all PFC entries require that an entry's "upstream" interface
   is distinguishable as such - how is implementation dependent. CBT
   uses the term "parent" interchangeably with "upstream", and
   "child/children" interchangeably with "downstream".  A core router's
   parent is always NULL.

   Whenever the sending/receiving of a CBT join or prune results in the
   instantiation of more specific state in the router (e.g. (*, Core)
   state exists, then a (*, G) join arrives), the children of the new
   entry represent the union of the children from all other less spe-
   cific forwarding cache entries, as well as the child (interface) over
   which the message was received (if not already included). This is so
   that at most a single forwarding cache entry need be matched with an
   incoming packet.

   Note that in CBT, there is no notion of "expected" or "incoming"
   interface for (S, G) forwarding entries - these are treated just like
   (*, G) entries.  Take the following example:

                    core
                      |\
                      | \
                      R1 \
                      |  R2 - s1
                      |   |
                      |   |
                      R4-R3 - g1
                      |
                      |
                      BR

                                 Figure 1.

   In figure 1 suppose R3 joins (*, g1) via the path R4 --> R1 --> core.
   BR joins (*, core) via the path R4 --> R1 --> core.  BR issues a (s1,
   g1) QUIT_NOTIFICATION resulting in the instantiation of (s1, g1)
   between BR and the core. Thus, on R4 (s1, g1) and (*, g1) states
   exist.  Assuming (s1, g1) state was instantiated on R4 AFTER (*, g1)
   state, R4's (s1, g1) child list comprises two interfaces, one point-
   ing to BR, the other pointing to R3 (the latter copied from R4's (*,
   g1) entry). R4's (s1, g1) parent points towards R1.

Expires February 1999                                          [Page 10]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

   Wrt R4's (s1, g1) entry, it is not possible for R4 to determine which
   is the correct incoming interface for s1 traffic, since R2 may send
   s1 traffic towards the core, or towards R3. Thus, R4 may receive (s1,
   g1) traffic via any of its on-tree interfaces, though R4 will not
   forward the traffic over a pruned child.

   A forwarding cache entry whose children are ALL marked as pruned as a
   result of receiving quit messages may delete the entry provided there
   exists no less specific state with at least one non-pruned child.

4.6.  Packet Forwarding

   When a data packet arrives, the forwarding cache is searched for a
   best matching (according to longest match) entry. If no match is
   found the packet is discarded. If the packet arrived natively it is
   accepted if it arrives via an on-tree interface, i.e. any interface
   listed in a matching entry, otherwise the packet is discarded. Assum-
   ing the packet is accepted, a copy of the packet is forwarded over
   each other (outgoing) non-pruned interface listed in the matching
   entry.

   If the packet arrived IP-in-IP encapsulated and the packet has
   reached its final destination, the packet is decapsulated and treated
   as described above, EXCEPT the packet need not have arrived via an
   on-tree interface according to the matching entry.

4.7.  The "Keepalive" Protocol

   The CBT forwarding state created by join/ack messages is soft state.
   This soft state is maintained by a separate "keepalive" mechanism
   rather than by join/ack refreshes.

   The CBT "keepalive" mechanism operates between adjacent on-tree
   routers.  The keepalive mechanism is implemented by means of group
   specific ECHO_REQUEST and ECHO_REPLY messages, with the child routers
   responsible for periodically (explicitly) querying the parent router.
   The parent router (implicitly) monitors its children by expecting to
   periodically receive queries (ECHO_REQUESTs) from each child (per
   child router on non-broadcast networks; per child interface on broad-
   cast networks).  The repeated absence of either an expected query

Expires February 1999                                          [Page 11]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

   (ECHO_REQUEST) or expected response (ECHO_REPLY) results in the cor-
   responding interface being marked as pruned in the router's forward-
   ing cache. This constitutes a state timeout due to an exception con-
   dition. An interface can also be pruned in an explicit and timely
   fashion by means of either a QUIT_NOTIFICATION (downstream to
   upstream) or FLUSH_TREE (upstream to downstream) message.

   Note that the network path comprising a CBT branch only changes due
   to connectivity failure.  An implementation could, however, invoke
   the tearing down and rebuilding of a tree branch whenever an underly-
   ing routing change occurs, irrespective of whether that change is due
   to connectivity failure. This is not CBT's default behaviour.

4.8.  Control Message Precedence & Forwarding Criteria

   When a router receives a CBT join or (quit) prune message, if the
   message contains state for which the receiving router has no matching
   (according to longest match) state in its forwarding cache, the
   receiving router creates a forwarding cache entry for the correspond-
   ing state and forwards the control message upstream.

   CBT join and quit (prune) messages are forwarded as far upstream as
   the corresponding core router, or first router encountered with
   equally- or less specific state AND at least one other non-pruned
   child for that state.  Forwarding state corresponding exactly to the
   granularity of the join/quit is instantiated in all routers between
   the join/quit originator and join/quit terminator, inclusive. Take
   the following examples:

               core                        core
                |                           |
                |                           |
                R                           R
                |                          / \
                |                         /   \
               BR                       BR1   BR2

            Figure 2.                   Figure 3.

   Assume in figure 2 BR has instantiated a priori (*, Core) state
   between itself and the core. It subsequently wishes to prune (*, G)

Expires February 1999                                          [Page 12]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

   from (*, Core) so sends a (*, G) QUIT_NOTIFICATION upstream. When the
   quit (prune) reaches router R, R already has less specific state
   (i.e. (*, Core)), but this quit message results in its only child
   interface (leading to BR) being marked as pruned under newly instan-
   tiated (*, G) state.  Since router R has no other child under either
   (*, Core) or (*, G) states, R can forward the received (*, G) quit.

   Assume in figure 3 neither BR1 nor BR2 has a priori state between
   itself and the core. Assume that BR1 is explicitly notified by its
   neighbouring domain of group membership for G, causing BR1 to send a
   (*, G) (bi-directional) JOIN_REQUEST towards the core, via router R.
   R receives the join, instantiates (*, G) state, and forwards the join
   since it has no pre-existing equal- or less specific state.

   Assume subsequently that BR2 is explicitly notified by its neighbour-
   ing domain of interest in (S, G) traffic. BR2 sends a (S, G) (bi-
   directional) JOIN_REQUEST towards the core, via router R. R receives
   the join, and already has less specific state (i.e. (*, G)) with one
   other child (leading to BR1). Thus, R instantiates (S, G) state
   (copying children from (*, G) state) and includes the child (pointing
   to BR2), but does not forward the (S, G) join due to the pre-exis-
   tence of less specific state with one other non-pruned child.

   A router with a forwarding cache entry whose children are ALL pruned
   can remove (delete) the corresponding entry UNLESS there exists less
   specific state with at least one non-pruned child.  If an entry is
   eligible for deletion, a quit representing the same granularity as
   the forwarding cache entry is sent upstream.

   Returning to the example used with figure 2 above, when router R
   receives the (*, G) quit sent by BR and instantiates the correspond-
   ing state, R can send a (*, G) quit upstream since there are no less
   specific entries with _other_ non-pruned children. However, the (*,
   G) state in R cannot be removed despite all (*, G) children being
   pruned (in this e.g. there is only one child) because a less specific
   (i.e. (*, Core)) cache entry exists with a non-pruned child.

   CBT flush messages are forwarded downstream removing all equally- and
   more specific state. A flush messsage is terminated by a leaf router,
   or a router with less specific state; the flush message does not
   affect the terminating router's less specific state.

Expires February 1999                                          [Page 13]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

4.9.  Broadcast LANs

   It cannot be assumed all of the routers on a broadcast link have a
   uniform view of unicast routing; this is particularly the case when a
   broadcast link spans two or more unicast routing domains. This could
   lead to multiple upstream tree branches being formed for any one
   group (an error condition) unless steps are taken to ensure all
   routers on the link agree on a single LAN upstream forwarding router.
   CBT routers attached to a broadcast link participate in an explicit
   election mechanism that elects a single router, the designated router
   (DR); the DR is a "join broker" for all LAN routers in so far as
   joins are routed according to the DR's view of routing - without a DR
   there could be conflicts potentially resulting in tree loops.  The
   router that actually forwards a join off-LAN for a group (towards the
   group's core) is known as the LAN "upstream router" for that group.
   A group's LAN upstream router may or may not be the LAN DR.

   With regards to a JOIN_REQUEST being multicast onto a broadcast LAN,
   the LAN DR decides over which interface to forward it. Depending on
   the group's core location, the DR may re-direct (unicast) the join
   back across the same link as it arrived to what it considers is the
   best next hop towards the core. In this case, the LAN DR does not
   keep any transient state for the JOIN_REQUEST it passed on. This best
   next hop router is then the LAN upstream forwarder for the corre-
   sponding group. This re-direction only applies to joins, which are
   relatively infrequent -  native multicast data never traverses a link
   more than once.

   For the case where a DR *originates* a join, and has to unicast it to
   a LAN neighbour, the DR MUST keep transient state for the join.

   On broadcast LANs it is necessary for a router to be able distinguish
   between a directly attached (downstream) group member, and any (at
   least one) downstream on-tree router(s). For a router to be able to
   send a QUIT_NOTIFICATION (prune) upstream it must be sure it neither
   has any (downstream) directly attached group members or on-tree
   routers reachable via a downstream interface. How this is achieved is
   implementation-dependent. One possible way would be for a CBT for-
   warding cache to maintain 2 extra bits for each child entry - one bit
   to indicate the presence of a group member on that interface, the
   other bit indicating the presence of an on-tree router on that inter-
   face. Both these bits must be clear (i.e. unset) before this router
   can send a QUIT_NOTIFICATION for the corresponding state upstream.

Expires February 1999                                          [Page 14]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

4.10.  The "all-cbt-routers" Group

   The IP destination address of CBT control messages is either the
   "all-cbt-routers" group address, or a unicast address, as appropri-
   ate.

   All CBT control messages are multicast over broadcast links to the
   "all-cbt-routers" group (IANA assigned as 224.0.0.15), with IP TTL 1.
   The exception to this is if a DR decides to forward a control packet
   back over the interface on which it arrived, in which the DR unicasts
   the control packet. The IP source address of CBT control messages is
   the sending router's outgoing interface.

   CBT control messages are unicast over non-broadcast media.

   A CBT control message originated or forwarded by a router is never
   processed by itself.

4.11.  Non-Member Sending

   This section is relevant to non-member sending where the data is
   sourced inside the CBT domain.

   A host always originates native multicast data. All multicast traffic
   is received promiscuously by CBT routers. All but the LAN's desig-
   nated router (DR) discard the packet. The DR looks up the relevant
   <core, group> mapping, encapsulates (IP-in-IP) the data, and unicasts
   it to the group's core router. Consequently, no group state is
   required in the network between the first hop router and the group's
   core.

   On arriving at the core router, the data packet is decapsulated and
   disemminated over the group tree in the manner already described.

5.  Protocol Specification Details

   Details of the CBT protocol are presented in the context of a single
   router implementation.

Expires February 1999                                          [Page 15]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

5.1.  CBT HELLO Protocol

   The HELLO protocol is used to elect a designated router (DR) on
   broadcast-type links.

   A router represents its status as a link's DR by setting the DR-flag
   on that interface; a DR flag is associated with each of a router's
   broadcast interfaces. This flag can only assume one of two values:
   TRUE or FALSE. By default, this flag is FALSE.

   A network manager can preference a router's DR eligibility by option-
   ally configuring an HELLO preference, which is included in the
   router's HELLO messages.  Valid configuration values range from 1 to
   254 (decimal), 1 representing the "most eligible" value. In the
   absence of explicit configuration, a router assumes the default HELLO
   preference value of 255. The elected DR uses HELLO preference zero
   (0) in HELLO advertisements, irrespective of any configured prefer-
   ence.  The DR continues to use preference zero for as long as it is
   running.

   HELLO messages are multicast periodically to the all-cbt-routers
   group, 224.0.0.15, using IP TTL 1. The advertisement period is speci-
   fied by an hello timer, which is [HELLO_INTERVAL] seconds.

   HELLO messages have a suppressing effect on those routers which would
   advertise a "lesser preference" in their HELLO messages; a router
   resets its hello timer if the received HELLO is "better" than its
   own. Thus, in steady state, the HELLO protocol incurs very little
   traffic overhead.

   The DR election winner is that which advertises the lowest HELLO
   preference, or the lowest-addressed in the event of a tie.

   The situation where two or more routers attached to the same broad-
   cast link are advertising HELLO preference 0 should never arise. How-
   ever, should this situation arise, all but the lowest addressed zero-
   advertising router relinquishes its claim as DR immediately by unset-
   ting the DR flag on the corresponding interface. The relinquishing
   router(s) subsequently advertise their previously used preference
   value in HELLO advertisements.

Expires February 1999                                          [Page 16]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

5.1.1.  Sending HELLOs

   When a router starts up, it multicasts two HELLO messages over each
   of its broadcast interfaces in successsion. The DR flag is initially
   unset (FALSE) on each broadcast interface.  This avoids the situation
   in which each router on a broadcast subnet believes it is the DR,
   thus preventing the multiple forwarding of join-requests should they
   arrive during this start up period.

   If, after sending an HELLO message, no "better" HELLO message is
   received after HOLDTIME seconds, the router assumes the role of DR on
   the corresponding interface.  Whenever a router's status goes from
   non-DR to DR it immediately sends a zero preferenced HELLO message.

   Once a router becomes DR on an interface, it should remain DR for as
   long as it is running (assuming a lower-addressed router on the same
   subnet does not advertise a zero-preferenced HELLO message).

   A router sends an HELLO message whenever its hello timer expires, or
   its transition timer [DR_TRANS_TIMER] (if running) expires.  Whenever
   a router sends an HELLO message, it resets its hello timer.  The
   hello timer of the DR is [HELLO_INTERVAL] seconds. The hello timer of
   all other (non-DR) routers is [HELLO_INTERVAL] + rnd seconds, where
   "rnd" is a random interval between 1 and [HOLDTIME] seconds.

5.1.2.  Receiving HELLOs

   A router does not respond to an HELLO message if the received HELLO
   is "better" than its own, or equally preferenced but lower addressed.
   In this case, if the router has a transition timer [DR_TRANS_TIMER]
   running on the same interface, the timer is cancelled.

   A router must respond to an HELLO message if that received is lesser
   preferenced (or equally preferenced but higher addressed) than would
   be sent by this router over the same interface. This response HELLO
   is sent immediately by the DR, or on expiry of an interval timer
   which is set between one and [HOLDTIME] seconds by non-DRs - this
   interval is known as the [DR_TRANS_TIMER] interval. Non-DRs cancel
   this transition timer if a better hello is received whilst this timer
   is running.

   Figure 4 shows the state diagram for the HELLO protocol.

   The following apply to the state diagram:

Expires February 1999                                          [Page 17]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

+o    for the DR, hello timer = HELLO_INTERVAL

+o    for non-DR(s), hello timer = HELLO_INTERVAL + rnd

+o    rnd = random delay timer between 1 and HOLDTIME seconds

+o    the DR always sends HELLO message with Preference zero

+o    trans timer ([DR_TRANS_TIMER]) is a transition timer, set to rnd

Expires February 1999                                          [Page 18]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

                                     Start O
                                           | A: Send 2 HELLO's
                                           | A: Start HOLDTIME
                                           V
             E: Recv better HELLO     **********----
             A: Reset hello timer     *  Init  *   | E: Recv worse HELLO
       -------------------------------*        *<---
       |                              **********
       |                                  |
       |                                  | E: HOLDTIME expires
       |                                  | A: Send HELLO
       |                                  | A: Reset hello timer
       |                                  V
       |                              **********
       |                          ----*        *----
       |     E: Rec worse HELLO   |   *   DR   *   | E: hello timer expires
       |     A: Send HELLO        |   *        *   | A: Send HELLO
       |     A: Reset hello timer --->**********<--- A: Reset hello timer
       |                                   |  ^
       |                                   |  | E: HOLDTIME expires
       |                                   |  | A: Send HELLO
       |                                   |  | A: Reset hello timer
       |              E: Recv better HELLO |  -------------------------------
       |              A: Reset hello timer |                                |
       |________________________________   |                                |
                                        |  |                                |
                                        |  |                                |
                 E: Recv better HELLO   |  |                                |
                 A: Cancel trans timer  V  V         E: Recv better HELLO   |
      ********** A: Reset hello timer *************  A: Reset hello timer  
*******
      * Not DR *-------------------->*            *<-----------------------
*     *
      * & recd *                     *    Not DR  *                        * 
DR  *
      * worse  *                     *            *                        
*wait *
      * hello  *<--------------------*            *-----------------------
>*     *
      ********** E: Recv worse HELLO  ************* E: hello timer expires 
*******
           |     A: Start trans timer |       ^     A: Send HELLO            ^
           |                          |       |     A: Start HOLDTIME        |
           |                          ---------     A: Reset hello timer     |
           |                    E: Rec better HELLO                          |
           |                    A: Reset hello time                          |
           |                                                                 |
           -------------------------------------------------------------------



       E: trans timer expires A: Send HELLO A: Start HOLDTIME A: Reset hello 
timer

                   Figure 4: HELLO Protocol State Diagram

Expires February 1999                                          [Page 19]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

5.2.  JOIN_REQUEST Processing

   A JOIN_REQUEST is the CBT control message used to register a member
   host's interest in joining the distribution tree for the group.

   A JOIN_REQUEST can be of (*, G), (*, Core), or (S, G) granularity.

5.2.1.  Sending JOIN_REQUESTs

   A JOIN_REQUEST can be only be originated by a LAN designated router
   (DR), or by a CBT Border Router (BR). A join message cannot be sent
   by a router that is the core router for the group.

   A join message is sent hop-by-hop towards the core router for the
   group (see section 8 - Core Router Discovery).

   Refer to section 4.8 for the procedures relating to forward-
   ing/receiving a join message.

   A router sending a join message caches <group, [source], downstream
   address, upstream address> state for each join sent/forwarded. This
   state is known as "transient join state".  The router MUST be able to
   distinguish between reaching a group member host, or a router, or
   both, via its "Downstream address". How this is achieved is implemen-
   tation dependent (see section 4.9).  A join originator is responsible
   for any retransmissions of this message if a response is not received
   within [RTX_INTERVAL]. Retransmissions are not generated by any
   router other than the join originator.

   It is an error if no response is received after [JOIN_TIMEOUT] sec-
   onds.  If this error condition occurs, the joining process may be re-
   invoked by the receipt of the next IGMP host membership report from a
   locally attached member host. IGMP host membership reporting may not
   be applicable to a CBT BR, and so it is recommended [JOIN_TIMEOUT] be
   extended to, for example, 3 times the default value (see section 6).

5.2.2.  Receiving JOIN_REQUESTs

   If a JOIN_REQUEST is eligible for forwarding upstream (see section
4.8), transient join state is created for this join (unless it

   already exists) and the join is forwarded upstream.

Expires February 1999                                          [Page 20]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

   If this transient join state is not "confirmed" with a join acknowl-
   edgement (JOIN_ACK), the state is timed out after [TRANSIENT_TIMEOUT]
   seconds.

   A join cannot be acknowledged by an on-tree router if the join
   arrives via the router's parent interface for the group. A router
   which originates an acknowledgment for a join never forwards the join
   further.

5.2.3.  Additional Aspects Related to Receiving Multicast JOIN_REQUESTs

   Some aspects related to receiving multicast joins have already been
   discussed in section 4.9.

   In addition to that section, if a router receives a multicast join
   and the router has a  child interface deletion timer
   [CHILD_DEL_TIMER] running on the same interface that is equally- or
   less-specific than the received join, the timer is cancelled (see

section 5.4.2).  This router acknowledges the received join.

5.3.  JOIN_ACK Processing

   A JOIN_ACK is the mechanism used by a router to confirm to a down-
   stream router that the upstream router has instantiated the desired
   forwarding state.

   A JOIN_ACK must be of the same granularity as the corresponding
   JOIN_REQUEST, and any JOIN_REQUEST options must be copied to the
   JOIN_ACK.  The downstream router receiving the join-ack converts its
   corresponding transient state to its forwarding cache, then removes
   the relevant transient state.

5.3.1.  Sending JOIN_ACKs

   A router which terminates a JOIN_REQUEST (see section 4.8) sends a
   JOIN_ACK in response.  A JOIN_ACK is sent over the same interface as
   the corresponding JOIN_REQUEST was received. Any options present in
   the join must be copied to the join-ack.

Expires February 1999                                          [Page 21]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

   The sending of a JOIN_ACK - which inlcudes the "uni-directional"
   option - over a child results in the child being pruned.  The sending
   of a JOIN_ACK over a child that is marked as pruned results in that
   child being "un-pruned", unless the join-ack contains the uni-direc-
   tional option.

5.3.2.  Receiving JOIN_ACKs

   An arriving JOIN_ACK must be matched to the corresponding <group,
   [source], downstream address, upstream address> from the router's
   cached transient state. If no match is found, the JOIN_ACK is dis-
   carded.  If a match is found, a CBT forwarding cache entry is created
   (or updated) by transferring the necessary transient join state to
   the router's forwarding cache. The interface over which the join-ack
   arrives becomes the entry's parent.

   If the router's transient join state indicates that a router is pre-
   sent downstream, it forwards the join-ack accordingly. A join-ack is
   not forwarded downstream if this router's transient state indicates
   ONLY group member hosts reside downstream (as opposed to router(s)).
   An implementation SHOULD be able to distinguish these two conditions.

   Once transient state has been confirmed by transferring it to the
   forwarding cache, the transient state is deleted.

5.4.  QUIT_NOTIFICATION Processing

   A QUIT_NOTIFICATION (quit or prune) is both a means of improving,
   i.e. speeding up, group leave latency for CBT leaf routers, and a
   means for CBT Border Routers to elect not to receive traffic either
   from sources within, or via, the CBT domain.

   A quit (prune) can be of (*, G), (*, Core), or (S, G) granularity.  A
   single quit message can carry information representing multiple dif-
   ferent states.

5.4.1.  Sending QUIT_NOTIFICATIONs

   A CBT router *originates* a QUIT_NOTIFICATION of the relevant granu-
   larity when all children of a forwarding cache entry become pruned,
   AND there exists no less specific state with at least one _other_
   non-pruned child.

Expires February 1999                                          [Page 22]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

Forwarding rules for a quit are explained in section 4.8.

A QUIT_NOTIFICATION is not acknowledged.

To help ensure consistency between a child and parent router given the
potential for loss of a QUIT_NOTIFICATION, a total of [MAX_RTX]
QUIT_NOTIFICATIONs are sent, each HOLDTIME seconds after the previous
one.

5.4.2.  Receiving QUIT_NOTIFICATIONs

   The receipt of a valid QUIT_NOTIFICATION results in the arrival
   interface being marked as pruned.  Rules regarding the forwarding of
   a received quit (prune) are explained in section 4.8.

   If a quit is accepted and was unicast, the child via which the quit
   was received is added to the entry's child list (if not already), and
   immediately marked as pruned.

   If the quit is accepted and was multicast, and the receiving router
   has pre-existing forwarding cache state of equal granularity, the
   router sets a child interface deletion timer [CHILD_DEL_TIMER] on the
   arrival interface with the same granularity.

   Because this router might be acting as a parent router for multiple
   downstream routers attached to the arrival link, [CHILD_DEL_TIMER]
   interval gives those routers that did not send the QUIT_NOTIFICATION,
   but received it over their parent interface, the opportunity to
   ensure that the parent router does not remove the link from its child
   interface list.  Therefore, on receipt of a multicast QUIT_NOTIFICA-
   TION over a PARENT interface, a receiving router schedules an
   ECHO_REQUEST for the group for sending at a random interval between 0
   (zero) and HOLDTIME seconds. The granularity of the echo MUST be
   equal or less specific than the received quit.

   The receipt of an ECHO_REQUEST for the group by the parent router
   over a child interface on which [CHILD_DEL_TIMER] is running for the
   group, results in the timer being cancelled, provided the echo is
   equal or less specific than the granularity of the timer.

   If the [CHILD_DEL_TIMER] expires, it implies no downstream on-tree
   router is present on that interface. If no group member is present on
   the same interface, the child can be marked as pruned in the relevant
   forwarding cache entry.

Expires February 1999                                          [Page 23]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

5.5.  ECHO_REQUEST Processing

   The ECHO_REQUEST/ECHO_REPLY messages constitute a "keepalive" mecha-
   nism which allows a group's child and parent routers to monitor each
   other's liveness.

   ECHO_REQUESTs can be of (*, G), (*, Core), or (S, G) granularity.  A
   single echo can carry information representing multiple different
   states.

   The following timers are specifically relevant to the "keepalive"
   mechanism.  The granularity of the timers corresponds the granularity
   of the state that is to be "kept alive", i.e. it can be (*, G), (*,
   Core), or (S, G), and is per interface: [ECHO_INTERVAL],
   [UPSTREAM_EXPIRE_TIME] (monitors parent interface), and [DOWN-
   STREAM_EXPIRE_TIME] (monitors child interface).

5.5.1.  Sending ECHO_REQUESTs

   Whenever a router creates a forwarding cache entry due to the receipt
   of a JOIN_ACK, the router begins the periodic sending of ECHO_REQUEST
   messages over its parent interface. The granularity of the echo is
   equal to that of the sending router's forwarding cache entry, i.e.
   (*, G), (*, Core), or (S, G).  An ECHO_REQUEST is multicast
   (224.0.0.15, TTL 1) or unicast, as appropriate.

   ECHO_REQUEST messages are sent at [ECHO_INTERVAL] second intervals.
   To avoid undesirable synchronisation effects each of a host's inter-
   face's [ECHO_INTERVAL] timers includes a random response interval.
   Whenever an ECHO_REQUEST is sent, [ECHO_INTERVAL] is reset for each
   (*, G), or (*, Core), or (S, G), reported in the ECHO_REQUEST.

   If no response is forthcoming, the upstream interface timer
   [UPSTREAM_EXPIRE_TIME] running on the upstream interface for the
   state reported in the ECHO_REQUEST will eventually expire. A
   FLUSH_TREE message is sent over all pruned and non-pruned children.
   The flush message reports the same state granularity as the echo for
   which no response was forthcoming.

5.5.2.  Receiving ECHO_REQUESTs

   Whenever an ECHO_REQUEST is received on an interface, if the router's
   interface is a parent interface for the reported state(s) it resets

Expires February 1999                                          [Page 24]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

   its [ECHO_INTERVAL] timer on that interface for those state(s), if
   appropriate. This implies that an ECHO_REQUEST which is multicast on
   a LAN suppresses the ECHO_REQUEST that is about to be sent by another
   router(s) for the same state(s) over the same interface.

   If the router's receiving interface is a child interface for the
   reported state(s), it resets its [DOWNSTREAM_EXPIRE_TIME] timer on
   that interface for those state(s), if appropriate, and sends (multi-
   cast) an ECHO_REPLY reporting all states for which this router con-
   siders itself the parent wrt the child (interface).

   Failure to receive an ECHO_REQUEST for a state(s) from a child after
   [DOWNSTREAM_EXPIRE_TIME] results in the immediate removal of the
   child from the relevant forwarding cache entry if the child is reach-
   able via a non-broadcast network. If the child is reachable via a
   broadcast network, the expiry of [DOWNSTREAM_EXPIRE_TIME] results in
   the removal of the child from the router's relevant forwarding cache
   entry provided no group members are present on that interface.

5.6.  ECHO_REPLY Processing

   ECHO_REPLY messages are sent in immediate response to ECHO_REQUEST
   messages received over a valid child interface for the reported
   state(s). The ECHO_REPLY reports all state(s) for which this router
   considers itself the parent to the echo-requesting child.

   If multiple states need reporting, one or more ECHO_REPLYs may be
   sent in response to a single ECHO_REQUEST, as necessary.

5.6.1.  Sending ECHO_REPLY messages

   An ECHO_REPLY message is sent in immediate response to receiving an
   ECHO_REQUEST message via one of this router's valid children for the
   reported state(s).  The ECHO_REPLY(s) contains a list of all states
   for which this router considers itself the parent to the child.

5.6.2.  Receiving ECHO_REPLY messages

   For each state reported in an ECHO_REPLY message received from a
   valid parent, the timers [UPSTREAM_EXPIRE_TIME] and [ECHO_INTERVAL]
   are refreshed for the reported states.

Expires February 1999                                          [Page 25]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

   Failure to receive the relevant ECHO_REPLY [HOLDTIME] seconds after
   sending an ECHO_REQUEST results in the corresponding ECHO_REQUEST
   being resent. An ECHO_REQUEST can be resent a maximum of [MAX_RTX]
   times. If no response is forthcoming, the corresponding state(s) is
   removed from the parent after [UPSTREAM_EXPIRE_TIME] seconds, and a
   FLUSH_TREE message is sent over each of the children represented by
   the state(s).

   [Note: If this router has directly attached members for any of the
   flushed groups, the receipt of an IGMP host membership report for any
   of those groups will prompt this router to rejoin the corresponding
   tree(s).]

5.7.  FLUSH_TREE Processing

   The FLUSH_TREE (flush) message is the mechanism by which a router
   invokes the tearing down of all its downstream branches for a partic-
   ular group.

   A flush can be of (*, G), (*, Core), or (S, G) granularity.  A single
   flush message can carry information representing multiple different
   states.

5.7.1.  Sending FLUSH_TREE messages

   A FLUSH_TREE message is sent over all pruned and non-pruned children
   whenever a router loses connectivity to its parent.

   Once a flush message(s) has been sent, the relevant forwarding cache
   entry/entries are deleted.

5.7.2.  Receiving FLUSH_TREE messages

   CBT flush messages are forwarded downstream removing all equally- and
   more specific state. A flush messsage is terminated by a leaf router,
   or a router with less specific state; the flush message does not
   affect the terminating router's less specific state.

Expires February 1999                                          [Page 26]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

6.  Timers and Default Values

   This section provides a summary of the timers described above,
   together with their recommended default values. Other values may be
   configured; if so, the values used should be consistent across all
   CBT routers attached to the same network.

+o    [HELLO_INTERVAL]: the interval between sending an HELLO message.
     Default: 60 seconds.

+o    [HELLO_PREFERENCE]: Default: 255.

+o    [HOLDTIME]: generic response interval. Default: 3 seconds.

+o    [DR_TRANS_TIMER]: random delay timer used in transition from non-DR
     to DR.  Default: delay set at between 1 and [HOLDTIME] seconds.

+o    [MAX_RTX]: default maximum number of retransmissions. Default 3.

+o    [RTX_INTERVAL]: message retransmission time. Default: 5 seconds.

+o    [JOIN_TIMEOUT]: raise exception due to tree join failure.  Default:
     (3.5*[RTX_INTERVAL]) seconds.

+o    [TRANSIENT_TIMEOUT]: delete (unconfirmed) transient state. Default:
     [JOIN_TIMEOUT] seconds.

+o    [CHILD_DEL_TIMER]: remove child interface from forwarding cache.
     Default: (1.5*HOLDTIME) seconds.

+o    [UPSTREAM_EXPIRE_TIME]: time to send a QUIT_NOTIFICATION to our
     non-responding parent.  Default: ([MAX_RTX]*[RTX_INTERVAL] + [HOLD-
     TIME]) seconds.

+o    [DOWNSTREAM_EXPIRE_TIME]: not heard from child, time to remove
     child interface.  Default: ([ECHO_INTERVAL] +
     [UPSTREAM_EXPIRE_TIME]) seconds.

+o    [ECHO_INTERVAL]: interval between sending ECHO_REQUEST to parent
     routers.  Default: 60 + rnd seconds, where "rnd" is between 0 and
     [HOLDTIME] seconds.

Expires February 1999                                          [Page 27]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

7.  CBT Packet Formats and Message Types

   CBT control packets are encapsulated in IP. CBT has been assigned IP
   protocol number 7 by IANA [4].

7.1.  CBT Common Control Packet Header

All CBT control messages have a common fixed length header.

    0               1               2               3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  vers | type  |  addr len     |         checksum              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 5. CBT Common Control Packet Header

This CBT specification is version 3.

CBT packet types are:

+o    type 0: HELLO

+o    type 1: JOIN_REQUEST

+o    type 2: JOIN_ACK

+o    type 3: QUIT_NOTIFICATION

+o    type 4: ECHO_REQUEST

+o    type 5: ECHO_REPLY

+o    type 6: FLUSH_TREE

+o    type 7: Bootstrap Message (optional)

+o    type 8: Candidate Core Advertisement (optional)

+o    Addr Length: address length in bytes of unicast or multicast
     addresses carried in the control packet.

Expires February 1999                                          [Page 28]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

+o    Checksum: the 16-bit one's complement of the one's complement sum
     of the entire CBT control packet.

7.2.  Packet Format for CBT Control Packet Types 0 - 6

   A CBT control packet is divided into 3 parts:

+o    Common Control Packet Header,

+o    Control Packet Payload, and

+o    Control Packet Option(s).

    0               1               2               3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Common
   |                    CBT Control Packet Header                  | Header
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ --------
   |Payload Length |  # of options |           reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Control
   |                           address #1                          | Packet
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Payload
   |                           address #2                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           address #n                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ --------
   |  option type  |  option len   |        option value...        | Option(s)
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 6. CBT Control Packet Format for Types 0 - 6.

Control Packet Field Definitions:

+o    # Payload Length: the length of the CBT control packet payload,
     excluding the common control packet header and option(s).

+o    # of options: the number of distinct options (as defined by option
     type) carried in this control packet.

+o    address #n: control packet payload address(es). Different control
     packet types can carry addresses (multicast and/or unicast) as
     their payload (e.g. JOIN_REQUESTs), and some control packet types

Expires February 1999                                          [Page 29]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

     carry no addresses in the payload (e.g. HELLOs).

+o    option type: unique option identifier.

+o    option len: option length. The number of bytes consumed by this
     option's value.

+o    option value: variable length option value.

NOTE: all control messages are padded to a 32-bit boundary.

7.2.1.  Option Type Definitions

+o    type 1: Hello Preference. Applicable only to HELLO packets to
     denote this HELLO packet's preference value. This option consumes 1
     byte of "option value".

+o    type 2: Uni-directional. Applicable only to JOIN_REQUESTs to indi-
     cate a uni-directional join.

+o    type 3: Inclusion List. Enables the reporting of a contiguous set
     of groups using a group mask, for which this control message should
     apply.  The mask is represented by an 8-bit "masklen" field which
     is always included as the first 8 bits of this option's value.  One
     or more group prefixes follow, each padded out (zeroed) to 32 bits.

+o    type 4: Exclusion List. This option allows for the reporting of
     group(s) to be exempted from the set reported elsewhere in this
     control packet.  A contiguous range of groups may be specified
     using a group mask.  The mask is represented by an 8-bit "masklen"
     field which is always included as the first 8 bits of this option's
     value.  One or more group prefixes follow, each padded out (zeroed)
     to 32 bits.

+o    type 5: Source Information. This option enables a control message
     to specify source(s) to be associated with a group(s) carried else-
     where in the control message; if this option is specified as the
     first option after the control packet payload, the source informa-
     tion applies to the group specified in the payload. If this source
     information is to apply to a group aggregate (as specified by
     option type 3), the option specifying the group prefix MUST appear
     immediately before this option.

Expires February 1999                                          [Page 30]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

     A source aggregate (prefix) may be specified using a source mask.
     The mask is represented by an 8-bit "masklen" field which is always
     included as the first 8 bits of this option's value.  The source
     (prefix) follows, padded out (zeroed) to 32 bits.

7.2.2.  Sample Control Packets

   This section shows some sample constructions of a selection of dif-
   ferent CBT control packet types.

    0               1               2               3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Common
   |   3   |   0   |       4       |           Checksum            | Header
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ --------
   |       4       |       1       |           reserved            | Payload
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ --------
   |       1       |       1       |  Preference   |    Padding    | Option
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ --------

                     Figure 7. Sample HELLO packet

    0               1               2               3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Common
   |   3   |   1   |       4       |           Checksum            | Header
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ --------
   |       16      |       0       |           reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Control
   |                        Group Address                          | Packet
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Payload
   |                         Core Address                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Join-Originating DR                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ --------

       Figure 8. Sample (*, G) JOIN_REQUEST (no options included)

Expires February 1999                                          [Page 31]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

    0               1               2               3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Common
   |   3   |   2   |       4       |           Checksum            | Header
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ --------
   |       12      |       0       |           reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Control
   |                        Group Address                          | Packet
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Payload
   |        Join Originating DR (copied from JOIN_REQUEST)         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ --------

         Figure 9. Sample (*, G) JOIN_ACK (no options included)

    0               1               2               3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Common
   |   3   |   1   |       4       |           Checksum            | Header
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ --------
   |       16      |       1       |           reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Control
   |                        Group Address                          | Packet
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Payload
   |                         Core Address                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Join-Originating DR                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ --------
   |       5       |       5       |       24      | Src Addr Pfx..| Option
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |.............. Src Addr Prefix ..............  |    Padding    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ --------

                 Figure 10. Sample (S, G) JOIN_REQUEST

Expires February 1999                                          [Page 32]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

    0               1               2               3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Common
   |   3   |   4   |       4       |           Checksum            | Header
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ --------
   |   8 + (n x 4) |       0       |           reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Control
   |                ECHO_REQUEST Originating Router                | Packet
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Payload
   |                           Address #1                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Address #2                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Address #n                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ --------

                     Figure 11. Sample ECHO_REQUEST

    0               1               2               3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Common
   |   3   |   5   |       4       |           Checksum            | Header
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ --------
   |   8 + (n x 4) |       0       |           reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Control
   |                  ECHO_REPLY Originating Router                | Packet
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Payload
   |                           Address #1                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Address #2                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           Address #n                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ --------

                      Figure 12. Sample ECHO_REPLY

8.  Core Router Discovery

   There are two available options for CBTv2 core discovery; the "boot-
   strap" mechanism (as currently specified with the PIM sparse mode
   protocol [2]) is applicable only to intra-domain core discovery, and
   allows for a "plug & play" type operation with minimal configuration.

Expires February 1999                                          [Page 33]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

   The disadvantage of the bootstrap mechanism is that it is much more
   difficult to affect the shape, and thus optimality, of the resulting
   distribution tree.  Also, to be applicable, all CBT routers within a
   domain must implement the bootstrap mechanism.

   The other option is to manually configure leaf routers with <core,
   group> mappings (note: leaf routers only); this imposes a degree of
   administrative burden - the mapping for a particular group must be
   coordinated across all leaf routers to ensure consistency. Hence,
   this method does not scale particularly well. However, it is likely
   that "better" trees will result from this method, and it is also the
   only available option for inter-domain core discovery currently
   available.

8.1.  "Bootstrap" Mechanism Overview

   It is unlikely that the bootstrap mechanism will be appended to a
   well-known network layer protocol, such as IGMP [3], though this
   would facilitate its ubiquitous (intra-domain) deployment. Therefore,
   each multicast routing protocol requiring the bootstrap mechanism
   must implement it as part of the multicast routing protocol itself.

   A summary of the operation of the bootstrap mechanism follows
   (details are provided in [6]). It is assumed that all routers within
   the domain implement the "bootstrap" protocol, or at least forward
   bootstrap protocol messages.

   A subset of the domain's routers are configured to be CBT candidate
   core routers. Each candidate core router periodically (default every
   60 secs) advertises itself to the domain's Bootstrap Router (BSR),
   using  "Core Advertisement" messages.  The BSR is itself elected
   dynamically from all (or participating) routers in the domain.  The
   domain's elected BSR collects "Core Advertisement" messages from can-
   didate core routers and periodically advertises a candidate core set
   (CC-set) to each other router in the domain, using traditional hop-
   by-hop unicast forwarding. The BSR uses "Bootstrap Messages" to
   advertise the CC-set. Together, "Core Advertisements" and "Bootstrap
   Messages" comprise the "bootstrap" protocol.

   When a router receives an IGMP host membership report from one of its
   directly attached hosts, the local router uses a hash function on the
   reported group address, the result of which is used as an index into
   the CC-set. This is how local routers discover which core to use for

Expires February 1999                                          [Page 34]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

   a particular group.

   Note the hash function is specifically tailored such that a small
   number of consecutive groups always hash to the same core. Further-
   more, bootstrap messages can carry a "group mask", potentially limit-
   ing a CC-set to a particular range of groups. This can help reduce
   traffic concentration at the core.

   If a BSR detects a particular core as being unreachable (it has not
   announced its availability within some period), it deletes the rele-
   vant core from the CC-set sent in its next bootstrap message. This is
   how a local router discovers a group's core is unreachable; the
   router must re-hash for each affected group and join the new core
   after removing the old state. The removal of the "old" state follows
   the sending of a QUIT_NOTIFICATION upstream, and a FLUSH_TREE message
   downstream.

8.2.  Bootstrap Message Format

     0               1               2               3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |             CBT common control packet header                  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |      For full Bootstrap Message specification, see [6]        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 13. Bootstrap Message Format

Expires February 1999                                          [Page 35]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

8.3.  Candidate Core Advertisement Message Format

     0               1               2               3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              CBT common control packet header                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   For full Candidate Core Adv. Message specification, see [6] |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         Figure 14. Candidate Core Advertisement Message Format

Acknowledgements

   Special thanks goes to Paul Francis, NTT Japan, for the original
   brainstorming sessions that brought about this work.

   The use of a single core model since CBTv2 owes much to Clay Shields
   and his work on Ordered CBT (OCBT) [7].  Clay identified and proved
   several failure modes of CBT(v1) as it was specified with multiple
   cores, and also suggested using an unreliable quit mechanism, which
   has appeared since the CBTv2 specification as the QUIT_NOTIFICATION.
   Clay also provided more general constructive comments on the CBT
   architecture and specification.

   Others that have contributed to the progress of CBT include Ken Carl-
   berg, Eric Crawley, Jon Crowcroft, Bill Fenner, Mark Handley, Ahmed
   Helmy, Nitin Jain, Alan O'Neill, Steven Ostrowsksi, Radia Perlman,
   Scott Reeve, Benny Rodrig, Martin Tatham, Dave Thaler, Sue Thompson,
   Paul White, and other participants of the IETF IDMR working group.

   Thanks also to 3Com Corporation and British Telecom (BT) Plc for
   assisting with funding this work.

   Finally, thanks to Graeme Brown, BT Labs UK, for his ongoing imple-
   mentation effort porting CBT to FreeBSD. For further information on
   this implementation contact <graeme.brown@bt-sys.bt.co.uk>, Alan
   O'Neill <alan.oneill@bt-sys.bt.co.uk>, or Tony Ballardie <ABal-
   lardie@acm.org>.

Expires February 1999                                          [Page 36]



INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

   References

  [1] Core Based Trees (CBT) Multicast Routing Architecture; A. Bal-
  lardie; RFC 2201; ftp://ds.internic.net/rfc/rfc2201.txt.

  [2] Protocol Independent Multicast (PIM) Sparse Mode/Dense Mode; D.
  Estrin et al; http://netweb.usc.edu/pim  RFC XXXX and Working drafts.

  [3] Internet Group Management Protocol, version 2 (IGMPv2); W. Fenner;
ftp://ds.internic.net/internet-drafts/draft-ietf-idmr-igmp-v2-08.txt.

  Working draft, 1998.

  [4] Assigned Numbers; J. Reynolds and J. Postel; RFC 1700, October
  1994.

  [5] CBT Multicast Border Router Specification; A. Ballardie, B. Cain,
  Z. Zhang; ftp://ds.internic.net/internet-drafts/draft-ietf-idmr-cbt-
  br-spec-**.txt.  Working draft, March 1998.

  [6] A Dynamic Bootstrap Mechanism for Rendezvous-based Multicast Rout-
  ing; D. Estrin et al.; Technical Report; http://catarina.usc.edu/pim

  [7] The Ordered Core Based Tree Protocol; C. Shields and J.J. Garcia-
  Luna-Aceves; In Proceedings of IEEE Infocom'97, Kobe, Japan, April
  1997; http://www.cse.ucsc.edu/research/ccrg/publications/info-
comm97ocbt.ps.gz

  [8] Interoperability Rules for Multicast Routing Protocols; D. Thaler;
ftp://ds.internic.net/internet-drafts/draft-thaler-multicast-
interop-01.txt; March 1997.

Expires February 1999                                          [Page 37]

https://datatracker.ietf.org/doc/html/rfc2201
ftp://ds.internic.net/rfc/rfc2201.txt
http://netweb.usc.edu/pim
ftp://ds.internic.net/internet-drafts/draft-ietf-idmr-igmp-v2-08.txt
https://datatracker.ietf.org/doc/html/rfc1700
ftp://ds.internic.net/internet-drafts/draft-ietf-idmr-cbt-
http://catarina.usc.edu/pim
http://www.cse.ucsc.edu/research/ccrg/publications/info-comm97ocbt.ps.gz
http://www.cse.ucsc.edu/research/ccrg/publications/info-comm97ocbt.ps.gz
ftp://ds.internic.net/internet-drafts/draft-thaler-multicast-interop-01
ftp://ds.internic.net/internet-drafts/draft-thaler-multicast-interop-01


INTERNET-DRAFT        CBTv3 Protocol Specification          August 1998

Author Information:

   Tony Ballardie,
   Research Consultant,

   e-mail: ABallardie@acm.org

   Brad Cain,
   Bay Networks Inc.,
   3, Federal Street,
   Billerica, MA 01821, USA.
   e-mail: bcain@baynetworks.com
   voice: +1 978 916 1316

   Zhaohui "Jeffrey" Zhang,
   Argon Networks Inc.,
   25, Porter Road,
   Littleton, MA 01460, USA.
   Phone: +1 (978) 392 4681
   e-mail: zzhang@argon.com

Expires February 1999                                          [Page 38]


