
IDMR Working Group D. Thaler
Internet Engineering Task Force Microsoft
INTERNET-DRAFT D. Estrin
November 17, 1998 USC/ISI
Expires May 1999 D. Meyer
 Cisco
 Editors

 Border Gateway Multicast Protocol (BGMP):
 Protocol Specification
 <draft-ietf-idmr-gum-04.txt>

Status of this Memo

This document is an Internet Draft. Internet Drafts are working
documents of the Internet Engineering Task Force (IETF), its Areas, and
its Working Groups. Note that other groups may also distribute working
documents as Internet Drafts.

Internet Drafts are valid for a maximum of six months and may be
updated, replaced, or obsoleted by other documents at any time. It is
inappropriate to use Internet Drafts as reference material or to cite
them other than as a "work in progress".

Abstract

This document describes BGMP, a protocol for inter-domain multicast
routing. BGMP builds shared trees for active multicast groups, and
allows receiver domains to build source-specific, inter-domain,
distribution branches where needed. Building upon concepts from CBT and
PIM-SM, BGMP requires that each multicast group be associated with a
single root (in BGMP it is referred to as the root domain). BGMP
assumes that at any point in time, different ranges of the class D space
are associated (e.g., with MASC [MASC]) with different domains. Each of
these domains then becomes the root of the shared domain-trees for all
groups in its range. Multicast participants will generally receive
better multicast service if the session initiator's address allocator
selects addresses from its own domain's part of the space, thereby

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-gum-04.txt

Draft BGMP November 1998

causing the root domain to be local to at least one of the session
participants.

1. Acknowledgements

 In addition to the editors, the following individuals have
 contributed to the design of BGMP: Cengiz Alaettinoglu, Tony
 Ballardie, Steve Casner, Steve Deering, Dino Farinacci, Bill Fenner,
 Mark Handley, Ahmed Helmy, Van Jacobson, and Satish Kumar.

 This document is the product of the IETF IDMR Working Group with Dave
 Thaler, Deborah Estrin, and David Meyer as editors.

 Rusty Eddy also provided valuable feedback on this document.

2. Purpose

 It has been suggested that inter-domain multicast is better supported
 with a rendezvous mechanism whereby members receive source's data
 packets without any sort of global broadcast (e.g., DVMRP and PIM-DM
 broadcast initial data packets and MOSPF broadcasts membership
 information). CBT [CBT] and PIM-SM [PIMSM] use a shared group-tree,
 to which all members join and thereby hear from all sources (and to
 which non-members do not join and thereby hear from no sources).

 This document describes BGMP, a protocol for inter-domain multicast
 routing. BGMP builds shared trees for active multicast groups, and
 allows domains to build source-specific, inter-domain, distribution
 branches where needed. Building upon concepts from CBT and PIM-SM,
 BGMP requires that each global multicast group be associated with a
 single root. However, in BGMP, the root is an entire exchange or
 domain, rather than a single router.

 BGMP assumes that ranges of the class D space have been associated
 (e.g., with MASC [MASC]) with selected domains. Each such domain then
 becomes the root of the shared domain-trees for all groups in its
 range. An address allocator will generally achieve better
 distribution trees if it takes its multicast addresses from its own
 domain's part of the space, thereby causing the root domain to be
 local.

 BGMP uses TCP as its transport protocol. This eliminates the need to
 implement message fragmentation, retransmission, acknowledgement, and

Expires May 1999 [Page 2]

Draft BGMP November 1998

 sequencing. BGMP uses TCP port 264 for establishing its connections.
 This port is distinct from BGP's port to provide protocol
 independence, and to facilitate distinguishing between protocol
 packets (e.g., by packet classifiers, diagnostic utilities, etc.)

 Two BGMP peers form a TCP connection between one another, and
 exchange messages to open and confirm the connection parameters.
 They then send incremental Join/Prune Updates as group memberships
 change. BGMP does not require periodic refresh of individual
 entries. KeepAlive messages are sent periodically to ensure the
 liveness of the connection. Notification messages are sent in
 response to errors or special conditions. If a connection encounters
 an error condition, a notification message is sent and the connection
 is closed.

3. Terminology

This document uses the following technical terms:

Domain:
 A set of one or more contiguous links and zero or more routers
 surrounded by one or more multicast border routers. Note that this
 loose definition of domain also applies to an external link between
 two domains, as well as an exchange.

Root Domain:
 When constructing a shared tree of domains for some group, one
 domain will be the "root" of the tree. The root domain receives
 data from each sender to the group, and functions as a rendezvous
 domain toward which member domains can send inter-domain joins, and
 to which sender domains can send data.

Multicast RIB:
 The Routing Information Base, or routing table, used to calculate
 the "next-hop" towards a particular address for multicast traffic.

Multicast IGP (M-IGP):
 A generic term for any multicast routing protocol used for tree
 construction within a domain. Typical examples of M-IGPs are:
 DVMRP, PIM-DM, PIM-SM, CBT, and MOSPF.

Expires May 1999 [Page 3]

Draft BGMP November 1998

EGP: A generic term for the interdomain unicast routing protocol in use.
 Typically, this will be some version of BGP which can support a
 Multicast RIB, such as MBGP [MBGP], containing both unicast and
 multicast address prefixes.

Component:
 The portion of a border router associated with (and logically
 inside) a particular domain that runs the multicast IGP (M-IGP) for
 that domain, if any. Each border router thus has zero or more
 components inside routing domains. In addition, each border router
 with external links that do not fall inside any routing domain will
 have an inter-domain component that runs BGMP.

External peer:
 A border router in another multicast AS (autonomous system, as used
 in BGP), to which a BGMP TCP-connection is open. Assuming MBGP is
 being used, a separate "eBGP" TCP-connection will also be open to
 the same peer.

Internal peer:
 Another border router of the same multicast AS. A border router
 either speaks iBGP ("internal" BGP) directly to internal peers in a
 full mesh, or indirectly through a route reflector [REFLECT]. A
 border router is only required to establish a BGMP TCP-connection
 to an internal peer when one border router acts as as a data
 injector for another.

Next-hop peer:
 The next-hop peer towards a given IP address is the next EGP router
 on the path to the given address, according to multicast RIB routes
 in the EGP's routing table (e.g., in MBGP, routes whose Subsequent
 Address Family Identifier field indicates that the route is valid
 for multicast traffic).

target:
 Either an EGP peer, or an M-IGP component.

Tree State Table:
 This is a table of (S-prefix,G-prefix) entries (including (*,G-
 prefix) entries) that have been explicitly joined by a set of
 targets. Each entry has, in addition to the source and group
 addresses and masks, a list of targets that have explicitly
 requested data (on behalf of directly connected hosts or downstream
 routers). (S,G) entries also have an "SPT" bit.

Expires May 1999 [Page 4]

Draft BGMP November 1998

The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY" in
this document are to be interpreted as described in [RFC2119].

4. Protocol Overview

 BGMP maintains group-prefix state in response to messages from BGMP
 peers and notifications from M-IGP components. Group-shared trees are
 rooted at the domain advertising the group prefix covering those
 groups. When a receiver joins a specific group address, the border
 router towards the root domain generates a group-specific Join
 message, which is then forwarded Border-Router-by-Border-Router
 towards the root domain (see Figure 1). BGMP Join and Prune messages
 are sent over TCP connections between BGMP peers, and BGMP protocol
 state is refreshed by KEEPALIVE messages periodically sent over TCP.

 BGMP routers build group-specific bidirectional forwarding state as
 they process the BGMP Join messages. Bidirectional forwarding state
 means that packets received from any target are forwarded to all
 other targets in the target list without any RPF checks. No group-
 specific state or traffic exists in parts of the network where there
 are no members of that group.

 BGMP routers build source-specific unidirectional forwarding state,
 only where needed, to be compatible with source-specific trees (SPTs)
 used by some M-IGPs (e.g., DVMRP, PIM-DM, or PIM-SM). A domain that
 uses an SPT-based M-IGP may need to inject multicast packets from
 external sources via different border routers (to be compatible with
 the M-IGP RPF checks) which thus act as "surrogates". For example, in
 the Transit_1 domain, data from Src_A arrives at BR12, but must be
 injected by BR11. A surrogate router may create a source-specific
 BGMP branch if no shared tree state exists. Note: stub domains with
 a single border router, such as Rcvr_Stub_7 in Figure 1, receive all
 multicast data packets through that router, to which all RPF checks
 point. Therefore, stub domains never build source-specific state.

 Root_Domain
 [BR91]--------------------------\
 | |
 [BR32] [BR41]
 Transit_3 Transit_4
 [BR31] [BR42] [BR43]
 | | |
 [BR22] [BR52] [BR53]
 Transit_2 Transit_5

https://datatracker.ietf.org/doc/html/rfc2119

Expires May 1999 [Page 5]

Draft BGMP November 1998

 [BR21] [BR51]
 | |
 [BR12] [BR61]
 Transit_1[BR11]----------[BR62]Stub_6
 [BR13] (Src_A)
 | (Rcvr_D)

 | |
 [BR71] [BR81]
 Rcvr_Stub_7 Src_only_Stub_8
 (Rcvr_C) (Src_B)

 Figure 1: Example inter-domain topology. [BRXY] represents a BGMP border
 router. Transit_X is a transit domain network. *_Stub_X is a stub
 domain network.

 Data packets are forwarded based on a combination of BGMP and M-IGP
 rules. The router forwards to a set of targets according to a
 matching (S,G) BGMP tree state entry if it exists. If not found, the
 router checks for a matching (*,G) BGMP tree state entry. If neither
 is found, then the packet is sent natively to the next-hop EGP peer
 for G, according to the Multicast RIB (for example, in the case of a
 non-member sender such as Src_B in Figure 1). If a matching entry was
 found, the packet is forwarded to all other targets in the target
 list. In this way BGMP trees forward data in a bidirectional manner.
 If a target is an M-IGP component then forwarding is subject to the
 rules of that M-IGP protocol.

4.1. Design Rationale

 Several other protocols, or protocol proposals, build shared trees
 within domains [CBT, HPIM, PIM-SM]. The design choices made for BGMP
 result from our focus on Inter-Domain multicast in particular. The
 design choices made by CBT and PIM-SM are better suited to the wide-
 area intra-domain case. There are three major differences between
 BGMP and other shared-tree protocols:

 (1) Unidirectional vs. Bidirectional trees

 Bidirectional trees (using bidirectional forwarding state as
 described above) minimize third party dependence which is essential
 in the inter-domain context. For example, in Figure 1, stub domains 7
 and 8 would like to exchange multicast packets without being

Expires May 1999 [Page 6]

Draft BGMP November 1998

 dependent on the quality of connectivity of the root domain.
 However, unidirectional shared trees (i.e., those using RPF checks)
 have more aggressive loop prevention and share the same processing
 rules as source-specific entries which are inherently unidirectional.

 The lack of third party dependence concerns in the INTRA domain case
 reduces the incentive to employ bidirectional trees. BGMP supports
 bidirectional trees because it has to, and because it can without
 excessive cost.

 (2) Source-specific distribution trees/branches

 In a departure from other shared tree protocols, source-specific BGMP
 state is built ONLY where (a) it is needed to pull the multicast
 traffic down to a BGMP router that has source-specific (S,G) state,
 and (b) that router is NOT already on the shared tree (i.e., has no
 (*,G) state), and (c) that router does not want to receive packets
 via encapsulation from from a router which is on the shared tree.
 BGMP provides source-specific branches because most M-IGP protocols
 in use today build source-specific trees. BGMP's source-specific
 branches eliminate the unnecessary overhead of encapsulations for
 high data rate sources from the shared tree's ingress router to the
 surrogate injector (e.g. from BR12 to BR11 in Figure 1). Moreover,
 cases in which shared paths are significantly longer than SPT paths
 will also benefit.

 However, we do not build source-specific inter-domain trees in
 general because (a) inter-domain connectivity is generally less rich
 than intra-domain connectivity, so shared distribution trees should
 have more acceptible path length and traffic concentration properties
 in the inter-domain context, than in the intra-domain case, and (b)
 by having the shared tree state always take precedence over source-
 specific tree state, we avoid ambiguities that can otherwise arise.

 In summary, BGMP trees are, in a sense, a hybrid between CBT and
 PIM-SM trees.

 (3) Method of choosing root of group shared tree

 The choice of a group's shared-tree-root has implications for
 performance and policy. In the intra-domain case it can be assumed
 that all potential shared-tree roots (RPs/Cores) within the domain
 are equally suited to be the root for a group that is initiated
 within that domain. In the INTER-domain case, there is far more
 opportunity for unacceptably poor locality, and administrative

Expires May 1999 [Page 7]

Draft BGMP November 1998

 control of a group's shared-tree root. Therefore in the intra-domain
 case, other protocols treat all candidate roots (RPs or Cores) as
 equivalent and emphasize load sharing and stability to maximize
 performance. In the Inter-Domain case, all roots are not equivalent,
 and we adopt an approach whereby a group's root domain is not random
 but is subject to administrative and performance input.

5. Protocol Details

 In this section, we describe the detailed protocol that border
 routers perform. We assume that each border router conforms to the
 component-based model described in [INTEROP].

5.1. Interaction with the EGP

 A fundamental requirement imposed by BGMP on the design of an EGP is
 that it be able to carry multicast prefixes. For example, a multi-
 protocol BGP (MBGP) must be able to carry a multicast prefix in the
 Unicast Network Layer Reachability Information (NLRI) field of the
 UPDATE message (i.e., either an IPv4 class D prefix or an IPv6 prefix
 with high-order octet equal to FF [IPv6MAA]). This capability is
 required by BGMP in the implementation of bi-directional trees; BGMP
 must be able to forward data and control packets to the next hop
 towards either a unicast source S or a multicast group G (see section

5.2). It is also required that the path attributes defined in
 [RFC1771] have the same semantics whether they are accompany unicast
 or multicast NLRI.

 MBGP [MBGP] satisfies the requirement described above. [MBGP] defines
 the optional transitive attributes Multiprotocol Reachable NLRI
 (MP_REACH_NLRI) and Multiprotocol Unreachable (MP_UNREACH_NRLI) to
 carry sets of reachable or unreachable destinations, and the
 appropriate next hop in the case of MP_REACH_NLRI. These attributes
 contain an Address Family Information field [RFC1700] which indicates
 the type of NLRI carried in the attribute. In addition, the attribute
 carries another field, the Subsequent Address Family Identifier, or
 SAFI, which can be used to provide additional information about the
 type of NLRI. For example, SAFI value two indicates that the NLRI is
 valid for multicast forwarding. BGMP's requirement can be satisfied
 by allowing the NLRI field of the MP_REACH_NLRI (or MP_UNREACH_NLRI)
 to carry a multicast prefix in the Prefix field of the NLRI encoding.

 Finally, while not required for correct BGMP operation, the design of

https://datatracker.ietf.org/doc/html/rfc1771
https://datatracker.ietf.org/doc/html/rfc1700

Expires May 1999 [Page 8]

Draft BGMP November 1998

 an EGP should also provide a mechanism that allows discrimination
 between NLRI that is to be used for unicast forwarding and NLRI to be
 used for multicast forwarding. This property is required to support
 multicast-specific policy. As mentioned above, MBGP [MBGP] has this
 capability.

5.2. Multicast Data Packet Processing

 For BGMP rules to be applied, an incoming packet must first be
 "accepted":

 o If the packet arrived on an interface owned by an M-IGP, the M-IGP
 component determines whether the packet should be accepted or
 dropped according to its rules. If the packet is accepted, the
 packet is forwarded (or not forwarded) out any other interfaces
 owned by the same component, as specified by the M-IGP.

 o If the packet was received over a point-to-point interface owned
 by BGMP, the packet is accepted.

 o If the packet arrived on a multiaccess network interface owned by
 BGMP, the packet is accepted if it is the designated forwarder for
 longest matching route for S, if it is receiving data on a
 source-specific branch, or for the longest matching route for G.

 If the packet is accepted, then the router checks the tree state
 table for a matching (S,G) entry. If one is found, but the packet
 was not received from the next hop target towards S (if the entry's
 SPT bit is True), or was not received from the next hop target
 towards G (if the entry's SPT bit is False) then the packet is
 dropped and no further actions are taken. If no (S,G) entry was
 found, the router then checks for a matching (*,G) entry.

 If neither is found, then the packet is forwarded towards the next-
 hop peer for G, according to the Multicast RIB. If a matching entry
 was found, the packet is forwarded to all other targets in the target
 list.

 Forwarding to a target which is an M-IGP component means that the
 packet is forwarded out any interfaces owned by that component
 according to that component's multicast forwarding rules.

Expires May 1999 [Page 9]

Draft BGMP November 1998

5.3. BGMP processing of Join and Prune messages and notifications

5.3.1. Receiving Joins

 When the BGMP component receives a (*,G) or (S,G) Join alert from
 another component, or a BGMP (S,G) or (*,G) Join message from an
 external peer, it searches the tree state table for a matching entry.
 If an entry is found, and that peer is already listed in the target
 list, then no further actions are taken.

 Otherwise, if no (*,G) or (S,G) entry was found, one is created. In
 the case of a (*,G), the target list is initialized to contain the
 next-hop peer towards G, if it is an external peer. If the peer is
 internal, the target list is initialized to contain the M-IGP
 component owning the next-hop interface. If there is no next-hop
 peer (because G is inside the domain), then the target list is
 initialized to contain the next-hop component. If an (S,G) entry
 exists for the same G for which the (*,G) Join is being processed,
 and the next-hop peers toward S and G are different, the BGMP router
 must first send a (S,G) Prune message toward the source and clear the
 SPT bit on the (S,G) entry, before activating the (*,G) entry.

 The target from which the Join was received is then added to the
 target list. The router then looks up S or G in the Multicast RIB to
 find the next-hop EGP peer. If the target list, not including the
 next-hop target towards G for a (*,G) entry, becomes non-null as a
 result, the next-hop EGP peer must be notified as follows:

 a) If the next-hop peer towards G (for a (*,G) entry) is an external
 peer, a BGMP (*,G) Join message is unicast to the external peer.
 If the next-hop peer towards S (for an (S,G) entry) is an external
 peer, and the router does NOT have any active (*,G) state for that
 group address G, a BGMP (S,G) Join message is unicast to the
 external peer. A BGMP (S,G) Join message is never sent to an
 external peer by a router that also contains active (*,G) state
 for the same group. If the next-hop peer towards S (for an (S,G
 entry) is an external peer and the router DOES have active (*,G)
 state for that group G, the SPT bit is always set to False.

 b) If the next-hop peer is an internal peer, a (*,G) or (S,G) Join
 alert is sent to the M-IGP component owning the next-hop
 interface.

 c) If there is no next-hop peer, a (*,G) or (S,G) Join alert is sent
 to the M-IGP component owning the next-hop interface.

Expires May 1999 [Page 10]

Draft BGMP November 1998

5.3.2. Receiving Prune Notifications

 When the BGMP component receives a (*,G) or (S,G) Prune alert from
 another component, or a BGMP (*,G) or (S,G) Prune message from an
 external peer, it searches the tree state table for a matching entry.
 If no (S,G) entry was found for an (S,G) Prune, but (*,G) state
 exists, an (S,G) entry is created, with the target list copied from
 the (*,G) entry. If no matching entry exists, or if the component or
 peer is not listed in the target list, no further actions are taken.

 Otherwise, the component or peer is removed from the target list. If
 the target list becomes null as a result, the next-hop peer towards G
 (for a (*,G) entry), or towards S (for an (S,G) entry if and only if
 the BGMP router does NOT have any corresponding (*,G) entry), must be
 notified as follows.

 a) If the peer is an external peer, a BGMP (*,G) or (S,G) Prune
 message is unicast to it.

 b) If the next-hop peer is an internal peer, a (*,G) or (S,G) Prune
 alert is sent to the M-IGP component owning the next-hop
 interface.

 c) If there is no next-hop peer, a (*,G) or (S,G) Prune alert is sent
 to the M-IGP component owning the next-hop interface.

5.3.3. Receiving Route Change Notifications

 When a border router receives a route for a new prefix in the
 multicast RIB, or a existing route for a prefix is withdrawn, a route
 change notification for that prefix must be sent to the BGMP
 component. In addition, when the next hop peer (according to the
 multicast RIB) changes, a route change notification for that prefix
 must be sent to the BGMP component.

 In addition, an internal route for each class-D prefix associated
 with the domain (if any) MUST be injected into the multicast RIB in
 the EGP by the domain's border routers.

 When a route for a new group prefix is learned, or an existing route
 for a group prefix is withdrawn, or the next-hop peer for a group
 prefix changes, a BGMP router updates all affected (*,G) target
 lists. The router sends a (*,G) Join to the new next-hop target, and

Expires May 1999 [Page 11]

Draft BGMP November 1998

 a (*,G) Prune to the old next-hop target, as appropriate.

 When an existing route for a source prefix is withdrawn, or the
 next-hop peer for a source prefix changes, a BGMP router updates all
 affected (S,G) target lists. The router sends a (S,G) Join to the
 new next-hop target, and a (S,G) Prune to the old next-hop target, as
 appropriate.

5.4. Interaction with M-IGP components

 When an M-IGP component on a border router first learns that there
 are internally-reached members for a group G (whose scope is larger
 than that domain), a (*,G) Join alert is sent to the BGMP component.
 Similarly, when an M-IGP component on a border router learns that
 there are no longer internally-reached members for a group G (whose
 scope is larger than a single domain), a (*,G) Prune alert is sent to
 the BGMP component.

 At any time, any M-IGP domain MAY decide to join a source-specific
 branch for some external source S and group G. When the M-IGP
 component in the border router that is the next-hop router for a
 particular source S learns that a receiver wishes to receive data
 from S on a source-specific path, an (S,G) Join alert is sent to the
 BGMP component. When it is learned that such receivers no longer
 exist, an (S,G) Prune alert is sent to the BGMP component. Recall
 that the BGMP component will generate external source-specific Joins
 only where the source-specific branch does not coincide with the
 shared tree distribution tree for that group.

 Finally, we will require that the border router that is the next-hop
 internal peer for a particular address S or G be able to forward data
 for a matching tree state table entry to all members within the
 domain. This requirement has implications on specific M-IGPs as
 follows.

5.4.1. Interaction with DVMRP and PIM-DM

 DVMRP and PIM-DM are both "broadcast and prune" protocols in which
 every data packet must pass an RPF check against the packet's source
 address, or be dropped. If the border router receiving packets from
 an external source is the only BR to inject the route for the source
 into the domain, then there are no problems. For example, this will
 always be true for stub domains with a single border router (see

Expires May 1999 [Page 12]

Draft BGMP November 1998

 Figure 1). Otherwise, the border router receiving packets externally
 is responsible for encapsulating the data to any other border routers
 that must inject the data into the domain for RPF checks to succeed.
 Although peering sessions to internal peers are normally not
 required, in this situation, BGMP TCP-connections must exist between
 such internal peers, and the "virtual" interfaces used for
 encapsulation are owned by BGMP.

 When an intended border router injector for a source receives
 encapsulated packets from another border router in its domain, it
 should create source-specific (S,G) BGMP state. Note that the border
 router may be configured to do this on a data-rate triggered basis so
 that the state is not created for very low data-rate/intermittent
 sources. If source-specific state is created, then its incoming
 interface points to the virtual encapsulation interface from the
 border router that forwarded the packet, and it has an SPT flag that
 is initialized to be False.

 When the (S,G) BGMP state is created, the BGMP component will in turn
 send a BGMP (S,G) Join message to the next-hop external peer towards
 S if there is no (*,G) state for that same group, G. The (S,G) BGMP
 state will have the SPT bit set to False if (*,G) BGMP state is
 present.

 When the first data packet from S arrives from the external peer and
 matches on the BGMP (S,G) state, and IF there is no (*,G) state, the
 router sets the SPT flag to True, resets the incoming interface to
 point to the external peer, and sends a BGMP (S,G) Prune message to
 the border router that was encapsulating the packets (e.g., in Figure
 1, BR11 sends the (Src_A,G) Prune to BR12). When the border router
 with (*,G) state receives the prune for (S,G), it then deletes that
 border router from its list of targets.

 PIM-DM and DVMRP present an additional problem, i.e., no protocol
 mechanism exists for joining and pruning entire groups; only joins
 and prunes for individual sources are available. We therefore require
 that some form of Domain-Wide Reports (DWRs) [DWR] are available
 within such domains. Such messages provide the ability to join and
 prune an entire group across the domain. One simple heuristic to
 approximate DWRs is to assume that if there are any internally-
 reached members, then at least one of them is a sender. With this
 heuristic, the presense of any M-IGP (S,G) state for internally-
 reached sources can be used instead. Sending a data packet to a
 group is then equivalent to sending a DWR for the group.

Expires May 1999 [Page 13]

Draft BGMP November 1998

5.4.2. Interaction with PIM-SM

 Protocols such as PIM-SM build unidirectional shared and source-
 specific trees. As with DVMRP and PIM-DM, every data packet must
 pass an RPF check against some group-specific or source-specific
 address.

 The fewest encapsulations/decapsulations will be done when the
 intra-domain tree is rooted at the next-hop internal peer towards G
 (which becomes the RP), since in general that router will receive the
 most packets from external sources. To achieve this, each BGMP
 border router to a PIM-SM domain should send Candidate-RP-
 Advertisements within the domain for those groups for which it is the
 shared-domain tree ingress router. When the border router that is the
 RP for a group G receives an external data packet, it forwards the
 packet according to the M-IGP (i.e., PIM-SM) shared-tree outgoing
 interface list.

 Other border routers will receive data packets from external sources
 that are farther down the bidirectional tree of domains. When a
 border router that is not the RP receives an external packet for
 which it does not have a source-specific entry, the border router
 treats it like a local source by creating (S,G) state with a Register
 flag set, based on normal PIM-SM rules; the Border router then
 encapsulates the data packets in PIM-SM Registers and unicasts them
 to the RP for the group. As explained above, the RP for the inter-
 domain group will be one of the other border routers of the domain.

 If a source's data rate is high enough, DRs within the PIM-SM domain
 may switch to the shortest path tree. If the shortest path to an
 external source is via the group's ingress router for the shared
 tree, the new (S,G) state in the BGMP border router will not cause
 BGMP (S,G) Joins because that border router will already have (*,G)
 state. If however, the shortest path to an external source is via
 some other border router, that border router will create (S,G) BGMP
 state in response to the M-IGP (S,G) Join alert. In this case,
 because there is no local (*,G) state to supress it, the border
 router will send a BGMP (S,G) Join to the next-hop external peer
 towards S, in order to pull the data down directly. (See BR11 in
 Figure 1.) As in normal PIM-SM operation, those PIM-SM routers that
 have (*,G) and (S,G) state pointing to different incoming interfaces
 will prune that source off the shared tree. Therefore, all internal
 interfaces may be eventually pruned off the internal shared tree.

Expires May 1999 [Page 14]

Draft BGMP November 1998

5.4.3. Interaction with CBT

 CBT builds bidirectional shared trees but must address two points of
 compatibility with BGMP. First, CBT can not accommodate more than
 one border router injecting a packet. Therefore, if a CBT domain
 does have multiple external connections, the M-IGP components of the
 border routers are responsible for insuring that only one of them
 will inject data from any given source. This mechanism is provided
 in [CBTDM].

 Second, CBT cannot process source-specific Joins or Prunes. Two
 options thus exist for each CBT domain:

 Option A:
 The CBT component interprets a (S,G) Join alert as if it were an
 (*,G) Join alert, as described in [INTEROP]. That is, if it is not
 already on the core-tree for G, then it sends a CBT (*,G) JOIN-
 REQUEST message towards the core for G. Similarly, when the CBT
 component receives an (S,G) Prune alert, and the child interface
 list for a group is NULL, then it sends a (*,G) QUIT_NOTIFICATION
 towards the core for G. This option has the disadvantage of
 pulling all data for the group G down to the CBT domain when no
 members exist.

 Option B:
 The CBT domain does not propagate any source routes (i.e., non-
 class D routes) to their external peers for the Multicast RIB
 unless it is known that no other path exists to that prefix (e.g.,
 routes for prefixes internal to the domain or in a singly-homed
 customer's domain may be propagated). This insures that source-
 specific joins are never received unless the source's data already
 passes through the domain on the shared tree, in which case the
 (S,G) Join need not be propagated anyway. BGMP border routers will
 only send source-specific Joins or Prunes to an external peer if
 that external peer advertises source-prefixes in the EGP. If a
 BGMP-CBT border router does receive an (S,G) Join or Prune, that
 border router should ignore the message.

 To minimize en/de-capsulations, CBTv2 BR's may follow the same
 scheme as described under PIM-SM above, in which Candidate-Core
 advertisements are sent for those groups for which it is the
 shared-tree ingress router.

Expires May 1999 [Page 15]

Draft BGMP November 1998

5.4.4. Interaction with MOSPF

 As with CBTv2, MOSPF cannot process source-specific Joins or Prunes,
 and the same two options are available. Therefore, an MOSPF domain
 may either:

 Option A:
 send a Group-Membership-LSA for all of G in response to a (S,G)
 Join alert, and "prematurely age" it out (when no other downstream
 members exist) in response to an (S,G) Prune alert, OR

 Option B:
 not propagate any source routes (i.e., non-class D routes) to their
 external peers for the Multicast RIB unless it is known that no
 other path exists to that prefix (e.g., routes for prefixes
 internal to the domain or in a singly-homed customer's domain may
 be propagated)

5.5. Operation over Multi-access Networks

 Multiaccess links require special handling to prevent duplicates.
 The following mechanism enables BGMP to operate over multiaccess
 links which do not run an M-IGP. This avoids broadcast-and-prune
 behavior and does not require (S,G) state.

 To elect a designated forwarder per prefix, BGMP uses a FWDR_PREF
 message to exchange "forwarder preference" values for each prefix.
 The peer with the highest forwarder preference becomes the designated
 forwarder, with ties broken by lowest BGMP Identifier. The
 designated forwarder is the router responsible for forwarding packets
 up the tree, and is the peer to which joins will be sent.

 When BGMP first learns that a route exists in the multicast RIB whose
 next-hop interface is NOT the multiaccess link, the BGMP router sends
 a BGMP FWDR_PREF message for the prefix, to all BGMP peers on the
 LAN. The FWDR_PREF message contains a "forwarder preference value"
 for the local router, and the same value MUST be sent to all peers on
 the LAN. Likewise, when the prefix is no longer reachable, a
 FWDR_PREF of 0 is sent to all peers on the LAN.

 Whenever a BGMP router calculates the next-hop peer towards a
 particular address, and that peer is reached over a BGMP-owned
 multiaccess LAN, the designated forwarder is used instead.

Expires May 1999 [Page 16]

Draft BGMP November 1998

 When a BGMP router receives a FWDR_PREF message from a peer, it looks
 up the matching route in its multicast RIB, and calculates the new
 designated forwarder. If the router has tree state entries whose
 parent target was the old forwarder, it sends Joins to the new
 forwarder and Prunes to the old forwarder.

 When a BGMP router which is NOT the designated forwarder receives a
 packet on the multiaccess link, it is silently dropped.

 Finally, this mechanism prevents duplicates where full peering exists
 on a "logical" link. Where full peering does not exist, steps must
 be taken (outside of BGMP) to present separate logical interfaces to
 BGMP, each of which is a link with full peering. This might entail,
 for example, using different link-layer address mappings, doing
 encapsulation, or changing the physical media.

6. Interaction with address allocation

6.1. Requirements for BGMP components

 Each border router must be able to determine (e.g., from MASC [MASC])
 which class-D prefixes (if any) belong to each domain in which an M-
 IGP component resides, so that it can inject routes for them into the
 routing table.

7. Transition Strategy

 There have been significant barriers to multicast deployment in
 Internet backbones. While many of the problems with the current
 DVMRP backbone (MBONE) have been documented in [ISSUES], most of
 these problems require longer term engineering solutions. However,
 there is much that can be done with existing technologies to enable
 deployment and put in place an architecture that will enable a smooth
 transition to the next generation of inter-domain multicast routing
 protocols (i.e., BGMP). This section proposes a near-term transition
 strategy and architecture that is designed to be simple, risk-
 neutral, and provide a smooth, incremental transition path to BGMP.
 In addition, the transition architecture provides for improved
 convergence properties, some initial policy control, and the
 opportunity for providers to run either native or tunneled multicast
 backbones and exchanges.

Expires May 1999 [Page 17]

Draft BGMP November 1998

 The transition strategy proposed here is to initially use MBGP [MBGP]
 to provide the desired convergence and policy control properties, and
 PIM-DM for multicast data forwarding. Once this architecture is in
 place, backbones and exchanges can incrementally transition to BGMP
 and domains running other M-IGPs may be incorporated more fully.

 Since the current MBone uses a broadcast-and-prune backbone running
 DVMRP, BGMP may view the entire MBone as a single multi-homed stub
 domain (with a new AS number). The members-are-senders heuristic can
 then be used initially to provide membership notifications within
 this stub domain.

 A BGMP backbone can then be formed by designating one or more neutral
 PIM-DM domains (say, exchanges) as initial BGMP backbones. Each
 exchange is then associated with a group prefix which is injected
 into the Multicast RIB by all MBGP/BGMP border routers on that
 exchange.

 Any domain which meets the following constraints may then transition
 from a normal MBone-connected domain to one running BGMP:

(1) Must peer with another BGMP domain and participate in M-BGP to
 propagate routes in the Multicast RIB.

(2) Must establish an internal (to the MBone AS) EGP (e.g., iBGP) peer
 relationship with other border routers of the MBone "stub" domain,
 as is done with unicast routing. We expect this to eventually
 involve the use of one or more route reflectors [REFLECT] inside
 the MBone domain.

(3) If the transition will partition the MBone "stub" domain, then it
 must be insured that the MBone domain will be administratively
 split into multiple domains, each with a different multicast AS
 number.

Expires May 1999 [Page 18]

Draft BGMP November 1998

7.1. Preventing transit through the MBone stub

 We desire that two AS's which are mutually reachable through BGMP use
 paths which do not pass through the MBone stub domain. This is
 illustrated in Figure 2, where the MBone stub is AS 5, which is
 multi-homed to both AS 3 and AS 4. Paths between sources and
 destinations which have already transitioned to MBGP/BGMP should not
 use AS 5 as transit unless no other path exists.

 ----------------------\ /----------------------------
 | |
 DVMRP /----\ | | /----\ IGP/iBGP
 | BR |+++++++++| BR |-----------
 \----/ | E | \----/
 + | B | + AS 3
 MBone + | G | +
 + | P \-----+----------------------
 AS 5 iBGP + | + eBGP
 + | /-----+----------------------
 + | | +
 + | | +
 DVMRP /----\ | | /----\ IGP/iBGP
 | BR |+++++++++| BR |-----------
 \----/ | | \----/
 | | AS 4
 | |
 ----------------------/ \----------------------------

 Figure 2: Preventing Transit through MBone Stub

 This requirement is easily solved using standard BGP policy
 mechanisms. The MBone border routers should prefer EGP routes to
 DVMRP routes, since DVMRP cannot tag routes as being external. Thus,
 external routes may appear in the DVMRP routing table, but will not
 be imported into the EGP since they will be overridden by iBGP
 routes.

 Other EGP routers should prefer routes whose ASpath does not contain
 the well-known MBone AS number. This will insure that the route
 through the MBone stub is not used unless no other path exists. For
 safety, routes whose ASpath begins with the MBone AS should receive
 the worst preference.

Expires May 1999 [Page 19]

Draft BGMP November 1998

8. Message Formats

 This section describes message formats used by BGMP.

 Messages are sent over a reliable transport protocol connection. A
 message is processed only after it is entirely received. The maximum
 message size is 4096 octets. All implementations are required to
 support this maximum message size.

 All fields labelled "Reserved" below must be transmitted as 0, and
 ignored upon receipt.

8.1. Message Header Format

 Each message has a fixed-size (4-byte) header. There may or may not
 be a data portion following the header, depending on the message
 type. The layout of these fields is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length | Type | Reserved |
 +-+

 Length:
 This 2-octet unsigned integer indicates the total length of the
 message, including the header, in octets. Thus, e.g., it allows
 one to locate in the transport-level stream the start of the next
 message. The value of the Length field must always be at least 4
 and no greater than 4096, and may be further constrained, depending
 on the message type. No "padding" of extra data after the message
 is allowed, so the Length field must have the smallest value
 required given the rest of the message.

 Type:
 This 1-octet unsigned integer indicates the type code of the
 message. The following type codes are defined:

 1 - OPEN
 2 - UPDATE
 3 - NOTIFICATION
 4 - KEEPALIVE

Expires May 1999 [Page 20]

Draft BGMP November 1998

8.2. OPEN Message Format

 After a transport protocol connection is established, the first
 message sent by each side is an OPEN message. If the OPEN message is
 acceptable, a KEEPALIVE message confirming the OPEN is sent back.
 Once the OPEN is confirmed, UPDATE, KEEPALIVE, and NOTIFICATION
 messages may be exchanged.

 In addition to the fixed-size BGMP header, the OPEN message contains
 the following fields:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version | Reserved | Hold Time |
 +-+
 | BGMP Identifier |
 +-+
 | |
 + (Optional Parameters) |
 | |
 +-+

 Version:
 This 1-octet unsigned integer indicates the protocol version number
 of the message. The current BGMP version number is 1.

 Hold Time:
 This 2-octet unsigned integer indicates the number of seconds that
 the sender proposes for the value of the Hold Timer. Upon receipt
 of an OPEN message, a BGMP speaker MUST calculate the value of the
 Hold Timer by using the smaller of its configured Hold Time and the
 Hold Time received in the OPEN message. The Hold Time MUST be
 either zero or at least three seconds. An implementation may
 reject connections on the basis of the Hold Time. The calculated
 value indicates the maximum number of seconds that may elapse
 between the receipt of successive KEEPALIVE, and/or UPDATE messages
 by the sender.

 BGMP Identifier:
 This 4-octet unsigned integer indicates the BGMP Identifier of the
 sender. A given BGMP speaker sets the value of its BGMP Identifier

Expires May 1999 [Page 21]

Draft BGMP November 1998

 to a globally-unique value assigned to that BGMP speaker (e.g., an
 IPv4 address). The value of the BGMP Identifier is determined on
 startup and is the same for every BGMP session opened.

 Optional Parameters:
 This field may contain a list of optional parameters, where each
 parameter is encoded as a <Parameter Length, Parameter Type,
 Parameter Value> triplet. The combined length of all optional
 parameters can be derived from the Length field in the message
 header.

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-...
 | Parm. Type | Parm. Length | Parameter Value (variable)
 +-...

 Parameter Type is a one octet field that unambiguously identifies
 individual parameters. Parameter Length is a one octet field that
 contains the length of the Parameter Value field in octets.
 Parameter Value is a variable length field that is interpreted
 according to the value of the Parameter Type field.

 This document defines the following Optional Parameters:

 a) Authentication Information (Parameter Type 1):
 This optional parameter may be used to authenticate a BGMP peer.
 The Parameter Value field contains a 1-octet Authentication Code
 followed by a variable length Authentication Data.

 0 1 2 3 4 5 6 7 8
 +-+-+-+-+-+-+-+-+
 | Auth. Code |
 +-+
 | |
 | Authentication Data |
 | |
 +-+

 Authentication Code:

 This 1-octet unsigned integer indicates the authentication
 mechanism being used. Whenever an authentication mechanism is

Expires May 1999 [Page 22]

Draft BGMP November 1998

 specified for use within BGMP, three things must be included in
 the specification:

 - the value of the Authentication Code which indicates use of the
 mechanism, - the form and meaning of the Authentication Data, and
 - the algorithm for computing values of Marker fields.

 Note that a separate authentication mechanism may be used in
 establishing the transport level connection.

 Authentication Data:

 The form and meaning of this field is a variable-length field
 depend on the Authentication Code.

 The minimum length of the OPEN message is 12 octets (including
 message header).

 b) Capability Information (Parameter Type 2):
 This is an Optional Parameter that is used by a BGMP-speaker to
 convey to its peer the list of capabilities supported by the
 speaker. The parameter contains one or more triples <Capability
 Code, Capability Length, Capability Value>, where each triple is
 encoded as shown below:
 +------------------------------+
 | Capability Code (1 octet) |
 +------------------------------+
 | Capability Length (1 octet) |
 +------------------------------+
 | Capability Value (variable) |
 +------------------------------+
 Capability Code:

 Capability Code is a one octet field that unambiguously identifies
 individual capabilities.

 Capability Length:

 Capability Length is a one octet field that contains the length of
 the Capability Value field in octets.

 Capability Value:

 Capability Value is a variable length field that is interpreted

Expires May 1999 [Page 23]

Draft BGMP November 1998

 according to the value of the Capability Code field.

 A particular capability, as identified by its Capability Code, may
 occur more than once within the Optional Parameter.

 This document reserves Capability Codes 128-255 for vendor-specific
 applications.

 This document reserves value 0.

 Capability Codes (other than those reserved for vendor specific use)
 are assigned only by the IETF consensus process and IESG approval.

8.3. UPDATE Message Format

 UPDATE messages are used to transfer Join/Prune/FwdrPref information
 between BGMP peers. The UPDATE message always includes the fixed-
 size BGMP header, and one or more attributes as described below.

 The message format below allows compact encoding of (*,G) Joins and
 Prunes, while allowing the flexibility needed to do other updates
 such as (S,G) Joins and Prunes towards sources as well as on the
 shared tree. In the discussion below, an Encoded-Address-Prefix is
 of the form:
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |EnTyp| AddrFam |
 +-+
 | Address (variable length) |
 +-+
 | Mask (variable length) |
 +-+

 EnTyp:
 0 - All 1's Mask. The Mask field is 0 bytes long.
 1 - Mask length included. The Mask field is 4 bytes long, and
 contains the mask length, in bits.
 2 - Full Mask included. The Mask field is the same length
 as the Address field, and contains the full bitmask.

 AddrFam:
 The IANA-assigned address family number of the encoded prefix.

Expires May 1999 [Page 24]

Draft BGMP November 1998

 These include (among others):

 Number Description
 ------ -----------
 1 IP (IP version 4)
 2 IPv6 (IP version 6)

 Address:
 The address associated with the given prefix to be encoded. The
 length is determined based on the Address Family.

 Mask:
 The mask associated with the given prefix. The format (or absence)
 of this field is determined by the EnTyp field.

 Each attribute is of the form:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length | Type | Data ...
 +-+
 All attributes are 4-byte aligned.

 Length:
 The Length is the length of the entire attribute, including the
 length, type, and data fields. If other attributes are nested
 within the data field, the length includes the size of all such
 nested attributes.

 Type:

 Types 128-255 are reserved for "optional" attributes. If a
 required attribute is unrecognized, a NOTIFICATION will be sent and
 the connection will be closed. Unrecognized optional attributes
 are simply ignored.

 0 - JOIN
 1 - PRUNE
 2 - GROUP
 3 - SOURCE
 4 - FWDR_PREF

Expires May 1999 [Page 25]

Draft BGMP November 1998

 a) JOIN (Type Code 0)

 The JOIN attribute indicates that all GROUP or SOURCE options
 nested immediately within the JOIN option should be joined.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length | Type=0 | Reserved |
 +-+
 | Nested Attributes ...
 +-+
 No JOIN, PRUNE, or FWDR_PREF attributes may be immediately nested
 within a JOIN attribute.

 b) PRUNE (Type Code 1)

 The PRUNE attribute indicates that all GROUP or SOURCE attributes
 nested immediately within the PRUNE attribute should be pruned.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length | Type=1 | Reserved |
 +-+
 | Nested Attributes ...
 +-+
 No JOIN, PRUNE, or FWDR_PREF attributes may be immediately nested
 within a PRUNE attribute.

 c) GROUP (Type Code 2)

 The GROUP attribute identifies a given group-prefix. In addition,
 any attributes nested immediately within the GROUP attribute also
 apply to the given group-prefix.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length | Type=2 | |
 +-+ +
 | |
 | Encoded-Address-Prefix |
 | |
 +-+

Expires May 1999 [Page 26]

Draft BGMP November 1998

 | Nested Attributes (optional) ...
 +-+
 Encoded-Address-Prefix
 The multicast group prefix to be joined to
 pruned,
 in the format described above.
 Nested Attributes No GROUP, SOURCE, or FWDR_PREF attributes may
 be
 immediately nested within a GROUP attribute.

 d) SOURCE (Type Code 3):

 The SOURCE attribute identifies a given source-prefix. In
 addition, any attributes nested immediately within the SOURCE
 attribute also apply to the given source-prefix.

 The SOURCE attribute has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length | Type=2 | |
 +-+ +
 | |
 | Encoded-Address-Prefix |
 | |
 +-+
 | Nested Attributes (optional) ...
 +-+
 Encoded-Address-Prefix
 The Source-prefix in the format described
 above.
 Nested Attributes No GROUP, SOURCE, or FWDR_PREF attributes may
 be
 immediately nested within a SOURCE attribute.

 e) FWDR_PREF (Type Code 4)

 The FWDR_PREF attribute provides a forwarder preference value for
 all GROUP or SOURCE attributes nested immediately within the
 FWDR_PREF attribute. It is used by a BGMP speaker to inform other
 BGMP speakers of the originating speaker's degree of preference for
 a given group or source prefix. Usage of this attribute is
 described in 5.5.

Expires May 1999 [Page 27]

Draft BGMP November 1998

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length | Type=1 | Reserved |
 +-+
 | Preference Value |
 +-+
 | Nested Attributes ...
 +-+
 Preference Value A 32-bit non-negative integer.
 Nested Attributes No JOIN, PRUNE, or FWDR_PREF attributes may be
 immediately nested within a FWDR_PREF
 attribute.

8.4. Encoding examples

 Below are enumerated examples of how various updates are built using
 nested attributes, where A (B) denotes that attribute B is nested
 within attribute A.
 (*,G-prefix) Join: JOIN (GROUP)
 (*,G-prefix) Prune: PRUNE (GROUP)
 (S,G) Join towards S : GROUP (JOIN (SOURCE))
 (S,G) Join cancelling prune towards G: GROUP (JOIN (SOURCE))
 (S,G) Prune towards S: GROUP (PRUNE (SOURCE))
 (S,G) Prune towards G: GROUP (PRUNE (SOURCE))
 Switch from (*,G) to (S,G): PRUNE (GROUP (JOIN (SOURCE)))
 Switch from (S,G) to (*,G): JOIN (GROUP)
 Initial (*,G) Join with S pruned: JOIN (GROUP (PRUNE (SOURCE)))
 Forwarder preference announcement for G-prefix: FWDR_PREF (GROUP)
 Forwarder preference announcement for S-prefix: FWDR_PREF (SOURCE)

8.5. KEEPALIVE Message Format

 BGMP does not use any transport protocol-based keep-alive mechanism
 to determine if peers are reachable. Instead, KEEPALIVE messages are
 exchanged between peers often enough as not to cause the Hold Timer
 to expire. A reasonable maximum time between the last KEEPALIVE or
 UPDATE message sent, and the time at which a KEEPALIVE message is
 sent, would be one third of the Hold Time interval. KEEPALIVE
 messages MUST NOT be sent more frequently than one per second. An
 implementation MAY adjust the rate at which it sends KEEPALIVE
 messages as a function of the Hold Time interval.

Expires May 1999 [Page 28]

Draft BGMP November 1998

 If the negotiated Hold Time interval is zero, then periodic KEEPALIVE
 messages MUST NOT be sent.

 A KEEPALIVE message consists of only a message header, and has a
 length of 4 octets.

8.6. NOTIFICATION Message Format

 A NOTIFICATION message is sent when an error condition is detected.
 The BGMP connection is closed immediately after sending it.

 In addition to the fixed-size BGMP header, the NOTIFICATION message
 contains the following fields:
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Error code | Error subcode | Data |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 +-+

 Error Code:

 This 1-octet unsigned integer indicates the type of
 NOTIFICATION. The following Error Codes have been defined:

 Error Code Symbolic Name Reference

 1 Message Header Error Section 9.1

 2 OPEN Message Error Section 9.2

 3 UPDATE Message Error Section 9.3

 4 Hold Timer Expired Section 9.5

 5 Finite State Machine Error Section 9.6

 6 Cease Section 9.7

 Error subcode:

 This 1-octet unsigned integer provides more specific
 information about the nature of the reported error. Each

Expires May 1999 [Page 29]

Draft BGMP November 1998

 Error
 Code may have one or more Error Subcodes associated with it.
 If no appropriate Error Subcode is defined, then a zero
 (Unspecific) value is used for the Error Subcode field.

 Message Header Error subcodes:

 2 - Bad Message Length.
 3 - Bad Message Type.

 OPEN Message Error subcodes:

 1 - Unsupported Version Number
 4 - Unsupported Optional Parameter
 5 - Authentication Failure
 6 - Unacceptable Hold Time
 7 - Unsupported Capability

 UPDATE Message Error subcodes:

 1 - Malformed Attribute List
 2 - Unrecognized Well-known Attribute
 5 - Attribute Length Error
 10 - Invalid Prefix Field
 Data:
 This variable-length field is used to diagnose the reason for the
 NOTIFICATION. The contents of the Data field depend upon the
 Error Code and Error Subcode. See Section 9 below for more
 details.

 Note that the length of the Data field can be determined from the
 message Length field by the formula:

 Message Length = 6 + Data Length

 The minimum length of the NOTIFICATION message is 6 octets
 (including message header).

9. BGMP Error Handling

 This section describes actions to be taken when errors are detected
 while processing BGMP messages. BGMP Error Handling is similar to
 that of BGP [BGP].

Expires May 1999 [Page 30]

Draft BGMP November 1998

 When any of the conditions described here are detected, a
 NOTIFICATION message with the indicated Error Code, Error Subcode,
 and Data fields is sent, and the BGMP connection is closed. If no
 Error Subcode is specified, then a zero must be used.

 The phrase "the BGMP connection is closed" means that the transport
 protocol connection has been closed and that all resources for that
 BGMP connection have been deallocated. The remote peer is removed
 from the target list of all tree state entries.

 Unless specified explicitly, the Data field of the NOTIFICATION
 message that is sent to indicate an error is empty.

9.1. Message Header error handling

 All errors detected while processing the Message Header are indicated
 by sending the NOTIFICATION message with Error Code Message Header
 Error. The Error Subcode elaborates on the specific nature of the
 error.

 If the Length field of the message header is less than 4 or greater
 than 4096, or if the Length field of an OPEN message is less than
 the minimum length of the OPEN message, or if the Length field of an
 UPDATE message is less than the minimum length of the UPDATE message,
 or if the Length field of a KEEPALIVE message is not equal to 4, then
 the Error Subcode is set to Bad Message Length. The Data field
 contains the erroneous Length field.

 If the Type field of the message header is not recognized, then the
 Error Subcode is set to Bad Message Type. The Data field contains
 the erroneous Type field.

9.2. OPEN message error handling

 All errors detected while processing the OPEN message are indicated
 by sending the NOTIFICATION message with Error Code OPEN Message
 Error. The Error Subcode elaborates on the specific nature of the
 error.

 If the version number contained in the Version field of the received
 OPEN message is not supported, then the Error Subcode is set to
 Unsupported Version Number. The Data field is a 2-octet unsigned
 integer, which indicates the largest locally supported version number

Expires May 1999 [Page 31]

Draft BGMP November 1998

 less than the version the remote BGMP peer bid (as indicated in the
 received OPEN message).

 If the Hold Time field of the OPEN message is unacceptable, then the
 Error Subcode MUST be set to Unacceptable Hold Time. An
 implementation MUST reject Hold Time values of one or two seconds.
 An implementation MAY reject any proposed Hold Time. An
 implementation which accepts a Hold Time MUST use the negotiated
 value for the Hold Time.

 If one of the Optional Parameters in the OPEN message is not
 recognized, then the Error Subcode is set to Unsupported Optional
 Parameters.

 If the OPEN message carries Authentication Information (as an
 Optional Parameter), then the corresponding authentication procedure
 is invoked. If the authentication procedure (based on Authentication
 Code and Authentication Data) fails, then the Error Subcode is set to
 Authentication Failure.

 If the OPEN message indicates that the peer does not support a
 capability which the receiver requires, the receiver may send a
 NOTIFICATION message to the peer, and terminate peering. The Error
 Subcode in the message is set to Unsupported Capability. The Data
 field in the NOTIFICATION message lists the set of capabilities that
 cause the speaker to send the message. Each such capability is
 encoded the same way as it was encoded in the received OPEN message.

9.3. UPDATE message error handling

 All errors detected while processing the UPDATE message are indicated
 by sending the NOTIFICATION message with Error Code UPDATE Message
 Error. The error subcode elaborates on the specific nature of the
 error.

 If any recognized attribute has Attribute Length that conflicts with
 the expected length (based on the attribute type code), then the
 Error Subcode is set to Attribute Length Error. The Data field
 contains the erroneous attribute (type, length and value).

 If the Encoded-Address-Prefix field in some attribute is

Expires May 1999 [Page 32]

Draft BGMP November 1998

 syntactically incorrect, then the Error Subcode is set to Invalid
 Prefix Field.

 If any other is encountered when processing attributes (such as
 invalid nestings), then the Error Subcode is set to Malformed
 Attribute List, and the problematic attribute is included in the data
 field.

9.4. NOTIFICATION message error handling

 If a peer sends a NOTIFICATION message, and there is an error in that
 message, there is unfortunately no means of reporting this error via
 a subsequent NOTIFICATION message. Any such error, such as an
 unrecognized Error Code or Error Subcode, should be noticed, logged
 locally, and brought to the attention of the administration of the
 peer. The means to do this, however, lies outside the scope of this
 document.

9.5. Hold Timer Expired error handling

 If a system does not receive successive KEEPALIVE and/or UPDATE
 and/or NOTIFICATION messages within the period specified in the Hold
 Time field of the OPEN message, then the NOTIFICATION message with
 Hold Timer Expired Error Code must be sent and the BGMP connection
 closed.

9.6. Finite State Machine error handling

 Any error detected by the BGMP Finite State Machine (e.g., receipt of
 an unexpected event) is indicated by sending the NOTIFICATION message
 with Error Code Finite State Machine Error.

9.7. Cease

 In absence of any fatal errors (that are indicated in this section),
 a BGMP peer may choose at any given time to close its BGMP connection
 by sending the NOTIFICATION message with Error Code Cease. However,
 the Cease NOTIFICATION message must not be used when a fatal error
 indicated by this section does exist.

Expires May 1999 [Page 33]

Draft BGMP November 1998

9.8. Connection collision detection

 If a pair of BGMP speakers try simultaneously to establish a TCP
 connection to each other, then two parallel connections between this
 pair of speakers might well be formed. We refer to this situation as
 connection collision. Clearly, one of these connections must be
 closed.

 Based on the value of the BGMP Identifier a convention is established
 for detecting which BGMP connection is to be preserved when a
 collision does occur. The convention is to compare the BGMP
 Identifiers of the peers involved in the collision and to retain only
 the connection initiated by the BGMP speaker with the higher-valued
 BGMP Identifier.

 Upon receipt of an OPEN message, the local system must examine all of
 its connections that are in the OpenConfirm state. A BGMP speaker
 may also examine connections in an OpenSent state if it knows the
 BGMP Identifier of the peer by means outside of the protocol. If
 among these connections there is a connection to a remote BGMP
 speaker whose BGMP Identifier equals the one in the OPEN message,
 then the local system performs the following collision resolution
 procedure:

 1. The BGMP Identifier of the local system is compared to the BGMP
 Identifier of the remote system (as specified in the OPEN message).

 2. If the value of the local BGMP Identifier is less than the remote
 one, the local system closes BGMP connection that already exists (the
 one that is already in the OpenConfirm state), and accepts BGMP
 connection initiated by the remote system.

 3. Otherwise, the local system closes newly created BGMP connection
 (the one associated with the newly received OPEN message), and
 continues to use the existing one (the one that is already in the
 OpenConfirm state).

 Comparing BGMP Identifiers is done by treating them as (4-octet long)
 unsigned integers.

 A connection collision with an existing BGMP connection that is in
 Established states causes unconditional closing of the newly created
 connection. Note that a connection collision cannot be detected with
 connections that are in Idle, or Connect, or Active states.

Expires May 1999 [Page 34]

Draft BGMP November 1998

 Closing the BGMP connection (that results from the collision
 resolution procedure) is accomplished by sending the NOTIFICATION
 message with the Error Code Cease.

10. BGMP Version Negotiation

 BGMP speakers may negotiate the version of the protocol by making
 multiple attempts to open a BGMP connection, starting with the
 highest version number each supports. If an open attempt fails with
 an Error Code OPEN Message Error, and an Error Subcode Unsupported
 Version Number, then the BGMP speaker has available the version
 number it tried, the version number its peer tried, the version
 number passed by its peer in the NOTIFICATION message, and the
 version numbers that it supports. If the two peers do support one or
 more common versions, then this will allow them to rapidly determine
 the highest common version. In order to support BGMP version
 negotiation, future versions of BGMP must retain the format of the
 OPEN and NOTIFICATION messages.

10.1. BGMP Capability Negotiation

 When a BGMP speaker sends an OPEN message to its BGMP peer, the
 message may include an Optional Parameter, called Capabilities. The
 parameter lists the capabilities supported by the speaker.

 A BGMP speaker may use a particular capability when peering with
 another speaker only if both speakers support that capability. A
 BGMP speaker determines the capabilities supported by its peer by
 examining the list of capabilities present in the Capabilities
 Optional Parameter carried by the OPEN message that the speaker
 receives from the peer.

11. BGMP Finite State machine

 This section specifies BGMP operation in terms of a Finite State
 Machine (FSM). Following is a brief summary and overview of BGMP
 operations by state as determined by this FSM.

 Initially BGMP is in the Idle state.

 Idle state:

Expires May 1999 [Page 35]

Draft BGMP November 1998

 In this state BGMP refuses all incoming BGMP connections. No
 resources are allocated to the peer. In response to the Start
 event (initiated by either system or operator) the local system
 initializes all BGMP resources, starts the ConnectRetry timer,
 initiates a transport connection to the other BGMP peer, while
 listening for a connection that may be initiated by the remote
 BGMP peer, and changes its state to Connect. The exact value of
 the ConnectRetry timer is a local matter, but should be
 sufficiently large to allow TCP initialization.

 If a BGMP speaker detects an error, it shuts down the connection
 and changes its state to Idle. Getting out of the Idle state
 requires generation of the Start event. If such an event is
 generated automatically, then persistent BGMP errors may result in
 persistent flapping of the speaker. To avoid such a condition it
 is recommended that Start events should not be generated
 immediately for a peer that was previously transitioned to Idle
 due to an error. For a peer that was previously transitioned to
 Idle due to an error, the time between consecutive generation of
 Start events, if such events are generated automatically, shall
 exponentially increase. The value of the initial timer shall be 60
 seconds. The time shall be doubled for each consecutive retry.

 Any other event received in the Idle state is ignored.

 Connect state:

 In this state BGMP is waiting for the transport protocol
 connection to be completed.

 If the transport protocol connection succeeds, the local system
 clears the ConnectRetry timer, completes initialization, sends an
 OPEN message to its peer, and changes its state to OpenSent. If
 the transport protocol connect fails (e.g., retransmission
 timeout), the local system restarts the ConnectRetry timer,
 continues to listen for a connection that may be initiated by the
 remote BGMP peer, and changes its state to Active state.

 In response to the ConnectRetry timer expired event, the local
 system restarts the ConnectRetry timer, initiates a transport
 connection to the other BGMP peer, continues to listen for a
 connection that may be initiated by the remote BGMP peer, and
 stays in the Connect state.

 The Start event is ignored in the Connect state.

Expires May 1999 [Page 36]

Draft BGMP November 1998

 In response to any other event (initiated by either system or
 operator), the local system releases all BGMP resources associated
 with this connection and changes its state to Idle.

 Active state:

 In this state BGMP is trying to acquire a peer by initiating a
 transport protocol connection.

 If the transport protocol connection succeeds, the local system
 clears the ConnectRetry timer, completes initialization, sends an
 OPEN message to its peer, sets its Hold Timer to a large value,
 and changes its state to OpenSent. A Hold Timer value of 4
 minutes is suggested.

 In response to the ConnectRetry timer expired event, the local
 system restarts the ConnectRetry timer, initiates a transport
 connection to other BGMP peer, continues to listen for a
 connection that may be initiated by the remote BGMP peer, and
 changes its state to Connect.

 If the local system detects that a remote peer is trying to
 establish BGMP connection to it, and the IP address of the remote
 peer is not an expected one, the local system restarts the
 ConnectRetry timer, rejects the attempted connection, continues to
 listen for a connection that may be initiated by the remote BGMP
 peer, and stays in the Active state.

 The Start event is ignored in the Active state.

 In response to any other event (initiated by either system or
 operator), the local system releases all BGMP resources associated
 with this connection and changes its state to Idle.

 OpenSent state:

 In this state BGMP waits for an OPEN message from its peer. When
 an OPEN message is received, all fields are checked for
 correctness. If the BGMP message header checking or OPEN message
 checking detects an error (see Section 6.2), or a connection
 collision (see Section 6.8) the local system sends a NOTIFICATION
 message and changes its state to Idle.

 If there are no errors in the OPEN message, BGMP sends a KEEPALIVE
 message and sets a KeepAlive timer. The Hold Timer, which was

Expires May 1999 [Page 37]

Draft BGMP November 1998

 originally set to a large value (see above), is replaced with the
 negotiated Hold Time value (see section 4.2). If the negotiated
 Hold Time value is zero, then the Hold Time timer and KeepAlive
 timers are not started. If the value of the Autonomous System
 field is the same as the local Autonomous System number, then the
 connection is an "internal" connection; otherwise, it is
 "external". Finally, the state is changed to OpenConfirm.

 If a disconnect notification is received from the underlying
 transport protocol, the local system closes the BGMP connection,
 restarts the ConnectRetry timer, while continue listening for
 connection that may be initiated by the remote BGMP peer, and goes
 into the Active state.

 If the Hold Timer expires, the local system sends NOTIFICATION
 message with error code Hold Timer Expired and changes its state
 to Idle.

 In response to the Stop event (initiated by either system or
 operator) the local system sends NOTIFICATION message with Error
 Code Cease and changes its state to Idle.

 The Start event is ignored in the OpenSent state.

 In response to any other event the local system sends NOTIFICATION
 message with Error Code Finite State Machine Error and changes its
 state to Idle.

 Whenever BGMP changes its state from OpenSent to Idle, it closes
 the BGMP (and transport-level) connection and releases all
 resources associated with that connection.

 OpenConfirm state:

 In this state BGMP waits for a KEEPALIVE or NOTIFICATION message.

 If the local system receives a KEEPALIVE message, it changes its
 state to Established.

 If the Hold Timer expires before a KEEPALIVE message is received,
 the local system sends NOTIFICATION message with error code Hold
 Timer Expired and changes its state to Idle.

 If the local system receives a NOTIFICATION message, it changes
 its state to Idle.

Expires May 1999 [Page 38]

Draft BGMP November 1998

 If the KeepAlive timer expires, the local system sends a KEEPALIVE
 message and restarts its KeepAlive timer.

 If a disconnect notification is received from the underlying
 transport protocol, the local system changes its state to Idle.

 In response to the Stop event (initiated by either system or
 operator) the local system sends NOTIFICATION message with Error
 Code Cease and changes its state to Idle.

 The Start event is ignored in the OpenConfirm state.

 In response to any other event the local system sends NOTIFICATION
 message with Error Code Finite State Machine Error and changes its
 state to Idle.

 Whenever BGMP changes its state from OpenConfirm to Idle, it
 closes the BGMP (and transport-level) connection and releases all
 resources associated with that connection.

 Established state:

 In the Established state BGMP can exchange UPDATE, NOTIFICATION,
 and KEEPALIVE messages with its peer.

 If the local system receives an UPDATE or KEEPALIVE message, it
 restarts its Hold Timer, if the negotiated Hold Time value is
 non-zero.

 If the local system receives a NOTIFICATION message, it changes
 its state to Idle.

 If the local system receives an UPDATE message and the UPDATE
 message error handling procedure (see Section 6.3) detects an
 error, the local system sends a NOTIFICATION message and changes
 its state to Idle.

 If a disconnect notification is received from the underlying
 transport protocol, the local system changes its state to Idle.

 If the Hold Timer expires, the local system sends a NOTIFICATION
 message with Error Code Hold Timer Expired and changes its state
 to Idle.

 If the KeepAlive timer expires, the local system sends a KEEPALIVE

Expires May 1999 [Page 39]

Draft BGMP November 1998

 message and restarts its KeepAlive timer.

 Each time the local system sends a KEEPALIVE or UPDATE message, it
 restarts its KeepAlive timer, unless the negotiated Hold Time
 value is zero.

 In response to the Stop event (initiated by either system or
 operator), the local system sends a NOTIFICATION message with
 Error Code Cease and changes its state to Idle.

 The Start event is ignored in the Established state.

 In response to any other event, the local system sends
 NOTIFICATION message with Error Code Finite State Machine Error
 and changes its state to Idle.

 Whenever BGMP changes its state from Established to Idle, it
 closes the BGMP (and transport-level) connection, releases all
 resources associated with that connection, and deletes all routes
 derived from that connection.

12. Security Considerations

Security issues are not discussed in this memo.

13. Authors' Addresses

 Dave Thaler
 Department of Electrical Engineering and Computer Science
 Microsoft
 One Microsoft Way
 Redmond, WA 98052
 EMail: dthaler@microsoft.com

 Deborah Estrin
 Computer Science Dept./ISI
 University of Southern California
 Los Angeles, CA 90089
 EMail: estrin@usc.edu

 David Meyer
 Cisco Systems

Expires May 1999 [Page 40]

Draft BGMP November 1998

 San Jose, CA
 EMail: dmm@cisco.com

14. References

[BGP]
 Rekhter, Y., and T. Li, "A Border Gateway Protocol 4 (BGP-4)", RFC

1771, March 1995.

[MBGP]
 Bates, T., Chandra, R., Katz, D., and Y. Rekhter, "Multiprotocol
 Extensions for BGP-4", RFC 2283, February 1998.

[CBT]
 Ballardie, A. J., "Core Based Trees (CBT) Multicast: Architectural
 Overview and Specification", University College London, November
 1994.

[CBTDM]
 Ballardie, A., "Core Based Tree (CBT) Multicast Border Router
 Specification" draft-ietf-idmr-cbt-br-spec-00.txt, October 1997.

[DVMRP]
 Pusateri, T., "Distance Vector Multicast Routing Protocol", draft-

ietf-idmr-dvmrp-v3-05.txt, October 1997.

[DWR]
 Fenner, W., "Domain-Wide Reports", Work in progress.

[INTEROP]
 Thaler, D., "Interoperability Rules for Multicast Routing
 Protocols", draft-thaler-multicast-interop-01.txt, March 1997.

[IPv6MAA]
 R. Hinden, S. Deering, "IPv6 Multicast Address Assignments",

draft-ietf-ipngwg-multicast-assgn-04.txt, July 1997.

[ISSUES]
 Meyer, D., "Some Issues for an Inter-domain Multicast Routing
 Protocol", draft-ietf-mboned-imrp-some-issues-02.txt, June 1997.

[MASC]
 Estrin, D., Handley, M, and D. Thaler, "Multicast-Address-Set
 advertisement and Claim mechanism", Work in Progress, June 1997.

https://datatracker.ietf.org/doc/html/rfc1771
https://datatracker.ietf.org/doc/html/rfc1771
https://datatracker.ietf.org/doc/html/rfc2283
https://datatracker.ietf.org/doc/html/draft-ietf-idmr-cbt-br-spec-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-idmr-dvmrp-v3-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-idmr-dvmrp-v3-05.txt
https://datatracker.ietf.org/doc/html/draft-thaler-multicast-interop-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-multicast-assgn-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mboned-imrp-some-issues-02.txt

Expires May 1999 [Page 41]

Draft BGMP November 1998

[MOSPF]
 Moy, J., "Multicast Extensions to OSPF", RFC 1584, Proteon, March
 1994.

[PIMDM]
 Estrin, et al., "Protocol Independent Multicast-Dense Mode (PIM-
 DM): Protocol Specification", draft-ietf-idmr-pim-dm-spec-05.txt,
 May 1997.

[PIMSM]
 Estrin, et al., "Protocol Independent Multicast-Sparse Mode (PIM-
 SM): Protocol Specification", RFC 2117, June 1997.

[REFLECT]
 Bates, T., and R. Chandra, "BGP Route Reflection: An alternative to
 full mesh IBGP", RFC 1966, June 1996.

[RFC1700]
 S. J. Reynolds, J. Postel, "ASSIGNED NUMBERS", RFC 1700, October
 1994.

[RFC1771]
 Y. Rekhter, T. Li, "A Border Gateway Protocol 4 (BGP-4)", RFC 1771,
 March 1995.

[RFC2119]
 S. Bradner, "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

Table of Contents

1 Acknowledgements .. 2
2 Purpose ... 2
3 Terminology ... 3
4 Protocol Overview ... 5
4.1 Design Rationale .. 6
5 Protocol Details .. 8
5.1 Interaction with the EGP 8
5.2 Multicast Data Packet Processing 9
5.3 BGMP processing of Join and Prune messages and notifications
 .. 10
5.3.1 Receiving Joins ... 10

https://datatracker.ietf.org/doc/html/rfc1584
https://datatracker.ietf.org/doc/html/draft-ietf-idmr-pim-dm-spec-05.txt
https://datatracker.ietf.org/doc/html/rfc2117
https://datatracker.ietf.org/doc/html/rfc1966
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc1771
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Expires May 1999 [Page 42]

Draft BGMP November 1998

5.3.2 Receiving Prune Notifications 11
5.3.3 Receiving Route Change Notifications 11
5.4 Interaction with M-IGP components 12
5.4.1 Interaction with DVMRP and PIM-DM 12
5.4.2 Interaction with PIM-SM 14
5.4.3 Interaction with CBT .. 15
5.4.4 Interaction with MOSPF 16
5.5 Operation over Multi-access Networks 16
6 Interaction with address allocation 17
6.1 Requirements for BGMP components 17
7 Transition Strategy ... 17
7.1 Preventing transit through the MBone stub 19
8 Message Formats ... 20
8.1 Message Header Format ... 20
8.2 OPEN Message Format ... 21
8.3 UPDATE Message Format ... 24
8.4 Encoding examples ... 28
8.5 KEEPALIVE Message Format 28
8.6 NOTIFICATION Message Format 29
9 BGMP Error Handling ... 30
9.1 Message Header error handling 31
9.2 OPEN message error handling 31
9.3 UPDATE message error handling 32
9.4 NOTIFICATION message error handling 33
9.5 Hold Timer Expired error handling 33
9.6 Finite State Machine error handling 33
9.7 Cease ... 33
9.8 Connection collision detection 34
10 BGMP Version Negotiation 35
10.1 BGMP Capability Negotiation 35
11 BGMP Finite State machine 35
12 Security Considerations .. 40
13 Authors' Addresses ... 40
14 References ... 41

Expires May 1999 [Page 43]

