
Internet Engineering Task Force Inter-Domain Multicast Routing Working Group
INTERNET-DRAFT W. Fenner
draft-ietf-idmr-traceroute-ipm-07.txt AT&T Research
 S. Casner
 Cisco Systems
 July 14, 2000
 Expires January 2001

A "traceroute" facility for IP Multicast.

Status of this Memo

This document is an Internet Draft and is in full conformance with all
provisions of Section 10 of RFC2026. Internet Drafts are working docu-
ments of the Internet Engineering Task Force (IETF), its areas, and its
working groups. Note that other groups may also distribute working doc-
uments as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet- Drafts as reference material
or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Distribution of this document is unlimited.

 Abstract

 This draft describes the IGMP multicast traceroute facility.
 Unlike unicast traceroute, multicast traceroute requires a special
 packet type and implementation on the part of routers. This speci-
 fication describes the required functionality in multicast routers,
 as well as how management applications can use the new router func-
 tionality.

This document is a product of the Inter-Domain Multicast Routing working
group within the Internet Engineering Task Force. Comments are
solicited and should be addressed to the working group's mailing list at
idmr@cs.ucl.ac.uk and/or the author(s).

Casner, Fenner Expires January 2001 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

Key Words

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [Brad97].

1. Introduction

The unicast "traceroute" program allows the tracing of a path from one
machine to another, using a mechanism that already existed in IP.
Unfortunately, no such existing mechanism can be applied to IP multicast
paths. The key mechanism for unicast traceroute is the ICMP TTL
exceeded message, which is specifically precluded as a response to mul-
ticast packets. Thus, we specify the multicast "traceroute" facility to
be implemented in multicast routers and accessed by diagnostic programs.
While it is a disadvantage that a new mechanism is required, the multi-
cast traceroute facility can provide additional information about packet
rates and losses that the unicast traceroute cannot, and generally
requires fewer packets to be sent.

Goals:

o To be able to trace the path that a packet would take from some
 source to some destination.

o To be able to isolate packet loss problems (e.g., congestion).

o To be able to isolate configuration problems (e.g., TTL threshold).

o To minimize packets sent (e.g. no flooding, no implosion).

2. Overview

Given a multicast distribution tree, tracing from a source to a multi-
cast destination is hard, since you don't know down which branch of the
multicast tree the destination lies. This means that you have to flood
the whole tree to find the path from one source to one destination.
However, walking up the tree from destination to source is easy, as most
existing multicast routing protocols know the previous hop for each
source. Tracing from destination to source can involve only routers on
the direct path.

The party requesting the traceroute (which need be neither the source
nor the destination) sends a traceroute Query packet to the last-hop
multicast router for the given destination. The last-hop router turns
the Query into a Request packet by adding a response data block contain-
ing its interface addresses and packet statistics, and then forwards the
Request packet via unicast to the router that it believes is the proper

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt
https://datatracker.ietf.org/doc/html/rfc2119

Casner, Fenner Expires January 2001 [Page 2]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

previous hop for the given source and group. Each hop adds its response
data to the end of the Request packet, then unicast forwards it to the
previous hop. The first hop router (the router that believes that pack-
ets from the source originate on one of its directly connected networks)
changes the packet type to indicate a Response packet and sends the com-
pleted response to the response destination address. The response may
be returned before reaching the first hop router if a fatal error condi-
tion such as "no route" is encountered along the path.

Multicast traceroute uses any information available to it in the router
to attempt to determine a previous hop to forward the trace towards.
Multicast routing protocols vary in the type and amount of state they
keep; multicast traceroute endeavors to work with all of them by using
whatever is available. For example, if a DVMRP router has no active
state for a particular source but does have a DVMRP route, it chooses
the parent of the DVMRP route as the previous hop. If a PIM-SM router
is on the (*,G) tree, it chooses the parent towards the RP as the previ-
ous hop. In these cases, no source/group-specific state is available,
but the path may still be traced.

3. Multicast Traceroute header

The header for all multicast traceroute packets is as follows. The
header is only filled in by the originator of the traceroute Query;
intermediate hops MUST NOT modify any of the fields.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| IGMP Type | # hops | checksum |
+-+
| Multicast Group Address |
+=+
| Source Address |
+-+
| Destination Address |
+-+
| Response Address |
+-+
| resp ttl | Query ID |
+-+

3.1. IGMP Type: 8 bits

 The IGMP type field is defined to be 0x1F for traceroute queries
 and requests. The IGMP type field is changed to 0x1E when the
 packet is completed and sent as a response from the first hop

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 3]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

 router to the querier. Two codes are required so that multicast
 routers won't attempt to process a completed response in those
 cases where the initial query was issued from a router or the
 response is sent via multicast.

3.2. # hops: 8 bits

 This field specifies the maximum number of hops that the requester
 wants to trace. If there is some error condition in the middle of
 the path that keeps the traceroute request from reaching the first-
 hop router, this field can be used to perform an expanding-length
 search to trace the path to just before the problem.

3.3. Checksum: 16 bits

 The checksum is the 16-bit one's complement of the one's complement
 sum of the whole IGMP message (the entire IP payload)[Brad88].
 When computing the checksum, the checksum field is set to zero.
 When transmitting packets, the checksum MUST be computed and
 inserted into this field. When receiving packets, the checksum
 MUST be verified before processing a packet.

3.4. Group address

 This field specifies the group address to be traced, or zero if no
 group-specific information is desired. Note that non-group-spe-
 cific traceroutes may not be possible with certain multicast rout-
 ing protocols.

3.5. Source address

 This field specifies the IP address of the multicast source for the
 path being traced, or 0xFFFFFFFF if no source-specific information
 is desired. Note that non-source-specific traceroutes may not be
 possible with certain multicast routing protocols.

3.6. Destination address

 This field specifies the IP address of the multicast receiver for
 the path being traced. The trace starts at this destination and
 proceeds toward the traffic source.

3.7. Response Address

 This field specifies where the completed traceroute response packet
 gets sent. It can be a unicast address or a multicast address, as
 explained in section 6.2.

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 4]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

3.8. resp ttl: 8 bits

 This field specifies the TTL at which to multicast the response, if
 the response address is a multicast address.

3.9. Query ID: 24 bits

 This field is used as a unique identifier for this traceroute
 request so that duplicate or delayed responses may be detected and
 to minimize collisions when a multicast response address is used.

4. Definitions

Since multicast traceroutes flow in the opposite direction to the data
flow, we always refer to "upstream" and "downstream" with respect to
data, unless explicitly specified.

Incoming Interface
 The interface on which traffic is expected from the specified
 source and group.

Outgoing Interface
 The interface on which traffic is forwarded from the specified
 source and group towards the destination. Also called the "Recep-
 tion Interface", since it is the interface on which the multicast
 traceroute Request was received.

Previous-Hop Router
 The router, on the Incoming Interface, which is responsible for
 forwarding traffic for the specified source and group.

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 5]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

5. Response data

Each router adds a "response data" segment to the traceroute packet
before it forwards it on. The response data looks like this:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Query Arrival Time |
+-+
| Incoming Interface Address |
+-+
| Outgoing Interface Address |
+-+
| Previous-Hop Router Address |
+-+
| Input packet count on incoming interface |
+-+
| Output packet count on outgoing interface |
+-+
| Total number of packets for this source-group pair |
+-+
		M			
Rtg Protocol	FwdTTL	B	S	Src Mask	Forwarding Code
		Z			
+-+

5.1. Query Arrival Time

 The Query Arrival Time is a 32-bit NTP timestamp specifying the
 arrival time of the traceroute request packet at this router. The
 32-bit form of an NTP timestamp consists of the middle 32 bits of
 the full 64-bit form; that is, the low 16 bits of the integer part
 and the high 16 bits of the fractional part.

 The following formula converts from a UNIX timeval to a 32-bit NTP
 timestamp:

 query_arrival_time = (tv.tv_sec + 32384) << 16 + ((tv.tv_usec <<
 10) / 15625)

 The constant 32384 is the number of seconds from Jan 1, 1900 to Jan
 1, 1970 truncated to 16 bits. ((tv.tv_usec << 10) / 15625) is a
 reduction of ((tv.tv_usec / 100000000) << 16).

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 6]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

5.2. Incoming Interface Address

 This field specifies the address of the interface on which packets
 from this source and group are expected to arrive, or 0 if unknown.

5.3. Outgoing Interface Address

 This field specifies the address of the interface on which packets
 from this source and group flow to the specified destination, or 0
 if unknown.

5.4. Previous-Hop Router Address

 This field specifies the router from which this router expects
 packets from this source. This may be a multicast group (e.g.
 ALL-[protocol]-ROUTERS.MCAST.NET) if the previous hop is not known
 because of the workings of the multicast routing protocol. How-
 ever, it should be 0 if the incoming interface address is unknown.

5.5. Packet counts

 Note that these packet counts SHOULD be as up to date as possible.
 If packet counts are not being maintained on the processor that
 handles the traceroute request in a multi-processor router archi-
 tecture, the packet SHOULD be delayed while the counters are gath-
 ered from the remote processor(s). If this occurs, the Query
 Arrival Time should be updated to reflect the time at which the
 packet counts were learned.

5.6. Input packet count on incoming interface

 This field contains the number of multicast packets received for
 all groups and sources on the incoming interface, or 0xffffffff if
 no count can be reported. This counter should have the same value
 as ifInMulticastPkts from the IF-MIB for this interface.

5.7. Output packet count on outgoing interface

 This field contains the number of multicast packets that have been
 transmitted or queued for transmission for all groups and sources
 on the outgoing interface, or 0xffffffff if no count can be
 reported. This counter should have the same value as ifOutMulti-
 castPkts from the IF-MIB for this interface.

5.8. Total number of packets for this source-group pair

 This field counts the number of packets from the specified source
 forwarded by this router to the specified group, or 0xffffffff if

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 7]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

 no count can be reported. If the S bit is set, the count is for
 the source network, as specified by the Src Mask field. If the S
 bit is set and the Src Mask field is 63, indicating no source-spe-
 cific state, the count is for all sources sending to this group.
 This counter should have the same value as ipMRoutePkts from the
 IPMROUTE-STD-MIB for this forwarding entry.

5.9. Rtg Protocol: 8 bits

 This field describes the routing protocol in use between this
 router and the previous-hop router. Specified values include:

 1 DVMRP
 2 MOSPF
 3 PIM
 4 CBT
 5 PIM using special routing table
 6 PIM using a static route
 7 DVMRP using a static route
 8 PIM using MBGP (aka BGP4+) route
 9 CBT using special routing table
 10 CBT using a static route
 11 PIM using state created by Assert processing

5.10. FwdTTL: 8 bits

 This field contains the TTL that a packet is required to have
 before it will be forwarded over the outgoing interface.

5.11. MBZ: 1 bit

 Must be zeroed on transmission and ignored on reception.

5.12. S: 1 bit

 If this bit is set, it indicates that the packet count for the
 source-group pair is for the source network, as determined by mask-
 ing the source address with the Src Mask field.

5.13. Src Mask: 6 bits

 This field contains the number of 1's in the netmask this router
 has for the source (i.e. a value of 24 means the netmask is
 0xffffff00). If the router is forwarding solely on group state,
 this field is set to 63 (0x3f).

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 8]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

5.14. Forwarding Code: 8 bits

 This field contains a forwarding information/error code. Defined
 values include:

 Value Name Description
 --
 0x00 NO_ERROR No error
 0x01 WRONG_IF Traceroute request arrived on an interface to
 which this router would not forward for this
 source,group,destination.
 0x02 PRUNE_SENT This router has sent a prune upstream which
 applies to the source and group in the tracer-
 oute request.
 0x03 PRUNE_RCVD This router has stopped forwarding for this
 source and group in response to a request from
 the next hop router.
 0x04 SCOPED The group is subject to administrative scoping
 at this hop.
 0x05 NO_ROUTE This router has no route for the source or
 group and no way to determine a potential
 route.
 0x06 WRONG_LAST_HOP This router is not the proper last-hop router.
 0x07 NOT_FORWARDING This router is not forwarding this
 source,group out the outgoing interface for an
 unspecified reason.
 0x08 REACHED_RP Reached Rendez-vous Point or Core
 0x09 RPF_IF Traceroute request arrived on the expected RPF
 interface for this source,group.
 0x0A NO_MULTICAST Traceroute request arrived on an interface
 which is not enabled for multicast.
 0x0B INFO_HIDDEN One or more hops have been hidden from this
 trace.
 0x81 NO_SPACE There was not enough room to insert another
 response data block in the packet.
 0x82 OLD_ROUTER The previous hop router does not understand
 traceroute requests.
 0x83 ADMIN_PROHIB Traceroute is administratively prohibited.

 Note that if a router discovers there is not enough room in a
 packet to insert its response, it puts the 0x81 error code in the
 previous router's Forwarding Code field, overwriting any error the
 previous router placed there. A multicast traceroute client, upon
 receiving this error, MAY restart the trace at the last hop listed
 in the packet.

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 9]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

 The 0x80 bit of the Forwarding Code is used to indicate a fatal
 error. A fatal error is one where the router may know the previous
 hop but cannot forward the message to it.

6. Router Behavior

All of these actions are performed in addition to (NOT instead of) for-
warding the packet, if applicable. E.g. a multicast packet that has TTL
remaining MUST be forwarded normally, as MUST a unicast packet that has
TTL remaining and is not addressed to this router.

6.1. Traceroute Query

 A traceroute Query message is a traceroute message with no response
 blocks filled in, and uses IGMP type 0x1F.

6.1.1. Packet Verification

 Upon receiving a traceroute Query message, a router must examine
 the Query to see if it is the proper last-hop router for the desti-
 nation address in the packet. It is the proper last-hop router if
 it has a multicast-capable interface on the same subnet as the Des-
 tination Address and is the router that would forward traffic from
 the given source onto that subnet.

 If the router determines that it is not the proper last-hop router,
 or it cannot make that determination, it does one of two things
 depending if the Query was received via multicast or unicast. If
 the Query was received via multicast, then it MUST be silently
 dropped. If it was received via unicast, a forwarding code of
 WRONG_LAST_HOP is noted and processing continues as in section 6.2.

 Duplicate Query messages as identified by the tuple (IP Source,
 Query ID) SHOULD be ignored. This MAY be implemented using a sim-
 ple 1-back cache (i.e. remembering the IP source and Query ID of
 the previous Query message that was processed, and ignoring future
 messages with the same IP Source and Query ID). Duplicate Request
 messages MUST NOT be ignored in this manner.

6.1.2. Normal Processing

 When a router receives a traceroute Query and it determines that it
 is the proper last-hop router, it treats it like a traceroute
 Request and performs the steps listed in section 6.2.

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 10]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

6.2. Traceroute Request

 A traceroute Request is a traceroute message with some number of
 response blocks filled in, and also uses IGMP type 0x1F. Routers
 can tell the difference between Queries and Requests by checking
 the length of the packet.

6.2.1. Packet Verification

 If the traceroute Request is not addressed to this router, or if
 the Request is addressed to a multicast group which is not a link-
 scoped group (e.g. 224.0.0.x), it MUST be silently ignored.

6.2.2. Normal Processing

 When a router receives a traceroute Request, it performs the fol-
 lowing steps. Note that it is possible to have multiple situations
 covered by the Forwarding Codes. The first one encountered is the
 one that is reported, i.e. all "note forwarding code N" should be
 interpreted as "if forwarding code is not already set, set forward-
 ing code to N".

 1. If there is room in the current buffer (or the router can effi-
 ciently allocate more space to use), insert a new response
 block into the packet and fill in the Query Arrival Time, Out-
 going Interface Address, Output Packet Count, and FwdTTL. If
 there was no room, fill in the response code "NO_SPACE" in the
 previous hop's response block, and forward the packet to the
 requester as described in "Forwarding Traceroute Requests".

 2. Attempt to determine the forwarding information for the source
 and group specified, using the same mechanisms as would be used
 when a packet is received from the source destined for the
 group. State need not be instantiated, it can be "phantom"
 state created only for the purpose of the trace.

 If using a shared-tree protocol and there is no source-specific
 state, or if the source is specified as 0xFFFFFFFF, group state
 should be used. If there is no group state or the group is
 specified as 0, potential source state (i.e. the path that
 would be followed for a source-specific Join) should be used.
 If this router is the Core or RP and no source-specific infor-
 mation is available, note an error code of REACHED_RP.

 3. If no forwarding information can be determined, the router
 notes an error code of NO_ROUTE, sets the remaining fields that
 have not yet been filled in to zero, and the forwards the
 packet to the requester as described in "Forwarding Traceroute

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 11]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

 Requests".

 4. Fill in the Incoming Interface Address, Previous-Hop Router
 Address, Input Packet Count, Total Number of Packets, Routing
 Protocol, S, and Src Mask from the forwarding information that
 was determined.

 5. If traceroute is administratively prohibited or the previous
 hop router does not understand traceroute requests, note the
 appropriate forwarding code (ADMIN_PROHIB or OLD_ROUTER). If
 traceroute is administratively prohibited and any of the fields
 as filled in step 4 are considered private information, zero
 out the applicable fields. Then the packet is forwarded to the
 requester as described in "Forwarding Traceroute Requests".

 6. If the reception interface is not enabled for multicast, note
 forwarding code NO_MULTICAST. If the reception interface is
 the interface from which the router would expect data to arrive
 from the source, note forwarding code RPF_IF. Otherwise, if
 the reception interface is not one to which the router would
 forward data from the source to the group, a forwarding code of
 WRONG_IF is noted.

 7. If the group is subject to administrative scoping on either the
 Outgoing or Incoming interfaces, a forwarding code of SCOPED is
 noted.

 8. If this router is the Rendez-vous Point or Core for the group,
 a forwarding code of REACHED_RP is noted.

 9. If this router has sent a prune upstream which applies to the
 source and group in the traceroute Request, it notes forwarding
 code PRUNE_SENT. If the router has stopped forwarding down-
 stream in response to a prune sent by the next hop router, it
 notes forwarding code PRUNE_RCVD. If the router should nor-
 mally forward traffic for this source and group downstream but
 is not, it notes forwarding code NOT_FORWARDING.

 10. The packet is then sent on to the previous hop or the requester
 as described in "Forwarding Traceroute Requests".

6.3. Traceroute response

 A router must forward all traceroute response packets normally,
 with no special processing. If a router has initiated a traceroute
 with a Query or Request message, it may listen for Responses to
 that traceroute but MUST still forward them as well.

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 12]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

6.4. Forwarding Traceroute Requests

 If the Previous-hop router is known for this request and the number
 of response blocks is less than the number requested, the packet is
 sent to that router. If the Incoming Interface is known but the
 Previous-hop router is not known, the packet is sent to an appro-
 priate multicast address on the Incoming Interface. The appropri-
 ate multicast address may depend on the routing protocol in use,
 MUST be a link-scoped group (i.e. 224.0.0.x), MUST NOT be ALL-SYS-
 TEMS.MCAST.NET (224.0.0.1) and MAY be ALL-ROUTERS.MCAST.NET
 (224.0.0.2) if the routing protocol in use does not define a more
 appropriate group. Otherwise, it is sent to the Response Address
 in the header, as described in "Sending Traceroute Responses".
 Note that it is not an error for the number of response blocks to
 be greater than the number requested; such a packet should simply
 be forwarded to the requester as described in "Sending Traceroute
 Responses".

6.5. Sending Traceroute Responses

6.5.1. Destination Address

 A traceroute response must be sent to the Response Address in the
 traceroute header.

6.5.2. TTL

 If the Response Address is unicast, the router inserts its normal
 unicast TTL in the IP header. If the Response Address is multi-
 cast, the router copies the Response TTL from the traceroute header
 into the IP header.

6.5.3. Source Address

 If the Response Address is unicast, the router may use any of its
 interface addresses as the source address. Since some multicast
 routing protocols forward based on source address, if the Response
 Address is multicast, the router MUST use an address that is known
 in the multicast routing table if it can make that determination.

6.5.4. Sourcing Multicast Responses

 When a router sources a multicast response, the response packet
 MUST be sent on a single interface, then forwarded as if it were
 received on that interface. It MUST NOT source the response packet
 individually on each interface, in order to avoid duplicate pack-
 ets.

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 13]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

6.6. Hiding information

 Information about a domain's topology and connectivity may be hid-
 den from multicast traceroute requests. The exact mechanism is not
 specified here; however, the INFO_HIDDEN forwarding code may be
 used to note that, for example, the incoming interface address and
 packet count are for the entrance to the domain and the outgoing
 interface address and packet count are the exit from the domain.
 The source-group packet count may be from either router or not
 specified (0xffffffff).

7. Using multicast traceroute

7.1. Sample Client

This section describes the behavior of an example multicast traceroute
client.

7.1.1. Sending Initial Query

 When the destination of the trace is the machine running the
 client, the traceroute Query packet can be sent to the ALL-ROUTERS
 multicast group (224.0.0.2). This will ensure that the packet is
 received by the last-hop router on the subnet. Otherwise, if the
 proper last-hop router is known for the trace destination, the
 Query could be unicasted to that router. Otherwise, the Query
 packet should be multicasted to the group being queried; if the
 destination of the trace is a member of the group this will get the
 Query to the proper last-hop router. In this final case, the
 packet should contain the Router Alert option, to make sure that
 routers that are not members of the multicast group notice the
 packet. See also section 7.2 on determining the last-hop router.

7.1.2. Determining the Path

 The client could send a small number of Initial Query messages with
 a large "# hops" field, in order to try to trace the full path. If
 this attempt fails, one strategy is to perform a linear search (as
 the traditional unicast traceroute program does); set the "#hops"
 field to 1 and try to get a response, then 2, and so on. If no
 response is received at a certain hop, the hop count can continue
 past the non-responding hop, in the hopes that further hops may
 respond. These attempts should continue until a user-defined time-
 out has occurred.

 See also section 7.3 and 7.4 on receiving the results of a trace.

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 14]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

7.1.3. Collecting Statistics

 After a client has determined that it has traced the whole path or
 as much as it can expect to (see section 7.5), it might collect
 statistics by waiting a short time and performing a second trace.
 If the path is the same in the two traces, statistics can be dis-
 played as described in section 8.3 and 8.4.

Details of performing a multicast traceroute:

7.2. Last hop router

 The traceroute querier may not know which is the last hop router,
 or that router may be behind a firewall that blocks unicast packets
 but passes multicast packets. In these cases, the traceroute
 request should be multicasted to the group being traced (since the
 last hop router listens to that group). All routers except the
 correct last hop router should ignore any multicast traceroute
 request received via multicast. Traceroute requests which are mul-
 ticasted to the group being traced must include the Router Alert IP
 option [Katz97].

 Another alternative is to unicast to the trace destination.
 Traceroute requests which are unicasted to the trace destination
 must include the Router Alert IP option [Katz97], in order that the
 last-hop router is aware of the packet.

 If the traceroute querier is attached to the same router as the
 destination of the request, the traceroute request may be multicas-
 ted to 224.0.0.2 (ALL-ROUTERS.MCAST.NET) if the last-hop router is
 not known.

7.3. First hop router

 The traceroute querier may not be unicast reachable from the first
 hop router. In this case, the querier should set the traceroute
 response address to a multicast address, and should set the
 response TTL to a value sufficient for the response from the first
 hop router to reach the querier. It may be appropriate to start
 with a small TTL and increase in subsequent attempts until a suffi-
 cient TTL is reached, up to an appropriate maximum (such as 192).

 The IANA has assigned 224.0.1.32, MTRACE.MCAST.NET, as the default
 multicast group for multicast traceroute responses. Other groups
 may be used if needed, e.g. when using mtrace to diagnose problems
 with the IANA-assigned group.

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 15]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

7.4. Broken intermediate router

 A broken intermediate router might simply not understand traceroute
 packets, and drop them. The querier would then get no response at
 all from its traceroute requests. It should then perform a hop-by-
 hop search by setting the number of responses field until it gets a
 response (both linear and binary search are options, but binary is
 likely to be slower because a failure requires waiting for a time-
 out).

7.5. Trace termination

 When performing an expanding hop-by-hop trace, it is necessary to
 determine when to stop expanding.

7.5.1. Arriving at source

 A trace can be determined to have arrived at the source if the
 Incoming Interface of the last router in the trace is non-zero, but
 the Previous Hop router is zero.

7.5.2. Fatal Error

 A trace has encountered a fatal error if the last Forwarding Error
 in the trace has the 0x80 bit set.

7.5.3. No Previous Hop

 A trace can not continue if the last Previous Hop in the trace is
 set to 0.

7.5.4. Trace shorter than requested

 If the trace that is returned is shorter than requested (i.e. the
 number of Response blocks is smaller than the "# hops" field), the
 trace encountered an error and could not continue.

7.6. Continuing after an error

 When the NO_SPACE error occurs, the client might try to continue
 the trace by starting it at the last hop in the trace. It can do
 this by unicasting to this router's outgoing interface address,
 keeping all fields the same. If this results in a single hop and a
 "WRONG_IF" error, the client may try setting the trace destination
 to the same outgoing interface address.

 If a trace times out, it is likely to be because a router in the
 middle of the path does not support multicast traceroute. That

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 16]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

 router's address will be in the Previous Hop field of the last
 entry in the last reply packet received. A client may be able to
 determine (via mrinfo[Pusa99] or SNMP[Thal99,Thal00]) a list of
 neighbors of the non-responding router. If desired, each of those
 neighbors could be probed to determine the remainder of the path.
 Unfortunately, this heuristic may end up with multiple paths, since
 there is no way of knowing what the non-responding router's algo-
 rithm for choosing a previous-hop router is. However, if all paths
 but one flow back towards the non-responding router, it is possible
 to be sure that this is the correct path.

7.7. Multicast Traceroute and shared-tree routing protocols

 When using shared-tree routing protocols like PIM-SM and CBT, a
 more advanced client may use multicast traceroute to determine
 paths or potential paths.

7.7.1. PIM-SM

 When a multicast traceroute reaches a PIM-SM RP and the RP does not
 forward the trace on, it means that the RP has not performed a
 source-specific join so there is no more state to trace. However,
 the path that traffic would use if the RP did perform a source-spe-
 cific join can be traced by setting the trace destination to the
 RP, the trace source to the traffic source, and the trace group to
 0. This trace Query may be unicasted to the RP.

7.7.2. CBT

 When a multicast traceroute reaches a CBT Core, it must simply stop
 since CBT does not have source-specific state. However, a second
 trace can be performed, setting the trace destination to the traf-
 fic source, the trace group to the group being traced, and the
 trace source to the Core (or to 0, since CBT does not have source-
 specific state). This trace Query may be unicasted to the Core.
 There are two possibilities when combining the two traces:

7.7.2.1. No overlap

 If there is no overlap between the two traces, the second trace can
 be reversed and appended to the first trace. This composite trace
 shows the full path from the source to the destination.

7.7.2.2. Overlapping paths

 If there is a portion of the path that is common to the ends of the
 two traces, that portion is removed from both traces. Then, as in
 the no overlap case, the second trace is reversed and appended to

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 17]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

 the first trace, and the composite trace again contains the full
 path.

 This algorithm works whether the source has joined the CBT tree or
 not.

7.8. Protocol-specific considerations

7.8.1. DVMRP

 DVMRP's dominant router election and route exchange guarantees that
 DVMRP routers know whether or not they are the last-hop forwarder
 for the link and who the previous hop is.

7.8.2. PIM Dense Mode

 Routers running PIM Dense Mode do not know the path packets would
 take unless traffic is flowing. Without some extra protocol mecha-
 nism, this means that in an environment with multiple possible
 paths with branch points on shared media, multicast traceroute can
 only trace existing paths, not potential paths. When there are
 multiple possible paths but the branch points are not on shared
 media, the previous hop router is known, but the last hop router
 may not know that it is the appropriate last hop.

 When traffic is flowing, PIM Dense Mode routers know whether or not
 they are the last-hop forwarder for the link (because they won or
 lost an Assert battle) and know who the previous hop is (because it
 won an Assert battle). Therefore, multicast traceroute is always
 able to follow the proper path when traffic is flowing.

8. Problem Diagnosis

8.1. Forwarding Inconsistencies

 The forwarding error code can tell if a group is unexpectedly
 pruned or administratively scoped.

8.2. TTL problems

 By taking the maximum of (hops from source + forwarding TTL thresh-
 old) over all hops, you can discover the TTL required for the
 source to reach the destination.

8.3. Packet Loss

 By taking two traces, you can find packet loss information by com-
 paring the difference in input packet counts to the difference in

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 18]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

 output packet counts at the previous hop. On a point-to-point
 link, any difference in these numbers implies packet loss. Since
 the packet counts may be changing as the trace query is propagat-
 ing, there may be small errors (off by 1 or 2) in these statistics.
 However, these errors will not accumulate if multiple traces are
 taken to expand the measurement period. On a shared link, the
 count of input packets can be larger than the number of output
 packets at the previous hop, due to other routers or hosts on the
 link injecting packets. This appears as "negative loss" which may
 mask real packet loss.

 In addition to the counts of input and output packets for all mul-
 ticast traffic on the interfaces, the response data includes a
 count of the packets forwarded by a node for the specified source-
 group pair. Taking the difference in this count between two traces
 and then comparing those differences between two hops gives a mea-
 sure of packet loss just for traffic from the specified source to
 the specified receiver via the specified group. This measure is
 not affected by shared links.

 On a point-to-point link that is a multicast tunnel, packet loss is
 usually due to congestion in unicast routers along the path of that
 tunnel. On native multicast links, loss is more likely in the out-
 put queue of one hop, perhaps due to priority dropping, or in the
 input queue at the next hop. The counters in the response data do
 not allow these cases to be distinguished. Differences in packet
 counts between the incoming and outgoing interfaces on one node
 cannot generally be used to measure queue overflow in the node.

8.4. Link Utilization

 Again, with two traces, you can divide the difference in the input
 or output packet counts at some hop by the difference in time
 stamps from the same hop to obtain the packet rate over the link.
 If the average packet size is known, then the link utilization can
 also be estimated to see whether packet loss may be due to the rate
 limit or the physical capacity on a particular link being exceeded.

8.5. Time delay

 If the routers have synchronized clocks, it is possible to estimate
 propagation and queuing delay from the differences between the
 timestamps at successive hops. However, this delay includes con-
 trol processing overhead, so is not necessarily indicative of the
 delay that data traffic would experience.

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 19]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

9. Implementation-specific Caveats

Some routers with distributed forwarding architectures may not update
the main processor's packet counts often enough for the packet counters
to be meaningful on a small time scale. This can be recognized during a
periodic trace by seeing positive loss in one trace and negative loss in
the next, with no (or small) net loss over a longer interval. The sug-
gested solution to this problem is to simply collect statistics over a
longer interval.

In the multicast extensions for SunOS 4.1.x from Xerox PARC, which are
the basis for many UNIX-based multicast routers, both the output packet
count and the packet forwarding count for the source-group pair are
incremented before priority dropping for rate limiting occurs and before
the packets are put onto the interface output queue which may overflow.
These drops will appear as (positive) loss on the link even though they
occur within the router.

In release 3.3/3.4 of the UNIX multicast extensions, a multicast packet
generated on a router will be counted as having come in an interface
even though it did not. This can create the appearance of negative loss
even on a point-to-point link.

In releases up through 3.5/3.6, packets were not counted as input on an
interface if the reverse-path forwarding check decided that the packets
should be dropped. That causes the packets to appear as lost on the
link if they were output by the upstream hop. This situation can arise
when two routers on the path for the group being traced are connected by
a shared link, and the path for some other group does not flow between
those two routers because the downstream router receives packets for the
other group on another interface, but the upstream router is the elected
forwarder to other routers or hosts on the shared link.

The packet counts for source/group pairs are generally kept in router
forwarding caches. These cache entries may be occasionally garbage-col-
lected on routers, so a multicast traceroute client should be prepared
to see packet counts decrease. If a long-running traceroute is keeping
a "base" to compare against, it should use the post-reset trace as the
new "base", as previous values returned by this hop are no longer valid.
In addition, it may choose to discard the data for all other hops to
cover the same amount of time for all hops.

Some routers (notably the obsolete mrouted 3.3 and 3.4) can constantly
reset these packet counts. A client might want to detect routers that
are constantly resetting and simply fail to collect statistics for that
hop (instead of allowing it to cause all other data to be discarded).

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 20]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

Some routers send byte-swapped counter values. If the difference
between a pair of measurements is extremely large, a traceroute client
may want to see if the difference is more reasonable when byte-swapped.
Note that this heuristic may start misfiring when packet rates get high,
so implementations may want to only attempt this heuristic when the
packet rate is much different on one router than on surrounding routers.

Some implementations (e.g. UNIX mrouted 3.8 and before) return incorrect
time values; the difference between the time values for the same hop in
two traces may have no relationship with the amount of time that passed
between making the traces. Implementations should check that time val-
ues look valid before using them.

10. Acknowledgments

This specification started largely as a transcription of Van Jacobson's
slides from the 30th IETF, and the implementation in mrouted 3.3 by Ajit
Thyagarajan. Van's original slides credit Steve Casner, Steve Deering,
Dino Farinacci and Deb Agrawal. A multicast traceroute client, mtrace,
has been implemented by Ajit Thyagarajan, Steve Casner and Bill Fenner.

The idea of unicasting a multicast traceroute Query to the destination
of the trace with Router Alert set is due to Tony Ballardie. The idea
of the "S" bit to allow statistics for a source subnet is due to Tom
Pusateri.

11. IANA Considerations

11.1. Routing Protocols

 The IANA is responsible for allocating new Routing Protocol codes.
 The Routing Protocol code is somewhat problematic, since in the
 case of protocols like CBT and PIM it must encode both a unicast
 routing algorithm and a multicast tree-building protocol. The
 space was not divided into two fields because it was already small
 and some combinations (e.g. DVMRP) would be wasted.

 Routing Protocol codes should be allocated for any combination of
 protocols that are in common use in the Internet.

11.2. Forwarding Codes

 New Forwarding codes must only be created by an RFC that modifies
 this document's section 7, fully describing the conditions under
 which the new forwarding code is used. The IANA may act as a cen-
 tral repository so that there is a single place to look up forward-
 ing codes and the document in which they are defined.

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 21]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

12. Security Considerations

12.1. Topology discovery

 mtrace can be used to discover any actively-used topology. If your
 network topology is a secret, mtrace may be restricted at the bor-
 der of your domain, using the ADMIN_PROHIB forwarding code.

12.2. Traffic rates

 mtrace can be used to discover what sources are sending to what
 groups and at what rates. If this information is a secret, mtrace
 may be restricted at the border of your domain, using the
 ADMIN_PROHIB forwarding code.

12.3. Unicast replies

 The "Response address" field may be used to send a single packet
 (the traceroute Reply packet) to an arbitrary unicast address. It
 is possible to use this facility as a packet amplifier, as a small
 multicast traceroute Query may turn into a large Reply packet.

13. References

Brad88 Braden, B., D. Borman, C. Partridge, "Computing the
 Internet Checksum", RFC 1071, ISI, September 1988.

Brad97 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119/BCP 14, Harvard University,
 March 1997.

Katz97 Katz, D., "IP Router Alert Option," RFC 2113, Cisco Sys-
 tems, February 1997.

Pusa99 Pusateri, T., "DVMRP Version 3", work in progress,
 September 1999.

Thal00 Thaler, D., "PIM MIB", work in progress, July 2000.

Thal99 Thaler, D., "DVMRP MIB", work in progress, October 1999.

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2113

Casner, Fenner Expires January 2001 [Page 22]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

14. Authors' Addresses

 William C. Fenner
 AT&T Labs -- Research
 75 Willow Rd.
 Menlo Park, CA 94025
 United States
 Email: fenner@research.att.com

 Stephen L. Casner
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134
 United States
 Email: casner@cisco.com

15. Change History

(To be removed before publication as RFC)

15.1. Changes from draft-ietf-idmr-traceroute-ipm-06.txt:

- Added implementation-specific notes as suggested by Dave Thaler:

 - Forwarding cache entries going away while traffic is flowing,
 causing reset counters.

 - mrouted 3.3 and 3.4 constant resets

 - byte-swapped counters

 - bogus time due to missed ntohl() parenthesis in mrouted <= 3.8

- Add example of ALL-[protocol]-ROUTERS.MCAST.NET for the multicast-
 on-prev-hop. (Maybe this isn't important any more; PIM used to be
 allowed to not know the proper prev hop but that's not true any
 more)

15.2. Changes from draft-ietf-idmr-traceroute-ipm-05.txt:

- Changes section added.

- Updated abstract

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt
https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-06.txt
https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-05.txt

Casner, Fenner Expires January 2001 [Page 23]

Internet Draft draft-ietf-idmr-traceroute-ipm-07.txt July 14, 2000

- Added mention of up-to-date packet counts, in particular allowing
 the delay of an mtrace packet while the counts are fetched in a
 distributed architecture.

- Added mention of ifInMulticastPkts, ifOutMulticastPkts, and ipM-
 RoutePkts for clarification of what counts should be used.

- Note that the dropping of duplicate Queries MAY be a 1-back cache
 and that duplicate Requests MUST NOT be dropped

- Add no-space processing rule

- Note that it's not an error for there to be more blocks than
 requested, just send it back after adding yours.

- Clean up some of section 8 - move implementation-specific stuff to
 a separate section, rename "Congestion" to "Packet Loss", note that
 time delay isn't actually that useful.

https://datatracker.ietf.org/doc/html/draft-ietf-idmr-traceroute-ipm-07.txt

Casner, Fenner Expires January 2001 [Page 24]

