
Internet Draft Edmon Chung, Neteka Inc.
<draft-ietf-idn-ace16x-00.txt> David Leung, Neteka Inc.
 June 2001

ACE using Extended Hex Values (ACE16x)

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts. Internet-Drafts are draft documents valid for a maximum of
 six months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The reader is cautioned not to depend on the values that appear in
 examples to be current or complete, since their purpose is primarily
 educational. Distribution of this memo is unlimited.

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 ACE16x is a simplified version of DUDE [DUDE-02] that requires no 5
 bit or base-32 mapping. ACE16x encoding results in a string that
 performs as well as DUDE technically.

 Instead of resorting to a quartet-to-quintet mapping mechanism,
 ACE16x simply uses the hex values with an extended hex (16x) scheme
 for compression. In essence, instead of pre-pending an extra bit,
 ACE16x shifts the last quartet of a compressed code point up to
 another character. Additionally, the 16x value is calculable
 instead of needing to be mapped.

Terminology

 The key words "MUST", "SHALL", "REQUIRED", "SHOULD", "RECOMMENDED",
 and "MAY" in this document are to be interpreted as described in RFC

2119 [RFC2119].

https://datatracker.ietf.org/doc/html/draft-ietf-idn-ace16x-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

 LDH: Letters, Digits and Hyphens: a string of characters that
 consists only hyphens ("-"), English letters (A-z) and digits (0-9),
Chung & Leung [Page 1]

ACE16x ACE using Extended Hex Values June 2001

 which might not be a result of an algorithm for transcoding
 multilingual characters. For example: whatever-you-want.example

 ACE - ASCII Compatible Encoding: a string of characters resulting
 from a particular algorithm for transforming multilingual character
 information into an alphanumeric form acceptable by the existing
 DNS. For example: bq--3bhc2zmh.tld. In essence, ACE is a subset of
 LDH.

 Hexadecimal values are shown preceeded by "0x". For example, 0x60
 is decimal 96. As in the Unicode Standard [UNICODE], Unicode code
 points are denoted by "U+" followed by four to six hexadecimal
 digits, while a range of code points is denoted by two hexadecimal
 numbers separated by "..", with no prefixes.

Table Of Contents

1. Introduction..2
2. Extended Hex Values (16x).......................................3
3. Encoding Procedure..3
4. Decoding Procedure..4

5. Implementation & Examples.......................................4
6. Key Improvements of ACE16x in comparison with DUDE-02...........6
7. Security Considerations...7
8. References..7

1. Introduction

 ACE16x is very similar to DUDE. Except that it does not require any
 base-32 mapping.

 For example, the Unicode sequence (Sections 2-4 will further discuss
 the algorithm):

 Char: <gumi> <kinpachi> <sensei>
 --
 Unicode: U+516B U+5148 U+751F
 Bin: 0101 0001 0110 1011 0101 0001 0100 1000 0111 0101 0001 1111
 --
 ACE16x: 0101 0001 0101 1011 0010 0011 0010 0100 0101 0111
 (in Bin)
 ACE16x: 5 1 5 r 2 j 2 4 5 n
 (in LDH with last quartet of each code point shifted to 16x)
 --
 DUDE:10101100011000001011 100100001110010101001010100111
 (in Bin)
 DUDE: x t s m u d u w x h
 (in LDH prepending 1 & 0s and mapping to base32)

 --

Chung & Leung [Page 2]

ACE16x ACE using Extended Hex Values June 2001

 In brief:
 ACE16x: 515r2j245n
 DUDE: xtsmuduwxh

 Lengthwise, ACE16x is exactly the same as DUDE, while ACE16x does
 not require any 5 bit handling and mapping. This largely simplifies
 and speeds up the process as compared with DUDE.

2. Extended Hex Values (16x)

 The extended hex (16x) values are used for the final quartet of a
 compressed code point. This is used to preserve the reversibility
 of the encoded string, without compromising length while avoiding
 having to do a base-32 mapping.

 There are 16 characters used for hex values, the following table
 provides the extended hex (16x) values for each hex digit.

 Hex=Bin=16x
 0=0000=G 1=0001=H 2=0010=I 3=0011=J
 4=0100=K 5=0101=L 6=0110=M 7=0111=N
 8=1000=O 9=1001=P A=1010=Q B=1011=R
 C=1100=S D=1101=T E=1110=U F=1111=V

 Note that the characters are shifted exactly 16 alphabetic positions
 from their original hex value. Therefore no mapping is required.
 The 16x value could be calculated:

 16x value = Original hex value + 0x67 (or +0x47 for uppercase*)
 *0x67 is the code value for the lowercase letter "g".
 0x47 is the code value for the uppercase letter "G".

 Unless the "mixed-case annotation" feature is implemented, lowercase
 or uppercase form is accepted. Since all 16x values are letters,
 for mixed-case annotations, an uppercase 16x value indicates an
 uppercase character and vice versa (Appendix B).

3. Encoding Procedure

 Similar to DUDE, all ordering of bits and quartets is big-endian
 (most significant first).

 let prev = 0x30
 for each input integer n (in order) do begin
 if n == 0x2D then output hyphen-minus
 else begin
 let diff = prev XOR n
 hex dump resulting quartets,
 as few as are sufficient (but at least one), and
 shift the last quartet to its 16x value

 let prev = n
 end
 end
Chung & Leung [Page 3]

ACE16x ACE using Extended Hex Values June 2001

 Nameprep [NAMEPREP] is not discussed in this document, but is
 expected that it be implemented for IDN. Hence, regardless of the
 code point presented, an encoder MUST not produce an incorrect
 output. The encoder must fail if it encounters a negative input
 value.

 The initial value used is 0x30 so that all domains beginning with a
 digit will be shorter.

4. Decoding Procedure

 let prev = 0x30
 while the input string is not exhausted do begin
 if the next character is hyphen-minus
 then consume it and output 0x2D
 else begin
 consume characters and convert them to quartets until
 encountering a 16x value
 fail upon encountering a non-ACE16x character (0-v)
 or end-of-input
 shift the 16x value back to its hex form
 concatenate the resulting quartets to form diff
 let prev = prev XOR diff
 output prev
 end
 end
 encode the output sequence and compare it to the input string
 fail if they do not match (case insensitively)

5. Implementation & Examples

 The following examples illustrates the similarities and
 differences between dude:

 (A) Unicode: U+0031
 ACE16x: h
 DUDE: xb

 Note that with Nameprep both should be "1" since the entire label
 consists of LDH only. This is just to show how the initial diff
 (0x30) value affects the resulting string.

 All of the following examples are taken from the DUDE-02 draft:

 (B) Unicode: U+2C7EF U+2C7EF
 ACE16x: 2c7dvg
 DUDE: u6z2ra

 (C) Unicode: U+1752B U+1752A
 ACE16x: 1751rh

 DUDE: tzxwmb

Chung & Leung [Page 4]

ACE16x ACE using Extended Hex Values June 2001

 (D) Unicode: U+63AB1 U+63ABA
 ACE16x: 63a8hr
 DUDE: yv47bm

 (E) Unicode: U+261AF U+261BF
 ACE16x: 2619v1g
 DUDE: uyt6rta

 (F) Unicode: U+C3A31 U+C3A8C
 ACE16x: c3a0hbt
 DUDE: 6v4xb5p

 (G) Unicode: U+09F44 U+0954C
 ACE16x: 9f7ka0o
 DUDE: 39ue4si

 (H) Unicode: U+8D1A3 U+8C8A3
 ACE16x: 8d19j190g
 DUDE: 27t6dt3sa

 (I) Unicode: U+6C2B6 U+CC266
 ACE16x: 6c28ma00dg
 DUDE: y6u7g4ss7a

 (J) Unicode: U+002D U+002D U+002D U+E848F
 ACE16x: ---e84bv
 DUDE: ---82w8r

 (K) Unicode: U+BD08E U+002D U+002D U+002D
 ACE16x: bd0bu---
 DUDE: 57s8q---

 (L) Unicode: U+A9A24 U+002D U+002D U+002D U+C05B7
 ACE16x: a9a1k---69f9j
 DUDE: 434we---y393d

 (M) Unicode: U+7FFFFFFF
 ACE16x: 7fffffcv or explicit failure
 DUDE: z999993r or explicit failure

 (N) 3<nen>b<gumi><kinpachi><sensei> (Latin, kanji)
 Unicode: U+0033 U+5E74 U+0062 U+7D44 U+91D1 U+516B U+5148
 U+751F
 ACE16x: j5e4n5e1m7d2mec9lc0bq2j245n
 DUDE: xdx8whx8tgz7ug863f6s5kuduwxh

 (O) <amuro><namie>-with-super-monkeys (Latin, kanji, hyphens)
 Unicode: U+5B89 U+5BA4 U+5948 U+7F8E U+6075 U+002D U+0077
 U+0069 U+0074 U+0068 U+002D U+0073 U+0075 U+0070
 U+0065 U+0072 U+002D U+006D U+006F U+006E U+006B

 U+0065 U+0079 U+0073
 ACE16x: 5bbp2t2es26cm1ffr-600i1u1t1s-1rml1l1n-1vihlu1sq
 DUDE: x58jupu8nuy6gt99m-yssctqtptn-tmgftfth-trcbfqtnk
Chung & Leung [Page 5]

ACE16x ACE using Extended Hex Values June 2001

 (P) maji<de>koi<suru>5<byou><mae> (Latin, hiragana, kanji)
 Unicode: U+006D U+0061 U+006A U+0069 U+3067 U+006B U+006F
 U+0069 U+3059 U+308B U+0035 U+79D2 U+524D
 ACE16x: 5tsrj300u300skm303gdi30bu79en2b9v
 DUDE: pnmdvssqvssnegvsva7cvs5qz38hu53r

 (Q) <pafii>de<runba> (Latin, katakana)
 Unicode: U+30D1 U+30D5 U+30A3 U+30FC U+0064 U+0065 U+30EB
 U+30F3 U+30D0
 ACE16x: 30ehk7m5v309oh308u1o2j
 DUDE: vs5bezgxrvs3ibvs2qtiud

 (R) <sono><supiido><de> (hiragana, katakana)
 Unicode: U+305D U+306E U+30B9 U+30D4 U+30FC U+30C9 U+3067
 ACE16x: 306t3jdn6t2o3lau
 DUDE: vsvpvd7hypuivf4q

6. Key Improvements of ACE16x in comparison with DUDE-02

 - ACE16x does NOT need character mapping. Instead it uses a
 shifting mechanism that is calculable:

 16x = Original hex + 0x67 (or +0x47 for uppercase)

 - ACE16x maintains the one pass system and utilizes XOR instead of
 masking as in DUDE-01

 - ACE16x does not employ a 5bit mechanism, therefore increases
 efficiency

 - The initial value is set to 0x30 so that all domains beginning
 with a digit will be shorter when encoded

 - ACE16x simply hex dumps most quartets improving process time both
 in encoding and decoding.

 - The overall process time will be reduced by means of the
 following:
 1) Hex dump verses base-32 mapping
 2) Shifting verses base-32 mapping
 3) No need to pre-pend "1" or "0" bit(during encode)
 4) No need to strip first bit (during decode)

 - ACE16x is a much more simple algorithm without compromising
 performance. The encoding mechanism is so simple that it could
 easily be expressed in an Excel spreadsheet:

http://www.dnsii.org/ace16x/ace16x-encode.xls (The DUDE encode
 mechanism is also represented in a separate worksheet. It could
 be observed that ACE16x is much more simple than DUDE.)

http://www.dnsii.org/ace16x/ace16x-encode.xls

Chung & Leung [Page 6]

ACE16x ACE using Extended Hex Values June 2001

7. Security Considerations

 This document does not talk about DNS security issues, and it is
 believed that the proposal does not introduce additional security
 problems not already existent and/or anticipated by adding
 multilingual characters to DNS and/or using ACE.

8. References

 [Nameprep]Paul Hoffman, IMC & VPNC & Marc Blanchet, ViaGenie,
 "Preparation of Internationalized Host Names", February
 24, 2001

 [DUDE-02] Mark Welter, Brian W. Spolarich & Adam M.
 Costello,"Differential Unicode Domain Encoding (DUDE)",
 June 7, 2001.

Appendix A. Acknowledgements

 The ACE16x draft is largely based on DUDE-02. The authors would
 like to thank the authors of DUDE-02 Mark Welter, Brian W. Spolarich
 & Adam M. Costello for their inspiration.

Appendix B. Mixed-case annotation

 This section is taken from DUDE and modified for ACE16x

 In order to use ACE16X to represent case-insensitive Unicode
 strings, higher layers need to case-fold the Unicode strings prior
 to ACE16X encoding. The encoded string can, however, use mixed-case
 16x as an annotation telling how to convert the folded Unicode
 string into a mixed-case Unicode string for display purposes.

 Each Unicode code point (unless it is U+002D hyphen-minus) is
 represented by a sequence of hex and 16x characters, the last of
 which is always a 16x character, which is always a letter (as
 opposed to a digit). If that letter is uppercase, it is a
 suggestion that the Unicode character be mapped to uppercase (if
 possible); if the letter is lowercase, it is a suggestion that the
 Unicode character be mapped to lowercase (if possible).

 ACE16X encoders and decoders are not required to support these
 annotations, and higher layers need not use them.

 Example: In order to suggest that example (O) in Section 5
 "Implementation & Examples" be displayed as:

 <amuro><namie>-with-SUPER-MONKEYS

 one could capitalize the ACE16X encoding as:

 5bbp2t2es26cm1ffr-600i1u1t1s-1RML1L1N-1VCBLU1SQ
Chung & Leung [Page 7]

ACE16x ACE using Extended Hex Values June 2001

Authors:

Edmon Chung
Neteka Inc.
2462 Yonge St. Toronto,
Ontario, Canada M4P 2H5
edmon@neteka.com

David Leung
Neteka Inc.
2462 Yonge St. Toronto,
Ontario, Canada M4P 2H5
david@neteka.com

Chung & Leung [Page 8]

